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Abstract 

 

The ability of microorganisms to survive under a large variety and rapidly changing 

environmental conditions is one of their most outstanding features and allowed them 

to establish within all niches of our planet. To do so, microorganisms have developed 

a mechanism called the stringent response (SR). The SR relies on the presence of 

the nucleotide second-messengers (p)ppGpp that contribute to reallocation of 

resources during stressful environmental conditions. Understanding the broad variety 

of adaptation processes mediated by the SR therefore necessitates to decipher the 

metabolism of (p)ppGpp.  

The stringent factor RelA was long thought to solely account for synthesis and 

degradation of (p)ppGpp. However, two additional (p)ppGpp synthesizing enzymes, 

SAS1 and SAS2, were discovered recently. This work presents an in-depth structural 

and mechanistic characterization of SAS1 and SAS2. Both proteins are subject to 

allosteric regulation allowing them to integrate different environmental stress stimuli 

into the framework of the SR. However, SAS1 and SAS2 also mediate adaptation of 

the microorganism in the absence of environmental stress stimuli, e.g. lack of 

nutrients. By this, they provide promising targets for the development of future 

antibiotics guided by the elucidation of their structure and mechanism present in this 

work. 

Analysis of (p)ppGpp effecting various cellular targets reveals that the SR confers 

adaptation processes in a wide intracellular concentration range. This sheds new 

light on the SR as a mechanism of gradual response to subtle changes in the 

environment rather than following an ‘all or nothing’ paradigm.  
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Zusammenfassung 

 

Eines der herausragenden Merkmale von Mikroorganismen ist ihre Fähigkeit, unter 

einer Vielzahl und sich schnell ändernden Umweltbedingungen zu überleben. Diese 

Eigenschaft erlaubt es ihnen eine Vielzahl von verschiedensten Habitaten unseres 

Planeten zu besiedeln. Die Toleranz von Mikroorganismen gegen sich schnell 

ändernde Umweltbedingungen wird dabei durch einen adaptiven Mechanismus, die 

sogenannte stringent response, gewährt. Während der stringent response, mediiert 

durch Interaktionen des second-messengers (p)ppGpp mit diversen Zielproteinen, 

werden die zellulären Resourcen umverteilt und verleihen dem Mikroorganismus eine 

erhöhte Stresstoleranz. Ein umfassendes Verständnis dieser Adaptationsprozesse 

setzt eine genaue Einsicht in den Stoffwechsel von (p)ppGpp vorraus.   

Lange Zeit wurde der ‘stringent factor’ RelA als einziges Enzym fähig zur Synthese 

und Degradation von (p)ppGpp wahrgenommen. Jedoch wurden kürzlich zwei 

zusätzliche Enzyme, SAS1 und SAS2, entdeckt, die effektiv (p)ppGpp produzieren. 

Diese Arbeit beinhaltet eine tiefgründige Analyse der Struktur und Funktion von 

SAS1 und SAS2. Beide Proteine sind das Ziel von allosterischer Regulation, was die 

Implementierung verschiedener Stressstimuli in das Netzwerk der stringent response 

erlaubt. Dennoch sind SAS1 und SAS2 bereits in Abwesenheit eines 

umweltbedingten Stressors, z.B. Nährstoffmangel, essentiell zur Anpassung des 

zelllulären Stoffwechsels und stellen daher vielversprechende Zielstrukturen 

zukünftiger Antibiotikatherapien dar.  

Die genaue Analyse des Effektes von (p)ppGpp auf seine zellulären Zielproteine 

zeigt auf, dass die stringent response nicht nach dem Alles-oder-Nichts-Prinzip 

verläuft, sondern vielmehr eine fein abgestimmte, graduelle Stressantwort darstellt. 

Dies wirft ein neues Licht auf die stringent response als adaptiven Mechanismus in 

Mikroorganismen.  
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Introduction 

 

1.1  Bacterial stringent response 

The ability of microorganisms to survive under a large variety of environmental 

conditions is one of their most outstanding features and allowed them to establish 

within all niches of our planet.  These long-term adaptations to temperature, pH, salt 

conditions, availability of oxygen and different sources of carbon and nitrogen or 

resistance to all kinds of noxa have been subject to steady evolution. However, 

adapting to rapidly changing conditions requires concise sensory and regulatory 

circuits allowing microorganisms to cope with short-term unfavorable conditions.  

To do so, microorganisms have developed a mechanism called the stringent 

response (SR). The SR is a broadly conserved process among all bacterial species 

(1-3) and is also present in plant chloroplasts (4-7). Historically, the SR was identified 

as an adaptational mechanism of Escherichia coli in response to amino acid 

starvation (8, 9). However, in recent years the definition of the SR was broadened to 

many different stresses and environmental conditions.  

Upon exposure to nutrient deprivation, pH shifts or heat shock, the intracellular 

concentrations of the two second messengers ppGpp and pppGpp (collectively: 

(p)ppGpp or the ‘alarmones’) rapidly increases. Both alarmones adapt the 

microorganism to the stress condition by affecting DNA replication (10, 11), globally 

reprogramming transcription and translation (12, 13), interfering with the biogenesis 

of ribosomal subunits (14), amino acid-/nucleotide metabolism (15-18) and altering a 

variety of other cellular processes (3, 19-22). As a general theme of (p)ppGpp’s 

action, energy consuming processes are downregulated to a minimum and only very 

few processes upregulated depending on the stress condition. For example, the 

production of chaperones is elevated during heat stress (23, 24) and amino acid 

uptake and synthesis increased during amino acid starvation (13, 25-28). The 

decrease in metabolism and growth rate, together with a rewiring of resources 

subsequently increases the stress resistance of the organism. Recent studies 
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provide evidence that (p)ppGpp also affects non-stringent response related 

processes (i.e. not induced by a concise stress) such as virulence (29-31), biolfim 

and persister cell formation (32-37) and development of cell heterogeneity (38, 39). 

This highlights the importance of the SR for shape and alterations in the lifestyle of 

microorganisms in general.   

Understanding the broad variety of adaptation processes mediated by the SR and 

their role in ensuring the survival of the microorganism under stress can only be 

achieved by decoding the following aspects: i.) Biochemical properties of all enzymes 

involved in (p)ppGpp metabolism ii.) Regulation of these enzymes on the genetic 

and/or protein level iii.) Effects of (p)ppGpp on its cellular targets.    

1.2  Overview of the (p)ppGpp metabolism 

The SR relies on the presence of the nucleotide second-messengers (p)ppGpp (Fig. 
1A) that contribute to reallocation of resources during stressful environmental 

conditions. In order to almost instantly adapt the microorganism to stress, alarmones 

must be produced rapidly, but all the same should be degraded at high rate 

afterwards. In this respect, microorganisms with the most effective alarmone 

metabolism should possess an advantage over those that do not - simply because 

they would survive harsher or prolonged stressful conditions better and outgrow their 

‘poorly’ responding competitors. Nevertheless, synthesis and degradation of 

(p)ppGpp also have to be properly balanced in the absence of a stress stimulus.    

Three different types of enzymes are involved in (p)ppGpp metabolism: (p)ppGpp 

synthetases, (p)ppGpp hydrolases and proteins capable of converting pppGpp to 

ppGpp (Fig. 1B). Enzymes of the RelA/SpoT homology (RSH)-type carry out the 

synthesis of alarmones by catalyzing the transfer of pyrophosphate originating from 

ATP (i.e. the β- and γ-phosphates) onto the 3’-OH group of GDP or GTP yielding 

ppGpp or pppGpp, respectively (Fig. 1B, step I). For a long time, these two 

compounds were regarded as the only alarmones mediating the SR through 

interaction with various cellular targets (chapter 1.3 and Fig. 1B).  However, a recent 

study indicates that also GMP can be utilized as substrate for alarmone synthesis by 

the small RSH-type synthetase RelQ from Enterococcus faecalis efficiently producing 

pGpp (Fig. 1B, step II) (40). In some bacteria (e.g. Escherichia coli), enzymes exist 



  Introduction 
	  

	   3 

that convert pppGpp into ppGpp through the removal of the 5’-OH γ-phosphate of 

pppGpp (Fig. 1A and Fig. 1B, step III) (41-43). It is unclear so far, whether pGpp 

can also be produced from ppGpp by a similar reaction and whether pGpp-synthesis 

from ATP and GMP (see above) is the only source of this ‘third’ alarmone. All three 

alarmones are degraded by removal of the 3’-OH pyrophosphate by RSH-type 

hydrolases (Fig. 1B, step IV) releasing PPi and generating GMP, GDP or GTP. 

Degradation of (p)ppGpp also occurs through some members of the Nudix 

(nucleoside diphosphates linked to some moiety X) hydrolase family omnipresent in 

bacteria (44) and plants (45, 46). Nudix-type hydrolases do not share any structural 

similarities with RSH-type hydrolases and can degrade many other organic 

pyrophosphates besides (p)ppGpp (47). All enzymes involved in (p)ppGpp 

metabolism are subject to tight regulation on the genetic and/or protein level (see 

below).   

 

Figure 1. (p)ppGpp structure and metabolism. A. Chemical structure of alarmones. The 

three possible guanosine acceptor substrates and the resulting alarmones are indicated in 

the inset. 5’-phosphate moieties absent in ppGpp and pGpp are indicated by green and 

yellow brackets, respectively.  B. The nucleotide substrates ATP, GMP, GDP and GTP are 

shown as blue, yellow, green and red spheres, respectively. The products of (p)ppGpp 

synthesis AMP, pGpp, ppGpp and pppGpp are shown as blue, yellow, green and red 

triangles corresponding to their substrates. PPi stands for pyrophosphate. Roman numbers 

are explained in the text. The figure originates from ref. (48). 
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1.2.1  (p)ppGpp synthesis 

Alarmone synthetases of the RSH-type are conserved in bacteria, plants and algae 

(49, 50) and catalyze the transfer of pyrophosphate from ATP (i.e. the β- and γ-

phosphates) onto the 3’-OH group of GMP, GDP or GTP yielding pGpp, ppGpp or 

pppGpp, respectively. The precise catalytic mechanism of (p)ppGpp synthesis by 

RSH proteins is far from being understood, however, essential catalytic residues 

could be identified (51-55). RSH-type enzymes share a highly conserved (p)ppGpp 

synthetase domain, but otherwise greatly differ in the length of their amino acid 

sequence and molecular weight. RSH enzymes can be classified as ‘long’ and ‘short’ 

RSH-type enzymes based on their size. Being discovered first, the long RSH-type 

(p)ppGpp synthetases were thought to solely account for alarmone synthesis. The 

recent discovery of short RSH-type (p)ppGpp synthetases (56, 57) enlarged the 

spectrum of this important class of enzymes.  

1.2.1.1 Long RSH-type (p)ppGpp synthetases (Rel/RelA/plant RSH) 

Long RSH-type synthetases are multi-domain proteins that can be divided into an N-

terminal catalytic domain (NTD) and a C-terminal domain (CTD) (Fig. 2A). The NTD 

always harbors a (p)ppGpp hydrolase (HD) followed by a (p)ppGpp synthetase (Syn) 

domain and is present in all long RSH-type proteins. The CTD mediates binding of 

Rel/RelA to stalled ribosomes and is supposed to reciprocally couple the antagonistic 

(p)ppGpp degrading and synthesizing activities of long RSH enzymes (51-53, 58).  

While the NTD is present in all long RSH-type proteins, major discrepancies exist in 

the composition of their CTDs (Fig. 2A). In bacterial RSH-type (p)ppGpp synthetases 

(Rel/RelA), the CTD is composed of a TGS domain (abbreviated for threonyl-tRNA-

synthetase, GTPase and SpoT-like), an α-helical domain, a putative zinc-finger 

domain and the ACT domain (abbreviated for aspartate kinase, chorismate mutase 

and TyrA). Regulation of the activities of long RSH-type proteins through the CTD is 

urther described in chapter 1.2.3. 
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Figure 2. Enzymes involved in (p)ppGpp metabolism. A. Domain architecture of enzymes 

responsible for (p)ppGpp synthesis, degradation and interconversion. Details are given in the 

text.  B-E. Crystal structures of enzymes involved in (p)ppGpp metabolism are shown in 

cartoon representation. Catalytic motifs are colored as in A. Details are given in the text. 

Ligands are shown as sticks and colored by element. Manganese is shown as violet sphere. 

N- and C-termini are indicated by ‘N’ and ‘C’, respectively. B. Syn domain of Relseq bound to 

GDP (PDB: 1VJ7 chain A, (54)). The helices involved in reciprocal regulation of Rel’s 

activities are colored in red. C. HD and Syn domains of Relseq bound to GPX and GDP, 

respectively (PDB: 1VJ7 chain B, (54)). D. HsMesh1 (PDB: 3NRI, (60)). E. AaGppA bound to 

ppGpp (PDB: 2J4R, (43)). F. EcRelA bound to the ribosome (orange mesh) and A-site tRNA 

(grey) (PDB: 5IQR, (61)). Domains are shown in surface representation and further explained 

in the text. ‘N’ and ‘C’ indicate the N- and C-terminus of RelA, respectively. The figure was 

modified from ref. (48). 
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The only published crystal structure of an NTD of a long RSH-type (p)ppGpp 

synthetase comprises the HD and Syn domains of Rel from Streptococcus equisimilis 

(Relseq, PDB: 1VJ7 (54)). The asymmetric unit of the structure contains two different 

monomers of the protein: Monomer 1 (chain A of 1VJ7) does only contain GDP 

bound within the Syn domain and represents the synthetically active state of Relseq 

(Fig. 2B). Monomer 2 (chain B of 1VJ7) contains the rather unusual nucleotide 

guanosine 5’-diphosphate 2’:3’-cyclic monophosphate (GPX) residing in the HD 

domain and GDP within the Syn domain of Relseq and was therefore suggested by 

Hilgenfeld and coworkers to represent the hydrolytically active state (Fig. 2C and 

chapter 1.2.2.1). The Syn domain of Relseq consists of five antiparallel β-strands 

surrounded by four α-helices (Fig. 2B). The GDP resides in a pocket with its guanine 

base stacking face-to-face against the phenolic ring of a tyrosine moiety (i.e. Y108) 

strictly conserved among bacterial long RSH (50, 55). The 3’-OH group of GDP 

points towards the center of the active site and does not establish any contacts to the 

protein. The presence of two negatively charged residues (i.e. D264 and E323) in 

close proximity might indicate the binding site of a magnesium cofactor often involved 

in catalysis in the superfamily of nucleotidyltransferases (59). Although the position of 

the ATP-substrate might be suggested by the presence of three conserved basic 

residues (i.e. R241, K243 and K251) potentially involved in coordination of the ATP-

substrate, the given structure does not allow a reconstruction of the catalytic 

mechanism of (p)ppGpp synthesis (54).  

Although all bacterial RSH proteins (Rel/RelA/SpoT) possess the above-mentioned 

conserved residues in their Syn domains, the synthetic activity of SpoT is much less 

pronounced than for Rel/RelA in vitro for so far unknown reasons (53). Nevertheless, 

SpoT seems to integrate various stress signals including fatty acid (62), iron (63) and 

carbon source (64) starvation into the framework of the stringent response. 

Moreover, SpoT seems to be subject to regulation. Interaction of SpoT with the the 

acyl carrier protein (ACP) during fatty acid starvation has been suggested to activate 

the (p)ppGpp synthetic activity of SpoT (65-67), while interaction of SpoT with the 

GTPase Obg under nutrient rich conditions is  considered to repress (p)ppGpp 

synthesis (68). Noteworthy, Obg from B. subtilis is a target of inhibition by ppGpp 

(PDB: 1LNZ, (69)). 
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1.2.1.2 Short RSH-type synthetases/Small alarmone synthetases (SAS) 

Short RSH-type (p)ppGpp synthetases only harbour the Syn domain and lack any 

obvious regulatory domains found among the long RSH-type proteins (Fig. 2A). 

Therefore, they are also referred to as small alarmone synthetases (SAS). They have 

been discovered just recently in strains that lacked a functional long RSH protein, but 

still produced (p)ppGpp (56, 57, 70). The presence of SAS enzymes seems to be 

restricted to the firmicutes phylum (22, 50). Orthologues of the small alarmone 

synthetases SAS1 (also: YjbM, RelQ) and SAS2 (also: YwaC, RelP) have been 

identified and studied in Bacillus subtilis (Bs) (57), Staphylococcus aureus (Sa) (71) 

and Streptococcus mutans (Sm) (56). BsSAS1 and BsSAS2 exhibit pronounced 

similarities with the Syn domain of Relseq (see above) on the amino acid level (57). 

Despite amino acid identities of 30 - 40% between SAS1 and SAS2 homologues, 

SAS proteins seem to exhibit different functional roles (71). Transcripts of BsSAS1 

peak during logarithmic growth in rich medium, while the transcript of BsSAS2 is 

mainly observed at the transition from logarithmic to stationary phase (57, 72). These 

data suggest a close link between cell cycle and appearance of the SAS enzymes in 

B. subtilis, although a functional understanding remains mysterious. Moreover, 

transcription of SAS2 from B. subtilis and S. aureus was shown to be upregulated by 

the σM-regulon upon various stress conditions including ethanol, high salt, acidic or 

alkalic pH and cell wall antibiotics (57, 71, 73-75). Consistently, SAS2 has been 

reported to accumulate at the cytoplasmic membrane of B. subtilis after ethanol and 

acidic pH stress (76). The activity of SAS2 - but not SAS1 - seems to be tightly linked 

with increased ribosome hibernation in both B. subtilis and S. aureus (72).  

Recent studies have reported the presence of the small RSH-type enzyme RelV in 

the γ-proteobacterium Vibrio cholera (77). RelV synthesizes (p)ppGpp in a 

ΔrelAΔspoT mutant background under glucose and fatty acid starvation conditions 

(77, 78). Mutational analysis of RelV suggests that most of the catalytic motifs 

required for (p)ppGpp synthesis are overally conserved to other well characterized 

RSH-type synthetases (77, 79). No further evidence has been provided so far hinting 

additional members of this RelV-like subtype of SAS proteins.  

While it is believed that small alarmone synthetases are solely subjected to 

transcriptional control, little to nothing is known about their (p)ppGpp synthetic 
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properties or regulation on the protein level. SAS1 and SAS2 from B. subtilis and S. 

aureus were shown to synthesize ppGpp more efficiently than pppGpp in vitro (57, 

71). This stands in contrast to the long RSH-type synthetase Rel from 

Mycobacterium tuberculosis mainly producing pppGpp (80, 81). Moreover, a 

stimulation of (p)ppGpp synthesis by SAS1 from Enterococcus faecalis in the 

presence of ppGpp by approximately 3-fold was observed similar to earlier reports on 

RelA from E. coli (40, 82). Taken together, these studies indicate that although being 

overally conserved, RSH-type enzymes can exhibit different catalytic properties 

towards the different alarmones and are subject to allosteric regulation. 

Nevertheless, a precise molecular understanding of these differing properties is 

lacking to date.  

1.2.2   (p)ppGpp degradation 

The alarmones (p)ppGpp are degraded by removal of the pyrophosphate from the 3’-

OH group of the ribose moiety (Fig. 1A). This reaction is executed by (p)ppGpp 

hydrolases which regenerate the respective guanosine nucleotides by a yet poorly 

understood catalytic mechanism (Fig. 1B, step IV). The (p)ppGpp hydrolases are 

characterized by a hydrolase domain (HD) and rely on a manganese ion cofactor. 

The manganese cofactor has been suspected to arrange the 3’-OH phosphate 

moieties of the (p)ppGpp in a way that allows hydrolysis (53, 54, 60). Structural 

knowledge on bacterial (p)ppGpp hydrolases is so far restricted to the NTD of the 

bifunctional (p)ppGpp synthetase/hydrolase Relseq (see above). In addition, two 

structures of the (p)ppGpp hydrolase Mesh1 are avalaible from the eukaryotes Homo 

sapiens and Drosophila melanogaster (PDBs: 3NR1 and 3NQW, (60)). However, 

why eukaryotes contain a (p)ppGpp hydrolase, while (p)ppGpp synthetases are not 

existing, is not known.   

1.2.2.1 Long RSH-type (p)ppGpp hydrolases (Rel/SpoT/plant RSH) 

The NTD of long RSH-type proteins harbors the hydrolase domain (HD) at its N-

terminus (Fig. 2A). The HD domain consists of 10 α-helices and 2 β-strands creating 

an active site with a binding pocket for (p)ppGpp and a binding site for a manganese 

ion crucial for catalysis. The crystal structure of the NTD of Relseq (PDB: 1VJ7 chain 

B; (54)) contains the rather unusual nucleotide guanosine 5’-diphosphate 2’:3’-cyclic 
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monophosphate (GPX) residing within the HD domain and GDP within the Syn 

domain (Fig. 2C). This state was suggested to represent the hydrolytically active 

state of long RSH-type enzymes (54). The guanine base of GPX is mainly 

coordinated by π-stacking interactions with the arginine 44 and the formation of a 

hydrogen bond between the main chain carbonyl of N148 and the N-2 of the guanine 

base. Both residues are strictly conserved among the HD domains found in long 

RSHs and variation of either residue ablates (p)ppGpp hydrolysis by Relseq (54). This 

suggests that the position of the GPX closely resembles the position of a prototypic 

alarmone substrate. The manganese ion cofactor that is not essential for but 

drastically increases (p)ppGpp hydrolysis (53, 60), is hexacoordinated in a distorted 

octahedral arrangement  by two histidines and two aspartates (i.e. H53, H77 and 

D78, D144, respectively). These manganese-coordinating residues are highly 

conserved among the (p)ppGpp hydrolases (50, 54, 60). The 3’-OH pyrophosphate 

moiety of the substrates ppGpp and pppGpp are thought to be coordinated by the 

manganese ion cofactor. By this, the δ-phosphate at the 3’-OH group of (p)ppGpp 

(Fig. 1A) would come into close proximity to the carboxylate side chains of the highly 

conserved E81 and D82 residues either of them being involved in activating a water 

molecule for nucleophilic attack on the δ-phosphate (54).  

The bacterial RSH proteins SpoT and the bifunctional Rel comprise all conserved 

residues for (p)ppGpp degradation (see above). Although the HD domain is present 

in RelA, all catalytic residues are replaced rendering it incapable of (p)ppGpp 

hydrolysis (50, 83). In plants, the RSH-type enzymes 1 to 3 contain all conserved 

residues, while CRSH does not. However, their (p)ppGpp degrading activity has 

never been tested (84). 

The HD and Syn domains in long RSH-type enzymes are separated by 

approximately 30 Å and are connected by an mainly α-helical linker region including 

α-helices α8 - α11 in Relseq (54). Structural rearrangements of this linker region upon 

substrate binding into the HD or the Syn domain are thought to negatively affect the 

activity of the corresponding antagonistic catalytic site. This notion is supported by 

the observation that addition of the ATP-analog AMPCPP (i.e. α,β-

methyleneadenosine 5’-triphosphate) that binds into the Syn domain renders Relseq 



  Introduction 
	  

	   10 

hydrolytically less active (54). Therefore, HD and Syn domains seem to be 

reciprocally regulated. 

1.2.2.2 Short RSH-type hydrolase in metazoa (Mesh1)  

While it is generally believed that (p)ppGpp is not present in eukaryotes with the 

exception of plants and green algae (85), functional orthologues of RSH-type 

(p)ppGpp hydrolases termed Mesh1 are reported for H. sapiens (Fig. 2D, PDB: 

3NR1) and D. melanogaster (PDB: 3NQW) (60). Although the crystal structures of 

Mesh1 from both organisms are obtained without any ligand, the protein has an 

almost identical topology as the HD domain found in Relseq (see above) and 

degrades ppGpp at similar rates as its bacterial counterpart (60). Although the 

functional role of Mesh1 is unclear, deletion of the encoding gene leads to retarded 

body formation and impaired resistance to starvation of D. melanogaster (60). This 

obscures the functional role of Mesh1 as no concurrent evidence is provided so far 

for the existence of (p)ppGpp synthetases metazoan. Small alarmone hydrolases of 

the Mesh1-type also seem to be present in bacteria. However they are rather rare 

and distributed without clear phylogenetical clustering (50).   

1.2.3 Regulation of the opposing activities of long RSH-type (p)ppGpp 
synthetases/hydrolases upon binding to stalled ribosomes 

In the current model, amino acid starvation of a bacterial cell leads to an increase of 

uncharged tRNAs from 20% to 80% of the total tRNA pool (86) leading to entering of 

uncharged tRNAs into the aminoacyl-acceptor site (A-site) of ribosomes (87). 

Rel/RelA can then bind to the so-stalled ribosome and sense the unoccupied 3’-OH 

group of the terminal adenosine of the uncharged tRNA (58) upon which the 

(p)ppGpp synthetic activity of Rel and RelA is drastically stimulated (87-91). 

Extensive biochemical studies revealed that the CTD of RSH proteins is essential for 

the ribosome-dependent stimulation by regulating the activities of the HD and Syn 

domains residing within the NTD (53, 92, 93). Recent cryo-electron microscopy (cryo-

EM) structures provide new insights into the conformation of RelA bound to the 

ribosome ((Fig. 2F), (61, 94-96)). RelA adopts an open conformation in which the 

CTD is intertwined around the A-site tRNA within the intersubunit cavity of the 

ribosome while the NTD is exposed to the solvent (61, 95, 96). The A-site tRNA is 
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locked in an A-/T-tRNA like conformation similar but distinct from that observed 

during decoding when EF-Tu delivers aminoacyl-tRNA to the ribosomal A-site (95, 

97-99). The TGS domain of RelA interacts with the unoccupied 3’-OH group of the 

terminal adenosine of the uncharged tRNA in a way that aminoacyl-tRNA would 

sterically preclude RelA-binding consistent with earlier reports that only uncharged 

tRNA stimulated RelA’s activity (58, 82, 91). The α-helical domain wraps around the 

acceptor arm of the A-site tRNA but also provides a bridge between the TGS domain 

and the zinc-finger/ACT domains of RelA (95). The both C-terminal domains of RelA 

establish multiple contacts with ribosomal proteins and rRNA (95, 96) while the ACT 

domain additionally contacts the elbow arm of the A-site tRNA. Although RelA binds 

close to the N-terminal part of ribosomal protein L11 consistent with earlier 

observations that L11 is necessary for stimulation of RelA’s (p)ppGpp synthetic 

activity by the ribosome (82, 91, 100), no interaction interface between RelA and L11 

is established (96). In contrast, multiple interactions between L11 and the A-site 

tRNA rather explain the strict dependence on L11 for stimulation of RelA (58, 82, 91). 

Unfortunately, the recent cryo-EM structures of RelA bound to the ribosome do not 

cover all aspects of RelA’s actions. Cryo-EM structures of the ribosome typically 

possess good local resolution in the ribosomal centre while the outer parts or 

ribosome-bound proteins are only poorly resolved. This impedes an exact positioning 

of RelA-NTD in all three recent RelA-ribosome structures (see above), yet make a 

precise understanding of atomic rearrangements within the NTD impossible. 

Moreover, conformation and topology of the CTD in the absence of the ribosome is 

not known. Only two crystal structures present isolated fragments of the TGS and 

ACT domains (PDBs: 3HVZ and 3IBW). Some studies evidenced a possible 

oligomerization of Rel/RelA in the absence of the ribosome and suggested that this 

oligomerization could be mediated by the CTD (24, 52, 101).  

Multiple models were derived for the subsequent actions of RelA after binding to 

stalled ribosomes. Initially, (p)ppGpp synthesis by RelA was proposed to dislodge the 

uncharged A-site tRNA from the ribosome, thereby efficiently rescuing the blockade 

(88). A more recent study does not confirm this dislocation of tRNA from the 

ribosome and instead proposes a ‘hopping model’ in which RelA gets detached from 

the ribosome upon (p)ppGpp synthesis and subsequently ‘hops’ between stalled 

ribosomes, thereby measuring the translational fidelity of the cell (91). One 

controversely discussed report employing single-molecule studies claims that after 
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binding of RelA to stalled ribosomes its (p)ppGpp synthetic activity is stimulated, 

however multiple rounds of (p)ppGpp synthesis shall occur off the ribosome (102, 

103).  

Long RSH-type proteins from plants differ from their bacterial counterparts in the 

composition of their CTDs. In higher plants such as Arabidopsis thaliana (At), four 

long RSH-type enzymes are present. AtRSH1 harbors all domains that are present in 

RelA/SpoT homologs from bacteria. AtRSH2 and AtRSH3 lack domains within their 

CTDs and AtCRSH possess an additional calcium-binding EF-hand motif (Fig. 2A, 
(50, 104)). These differences show that long-RSH enzymes were subject to intricate 

molecular evolution likely through the need adapt to specific environments. The long 

RSH-type enzymes found in A. thaliana are important for development and 

reproduction of chloroplasts/plastids and their transcription follows the diurnal rhythm 

((105), reviewed in: (84)). Based on their ancestry from the bacterial kingdom, one 

should also expect RSH-type enzyme within the mitochondria. However, there is no 

evidence for their existence. Moreover, our structural and functional knowledge on 

this interesting class of enzymes is poor.   

1.2.4   (p)ppGpp interconversion 

The metabolism of inorganic polyphosphate (polyP) is intimately linked to the 

stringent response (106, 107). The exopolyphosphatase (PPX) GppA from E. coli 

was shown to possess pppGpp-hydrolytic activity in that it removes the 5’-OH γ-

phosphate of pppGpp yielding ppGpp (Fig. 1B, step III, (41, 42)). This 

interconversion is of great relevance as ppGpp has a stronger effect on growth rate 

reduction, repression of rRNA transcription or induction of RpoS in E. coli than 

pppGpp (2, 108-112).  

1.2.4.1 PPX/GppA phosphatases 

While E. coli harbors two PPX proteins one of which is able to convert pppGpp to 

ppGpp (GppA) (42), the thermophilic organism Aquifex aeolicus harbors one 

bifunctional PPX/GppA protein (113). The crystal structure of PPX/GppA from A. 

aeolicus (PDB: 1T6, (43)) comprises two domains that arrange in a butterfly-like 

manner, a topology that closely resembles GppA from E. coli (43, 114, 115). The 
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alarmone ppGpp binds into an extended groove formed by the two domains of GppA 

(Fig. 2E, PDB: 2J4R, (43)). By this, pppGpp interconversion and polyP degradation 

share the same active site on the enzyme explaining the inhibitory effects of pppGpp 

and ppGpp, exemplified by their inhibitory constants of 10 and 200 µM respectively, 

on polyP degradation by E. coli GppA (106). Coordination of the guanine base of 

ppGpp is established by π-stacking with R266 and interaction of N19 of GppA with 

N7 of the base. The 3’- and 5’-OH pyrophosphate moieties are caged between 

arginines R22 and R266 as well as backbone amides from three conserved regions 

(amino acids 17-19, 143-147 and 210-211). Although the product of the 

interconversion reaction, ppGpp, is found in the structure, the position of the 5’-OH γ-

phosphate of the substrate pppGpp might be inferred from the position of a sulfate 

ion in the crystal structure of E. coli GppA (PDB: 1U6Z, (114)). If true, the 5’-OH γ-

phosphate of pppGpp would be located in close proximity to a strictly conserved 

glutamate residue (E119) that would either directly or via water molecules perform 

the hydrolytic reaction (43). GppA from A. aeolicus lacks additional domains found in 

E. coli GppA (i.e. domains III and IV). Domain III is structurally similar to metal-

dependent phosphohydrolases yet lacks conserved catalytic motifs and activity (115, 

116). However, it appears to be involved in dimerization of GppA (117-119) and 

polyP channeling (Rangarajan 2006). Domain IV has structural counterparts in cold-

shock associated RNA-binding proteins, but is of unknown function in GppA (115).  

 1.3  Cellular targets of (p)ppGpp 

Alarmones affect many cellular targets allowing (p)ppGpp to mediate a plethora of 

processes to adapt bacteria to given environmental conditions (reviewed in: (3, 21, 

83, 120)). In general, binding of (p)ppGpp modulates the activity of its target mainly in 

inhibitory fashion (see below). In recent years, an increasing number of structures of 

(p)ppGpp-bound target proteins has deepened our understanding of (p)ppGpp’s 

actions complementing the biochemical knowledge. Nevertheless, some adaptational 

processes are either mediated indirectly by (p)ppGpp or their underlying regulatory 

mechanisms are unknown so far.    
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1.3.1  DNA replication 

Initiation of DNA replication is coordinated with cell growth (121, 122). During 

chromosome replication, short RNA primers are synthesized by a specialized DNA-

dependent RNA polymerase (named primase or DnaG). These primers serve as 

indispensible starting points for DNA replication (123, 124). During the SR, DNA 

elongation is inhibited by binding of (p)ppGpp to the primase DnaG in B. subtilis and 

E. coli (Fig. 3, (10, 11, 125, 126)). In this case, (p)ppGpp binds into the active site of 

the RNA-polymerase domain of DnaG and prevents the entrance of NTP substrates 

needed for primer synthesis (127). Moreover, (p)ppGpp interferes with the binding of 

either an initiating 5’ NTP or the 3’ extensible end of an RNA-DNA heteroduplex 

(127). DnaG from E. coli (EcDnaG) and B. subtilis (BsDnaG) are efficiently inhibited 

by (p)ppGpp at concentrations of 200 - 500 µM in vitro. However, pppGpp seems to 

be the stronger inhibitor for BsDnaG, while ppGpp is more potent in inhibition of 

EcDnaG (10, 125).  

 

Figure 3. Scheme depicting the mechanism of DNA replication inhibition by (p)ppGpp. DNA 

primase (DnaG, green) synthesizes short RNA primers (blue) on a template DNA (black). 

Under stress, (p)ppGpp (red balls) bind within the active site of DNA primase close to the 

NTP (yellow balls) binding site of the protein thereby inhibiting DNA primase activity. 
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1.3.2  Transcription 

A drop of stable RNA-synthesis in amino acid starved E. coli cells was one of the first 

observations made for the SR (8, 9). Later on, it was recognized that accumulation of 

(p)ppGpp leads to a drastically altered transcription profile owing to changes in the 

activity of RNA polymerase (RNAP). While transcription from promotors for ribosomal 

RNAs (rRNAs) and ribosomal proteins (r-proteins) is decreased, increased 

transcription from promotors for amino acid synthesis occurs (13, 128, 129). In the 

crystal structure of RNAP from Thermus thermophilus in complex with ppGpp (PDB: 

1SMY, (130)), the alarmone is bound close to the active site of the protein and 

interferes with NTP coordination (130, 131). For the RNAP from E. coli however, 

biochemical data indicated that the binding site for alarmones should be located 

close to the ω-subunit of RNAP (132), which was recently verified by crystal 

structures of E.coli RNAP-(p)ppGpp complexes (PDBs: 4JKR, 4JK1 and 4JK2 (112, 

133)). (p)ppGpp is bound in a small positively charged pocket between the β’- and ω-

subunits of RNAP and ~ 25 Å away from the active site. This binding site would allow 

(p)ppGpp to indirectly control RNAP activity as it would restrain the ratcheting 

movement between the core and shelf subunits of RNAP (i.e. β’ and ω, respectively) 

essential for RNAP activity (133, 134). Phylogenetic analysis reveals that the N-

terminus of RNAP’s ω-subunit shows species-specific differences in that a conserved 

motif facilitating (p)ppGpp-binding to E. coli RNAP is present in α-, β- and γ-

proteobacteria, but lacking in T. thermophilus and the firmicutes phylum (83). 

Moreover, the activity of E. coli RNAP was shown to be efficiently regulated by a 

concerted action of the protein DksA, a transcription factor that modulates RNAP by 

binding into the secondary channel, and (p)ppGpp binding to a second site at the 

RNAP-DksA interface (27, 28, 135-139). However, also DksA seems to be restricted 

to α-, β- and γ-proteobacteria (137, 140). Taken together, it appears that regulation of 

transcription during the SR is implemented via different mechanisms. In E. coli, rRNA 

synthesis is downregulated by (p)ppGpp-dependent inhibition of RNAP, while in B. 

subtilis (p)ppGpp-dependent changes in the NTP pools (see below)  might  indirectly 

alter transcription by RNAP depending on the promotor (141, 142). The different 

control of transcription found in E. coli and B. subtilis is shown in Fig. 4. 
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Figure 4. Scheme depicting the mechanism of transcription inhibition by (p)ppGpp. Under 

stress, increased alarmone levels (yellow balls) lead to a decrease in rRNA synthesis and 

increased amino acid uptake and biosynthesis. In E. coli, inhibition of RNAP-DksA (green 

and blue, respectively) alters the affinity of RNAP to promotors located on the DNA 

augmented by an altered σ-factor usage. In. B. subtilis, inhibition of enzymes involved in 

nucleotide metabolism (red) alters the ratio of intracellular ATP/GTP indirectly altering 

transcription.  

1.3.3  GTPases involved in translation or ribosomal biogenesis 

The alarmones (p)ppGpp are highly similar to GDP/GTP in that they only differ in the 

presence of a pyrophosphate moiety at the 3’-OH group of the ribose (Fig. 1A). 

Alarmones affect a high number of GTPases involved in the assembly of the 

ribosomal subunits or the initiation, elongation and termination of translation 

(reviewed in: (120)). The mechanism by which (p)ppGpp binds to these targets 

appears to be highly similar: The guanosine moiety of (p)ppGpp binds in the same 

way to the GTPase as GTP while the 3’-OH pyrophosphate moiety protrudes from 

the active site without establishing further contacts to the protein (Fig. 5, left). 

However, the pyrophosphate moiety can provoke steric clashes that inactivate the 

cellular function of the GTPase in the assembly of the ribosome/ribosomal subunits 

(Fig. 5, middle). Nevertheless, translation is also directly inhibited by interference of 

(p)ppGpp with GTPases involved in initiation (IF2), elongation (EF-Tu and EF-G) and 

termination (RF3) at the mature ribosome (Fig. 5, right).   
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Figure 5. Scheme depicting the mechanism of translation inhibition by (p)ppGpp. Alarmones 

inhibit translational GTPases by a common mode: The 3’ OH moiety of (p)ppGpp prevents 

binding of the binding partner of the GTPase by steric preclusion (left). Ribosomal biogenesis 

is inhibited by interaction of (p)ppGpp with GTPases involved in assembly of the 50S and 

30S ribosomal subunits (middle). Translation at mature ribosomes is inhibited by interference 

of (p)ppGpp with GTPases involved in initiation (IF2), elongation (EF-Tu and EF-G) and 

termination (RF3) of translation (right). 

1.3.4  Nucleotide metabolism 

The three enzymes GuaB, HPRT and GMK, which are involved in the synthesis of 

GTP, are subject to regulation by (p)ppGpp (Fig. 6, (3, 143)). IMP dehydrogenase 

(IMPDH or also GuaB) catalyzes the formation of XMP (xanthosine monophosphate) 

from IMP (inosine monophosphate), the product of de novo purine biosynthesis. XMP 

can be further utilized for the production of AMP by adenolylsuccinate-synthetase 

and adenolylsuccinate-lyase or production of GMP through GuaA. GMP is also 

yielded by transfer of a phosphoribosyl-group onto guanine catalyzed by the 

hypoxanthine-guanine-phosphoribosyltransferase (HPRT). GMP is phosphorylated 

by guanylate kinase (GMK) yielding GDP, which can be further phosphorylated to 

GTP by nucleoside-diphosphate kinases. HPRT and GMK from B. subtilis are 

efficiently inhibited by (p)ppGpp with Ki-values of 11 µM (16) and 10-20 µM (18), 

respectively (Fig. 6). However, GuaB retains 50% of its activity even in the presence 

of 300-500 µM (p)ppGpp. In E. coli, GuaB and HPRT are inhibited with Ki-values of 
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30-48 µM (143, 144) and 85 µM (145) while conversely GMK is no subject to 

inhibition by (p)ppGpp (18). Moreover, the adenine phosphoribosyltransferase APRT 

from E. coli is inhibited by (p)ppGpp (143-147), which has not been shown for B. 

subtilis so far. These observations imply that (p)ppGpp does not only affect the total 

nucleotide pool within the microorganism but also effectuates a shift in the balance 

between nucleotides, most importantly adenosine and guanosine nucleotides (16). 

Proper balancing of nucleotide levels through (p)ppGpp is essential for survival of B. 

subtilis exemplified by the observation that strains of B. subtilis incapable of 

(p)ppGpp-synthesis are characterized by elevated GTP levels (16) accompanied with 

reduced survival rates upon sudden amino acid downshift (17).    

 

Figure 6. Scheme depicting the interference of (p)ppGpp with nucleotide metabolism. 

Enzymes inhibited by (p)ppGpp are indicated in orange. The abbreviations are explained in 

the text. 

1.3.5  Other targets  

Alarmones inhibit amino acid decarboxylases faciliting adaptation to changing 

intracellular pH values (148, 149). The biological role of the interaction of (p)ppGpp 

with the eukaryotic N-acetyl transferase NatA (PDB: 4HNX, unpublished) is unclear 

so far. The Inhibition of the c-di-AMP degrading phosphodiesterase YybT (150) 

provides evidence for cross-talk between the regulatory circuits of these two 

nucleotide second messengers yet again an in-depth biological understanding is 

lacking. 
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Aim of the work 

 

This work aims at the biochemical, structural and functional understanding of 

enzymes involved in the synthesis of (p)ppGpp during the SR in B. subtilis and S. 

aureus. A particular focus should be on the recently identified small alarmone 

synthetases SAS1 and SAS2. Comparison of their structure, mechanism and 

function with the well-known bifunctional protein Rel should uncover differences and 

similarities between both prototypic subclasses of RSH-type (p)ppGpp synthetases. 

These results shall be put in a biological context by investigating the role of SAS 

proteins and (p)ppGpp on the lifestyle of Bacillus subtilis. 
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Results 

 

3.1  Structural analysis of SAS1  

3.1.1  SAS1 forms homotetramers 

SAS1 from B. subtilis carrying an N-terminal hexa-histidine tag was heterologously 

produced in E. coli BL21 (DE3) using auto-induction medium. Subsequently, SAS1 

was purified by a two-step protocol employing Ni-NTA affinity chromatography and 

size-exclusion chromatography (SEC) as detailed in chapter 5.2.2. On SEC, SAS1 

had an apparent molecular mass of approximately 100 kDa (Fig. 7A). Given the 

molecular mass of ~ 25 kDa of a SAS1 monomer, this suggests a homotetrameric 

assembly of SAS1.  

 

Figure 7. SAS1 forms homotetramers that possess (p)ppGpp synthetic activity. A. Left: Size-

exclusion chromatography profile of SAS1. Arrows indicate the molecular mass of the size 

standard. Right: Coomassie-stained SDS-PAGE of the peak fraction containing SAS1. B. 

(p)ppGpp synthetic activity of SAS1 in presence of different nucleotides. (p)ppGpp synthesis 

in presence of ATP and GDP was set to 100%. Dark and light grey bars show ppGpp and 

pppGpp, respectively. Figure 7A originates from ref. (151). 
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3.1.2  SAS1 is an active (p)ppGpp synthetase 

The activity of SAS1 was probed by measuring its (p)ppGpp synthetic activity in the 

presence of different nucleotides. In brief, 2 µM SAS1 were incubated with 1 mM of 

different nucleotides for five minutes at 37 °C and subjected to anion-exchange 

chromatography as described by Traxler et al. (152) with help from Elizaveta Krol 

(AG Becker). SAS1 produces ppGpp and pppGpp when incubated with the 

corresponding substrates ATP and GDP or ATP and GTP, respectively (Fig. 7B). 

However, SAS1 seems less efficient in synthesizing pppGpp than ppGpp. No 

production of (p)ppGpp is observed in the absence of SAS1. Incubation of SAS1 with 

ATP, GDP or GTP leads to no observable amount of (p)ppGpp. This indicates that 

the purified SAS1 protein is an active (p)ppGpp synthetase but also suggests that the 

protein does not retain any nucleotide during the protein purification. This notion is 

supported by the ratio of A280nm/A260nm of ~1.6 for all preparations of SAS1 typical for 

protein preparations that are devoid of nucleotide or nucleic acid contaminations. 

3.1.3  Crystal structure of SAS1 in the apo-state  

Bioinformatic analysis of the domain architectures of Relseq-NTD and SAS1 using the 

Basic Local Alignment Search Tool (BLAST) indicates that both proteins contain the 

conserved Syn domain (Fig. 8A). However, while the Syn domain of Relseq is 

embedded between the HD domain and the C-terminal regulatory part of Rel (Rel-

CTD, compare to Fig. 2A), SAS1 lacks any obvious regulatory domains. To gain a 

deeper insight into the architecture of the SAS1 homotetrameric complex and to 

compare it with the long RSH protein Rel, the crystal structure of SAS1 was 

determined at 1.86 Å resolution using Relseq-NTD as a search model for molecular 

replacement (MR; Table S1). SAS1 crystallizes as a symmetric, oval shaped 

homotetramer containing four subunits of SAS1 (α-δ) consistent with its behaviour on 

SEC (Fig. 8B, compare to Fig. 7A). The medial sides of the tetramer are stabilized 

by interactions between helices α1 from the α/β− and γ/δ−subunits forming an 

interface of ~1100 Å2 primarily stabilized by hydrogen bonds and salt bridges. The 

lateral sides of the tetramer are exclusively formed by helices α4 and α5 between the 

α/δ− and δ/γ −subunits in an interface of ~1220 Å2, consisting chiefly of polar 

contacts. Strikingly, the tetrameric complex of SAS1 contains a prominent central 

cleft of unknown functional role (Fig. 8B). 
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3.1.4  Structural comparison of SAS1 and Rel  

SAS1 and the Syn domain of Relseq (PDB: 1VJ7; residues 197-371, (54)) share an 

amino acid sequence identity of ~ 23 percent and their structures superimpose well 

with an RMSD of 1.6 Å over 78 Cα atoms (Fig. 8C). The Syn domain of SAS1 is 

composed of five antiparallel β-strands β1 - β5 surrounded by α-helices α1 − α4 

(named β3 - β7 and α12 − α15 in Relseq) (Fig. 8C). Conserved amino acid residues 

involved in (p)ppGpp synthesis, are present in both SAS1 and Relseq (Fig. 8D). 

However, significant differences in the structure of both proteins can be observed. 

Helix α1 of SAS1 important for the formation of the medial interface of the tetrameric 

complex is slightly elongated compared to its counterpart α12 of Relseq (Fig. 8C). In 

Relseq, α12 together with its preceding helices α10 and α11 is bridging the HD and 

Syn domains and mediates intra-domain signaling (54). Notably, helix α13 of Relseq 

implicated to contribute to substrate-binding (54) is buried between α10 and α11 and 

its orientation differs by ~30° from its counterpart α2 found in SAS1 (Fig. 8C). This 

indicates that if α2 from SAS1 is involved in substrate-binding, differences between 

both proteins might exist. Close inspection of the antiparallel β-strand core of the Syn 

domain reveals that the loop region connecting β3 and β4 (G-loop for guanosine-

binding loop) is disordered in SAS1 but ordered in Relseq (β5 and β6, respectively). 

This loop contains a conserved tyrosine moiety essential for GDP-binding to Relseq 

(i.e. Tyr308 in motif E3, Fig. 8D) again implying differences in the substrate-binding 

mode between SAS and long RSH proteins. Another major difference between SAS1 

and Relseq pertains to the C-terminal helices α4 and α5 of SAS1 mediating 

oligomerization on the lateral side of the complex. Relseq harbors an equivalent to the 

N-terminal part of α4 (α15 in Relseq), however α4 of SAS1 is elongated by two turns 

and forms a helical hairpin with α5 which is absent in Relseq. This is in agreement with 

reports that Relseq-NTD predominantly occurs as a monomer in solution (52, 101), 

while SAS1 forms stable homotetramers (Fig. 8B).   
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Figure 8. Crystal structure of the tetrameric alarmone synthetase SAS1 in the apo-state. A. 

Domain architecture of the alarmone synthetases RelA and SAS1. B. Crystal structure of the 

SAS1 tetramer. Each monomer (α to δ, indicated by a grey shadow) of SAS1 is shown in 

cartoon representation colored in rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, 

respectively. Interfaces on the lateral and medial sides of the complex are indicated by 

brackets. C. Cartoon representation of the crystal structures of an SAS1 monomer (left), 

Relseq-NTD (middle, PDB: 1VJ7; (54)) and the superimposition of their synthetase domains 

(right). The Syn domains of Relseq-NTD and SAS1 are shown in rainbow colors from N- to C-

termini, indicated by ‘N’ and ‘C’, respectively. Structural elements in the Syn domain of Relseq 

are labelled according to ref. (54). The equivalent elements in SAS1 are labelled and 

described in the text. D. Amino acid sequence alignment of BsSAS1 and RelA from B. 

subtilis (Bs) and S. equisimilis (Se). Important motifs E1-E4 of the (p)ppGpp synthetase 

active site are indicated. The figure was modified from ref. (151). 

 



	   	   Results 
	  

	   24 

3.1.5  Crystal structure of SAS1 in the ATP-bound state  

Comparison of the crystal structures of apo-SAS1 and Relseq informed about the 

conserved fold of the Syn domain. Nevertheless, subtle differences between both 

proteins do exist (see above). To further elucidate the properties of SAS1, the crystal 

structures of SAS1 in different substrate-bound states were determined. To do so, 

crystallization experiments were carried out in the presence of 1 mM GDP, GTP or 

the non-hydrolysable ATP analog AMPCPP (i.e. α, β-methyleneadenosine 5′ -

triphosphate) and combinations thereof. AMPCPP was used in order to prevent 

pyrophosphate transfer from ATP onto GDP or GTP through substitution of the 

oxygen atom linking the α- and β-phosphates of ATP by methylene. Although crystals 

could be obtained for all nucleotide-bound states, putative GDP- or GTP-containing 

crystals only allowed for structure solution of SAS1 in its apo-state while only 

AMPCPP could be undoubtedly identified in structures of SAS1 crystallized in the 

presence of AMPCPP or AMPCPP plus GDP or GTP. This might also indicate that 

(under the given conditions) binding of GDP and GTP to SAS1 in the absence of ATP 

is not possible.  

The crystal structure of SAS1-AMPCPP was solved by MR using apo-SAS1 as 

search model at 2.8 Å resolution (Table S1). The crystal structure of SAS1-AMPCPP 

reveals the same homotetrameric assembly as observed for apo-SAS1 and contains 

AMPCPP in the active site of each subunit of the complex (Fig. 9A). Comparison of 

the Syn domain uncovers no major conformational changes between both states of 

SAS1 (Fig. 9B). However, while β3 was at least partially resolved in the structure of 

apo-SAS1, it is completely unresolved in SAS1-AMPCPP. The reason for this was 

not entirely clear at this point of the study, because  β3 should be highly ordered due 

to interactions of the backbone amide hydrogens between β3 and β4. Remarkably, 

clear density corresponding to a magnesium ion could be identified in SAS1-

AMPCPP when compared to the structure of apo-SAS1 (Figs. 9B and 10B). The 

magnesium ion contributes to coordination of the 5’ phosphate moieties of AMPCPP 

(see below). Although no further biochemical or biophysical experiments were 

conducted to probe this phenomenon, this observation might indicate that 

magnesium is not stable bound as a cofactor to SAS1, but binds concomitantly with 

the substrate ATP.  
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Figure 9. Crystal structure of SAS1 in the ATP-bound state. A. Crystal structure of SAS1-

AMPCPP. Each monomer (α to δ) of SAS1 is shown in cartoon representation colored in 

rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively. AMPCPP is shown as 

sticks. Magnesium is shown as sphere. B. Cartoon representation of the crystal structures of 

SAS1-AMPCPP (left), apo-SAS1 (middle) and their superimposition (right) colored in rainbow 

from N- to C-terminus indicated by ‘N’ and ‘C’, respectively. In the superimposition, apo-

SAS1 is colored in grey. Figure 9A originates from ref. (151). 

Helix α13 of Relseq thought to mediate ATP-binding to the Syn domain (54), differs in 

its relative orientation from its counterpart α2 of SAS1. Conversely, the β5-β6 (β3-β4 

in SAS1) linker region involved in GDP-binding is resolved in the structure of Relseq 

but not SAS1 (compare to 3.1.4 and Fig. 8C). This suggests a disparity in substrate-

binding between both proteins and is in agreement with the fact that a crystal 

structure of SAS1 could only be obtained with the ATP-substrate while the structure 

of Relseq contains GDP. A comparative structural analysis of SAS1-AMPCPP and 

Relseq-NTD-GDP highlights subtle differences between both proteins in regard to 

substrate-binding (Fig. 10A) and allows to deduce the following aspects: i. 
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Positioning of the ATP- and GDP-substrate in the (p)ppGpp synthetase active site of 

SAS1, ii. ATP-binding through helix α2/α13, and iii. GDP-binding by the β3 - β4/β5 - 

β6 loops.  

ATP (mimicked by AMPCPP) is tightly coordinated to SAS1 mainly through 

interactions with residues from the conserved Syn domain motifs E1 and E2 (Fig. 
8D). The nucleotide is located in the inner part of the active site pointing inwards of 

the tetrameric complex. The adenine base of AMPCPP is sandwiched between 

Arg46 and Arg77 through π-stacking interactions (Fig. 10B). The ribose moiety is 

coordinated by His155 via hydrogen-bonding. The phosphate moieties of AMPCPP 

are found in an unusually tense conformation bent towards the adenine base aided 

by the position of the magnesium ion cofactor between the β- and γ-phosphate. 

Asp72 and Glu139 provide further coordination for the magnesium ion and might be 

involved in catalysis (54). The positive charge of the γ-phosphate is neutralized by a 

positively charged pocket formed by Lys48, Lys56 and Arg59 located in helix α2. 

Arg46 appears to be a highly critical residue as it contributes to substrate-binding not 

only by caging the adenine base (see above), but also by interacting with the ribose 

oxygen and the α-phosphate of AMPCPP (Fig. 10B). The approximate position of 

GDP in the active site of SAS1 and the location of the G-loop can be inferred based 

on the superimposition with Relseq-NTD-GDP. In this, GDP would be located in the 

part of the active site pointing outwards of the SAS1 tetramer (Fig. 10C). GDP would 

establish fewer contacts to SAS1 than AMPCPP. The guanine base could be 

coordinated by hydrogen bonds from Glu154 and π-stacking interactions with Tyr116 

(Tyr308 in Relseq). The ribose oxygen would establish contacts with Gln141. Arg105 

and Lys112 might coordinate the α- and β-phosphate moieties of GDP. In this 

configuration, the 3’-OH ribose moiety of GDP would be located in close proximity to 

the β-phosphate of ATP allowing pyrophosphate transfer (Fig. 10C). However, the 

unstructured nature of the G-loop raises the question when GDP-binding to SAS1 

takes place.  
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Figure 10. Structural basis for differences in substrate-binding between SAS1 and Relseq. A. 

Cartoon representation of the crystal structures of SAS1-AMPCPP (left), Relseq-NTD-GDP 

(middle, PDB: 1VJ7; (54)) and the superimposition of their synthetase domains (right). The 

Syn domains of Relseq-NTD and SAS1 are shown in rainbow colors from N- to C-termini, 

indicated by ‘N’ and ‘C’, respectively. Roman numbers are explained in the text. B. ATP 

(mimicked by AMPCPP, deep teal) binds in a tense, U-shaped conformation in the active site 

of SAS1. Interactions between residues of SAS1 and AMPCPP are indicated by dashed 

lines. The magnesium ion is shown as a green sphere. C. Spatial arrangement of ATP and 
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GDP in the active site of SAS1 based on the superimposition of SAS1 bound to AMPCPP 

(deep teal) and Relseq bound to GDP (green). The linker between β5 and β6 of Relseq is 

shown in magenta and residues labeled according to their corresponding position in SAS1. 

The pyrophosphate-accepting 3’-OH group of GDP is indicated. D. Cylindrical model of the 

superimposition of SAS1-AMPCPP colored in rainbow from N- to C-terminus and Relseq 

colored in grey. E-F. The differing orientation of α2 in SAS1-AMPCPP (E) and α13 in Relseq 

(F) affects ATP-binding. The Syn domains are colored in rainbow from N- to C-terminus. 

Essential residues are shown as sticks and colored in white (SAS1-AMPCPP) or yellow 

(Relseq). AMPCPP (deep teal) is shown as sticks. Magnesium is shown as a green sphere. 

The red dashed line indicates the distance between magnesium and Asp72/Asp264. 

A similar binding of ATP to Relseq as observed for SAS1-AMPCPP seems rather 

unlikely based on the differences between both proteins (Figs. 10D-F). The position 

of ATP in the active site of Relseq seems valid because π-stacking interactions could 

be established between the adenine base and Arg269 (Arg77 in SAS1, Figs. 10E 

and F). However, steric clashes seem to occur between Arg241 (Arg46 in SAS1) and 

AMPCPP (Fig. 10F). Also, a residue corresponding to His155 from SAS1 does not 

exist in Relseq (compare to Fig. 8D). The orientation of α13 in Relseq slightly changes 

the distance between the phosphate moieties of AMPCPP and positively charged 

amino acid residues located in α13 yet these differences are only ranging from 0.5 to 

1 Å. Most importantly, Asp264 (Asp72 in SAS1) is ~8 Å away from the magnesium 

ion while a distance of ~2 Å is observed in the structure of SAS1. This would render 

coordination of this essential cofactor for (p)ppGpp synthesis (53) by Asp264 

unlikely. However, it might well be that the position of the ATP-substrate within the 

active site of Rel slightly differs from the one observed for SAS1-AMPCPP. 

3.1.6  Crystal structure of SAS1 in the pppGpp-bound state  

Initial biochemical evaluation of the (p)ppGpp synthetic activity of SAS1 suggested a 

different efficiency in the synthesis of the two alarmones ppGpp and pppGpp. To 

further elaborate this observation, the crystal structure of SAS1 either in the presence 

of ppGpp or pppGpp was determined. To do so, 1 mM each of the substrates ATP 

and GDP (for ppGpp) or ATP and GTP (for pppGpp) were added to an approximately 

11.5 mg/ml concentrated solution of SAS1 and incubated for 1 h on ice prior to 

crystallization. Although crystals of SAS1 could be obtained and crystallographic 

datasets be successfully collected at the ESRF Grenoble, the structure of SAS1-
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ppGpp could not be determined due to an excessive degree of twinning within the 

crystal (not shown). Nevertheless, un-twinned crystals could be obtained for SAS1 

containing pppGpp that belonged to the space group C2 in contrast to space group 

P21 of apo-SAS1 and SAS1-AMPCPP (Table S1). The crystal structure of SAS1-

pppGpp could be solved by MR employing apo-SAS1 as search model at 2.94 Å 

resolution (Table S1). Binding of pppGpp to SAS1 does not alter the oligomerization 

state of SAS1, which still appears in stable homotetramers (Fig. 11). The alarmone 

product pppGpp could be undoubtedly modelled into electron density present within 

all four active sites of SAS1 (Figs. 11A and B). Additional cryptic electron density 

was visible within the central cleft formed by the SAS1 homotetramer that could not 

be attributed to neither the nucleotides ATP or GTP nor citric acid or PEG6000 both 

present in the crystallization mother liquor. However, the pppGpp nucleotide in 

conjunction with a magnesium ion perfectly fitted into this additional density resulting 

in two additional pppGpp molecules bound per SAS1 homotetramer residing between 

the α-/δ- and β-/γ- subunits of SAS1, respectively (Figs. 11A and C). 
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Figure 11. Crystal structure of SAS1 in the pppGpp-bound state. A. Crystal structure of 

SAS1-pppGpp. Each monomer (α to δ) of SAS1 is shown in cartoon representation colored 

in rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively. Magnesium ions are 

shown as green spheres and pppGpp is shown as sticks. B-C. Electron density present 

within the active sites (B) and allosteric site (C) of SAS1 could be unambiguously assigned to 

pppGpp and pppGpp-magnesium, respectively. The unbiased Fobs-Fcalc difference electron 

density of pppGpp contoured at 2.5 σ is shown as green and red mesh for positive and 

negative difference, respectively. The pppGpp molecule (sticks) and magnesium ion (grey 

sphere) were not present during refinement and are only placed for reasons of illustration.  

Yellow ribbons indicate the backbone of SAS1. The figure originates from ref. (151). 

Comparison of the active sites of SAS1 bound to pppGpp and Relseq-NTD bound to 

GDP reveals that the substrate (i.e. GDP) and product (i.e. pppGpp) of (p)ppGpp 

synthesis reside in the same location within the enzymes active sites (Fig. 12A). 

However, pppGpp seems to establish more contacts to amino acid residues within 

the active site of SAS1 than GDP (Figs. 12B and C). The guanine base of pppGpp is 

coordinated by π-stacking interactions with Tyr116 and a hydrogen bond provided by 

Glu154 (Fig. 12B). The ribose oxygen of pppGpp establishes contacts with Gln141. 

The 5’-OH phosphates of pppGpp (i.e. α-, β- and γ-phosphates) are coordinated by 

basic amino acids Arg105, Lys112 and His120 located in the G-loop of SAS1, which 

is ordered in SAS1-pppGpp in contrast to apo-SAS1 and SAS1-AMPCPP where the 

approximate position of these residues could only be inferred based on a 

superimposition of SAS1 with Relseq-NTD-GDP (compare to Fig. 10C). Lys56, Arg59 

and Lys60 provide further contacts to the 5’-OH phosphates of pppGpp (Fig. 12B). 

Noteworthy, Lys56 and Arg59 also contribute to coordination of the ATP substrate to 

SAS1 while Lys60 seems to be uninvolved in ATP coordination (compare to Fig. 
10B). Strikingly, residues Arg46, Lys48 and His155 provide contacts to the 3’-OH 

phosphates of pppGpp (i.e. δ- and ε-phosphates), which are not established in the 

presence of the substrate GDP lacking the δ- and ε-phosphates (Figs. 12B and C). 

All three residues majorly contributed to coordination of ATP to SAS1 (compare to 

Fig. 10B). It might be suggested that this ‘shared use’ of amino acids for coordination 

of the ATP substrate and (p)ppGpp product raises the efficiency of (p)ppGpp 

synthesis. In this regard, transfer of pyrophosphate from ATP onto GDP (GTP) would 

render the product AMP less affine to SAS1 because of the lack of its β- and γ-

phosphates. Moreover, the (p)ppGpp product would contribute to expulsion of AMP 
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as it is able to establish contacts with amino acids formerly coordinating the ATP 

substrate via its 3’-OH δ- and ε-phosphates.  

 

Figure 12. Binding of pppGpp to the (p)ppGpp synthetase active site of SAS1. A. Cartoon 

representation of the crystal structures of SAS1-pppGpp (left), Relseq-NTD-GDP (middle, 

PDB: 1VJ7; (54)) and the superimposition of their synthetase domains (right). The Syn 

domains of Relseq-NTD and SAS1 are shown in rainbow colors from N- to C-termini, indicated 

by ‘N’ and ‘C’, respectively. B. Coordination of pppGpp within the active site of SAS1. 

Dashed lines indicate interactions between residues of SAS1 and pppGpp. C. Coordination 

of GDP within the active site of SAS1. Dashed lines indicate interactions between residues of 

SAS1 and GDP.  

Apart from pppGpp residing within all four active sites of SAS1, two additional 

pppGpp molecules could be identified within the central cleft of the homotetramer, 

which was unoccupied in the apo-state of SAS1 (Figs. 11A and 4B). Each of the 

pppGpp’s resides at the interface between two subunits of SAS1 denoted as subunit 
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and subunit’ both contributing to pppGpp coordination. The α-ε phosphates of 

pppGpp are sequestered in a positively charged cage comprised by Lys21, Lys25 

and Arg28 from both subunits (Fig. 13A). Furthermore, the β-ε phosphate moieties 

are arranged in a crab-like manner enforced by a magnesium ion. Specificity for the 

guanine base is conferred by interactions of Glu41 and Asn148 from two different 

subunits with the N2 amino- and O6 keto groups, respectively. The guanosine is 

further stabilized by π-stacking interactions of the guanine base with Phe42 and 

hydrogen bonding between Thr44 and the 2’-OH group of the ribose. As two subunits 

heavily contribute to pppGpp coordination, allosteric binding of pppGpp to SAS1 only 

seems possible in the context of the SAS1 homotetrameric assembly (Fig. 13A). 

Amino acid sequence alignments of SAS1 and SAS2 proteins from various bacterial 

species shows that residues conferring pppGpp binding to BsSAS1 are conserved 

among SAS1 orthologs and differ from SAS2 (Fig. 13B). The three allosteric motifs 

(R1 - R3) are: R1 ‘KxxxK/RxxR’, R2: ‘EFVT’ and R3: ‘LAMNFWAT’. Although only 

one study reports an influence of pppGpp on the enzymatic activity of SAS1 from E. 

faecalis (40), the high degree of conservation of the allosteric motifs makes a similar 

mechanism for SAS1 from various species highly likely. Moreover, the presence or 

absence of the allosteric motifs allows for an accurate classification of small 

alarmone synthetase proteins to the SAS1- or SAS2 subfamily of SAS proteins.  

 

Figure 13. Binding of pppGpp to the allosteric site of SAS1. A. Residues from two opposing 

monomers (denoted as subunit and subunit’) of the SAS1 homotetramer coordinate each of 

the allosteric pppGpp molecules. B. Amino acid sequence alignment of SAS1 and SAS2 

orthologs from B. subtilis (Bs), S. aureus (Sau), L. monocytogenes (Lmo), Streptococcus 
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pyogenes (Spy), Streptococcus mutans (Smu) and Streptococcus dysgalactiae ssp. 

equisimilis (Seq). R1, R2 and R3 indicate motifs conferring binding of pppGpp to the 

allosteric site of SAS1. Amino acids above the alignment are numbered according to their 

position in BsSAS1. Figure 13A originates from ref. (151). 

Binding of pppGpp does not alter the oligomeric state of SAS1, however the topology 

of the homotetramer differs significantly between the apo- and pppGpp-bound states 

of SAS1 (Figs. 14 and 15A). The location of helices α1 and α4 as well as β1 differs 

significantly between both states. This is however not surprising as amino acids 

located within these secondary structure elements mediate binding of pppGpp to 

SAS1 (Fig. 13A). Nevertheless, also helices α2 and α5 of SAS1 are rearranged 

although they are far away from the allosteric pppGpp-binding site. Moreover, the 

G-loop containing residues essential for coordination of the guanosine substrate is 

ordered in SAS1-pppGpp (Fig. 12B). This implies that allosteric binding of pppGpp 

might alter also alter the function of SAS1. 

Figure 14. Comparison of the pppGpp-bound state and apo-state of SAS1. SAS1-pppGpp is 

colored in rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively. The apo-

state of SAS1 is colored in grey. Secondary structure elements that differ significantly 

between both states are indicated.  

Conformational changes of pppGpp-bound SAS1 compared to the apo-state are 

schematically illustrated in Fig. 15A and further detailed in Figs. 15B-G. Side chains 

of lysine and arginine residues located in helix α1 provide a positively charged cage 

for binding of the allosteric pppGpp’s. Binding of pppGpp into this cage pulls α1 by 1-

2 Å into SAS1’s central cleft (Fig. 15A, I and Fig. 15B). Coordination of allosteric 
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pppGpp by Glu41, Phe42 and Thr44 located within β1 results in a longitudinal 

movement of β1 by ~ 1.5 Å (Fig. 15A, II and Fig. 15C). Helix α2 protrudes ~ 3 Å into 

the active site of SAS1 in the presence of pppGpp than in its absence (Fig. 15A, III 

and Fig. 15D). This movement might at least be partially mediated by rearrangement 

of the adjacent elements α1 and β1. Noteworthy, α2 comprises the residues Lys48, 

Lys56, Arg59 and Lys60 which mediate coordination of the ATP substrate but also 

the pppGpp product within SAS1’s (p)ppGpp synthetase active site (Fig. 15D). 

However, it is not clear at this point whether the altered location of α2 is mediated by 

the allosterically-bound pppGpp molecules or simply because pppGpp is also bound 

within the active site in the SAS1-pppGpp structure. Further changes of SAS1-

pppGpp relate to Asn148 residing in helix α4, which established specificity for the 

guanine base of allosteric pppGpp by hydrogen bonding with its O6 keto group 

(compare to Fig. 13A). This interaction induces displacement of Asn148 by ~1 Å and 

rotation of α4 by approximately 15° (Fig. 15A, IV and V and Figs. 15E and F). 

Through this rotational movement, Phe149 located nearby to Asn148 within α4 

extends into the hydrophobic core between helices α4 and α5 resulting in 

displacement of Leu183 and Met187 residing in α5. Noteworthy, based on the 

symmetry of the SAS1 homotetramer, helices α4 and α5 from two monomers of the 

complex undergo the same conformational rearrangement although Asn148 from 

only one monomer establishes contacts to the allosteric pppGpp. A direct 

consequence of the altered topology of the lateral interface of the SAS1 

homotetramer is displayed in the interface between α5 and the G-loop close to 

SAS1’s active site (Fig. 15A, VI and Fig. 15G). Through rotation of α5, interactions 

might be established by Gln174 and Glu178 (both in α5) with Glu113, His111 and 

Arg117 located in the G-loop. These contacts seem to be impossible in the apo-state 

of SAS1. To this effect, these interactions might help structuring the G-loop to 

facilitate binding of the guanosine substrate mediated by Tyr116 (see above). 

Noteworthy, the G-loop of SAS1 is ordered in SAS1-pppGpp but not in SAS1-

AMPCPP or the apo-state of SAS1. However, it is unclear whether this event is 

goverened by the allosteric pppGpp or simply by pppGpp bound to the active site of 

SAS1. Nevertheless, it is apparent that binding of two pppGpp molecules within the 

central cleft of SAS1 results in major topological changes of the SAS1 homotetramer.  
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Figure 15. Conformational changes of SAS1 upon binding of pppGpp. A. Scheme of the 

SAS1 homotetramer depicting differences between SAS1-pppGpp and the apo-state of 

SAS1 (compare to Fig. 10). Black lines indicate the number of interactions established 

between SAS1 and allosteric pppGpp. Red arrows indicate conformational changes of 

secondary structure elements of SAS1. Roman numbers are explained in the text.  B-G. 

Detailed differences between the apo-state (grey) and pppGpp-bound state (green) of SAS1. 

B. α1 (I). C. β1 (100). D. α2 (III). E-F. α4 and α5 (IV+V). G. α5 and G-loop (V+VI).     
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3.2  Catalytic mechanism and regulation of SAS1 

3.2.1  Sequentially ordered substrate-binding mechanism of SAS1 

Despite intensive research on (p)ppGpp synthetases over the last decades, the 

catalytic mechanism of (p)ppGpp synthesis and its structural basis remained widely 

unadressed so far. In order to gain a better understanding how alarmone synthesis 

proceeds, I aimed at determining the order of substrate-binding to SAS1. For this 

purpose SAS1 was subjected to hydrogen-deuterium exchange (HDX) mass 

spectrometry in the presence of different nucleotides. In brief, SAS1 was incubated 

with different combinations of GDP, GTP and AMPCPP (see Fig. 16A) in D2O-

containing SEC buffer. After completion of the HDX reaction, SAS1 was digested 

with pepsin and the resulting peptides analyzed by electrospray ionization mass 

spectrometry. Data analysis was carried out using PLGS and DynamX 3.0 softwares 

(both from Waters) as further detailed in chapter 5.2.8.  

Two regions of SAS1 (R2 and R3) located within its active site showed significant 

stabilization in the presence of AMPCPP after 30 s of deuteration (Figs. 16A and B). 

However, no effects could be detected in the presence of either GDP or GTP alone. 

The validity of this observation is supported by the exemplary time course of HDX of 

the R2 region in which no difference in relative HDX can be observed between the 

apo- and GDP-state of SAS1 while HDX of AMPCPP-SAS1 is ~20% decreased after 

15/30/60 s and only levels up after 10 min of deuteration (Fig. 18B). These results 

suggest that ATP must bind before GDP or GTP can enter SAS1. To support this 

finding, the experiment was repeated employing combinations of AMPCPP and either 

GDP or GTP. The presence of both substrates (i.e. AMPCPP and GDP (GTP)) 

induced an even stronger stabilization of R2 and R3 than AMPCPP alone (Fig. 16A). 

A similar behaviour could be observed, although not as pronounced, for region R1. 

This is not surprising as coordination of the GDP (GTP) substrate does not require 

residues found in R1 (compare to Fig. 10A). Taken together, these data show that 

SAS1 binds its substrates in an ordered sequence (Fig. 16C).  
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Figure 16. Sequential-ordered substrate binding to SAS1. A. Three regions of SAS1 (R1-R3) 

show different responses to the presence of nucleotides in HDX experiments after 30 s of 

deuteration. Residues involved in coordination of the ATP substrate are labelled in red. Data 

represent the mean ± standard deviation of three independent measurements. B. 

Location of the peptides R1 (red), R2 (green) and R3 (blue) in the crystal structure of an 

SAS1-AMPCPP monomer. An arrow indicates the location of AMPCPP within the active site 

of SAS1. C. The substrates ATP (pale green ball) and GDP/GTP (dark green triangle) bind to 

SAS1 (blue) in sequential order. Binding of the first substrate ATP leads to a conformational 

change within SAS1 allowing binding of the second substrate GDP/GTP. The transition state 

of catalysis in indicated by a double dagger (‡). The reaction products (p)ppGpp and AMP 

are shown as orange and grey balls, respectively. The figure was adapted from ref. (151). 

3.2.2.  Catalytic mechanism of (p)ppGpp synthesis by SAS1 

With the availability of the crystal structure of an alarmone synthetase in the ATP-

bound state (i.e. SAS1-AMPCPP) and the knowledge about the sequential substrate-

binding mode, a detailed model of the catalytic mechanism of (p)ppGpp synthesis by 

SAS1 could be derived (Fig. 17). ATP binds to the active site of SAS1 and is held in 

position by π-stacking interactions with Arg46 and Arg77. The phosphate moieties of 
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ATP protrude in an unusual angle from the ribose of ATP mainly mediated through 

coordination by Arg46 and a magnesium ion. The guanosine substrate GDP or GTP 

enters the active site locating its 3’-OH group in close proximity to Glu139, 

magnesium and the β-phosphate of ATP. At least partial deprotonation of the 3’-OH 

group results from its close proximity to magnesium. Furthermore, Glu139 might 

serve as a general base. The so-activated 3’-O- group can attack the β-phosphate of 

ATP via a second-order nucleophilic substitution (SN2) resulting in the transfer of the 

β- and γ-phosphates of ATP onto the 3’-OH moiety of GDP (GTP). The AMP product 

ripped of its tight coordination to SAS1 via the β- and γ-phosphates as well as steric 

clashes with the (p)ppGpp product should then readily leave SAS1’s active site. The 

(p)ppGpp product does not establish a significantly higher number of interactions 

than the GDP (GTP) substrate and might as well readily leave SAS1’s active site 

upon reversion of SAS1 into the apo-state conformation. 

 

Figure 17. Catalytic mechanism of alarmone synthesis by SAS1. ATP and AMP are shown 

in dark green. GDP (GTP) is shown in bright green. (p)ppGpp is shown in blue. Further 

details are given in the text. The model was deployed by Jan Schuhmacher and the figure 

originates from ref. (151).  

To solidify the findings on the catalytic mechanism of alarmone synthesis by SAS1, 

point mutations were generated within SAS1 resulting in substitution of Arg46 and 

Glu139 by Gly and Val, respectively. Both variants were purified as described before 

(3.1.1 and 6.2.3) and appeared as a stable homotetramer on SEC (not shown). Both 

variants were devoid of alarmone product formation (Fig. 18A) highlighting their 

crucial role in (p)ppGpp synthesis (see above). To elucidate the reason for their 

catalytic inactivity, both SAS1 variants were subjected to HDX in the absence or 

presence of AMPCPP and treated as the native protein (see 3.2.1 and 6.2.7). 
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Although slightly different peptides were generated in this experiment, direct 

comparison of the apo- and AMPCPP-state of both variants still allows for conclusive 

data interpretation (Figs. 18B - D). Evidently, no difference between the two states of 

both variants over the whole time course of HDX (i.e. 15/30/60/600 s deuteration) 

does exist (Figs. 18C and D). This stands in contrast to the previously observed 

decrease in HDX of SAS1 in the presence of AMPCPP (Fig. 18B, compare to Fig. 
16A region R2). This experiment demonstrates that variation of Arg46 and Glu139 

leads to a catalytically inactive protein because ATP-binding to SAS1 is ablated. It 

seems obvious that removal of Arg46 by mutation does diminish ATP-binding as 

Arg46 establishes ATP coordination by π-stacking interactions and coordination of 

the phosphate moieties. However, Glu139 is not involved in coordination of ATP per 

se but aids in arranging the magnesium ion cofactor between ATP’s β- and γ-

phosphates (Fig. 10B). This suggests that magnesium is needed for proper 

coordination of ATP within the active site of SAS1 and is in agreement with the 

observation that magnesium was not found in the crystal structure of apo-SAS1 but 

in the structure of SAS1-AMPCPP (see 3.1.5 and Fig. 9B). 
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Figure 18. Analysis of variations within SAS1’s active site. A. Synthesis of ppGpp (black) 

and pppGpp (grey) by SAS1 and its variants R46G and E139V. 2 µM SAS1 were incubated 

with 5 mM ATP and 5 mM GDP/GTP for 10 min at 37 °C. Synthesis of ppGpp by SAS1 is set 

to 100%. Data represent the mean ± standard deviation of three independent measurements. 

B. HDX time course of SAS1 without nucleotides (red) and in presence of AMPCPP (blue) or 

GDP (green). C-D. HDX time course of SAS1 variants R46G (solid line) and E139V (dashed 

line) without nucleotide (red) or in the presence of AMPCPP (blue). Data represent the mean 

± standard deviation of three independent measurements. 

3.2.3. Development of a HPLC-based assay for kinetic analysis of 
(p)ppGpp synthetases and hydrolases 

Several methods for measuring the activity of (p)ppGpp synthetases are described. 

The classical ‘magic spot’ experiment is based on the formation of 32P-labeled 

(p)ppGpp either by transfer of 32P-phosphate from radioactive-labeled ATP or by 

employing radioactive-labeled GDP or GTP as substrate. The reaction mixture is 

then separated by thin-layer chromatography and (p)ppGpp quantified by illumination 

and read out of a photo film (153). Recently used instrumental methods are based on 

the quantification of (p)ppGpp by anion-exchange chromatography (152) or ion-pair 

reversed-phase high performance liquid chromatography (IP-RP-HPLC) coupled to a 

UV-detection unit (154, 155). The latter one is also regularly used for separation of 

various nucleotides. As experiments with 32P-labeled nucleotides require an isotope 

laboratory and RP-HPLC offers the advantage of greater reproducibility compared to 

AX-chromatography, I opted for the implementation of a method suitable for 

quantification of (p)ppGpp based on ion-pair RP-HPLC.  

Separation of the negatively charged nucleotide analytes necessitates the inclusion 

of a positively charged ion-pairing reagent in the running buffer. Commonly used 

reagents for this purpose are the volatile trimethylammonium bicarbonate (156), 

tetrabutylammonium dihydrogenphosphate (157, 158) tetraethylammonium bromide 

or tetrapentylammonium bromide. The retention of the analytes heavily depends on 

the chain length of the alkyl groups of the ion-pairing reagent (159). Therefore, 

tetrapentylammonium bromide (TPAB) was used in this work. 

HPLC measurements were carried out on an Agilent 1100 Series system (Agilent 

Technologies) equipped with a variable wavelength detector (Agilent Technologies). 
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A C18 column (EC 250/4.6 Nucleodur HTec 3 µm; Macherey-Nagel) kept at 25 °C 

was used for separation of the analyte mixtures. Buffer A contained 50 mM KH2PO4, 

50 mM K2HPO4, 15% (v/v) acetonitrile and 10 mM TPAB, buffer B was acetonitrile. 

After 30 min running with buffer A at 0.8 ml/min flow rate, a linear gradient up to 90% 

B was applied over 20 min and subsequently hold for 10 min. Nucleotides elute in 

order of their number of phosphate moieties (Fig. 19A) and guanosine nucleotides 

elute earlier than adenosine nucleotides when harboring the same number of 

phosphates. Nucleotides were typically detected at a wavelength of 260.8 nm and 

quantified using Agilent ChemStation (version: B.04.03, Agilent Technologies). The 

identity of the nucleotide was determined by comparison of their retention time with 

standards.  
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Figure 19. HPLC-based method for quantification of nucleotides and (p)ppGpp. A. 

Exemplary UV chromatogram of an in vitro reaction containing SAS1, ATP and GTP. 

Retention times of different nucleotides are labelled by arrows. B-C. Correlation of measured 

UV signal intensity correlating with different concentrations of AMP in the injected sample.   

Because of the lack of commercially available (p)ppGpp with suitable purity, the 

calibration curve accounting for the ratio of calculated peak area to analyte 

concentration was obtained using AMP in a concentration range between 2.5 and 

5000 µM (Figs. 19B and C). Linear regression through all data points results in a 

good correlation between peak area and AMP concentration at ≥ 10 µM AMP. 5 µM 

AMP result in a peak area slightly below the slope of the regression curve while 2.5 

µM AMP cannot be detected with the method. This allows to deduce the limit of 

detection and limit of quantification for the method to be 2.5 - 5 µM and 10 µM AMP, 

respectively. Although these values might not be directly applied to all other 

nucleotides, mainly (p)ppGpp, they allow for a rough estimation of the methods 

capabilities. 

In vitro reactions probing the (p)ppGpp synthetase activity of SAS1 were prepared as 

described in the respective chapters and 6.2.6 except stated otherwise. Reactions 

were stopped by flash-freezing in liquid nitrogen and stored at - 20 °C until 

measurement conducted latest within three days. Before measurement, the samples 

were rapidly thawn and directly injected into the HPLC system. 

3.2.4.  SAS1 displays a highly cooperative behavior 

In order to investigate the enzymatic properties of SAS1, kinetic analysis of SAS1’s 

(p)ppGpp synthetase activity was performed. In brief, 2 µM SAS1 and 5 mM ATP 

were incubated in a modified SEC buffer (100 mM HEPES-Na, pH 7.5, 200 mM 

NaCl, 20 mM MgCl2, 20 mM KCl) together with varying concentrations of GDP or 

GTP at 37 °C. After predefined time-points, aliquots were removed from the reaction, 

flash frozen in liquid nitrogen and stored at -20 °C until measurement. HPLC analysis 

was carried out as detailed in chapter 3.2.3. In this experiment, ppGpp and pppGpp 

produced during the reactions were quantified by correlating the UV peak areas of 

(p)ppGpp with the UV peak areas of GDP or GTP obtained by measuring GDP/GTP 

samples of known concentration. This procedure is valid as the extinction coefficient 
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of (p)ppGpp solely depends on the presence of the nucleobase guanine while the 

ribose phosphate moieties are not contributing to UV absorption. 

The initial velocities of (p)ppGpp synthesis by SAS1 were obtained from the slope of 

the linear regression of (p)ppGpp quantified at different time points (Fig. 20). 

Thereafter, the initial velocities were plotted against the concentration of GDP (GTP). 

Kinetic data analysis was carried out using GraphPad Prism version 6.04 for 

Windows (GraphPad Software, San Diego, California, USA). The values for Km, Vmax 

and the Hill coefficient (h) ± standard deviation were obtained from the sigmoidal fit of 

the v/S characteristic using the equation v = Vmax Sh/(Km
h + Sh). 

 

Figure 20. Progress curves of (p)ppGpp synthesis by SAS1. A. Progress curves of ppGpp 

production by SAS1 at differing GDP concentrations. For 2, 3, and 5 mM GDP, the 15-min 

data point was excluded because substrate limitation was reached. B. Progress curves of 

pppGpp production by SAS1 at differing GTP concentrations. A-B. GDP or GTP were used 

in concentrations of 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 5 mM while ATP was used with 5 mM. For 

each GDP/GTP concentration, five different time points (i.e. 1, 3, 5, 7 and 15 min) were 

measured. The R2 values for each progress curve are indicated. The figure originates from 

ref. (151). 

SAS1 displays a cooperative behaviour for the synthesis of ppGpp and pppGpp 

reflected by the Hill coefficients of 3.0 ± 0.3 and 2.0 ± 0.1, respectively (Fig. 21). The 

Km values differ only slightly (i.e. 1.7 ± 0.1 for GDP and 1.2 ± 0.1 for GTP), however 

the maximal velocity (Vmax) shows an approximately 3.5-fold difference between both 

reactions. This preferential synthesis of ppGpp over pppGpp is in agreement with 
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earlier observations from this work (Fig. 18A) and reports on SAS1 orthologs from B. 

subtilis, S. aureus and E. faecalis (40, 57, 71). However, the kinetic description of 

SAS1 does not allow for the determination of an influence of allosterically bound 

pppGpp on SAS1 (compare to 3.1.6). At first glance, the possibility of an effect of 

pppGpp on the enzymatic activity of SAS1, e.g. as an allosteric activator or inhibitor, 

must be rejected. In this case major deviations in the progress curves of pppGpp 

synthesis by SAS1 would have been expected (Fig. 20). Nevertheless, the 

conformational changes of SAS1 in presence of pppGpp render an effectuation of 

SAS1 by allosteric pppGpp a plausible hypothesis and require further attention.  

Figure 21. (p)ppGpp synthesis by SAS1. A. v/S characteristic of ppGpp (black) and pppGpp 

(grey) synthesis by SAS1. The approximate Km and Vmax values are indicated by dashed 

lines.  B. Kinetic parameters of (p)ppGpp synthesis by SAS1 obtained from A. Figure 21A 

was adapted from ref. (151). 

3.2.5. Development of a method for the production of (p)ppGpp in 
biochemical qualities and quantities 

An examination of the influence of pppGpp and ppGpp on the activity of SAS1 

requires availability of these nucleotides in biochemical quality and quantity. 

Unfortunately, while ppGpp was commercially available although with a rather low 

purity of 85% (TriLink Biotechnologies), pppGpp could not be purchased at all. This 

necessitated the development or adaptation of a method to produce and purify 

ppGpp and pppGpp. 



	   	   Results 
	  

	   45 

To do so, a previously described method for purification of (p)ppGpp was adapted 

(112). In brief, 5 µM SAS1 were incubated with 10 mM ATP and 10 mM GDP or GTP 

to produce ppGpp or pppGpp, respectively. Thereafter, SAS1 was removed by 

precipitation with chloroform and the aqueous phase containing the nucleotides 

subjected to anion-exchange chromatography (ResourceQ, 6-ml, GE Healthcare). A 

gradient of NaCl was used for separation of the nucleotides, which elute in increasing 

order of their number of phosphate moieties allowing for a good separation of ppGpp 

and pppGpp from all other components in the injected sample, mainly AMP (Fig. 22). 

Although ppGpp and pppGpp elute at different NaCl concentrations of 200 and 220 

mM, respectively, both nucleotides are not completely separated. The desired 

nucleotides were precipitated from the eluted fractions by addition of lithium chloride 

to a final concentration of 1 M followed by the addition of 4 volume parts of ethanol. 

The suspension was then incubated at -20 °C for 20 min and centrifuged (5000 x g, 

20 min, 4 °C). The resulting pellets were washed twice with absolute ethanol, dried 

and stored at -20 °C. Quality of the so-prepared alarmones was controlled by 

analytical HPLC and typically yielded ppGpp and pppGpp in purities of 98% and 

95%, respectively. The major source of contaminating ppGpp in pppGpp-

preparations originates from GDP impurities in the GTP substrate used for synthesis. 

Vice versa, the presence of contaminating GTP in the GDP substrate results in low 

amounts of contaminating pppGpp in preparations of ppGpp.   

 

Figure 22. Purification of (p)ppGpp. A-B. Exemplary UV chromatograms of the purification of 

ppGpp (A) and pppGpp (B) from in vitro reactions containing SAS1 and the corresponding 

substrates. The reaction products of (p)ppGpp synthesis are indicated by arrows. 
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3.2.6.  SAS1 is allosterically regulated by pppGpp but not ppGpp 

The presence of pppGpp bound to an allosteric site in the central cleft of the SAS1 

homotetramer obscures its functional role. To probe whether pppGpp or ppGpp 

would effect SAS1, its (p)ppGpp synthetase activity was determined in dependence 

of increasing amounts of pppGpp or ppGpp (Fig. 23). To discriminate between 

(p)ppGpp produced during the reaction and exogenously added (p)ppGpp, the 

amount of AMP released equimolar to the alarmone product was quantified. 

Moreover, the assays were carried out in presence of 0.25 mM GDP or GTP and 5 

mM ATP at which (p)ppGpp synthesis by SAS1 proceeds considerably slow 

(compare to Fig. 21) to minimize a possible autoregulatory effect of (p)ppGpp 

synthesized during the reaction. The synthesis of both alarmones is affected by 

ppGpp and pppGpp (Figs. 23A and B). However, while pppGpp does already 

stimulate the activity of SAS1 by approximately 10-fold at a concentration as low as 

12.5 µM, only a mild stimulation is observed in presence of 12.5 µM ppGpp. Even in 

presence of 250 µM, ppGpp fails to promote a similar stimulatory effect on SAS1’s 

activity as pppGpp (Fig. 23).  

 

Figure 23. Dose-dependent effect of ppGpp and pppGpp on the (p)ppGpp synthetase 

activity of SAS1. A. The ppGpp synthetic activity of SAS1 is efficiently stimulated by pppGpp 

(black squares) and moderately stimulated by ppGpp (black circles). B. The pppGpp 

synthetic activity of SAS1 is efficiently stimulated by pppGpp (grey squares) and only 

moderately stimulated by ppGpp (grey circles). For both experiments, 2 µM SAS1 were 

incubated with 5 mM ATP, 0.25 mM GDP/GTP and (p)ppGpp as incidated in the figures for 5 

min at 37 °C. Data represent the mean ± standard deviation of three independent 

measurements. The figure originates from ref. (151). 
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If binding of pppGpp to SAS1 stimulates its (p)ppGpp synthetic activity, it is however 

not clear whether pppGpp residing in the central cleft of SAS1 does effectuate SAS1 

or if pppGpp binding into one of the four active sites of the homotetramer does effect 

the other active sites. To investigate the influence of pppGpp bound within the central 

allosteric cleft of SAS1, I measured the (p)ppGpp synthesis of SAS1 variants that 

should be incapable of pppGpp coordination (i.e. K25A, F42A and N148G, compare 

to Fig. 13A). Although all three variants still form homotetramers (not shown), they 

are unaffected by the addition of 12.5 µM pppGpp at which the activity of wild type 

SAS1 is significantly increased (Fig. 24). This demonstrates that pppGpp bound into 

the central cleft of the SAS1 homotetramer serves as an allosteric stimulator of 

SAS1’s activity.     

 
 

Figure 24. Variations in the allosteric cleft abolish stimulation by pppGpp. A-B. Stimulation of 

ppGpp (A) and pppGpp (B) synthetase activity of SAS1 and its variants in the presence of 

pppGpp. For both experiments, 2 µM SAS1 were incubated with 5 mM ATP, 0.25 mM 

GDP/GTP and 12.5 µM pppGpp where indicated for 5 min at 37 °C. Data represent the mean 

± standard deviation of three independent measurements. The figure originates from ref. 

(151). 

The different dose-dependency of ppGpp and pppGpp for stimulation of the 

(p)ppGpp synthetase activity of SAS1 raises the question why both alarmones differ 

in their ability to allosterically regulate SAS1. Analysis of pppGpp bound within the 

allosteric site of SAS1 revealed lysine and arginine residues from two opposing 
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subunits coordinating the phosphate moieties of pppGpp (compare to Fig. 13A). In 

this, the γ-phosphate moiety of pppGpp establishes contacts with Lys21 and Lys25 of 

one subunit. Therefore, the absence of a γ-phosphate moiety in ppGpp should allow 

for weaker binding of ppGpp compared to pppGpp. To investigate the binding of 

ppGpp and pppGpp to SAS1, I performed an HDX experiment in which the 

alarmones where added to SAS1 in a concentration of 12.5 µM. At this concentration, 

only pppGpp was able to efficiently stimulate SAS1 while ppGpp was not (compare to 

Fig. 23). Consistently, reduced hydrogen-deuterium exchange in regions comprising 

residues involved in coordination of allosteric pppGpp could only be observed in the 

presence of pppGpp but not in presence of ppGpp (Fig. 25A). The disparity in HDX 

between the pppGpp-bound state of SAS1 and the ppGpp-bound or apo-state even 

after prolonged deuteration supports the idea that pppGpp in contrast to ppGpp is 

stronlgy coordinated by SAS1 (Figs. 25B-D). 

Taken together, these experiments demonstrate that pppGpp acts as a positive 

effector of SAS1’s (p)ppGpp synthetase activity due to its ability to bind the 

regulatory cleft of the SAS1 homotetramer. The alarmone ppGpp however, although 

very similar to pppGpp, fails to exert the same regulatory role on the activity of SAS1. 
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Figure 25. Allosteric binding of pppGpp to SAS1. A. Different response of SAS1 to the 

presence of ppGpp (dark grey bars) and pppGpp (light grey bars) compared to the apo-state 

(medium grey bars) in HDX after 30 s of deuteration. HD exchange of three representative 

peptides constituting the allosteric cleft of SAS1 is given in percent. Amino acids conferring 

binding of pppGpp to SAS1 are shown in red. B-D. HDX time course of three representative 

peptides of SAS1 without nucleotides (red) or in the presence of ppGpp (blue) or pppGpp 

(green). Data represent the mean ± standard deviation of three independent measurements. 

Figure 25A originates from ref. (151). 

3.2.7 Effect of allosteric regulation by pppGpp on enzyme kinetics of 
SAS1 

The function of pppGpp and to a certain degree also ppGpp as an allosteric 

stimulator of SAS1 substantiates the possibility that the initial kinetic description of 

the (p)ppGpp synthetase activity of SAS1 was biased by production of stimulating 
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(p)ppGpp during the course of the reaction (compare to Fig. 21). To further elaborate 

on this, the ppGpp synthetase activity of an SAS1 variant incapable of pppGpp-

binding to its allosteric site (i.e. K25A/F42A) was determined. This variant was 

drastically impaired in synthesis of ppGpp (Fig. 26A) although ppGpp was shown to 

only mildly stimulate the activity of SAS1. Although SAS1 K25A/F42A was seemingly 

not disturbed in the assembly of homotetramers (not shown), however, the possibility 

could not be entirely excluded that this variant was negatively affected in its activity 

per se. Therefore, I determined the ppGpp synthesis of wild type SAS1 in presence 

of 12.5 µM pppGpp (Fig. 26A). While the Km value is seemingly not altered, the 

maximal velocity Vmax is increased ~ 1.5-fold. Moreover, the Hill coefficient (h) of 

ppGpp synthesis by SAS1 in presence of pppGpp is only 1.8 ± 0.3 in contrast to 3.0 

± 0.1 in the absence of pppGpp (Fig. 26B). This suggests that the Hill coefficient and 

therefore the degree of positive cooperativity of SAS1 was initially slightly 

overestimated. Nevertheless, even in presence of its allosteric stimulator pppGpp 

SAS1 - and by this minimizing the influence of stimulating ppGpp generated during 

the course of the reaction - still seems to display a positive cooperative behavior. The 

reason for the observed increase of Vmax in presence of pppGpp is obscure. A 

plausible hypothesis might rely on the altered location of helix α2 in presence of 

pppGpp, which might confer a higher enzymatic activity of SAS1 through an 

increased binding affinity of the substrate ATP to SAS1 (compare to Figs. 10 and 

15). Finally, although the Km value of ppGpp synthesis seems to be unaffected by 

addition of pppGpp, a significant increase in the initial velocities at GDP 

concentrations below 0.5 mM is apparent (Fig. 26A). If binding of GDP would be the 

rate limiting step of ppGpp synthesis as hinted by the sequential order of substrate 

binding to SAS1 in presence of 100 µM AMPCPP and/or GDP (compare to Fig. 16), 

then the presence of allosteric pppGpp might stimulate SAS1 activity by simply 

improving GDP binding through alterations within the G-loop. 



	   	   Results 
	  

	   51 

 

Figure 26. Influence of allosteric stimulation of SAS1 by pppGpp on kinetics of ppGpp 

synthesis. A. v/S characteristic of ppGpp synthesis by SAS1 in the absence (black solid line) 

or presence (green solid line) of 12.5 µM pppGpp. ppGpp synthesis by the SAS1 variant 

K25A/F42A is shown as a red dashed line. B. Kinetic parameters of ppGpp synthesis by 

SAS1 obtained from A. 

This hypothesis is further evidenced by a significant reduction in hydrogen-deuterium 

exchange of amino acids in helix α5 (i.e. peptide ‘RLQRASE’) that reside in close 

proximity to the G-loop (Figs. 27A and B). This decrease in HDX is only observable 

in presence of pppGpp but not ppGpp. Although no reduction in HDX can be 

observed for the G-loop (i.e. peptide ‘YIAEHKESGYRSYHL’, Fig. 27A), the close 

proximity of amino acid side chains from α5 and the G-loop is likely to establish 

interactions between both elements. By these interactions, the G-loop should 

become more rigid. Noteworthy, the G-loop of SAS2 proteins typically contains one 

or two proline residues (Fig. 28A) while SAS1 does not. Although these proline 

residues are not strictly conserved among SAS2 proteins, I tested whether the 

introduction of proline into the G-loop of SAS1 (i.e. variant H111P, compare to Fig. 
32B) might affect its (p)ppGpp synthetase activity. Indeed, the H111P variant of 

SAS1 exhibited a significantly increased production of ppGpp even in the absence of 

allosterically stimulating pppGpp (Fig. 27C). 

Taken together this demonstrates that allosteric binding of pppGpp to SAS1 induces 

major conformational changes affecting the activity of SAS1. 
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Figure 27. Rigidity of the G-loop influences the activity of SAS1. A. HDX time course of two 

representative peptides of SAS1 in absence (red) or in presence of 12.5 µM ppGpp (blue) or 

pppGpp (green). Data represent the mean ± standard deviation of three independent 

measurements. Amino acids appearing in B are colored in red. B. Location of the peptides in 

the crystal structure of a SAS1-pppGpp monomer. Amino acids that might mediate 

interactions between α5 and the G-loop are shown as sticks. C. ppGpp synthetase activity of 

SAS1 and its H111P variant in the absence (grey) and presence (black) of pppGpp. 2 µM 

SAS1 were incubated with 5 mM ATP, 5 mM GDP and 12.5 µM pppGpp where incidated for 

10 min at 37 °C. Data represent the mean ± standard deviation of three independent 

measurements. 

3.3  Structural analysis of SAS2  

3.3.1  SAS2 from S. aureus forms homotetramers 

The presence of two small alarmone synthetases (i.e. SAS1 and SAS2) in members 

of the firmicutes phylum e.g. B. subtilis, S. aureus or L. monocytogenes raises the 

question about a possibly disparate physiological relevance for the microorganism. 
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Although SAS1 and SAS2 homologues often share amino acid identities of 30-40% 

(Fig. 28A) they seem to exhibit different functional roles in the cell (71). For example, 

transcription of BsSAS1 peaks during logarithmic growth in rich medium while 

BsSAS2 is mainly transcribed at the transition to stationary phase (57, 72). Moreover, 

SAS2 but not SAS1 seems to play an important role during ribosome hibernation in 

both B. subtilis and S. aureus (72). However, it remained widely unadressed whether 

these discrepancies are solely based on different transcription and/or translation of 

the SAS proteins or if also differences in their enzymatic activities would exist. 

To gain further insight into the functional properties of SAS2 and compare it with 

SAS1, the SAS2 orthologs from B. subtilis and S. aureus were cloned carrying an N-

terminal hexa-histidine tag in-frame with the coding sequence of the proteins and 

heterologously produced in E. coli BL21 (DE3) using auto-induction medium. 

However, while SaSAS2 could be readily obtained after purification using Ni-NTA 

affinity chromatography, BsSAS2 was completely insoluble after elution from the Ni-

NTA matrix under different buffer conditions including e.g. the addition of glycerol and 

different pH values of the buffers. Therefore, only SaSAS2 could be further purified 

employing size-exclusion chromatography (SEC). On SEC, SAS2 similarly to SAS1 

had an apparent mass corresponding to the size of a homotetramer (Fig. 28B). This 

suggests that the formation of homotetrameric complexes is a common property of 

SAS1 and SAS2 homologs.   

 

Figure 28. SAS2 from S. aureus form homotetramers. A. Domain architecture of BsRelA, 

BsSAS1 and SaSAS2. The (p)ppGpp synthetase domain shared by all three proteins is 

shown in colors. B. Left: Size-exclusion chromatography profile of SAS2. Arrows indicate the 

molecular mass of the size standard. Right: Coomassie-stained SDS-PAGE of the peak 

fraction containing SAS2.  
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3.3.2 Crystal structure of the apo-state of SAS2  

Determination of the crystal structure of SAS2 in the apo-state at 2.25 Å resolution 

(Table S2) proofs the suggestion of a tetrameric assembly of SAS2 (Fig. 29). SAS2 

forms an oval-shaped tetramer with a prominent central cleft. Helices α5 and α6 

establish the lateral sides of the homotetramer interface with a buried surface area of 

~1200 Å2, consisting mainly of polar contacts. The medial sides of the homotetramer 

interface of ~1200 Å2 is stabilized only by helix α1 via hydrogen bonds and salt 

bridges. Interestingly, triethylene glycol (PGE) is bound within all four active sites of 

SAS2 (Fig. 29). This PGE molecule should originate from the crystallization condition 

from which the crystals of SAS2 were obtained (i.e. 0.1 M CHES, pH 9.5 and 40% 

(w/v) PEG600) and might mark the position of a substrate within the (p)ppGpp 

synthetase active site of SAS2 (see below).   

 

Figure 29. Crystal structure of the tetrameric alarmone synthetase SAS2 in the apo-state. 

Each monomer (α to δ, indicated by a grey shadow) of SAS2 is shown in cartoon 

representation colored in rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, 

respectively. Interfaces on the lateral and medial sides of the complex are indicated by 

brackets. PGE denotes triethylene glycol residing in the four active sites of SAS2. 

At first glance, SAS2 seems to closely resemble the crystal structure of SAS1 

(compare to Fig. 8B). Shortly, the (p)ppGpp synthetase domain of SAS2 consists of 

a mixed β-sheet build by five β-strands which is coated by six α-helices. However, 

close inspection of monomeric subunits as well as the topology of the homotetramer 

of SAS2 reveals significant differences to SAS1 (Figs. 30A and B). In SAS2, the G-
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loop comprising Tyr151 (Tyr116 in SAS1) and conferring binding of the guanosine 

substrate within the active site is well-ordered in contrast to the disordered G-loop 

found in SAS1 (Fig. 30A, I). Furthermore, helix α2 comprising residues involved in 

ATP coordination to SAS proteins is shifted by ~2 Å away from the (p)ppGpp 

synthetase active site (Fig. 30A, II). This movement might at least be partially 

invoked by the presence of the additional short helix α3 (Fig. 30A, III). α3 is able to 

contact α1 thereby displacing α2. In the context of the tetrameric assembly of SAS2, 

a slightly altered arrangement of helices α1 and α5/ α6 establishing the medial and 

lateral interfaces of the complex, respectively, becomes apparent (Fig. 30B). As a 

result, the central cleft of SAS2 is more opened than that of SAS1. 

The similar but disparate topology of the single (p)ppGpp synthetase domains and 

the tetrameric assemblies of SAS2 and SAS1 might imply differences in their 

enzymatic activity. Indeed, the (p)ppGpp synthetase activity of SAS2 and SAS1 differ 

(Fig. 30C). However, while the synthesis of ppGpp by both enzymes is comparable, 

SAS2 displays an approximately 2-fold reduced production of pppGpp compared to 

SAS1 (see 3.2.6). As SAS1 was shown to be efficiently stimulated by pppGpp, this 

might suggest that the activity of SAS2 is not stimulated by ppGpp or pppGpp. 

However, it might also be possible that differences in the active site architectures of 

both proteins in presence of substrates might result in the different enzymatic 

activities. Taken together, SAS1 and SAS2 share the same overall structural 

topology, yet subtle differences in the subunits and homotetrameric assembly might 

account for their different enzymatic properties and cellular functions and remain to 

be further elucidated. 
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Figure 30. Structural comparison of SAS2 and SAS1 in their apo-states. A. Cartoon 

representation of the crystal structures of monomeric SAS2 (left), SAS1 (middle) and their 

superimposition (right). SAS2 is colored in rainbow from N- to C-terminus indicated by ‘N’ 

and ‘C’, respectively and SAS1 is shown in grey. Roman numbers depict significant 

differences between both structures and are further detailed in the text. B. Superimposition of 

the tetrameric assemblies of SAS2 (each monomer colored in rainbow from N- to C-

terminus) and SAS1 (grey). C. Comparison of the ppGpp (black) and pppGpp (grey) 

synthetic activities of SAS1 and SAS2. 2 µM SAS1 or SAS2 were incubated with 5 mM ATP 

and 5 mM GDP/GTP for 10 min at 37 °C. Synthesis of ppGpp by SAS1 was set to 100%. 

Data represent the mean ± standard deviation of three independent measurements.   

3.3.3 Crystal structure of the ATP-bound state of SAS2  

SAS2 and SAS1 seem to exhibit differing activities for production of ppGpp and 

pppGpp (see above). This observation might be based on differences between SAS1 

and SAS2 in e.g. binding of the substrates, catalysis or allosteric regulation by 

pppGpp or any other regulator. To examine whether differences in substrate binding 
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between both enzymes would occur, I aimed at determining the crystal structure in 

different substrate-bound states, i.e. ATP-bound (mimicked by AMPCPP) and 

GDP/GTP-bound state. To do so, SAS2 was incubated together with 5 mM 

AMPCPP, GDP, GTP or combinations thereof for 30 minutes at 4 °C prior to 

crystallization experiments. Although crystals for all putative substrate-bound states 

could be obtained, GDP/GTP-containing crystals only afforded for determination of 

the structure of SAS2 in the apo-state (see above). As this was also the case for 

SAS1, this might suggest that the substrates might bind in sequential order and 

moreover the guanosine substrate with lower affinity than ATP. Crystal for the ATP-

bound state of SAS2 were obtained after 2 days from a crystallization condition 

containing 0.2 M lithium sulfate 0.1 M Tris, pH 8.5, 30% (w/v) PEG4000 and 

diffracted to 2.9 Å resolution (Table S2). Determination of the crystal structure 

employing apo-SAS2 as a search model for MR revealed the nucleotide AMPCPP 

bound within all four active sites of SAS2 (Fig. 31A). Binding of AMPCPP to the 

active site of SAS2 does only slightly alter the architecture of the active site (Fig. 

31B). Differences confer α2, which is displaced by ~2 Å towards the (p)ppGpp 

synthetase active site. By this, the topology of the AMPCPP-bound state of SAS2 

closely resembles that of SAS1 (compare to Fig. 30A). Coordination of AMPCPP by 

SAS2 is guided by π-stacking interactions of the adenine base with the arginine 

residues 78 and 112 (Fig. 31C). The ribose moiety of the adenosine is coordinated 

by hydrogen bonding via His190. Interactions with the phosphate moieties of 

AMPCPP are mainly established by lysine and arginine residues residing in β1 and 

α2 (i.e. Lys80, Lys88 and Arg91) and Ser84 contacting the 5’ α−phosphate. The 

kinked conformation of the nucleotide is enforced by a magnesium ion coordinated 

by Asp107 and Glu154 (Fig. 31C).  
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Figure 31. Crystal structure of SAS2 in the ATP-bound state. A. Crystal structure of SAS2-

AMPCPP. Each monomer (α to δ) of SAS2 is shown in cartoon representation colored in 

rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively. AMPCPP is shown as 

sticks. Magnesium is shown as sphere. B. Superimposition of a SAS2 monomer colored in 

rainbow from N- to C-terminus and bound to AMPCPP with apo-SAS2. ‘N’ and ‘C’ indicate 

the N- and C-termini, respectively. Amino acid residues coordinating AMPCPP are shown as 

sticks. C. ATP (mimicked by AMPCPP, deep teal) binds in a tense, U-shaped conformation 

in the active site of SAS2. Dashed lines indicate interactions between residues of SAS2 and 

AMPCPP. The magnesium ion is shown as a green sphere. 

Identical amino acids shape the binding site for the ATP substrate and confer binding 

of the ATP-mimic AMPCPP to SAS2 and SAS1 (Fig. 32A and compare to Fig. 10B). 

An amino acid sequence alignment of SAS2 and SAS1 proteins from different 

bacterial species highlights the strict conservation of the ATP-binding site (Fig. 32B). 

Noteworthy, amino acids contributing to ATP coordination located within α2 and α5 
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of SAS2, i.e. Lys88/Arg91 and His190, respectively are also strictly conserved. 

These residues were so far not appreciated to contribute to the (p)ppGpp synthetic 

activity of (p)ppGpp synthetases as they seem to be restricted to SAS proteins and 

are absent in long RSH-type proteins (compare to Fig. 8D). Moreover, helix α2 of 

SAS1 and SAS2 differs in the relative orientation compared to its counterpart α13 

found in long RSH-type protein Relseq by ~30 ° (compare to Fig. 10), thus further 

suggesting differences in the activities of SAS and long RSH-type proteins.    

 

Figure 32. Conservation of ATP-binding to SAS2 and SAS1. A. Coordination of the ATP-

mimic AMPCPP by SAS2 (left) and SAS1 (right). Amino acid side chains are shown as sticks 

and colored according to their affiliation to the following (p)ppGpp synthetase motifs: E1 

(yellow), E2 (orange) and E4 (white). Residues residing in α2 and α5 of SAS2 are colored in 

green and cyan, respectively. B. Amino acid sequence alignment of SAS2 and SAS1 
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orthologs from B. subtilis (Bsu), S. aureus (Sau), L. monocytogenes (Lmo), Streptococcus 

pyogenes (Spy), Streptococcus mutans (Smu) and Streptococcus dysgalactiae ssp. 

equisimilis (Seq). E1-E4 indicate motifs essential for (p)ppGpp synthesis. Amino acids are 

numbered according to their position in SaSAS2 and BsSAS1 above and beneath the 

alignment, respectively.  

3.3.4 Crystal structure of the pppGpp-bound state of SAS2  

As the coordination of the ATP-substrate to SAS2 is almost identical to that observed 

in SAS1, the different enzymatic activities of both proteins might be related to 

variability in GDP/GTP-binding or the absence of allosteric regulation of SAS2 by 

pppGpp. In order to obtain the crystal structure of SAS2 bound to its product 

pppGpp, SAS2 was incubated together with 5 mM of ATP and GTP for 30 minutes at 

4 °C prior to crystallization. Crystals of SAS2-pppGpp were obtained after 7 days 

from 0.2 M tri-potassium citrate and 20% (w/v) PEG 3350 and diffracted to 3.3 Å 

resolution (Table S2).  

The crystal structure of SAS2-pppGpp reveals the alarmone bound to the four active 

sites of the homotetramer, however, additional density accounting for pppGpp bound 

within the central cleft is missing (Figs. 33A and B). The guanine base of the active 

site-bound pppGpp is coordinated by π-stacking interactions with Tyr151 and a 

hydrogen bond provided by Glu189 (Fig. 33C). Gln176 establishes contact to the 

ribose oxygen atom of pppGpp. The 3’-OH phosphate moieties of pppGpp (i.e. δ- and 

ε-phosphates) interact with the side chains of Arg78, Lys80 and His190. The 5’-OH 

phosphate groups are coordinated by lysine residues Lys88, Lys92, Lys138, Lys147 

and His155. Summarized, this coordination of pppGpp within the active site of SAS2 

closely resembles the one found in SAS1 (Fig. 33C, compare to Fig. 12B). The only 

difference in coordination of the alarmone product refers to the substitution of Arg105 

found in SAS1 by Lys138 in SAS2 interacting with the β-phosphate moiety of 

pppGpp. It is not clear whether this single substitution can be held responsible for the 

different enzymatic activities of SAS2 and SAS1.  
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Figure 33. Crystal structure of SAS2 in the pppGpp-bound state. A. Crystal structure of 

SAS2-pppGpp. Each monomer (α to δ) of SAS2 is shown in cartoon representation colored 

in rainbow from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively and pppGpp is shown 

as sticks. B. Cartoon representation of one monomer of SAS2 bound to pppGpp. Residues 

conferring coordination of pppGpp are shown as sticks. C. Coordination of pppGpp by amino 

acid residues within the active site of SAS2. Dashed lines indicate interactions between 

residues of SAS2 and pppGpp. 

Although SAS2 forms homotetramers like SAS1, its central cleft remains unoccupied 

in the presence of pppGpp. Comparison of the pppGpp-bound with the apo-state of 

SAS2 reveals no dramatic conformational changes (Fig. 34A, left side). In this, only 

helix α2 is dislocated by ~ 2 Å towards the active site mainly guided by interaction of 

Lys88 and Lys92 with the active site-bound pppGpp (Fig. 33B). Overlay of the 

pppGpp-bound states of SAS2 and SAS1 reveals major rearrangements that are 
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most likely integrated by the allosteric pppGpp bound to SAS1 (Fig. 34A, right side). 

Binding of pppGpp tightened the central cleft of SAS1 by interactions with amino acid 

residues located in α1, β1 and α5; consequently similar alterations in these structural 

elements are not observed in SAS2-pppGpp. However, helix α6 of SAS2 (α5 in 

SAS1) seems to reside closer to the G-loop as its counterpart of SAS1 even in the 

absence of allosteric pppGpp (Fig. 34A). This suggests that SAS2 should more 

readily allow for binding of the GDP/GTP substrate through the well-ordered G-loop, 

which in SAS1 is facilitated or at least enforced by allosteric binding of pppGpp 

(compare to Fig. 15). 

Inspection of the central cleft explains the inability of SAS2 to coordinate allosteric 

pppGpp (Fig. 34B). Mainly, basic amino acid residues essential for coordination of 

the 3’ and 5’ phosphate moieties of pppGpp to SAS1 are replaced in SAS2 (i.e. 

Ser53, Ser57 and Asp60 instead of Lys21, Lys25 and Arg28; compare to Fig. 13B). 

Moreover, a different set of amino acids is found in β1 (i.e. His73, His74 and Glu76) 

and α5 (i.e. Asp183) of SAS2 and would therefore preclude pppGpp binding by steric 

hindrance. To probe the inability of (p)ppGpp to bind to and stimulate SAS2, I 

determined (p)ppGpp synthesis by SAS2 in absence and presence of 100 µM ppGpp 

or pppGpp (Fig. 34C). Neither of the alarmones resulted in an increased synthesis of 

(p)ppGpp thereby verifying the inability of (p)ppGpp to bind to the central cleft 

provided by the SAS2 homotetramer.   
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Figure 34. pppGpp does not bind to the central cleft present within the SAS2 homotetramer. 

A. Superimposition of one half of a SAS2-pppGpp homotetramer (each monomer colored in 

rainbow from N- to C-terminus) with apo-SAS2 (left) or SAS1-pppGpp (right) colored in grey. 

B. View into the central cleft of SAS2. Amino acids corresponding to residues conferring 

allosteric binding of pppGpp to SAS1 are shown as sticks. For illustration, allosterically-

bound pppGpp was derived from a superimposition with the crystal structure of SAS1-

pppGpp. C. Synthesis of ppGpp (black) or pppGpp (grey) by SAS2 in absence or presence 

ppGpp or pppGpp. 0.2 µM SAS2 were incubated with 5 mM ATP, 0.25 mM GDP/GTP and 

12.5 µM ppGpp or pppGpp where indicated for 5 min at 37 °C. Data represent the mean ± 

standard deviation of three independent measurements.   
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3.3.5 Crystal structure of the pGpp-bound state of SAS2  

In a recent study, synthesis of another alarmone pGpp by an SAS1 protein from E. 

faecalis was reported (40). Similarly to (p)ppGpp, this pGpp alarmone is synthesized 

by transfer of pyrophosphate from ATP onto the 3’-OH group of GMP. As (p)ppGpp, 

this pGpp alarmone mediates similar adaptative processes in the bacterial cell (40).  

Therefore, I aimed at elucidate whether also SAS2 would be able to produce pGpp. 

Moreover, knowing the coordination of pGpp within the active site of SAS2 would 

allow for a better understanding of the basis for different synthesis of alarmones by 

SAS proteins. SAS2 was incubated together with 5 mM of ATP and 5 mM GMP at 4 

°C for 30 minutes prior to crystallization. Crystals of SAS2-pGpp were obtained after 

three days from 0.2 M tri-potassium citrate and 20% (w/v) PEG 3350 and the crystal 

structure solved by MR employing apo-SAS2 at a resolution of 3.23 Å (Table S2). 

In this structure, the alarmone occupied all four active sites of SAS2 thereby 

demonstrating that SAS2 is able to synthesize pGpp (Fig. 35A). pGpp was found in 

the same location within the (p)ppGpp synthetase active site of one SAS2 monomer 

as the pppGpp alarmone (Fig. 35B, compare to Fig. 33B) and the same amino acid 

residues of SAS2 are conferring pGpp coordination (Fig. 35C, compare to Fig. 33C). 

However, due to the absence of the 5’-OH β- and γ-phosphate moieties in pGpp, 

lysine residues 88, 92 and 138 due not contribute to coordination of pGpp (Fig. 35C). 

This suggests that the pGpp alarmone should bind with weaker affinity to SAS2 than 

pppGpp. However, also the GMP substrate should therefore bind less affine to SAS2 

than GTP. It can therefore not be inferred from the crystal structure alone, whether 

synthesis of pGpp from GMP or pppGpp from GTP would be preferred or if both 

reactions are catalysed with equal efficiency. Nevertheless, that SAS2 - as previously 

shown for SAS1 - is an active pGpp synthetase is evidenced from the presence of 

the alarmone in the crystal structure. 
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Figure 35. Crystal structure of SAS2 in the pGpp-bound state. A. Crystal structure of SAS2-

pGpp. Each monomer (α to δ) of SAS2 is shown in cartoon representation colored in rainbow 

from N- to C-terminus, indicated by ‘N’ and ‘C’, respectively and pGpp is shown as sticks. B. 

Cartoon representation of one monomer of SAS2 bound to pGpp. Residues conferring 

coordination ofppGpp are shown as sticks. C. Coordination of pGpp by amino acid residues 

within the active site of SAS2. Dashed lines indicate interactions between residues of SAS2 

and pGpp. ‘β’ and ‘γ’ denote the location of 5’-OH β− and γ-phosphate moieties absent in 

pGpp. Lysine residues that would coordinate the β− and γ-phosphates are colored in violet.  
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3.4  Catalytic mechanism and regulation of SAS2 

3.4.1  Enzyme kinetic analysis of SAS2 

Comparison of the crystal structures of SAS2 and SAS1 in different nucleotide-bound 

states revealed similarities but also highlighted critical differences between both 

proteins. Mainly, while the mode of ATP coordination to both proteins seems to be 

identical differences in conformation of the GDP/GTP-coordinating G-loop are 

apparent (compare to Figs. 32 and 30A). Moreover, SAS2 in contrast to SAS1 does 

not bind pppGpp within the central cleft of the homotetramer. These structural 

differences might translate into different kinetics of ppGpp and pppGpp synthesis by 

SAS2 and SAS1.  

Kinetic analysis of SAS2’s (p)ppGpp synthetase activity was carried out similar to 

SAS1 (compare to and chapters 3.2.3 and 3.2.4) with two modifications: i.) The 

higher velocity of SAS2 at low GDP/GTP concentrations necessitated to use only 0.2 

µM SAS2 in contrast to 2 µM SAS1 (see chapter 3.2.4) in order to obtain the activity 

under substrate-saturating conditions and ii.) The enzymatic reactions were stopped 

by the combined use of chloroform and heat treatment to inactivate the protein (see 

below). In brief, 0.2 µM SAS2 were incubated together with 5 mM ATP and varying 

concentrations of GDP or GTP in modified SEC buffer (100 mM HEPES-Na, pH 7.5, 

200 mM NaCl, 20 mM MgCl2, 20 mM KCl) at 37 °C. Samples were taken after 

2/4/6/8/10 min and mixed with two volume parts of chloroform for 30 s. This mixture 

was subsequently kept at 95 °C for 30 s before freezing in liquid nitrogen. While 

thawing, the mixture was centrifuged (17300 x g, 30 min, 4 °C) and the aqueous 

phase containing the nucleotides analyzed by RP-HPLC. The extraction and heating 

step results in an efficient removal of the protein yet does not affect the nucleotides 

present in the sample. 

The velocities of (p)ppGpp synthesis by SAS2 were obtained from the slope of the 

linear regression of (p)ppGpp quantified at different time points and plotted against 

the concentration of GDP/GTP (Fig. 36A). The resulting v/S curve was obtained 

using the equation v = Vmax Sh/(Km
h + Sh). 
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As SAS1, SAS2 preferentially synthesizes ppGpp more efficient than pppGpp as 

evidenced from an approximately 4-fold difference in the Vmax values (i.e. 17.9 ± 1.1 

and 4.5 ± 0.3 nmol min-1 nmol-1 SAS2 for ppGpp and pppGpp, respectively) (Fig. 
36B). SAS2 might exhibit a low degree of positive cooperativity exemplified by Hill 

coefficients of 1.3 ± 0.4 and 1.9 ± 0.5 for production of ppGpp and pppGpp, 

respectively, which is much less pronounced than in SAS1 (compare to Fig. 21B). In 

comparison the SAS1, the Km values of SAS2 for both reactions are significantly 

lower (i.e. 0.4 ± 0.1 for GDP and 0.1 ± 0.1 for GTP) (compare to Fig. 21B). This 

observation is in good agreement with the presumption that the different 

conformation of the G-loop found in SAS2 and SAS1 might relate to differences in 

GDP/GTP-coordination. 

Figure 36. (p)ppGpp synthesis by SAS2. A. v/S characteristic of ppGpp (black) and pppGpp 

(grey) synthesis by SAS2. B. Kinetic parameters of (p)ppGpp synthesis by SAS2 obtained 

from A. 

The high velocity of product formation by SAS2 at low GDP/GTP concentrations 

necessitated the use of a lower enzyme concentration (i.e. 0.2 µM) in contrast to 2 

µM applied for the kinetic description of SAS1. To directly compare the kinetic 

parameters of (p)ppGpp synthesis exhibited by SAS1 and SAS2, pppGpp synthesis 

by different amounts of SAS2 was examined. Between 0.2 and 2 µM SAS2, 

alarmone product formation correlates directly proportional with enzyme 

concentration (Fig. 37). Therefore, it is possible to note that the maximal velocities of 

ppGpp and pppGpp synthesis by SAS2 and SAS1 are similar. This might further 

suggest that (p)ppGpp synthesis by both proteins in principle proceeds in the same 
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manner and most differences observed in the crystal structures of both proteins 

relate to a disparity in allosteric regulation. 

 

 

Figure 37. pppGpp synthesis by SAS2 is directly proportional to enzyme concentration 

between 0.2 and 2 µM SAS2. The R2 value indicates the goodnees of the linear fit.  

3.4.2  Regulation of SAS2 by various small molecules and metal ions 

Based on the similar homotetrameric assembly of SAS2 and SAS1, I assumed that 

also SAS2 might be subject to regulation through allosteric binding of an effector 

within its central cleft. As SAS2 is thought to be involved in translating cell wall stress 

stimuli e.g. acidic and basic pH values, ethanol stress or cell wall-acting antibiotics 

into (p)ppGpp synthesis (57, 71, 73, 74), nucleotide second-messengers involved 

mediating cell wall stresses were plausible target molecules worth testing for their 

property to regulate the activity of SAS2. Additionally, I examined nucleotides 

involved in GTP biosynthesis via the salvage-pathway (compare to Fig. 6) for the 

same reason.  

The effect of these target molecules was assessed by determining the pppGpp 

synthetase activity of SAS2 in presence of 100 µM of putative effector molecule. 

However, none of the molecules tested showed a pronounced effect on the activity of 

SAS2 (Fig. 38). Nevertheless, it cannot be ruled out than any other small molecule 

might regulate SAS2. 



	   	   Results 
	  

	   69 

 

Figure 38. pppGpp synthesis by SAS2 is not affected by the presence of several nucleotide 

second-messengers and nucleotides. 2 µM SAS2 were incubated with 5 mM ATP, 5 mM 

GTP and 100 µM of the indicated effectors for 5 min at 37 °C. Synthesis of pppGpp by SAS2 

in absence of an effector was set to 100%.  

Closer inspection of the putative allosteric cleft of SAS2 revealed an eye-catching 

arrangement of histidine residues (i.e. His73 and His74) surrounded by two 

negatively charged amino acids (i.e. Glu76 and Asp183), which can seemingly only 

be established in the context of the SAS2 homotetramer (Fig. 39A). An amino acid 

sequence alignment of SAS2 and SAS1 orthologs revealed that these residues are 

partially conserved among SAS2 proteins (compare to Fig. 13B). In this, His74 and 

Asp183 of SAS2 relate to Phe42 and Asn148, which are essential for coordination of 

pppGpp to SAS1. As such pockets are typically found in metal-coordinating proteins 

(160), I tested an effect of the addition of various metal ions on the activity of SAS2. 

In the presence of 100 µM ZnCl2 and NiSO4 the pppGpp synthetase activity of SAS2 

increased approximately 8-fold and 3-fold, respectively (Fig. 39B). The addition of 

FeSO4, FeCl3 and MnCl2 failed to result in a similar stimulation. Therefore, zinc ions 

are the most likely allosteric regulator of the activity of SAS2. 
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Figure 39. pppGpp synthesis by SAS2 is stimulated by presence of zinc and nickel ions. A. 

Residues from two subunits shape the central cleft of SAS2 and might provide a binding site 

for zinc. B. pppGpp synthesis by SAS2 in the presence of various metal ions in form of the 

indicated salts. 2 µM SAS2 were incubated with 5 mM ATP, 5 mM GTP and 100 µM of the 

indicated salts for 5 min at 37 °C. Synthesis of pppGpp by SAS2 in absence of ions was set 

to 100%. 

3.4.3  SAS2 activity is regulated by Zn2+ in a dose-dependent manner 

To further examinate the influence of zinc ions on the activity of SAS2 I measured the 

pppGpp and ppGpp synthetic activity of SAS2 in presence of increasing 

concentrations of ZnCl2 (i.e. 0, 0.2, 2, 10, 25 µM). Interestingly, ZnCl2 efficiently 

stimulated the production of pppGpp while synthesis of the ppGpp product was 

almost unaffected (Fig. 40A). To exclude the possibility that zinc ions might alter 

(p)ppGpp synthesis by SAS proteins per se, the same experiment was carried out 

employing SAS1 thereby serving as a negative control. In this, the (p)ppGpp 

synthetase activity of SAS1 was not stimulated by increasing concentrations of ZnCl2 

(Fig. 40B) thus substantiating the assumption that zinc ions stimulate the activity of 

SAS2. Noteworthy, however, seemingly only synthesis of pppGpp by SAS2 is 

stimulated upon addition of ZnCl2 while production of ppGpp is not. This contrasts the 

stimulatory effect exhibited by pppGpp on the activity of SAS1 where the production 

of both ppGpp and pppGpp were efficiently stimulated by similar degree (compare to 

Fig. 23).  
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Figure 40. Zinc ions affect activity of SAS2 but not SAS1. A. The pppGpp synthetic activity 

of SAS2 (grey) is efficiently stimulated by ZnCl2 in a dose-dependent manner while ppGpp 

synthesis (black) is unaffected B. The (p)ppGpp synthetic activity of SAS1 is not affected by 

zinc ions. For both experiments, 2 µM enzyme were incubated with 5 mM ATP, 5 mM 

GDP/GTP and ZnCl2 as indicated for 5 min at 37 °C. Data represent the mean ± standard 

deviation of three independent measurements. 

The experiments adhering to the dose-dependent stimulation of SAS2 by zinc ions 

were carried out in presence of 5 mM GTP (see above) at which pppGpp synthesis 

proceeds with maximal velocity (compare to Fig. 36A). This already suggests that 

Zn2+ should rather affect the Vmax than Km
 of pppGpp synthesis. An examination of 

the enzyme kinetics of ppGpp and pppGpp synthesis by SAS2 in presence of 20 µM 

ZnCl2 provides proof for this assumption (Fig. 41A). The Km values for both reactions 

are not altered by the addition of ZnCl2 (Fig. 41B). Also, both v/S characteristics 

display similar Hill coefficients in absence and presence of ZnCl2. However, the 

maximal velocities differ significantly for production of pppGpp (i.e. 4.5 ± 0.3 in 

absence versus 16.0 ± 0.6 in presence of ZnCl2) and only slightly for production of 

ppGpp (i.e. 17.9 ± 1.1 in absence versus 19.2 ± 1.1 in presence of ZnCl2 (Fig. 41B)). 

This substantiates that only pppGpp synthesis of SAS2 is affected by zinc ions.  
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Figure 41. Influence of zinc ions on (p)ppGpp synthesis by SAS2. A. v/S characteristic of 

ppGpp (black) and pppGpp (grey) synthesis by SAS2. Solid and dashed lines indicate 

velocities in absence and presence of ZnCl2, respectively. B. Kinetic parameters of zinc-

dependent (p)ppGpp synthesis by SAS2 obtained from A. 

3.4.4  Attempts to identify the zinc-binding site on SAS2 

To better understand how zinc ions stimulate the pppGpp synthetic activity of SAS2, I 

aimed at determining the zinc-binding site on the protein. At first, variants of SAS2 

harboring mutations within the putative allosteric cleft of SAS2 (i.e. H73A, H74A, 

E76A and D183A, compare to Fig. 39A) were tested for their ability to be stimulated 

by ZnCl2. All variants could be readily obtained and appeared as homotetramers on 

SEC (not shown), Nevertheless, determination of ppGpp synthesis by these variants 

served as negative control for their functionality.  

The pppGpp synthetic activity of the H73A, H74A and D183A variant of SAS2 was 

not stimulated by the addition of 20 µM ZnCl2 (Fig. 42). However, these variants were 

also drastically impaired in their ability to produce ppGpp. It therefore remains 

unclear whether the substituted amino acids contribute to zinc-binding. The E76A 

variant of SAS2 exhibited a similar activity as the wild type protein by this excluding a 

contribution of this residue for coordination of zinc ions to SAS2 (Fig. 42).  
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Figure 42. (p)ppGpp synthetic activity of SAS2 putative allosteric site variants. Production of 

ppGpp (dark grey) in absence of ZnCl2 and production of pppGpp in absence (white) or 

presence of ZnCl2 (light grey) are shown. 2 µM SAS2 or its variants were incubated with 5 

mM ATP, 5 mM GDP/GTP and 20 µM ZnCl2 where indicated for 5 min at 37 °C. Data 

represent the mean ± standard deviation of three independent measurements. 

As the putative allosteric site located in the central cleft might possibly be uninvolved 

in coordination of the stimulating zinc ion (see above), more variants of SAS2 were 

investigated for their ability to be stimulated by ZnCl2. The varied amino acids reside 

in α2 (i.e. Arg91 and Lys92), β3 (i.e. Lys138), the G-loop (i.e. Tyr142) and β4 (i.e. 

His155) and are involved in binding of or in close proximity to pppGpp residing in the 

active site of SAS2 (compare to Fig. 33). Even if these residues might not confer 

coordination of zinc to SAS2, they might provide an insight into the preferential 

stimulation of the synthesis of pppGpp.   

None of the investigated variants was devoid of zinc-dependent stimulation of 

pppGpp synthesis (Fig. 43). However, the observed differences in the degree of 

stimulation might shed a light on the implication of Lys92 and His155 in mediation of 

the zinc-derived stimulation of SAS2. His155 coordinates the α- and β-phosphates of 

pppGpp in the active site of SAS2 while Lys92 and to very low degree also Arg91 

only establish interactions with the γ-phosphate of pppGpp (Fig. 33C). As the 

presence of these residues is not a prerequisite for stimulation – and their absence 

rather enforces stimulation – possibly an interaction of Zn2+ with the substrate GTP or 
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the product pppGpp itself sets the stage for stimulation of SAS2’s pppGpp 

synthetase activity.  

This indirect mode of stimulation might be supported be the observation that neither 

cocrystallization experiments nor HDX employing SAS2 together with ZnCl2 provided 

any insights into a zinc-coordination by the protein. However, both methods could 

also be hampered by a low binding affinity of Zn2+ to SAS2 or in case of HDX the 

small size of the ligand. 

 

Figure 43. (p)ppGpp synthetic activity of SAS2 variants surrounding the active site. 

Production of ppGpp in absence (dark grey) or presence (black) and production of pppGpp in 

absence in absence (white) or presence (light grey) of ZnCl2 are shown. Numbers above the 

bars indicate the relative differences between pppGpp synthesis in presence and absence of 

ZnCl2, respectively. 2 µM SAS2 or its variants were incubated with 5 mM ATP, 5 mM 

GDP/GTP and 20 µM ZnCl2 where indicated for 5 min at 37 °C. Data represent the mean ± 

standard deviation of three independent measurements. 

In this regard remarkable is the observation that the degree of pppGpp synthesis 

stimulation by ZnCl2 depends on the ‘type’ of the GTP molecule. Synthesis of 

pppGpp from ATP and GTP increases by approximately 2.5-fold in presence of ZnCl2 

(Fig. 44 and see above). However, only a 1.4-fold stimulation of alarmone synthesis 

is observed when utilizing ATP together with the GTP-analog GMPPNP (i.e. 

guanosine-5'-[(β,γ)-imido]triphosphate). In GMPPNP, the oxygen atom linking the β- 

and γ-phosphates of GTP is substituted by an imido-group. Substitutions such as this 
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are thought to slightly but decidedly alter the binding angles between the phosphate 

moieties of nucleotidetriphosphates. This fact is also exemplified by the inability of 

SAS2 to produce a pppGpp-like alarmone from ATP and the GTP analog GMPPCP 

(i.e. guanosine-5'-[(β,γ)-methyleno]triphosphate) in which the same oxygen atom as 

in GMPPNP was replaced by a methyleno-group (Fig. 44). These results might 

support the hypothesis that the pppGpp synthetic activity of SAS2 is stimulated by 

zinc ions through interaction of Zn2+ with either GTP or pppGpp. 

 

Figure 44. Conformation of the substrate GTP affects the grade of stimulation by ZnCl2.  

(p)ppGpp synthetic activity SAS2 in absence (white) or presence (grey) of ZnCl2 and GTP or 

its analogs. Numbers above the bars indicate the relative differences between pppGpp 

synthesis in presence and absence of ZnCl2, respectively. 0.2 µM SAS2 were incubated with 

1 mM GTP or its analogs and 5 mM ATP in absence or presence of 20 µM ZnCl2 for 150 s at 

37 °C. Data represent the mean ± standard deviation of three independent measurements. 

3.4.5  pH-dependent stimulation of SAS2 (p)ppGpp synthesis by Zn2+  

In nucleotides, the pKa values of the phosphate moieties are not equal, but differ 

depending on their position (Fig. 45) (161, 162).  Fully protonated (i.e. containing five 

protons) nucleoside triphosphates release their first two protons from the 

triphosphate chain at pH values below 1.5 (163, 164). The next proton is also 

abstracted from the 2-times deprotonated triphosphate with pKa values of 

approximately 1.4 ± 0.2 (162). Proton abstraction from the nucleobase (i.e. N7 of 
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GTP and N1 of ATP) occurs at pH values of ~ 2.9 and ~ 3.4 for GTP and ATP, 

respectively. Finally, a proton is released from the γ-phosphate moiety with a pKa 

value of ~ 6.5 (162). To my knowledge, no information is available on the pKa values 

of the 3’-OH phosphate moieties of alarmones. However, as all alarmones harbor a 

pyrophosphate at the 3’-OH position of the ribose, they are negligible in this 

consideration. The three alarmones pGpp, ppGpp and pppGpp should thereby differ 

in their number of deprotonated 5’-OH phosphate moieties, e.g. there is only one 

negative charge on the α-phosphate of pGpp while two negative charges would 

appear at the α- and β-phosphates of ppGpp at a pH of ~ 1.5 (Fig. 45).  

 

Figure 45. pKa values for deprotonation of pppGpp projected on the chemical structure of 

the alarmone.   

If synthesis of pppGpp would be preferentially stimulated by Zn2+ compared to 

production of ppGpp or pGpp, then the pH value of the reaction conditions should 

influence this preference. This would be mainly based on the number of 

deprotonated phosphate moieties and their location at the 5’ OH end of the ribose. 

While pppGpp would contain two deprotonated phosphates at the 5’ position at any 

pH, protonation of the γ-phosphate would depend on the pH. For ppGpp, only the α-
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phosphate would be permanently deprotonated and the β-phosphate subject to pH 

dependent deprotonation as this would be the terminal phosphate group with a pKa 

value in the physiological pH range.  

Determination of the pH- and zinc-dependent (p)ppGpp synthetic activity of SAS2 

was implemented by incubating 2 µM SAS2 together with 5 mM ATP and 5 mM 

GMP, GDP or GTP in absence of presence of 20 µM ZnCl2 for 5 min at 37 °C and 

subsequent quantification of the alarmone products by RP-HPLC. Reactions were 

carried out in a buffer containing 200 mM NaCl, 20 mM MgCl2, 20 mM KCl and either 

100 mM MES-Na or Tris-HCl with a pH of 5.0-7.0 or 7.0-9.0, respectively. 

Almost no alarmone synthesis is observed at a pH of 5 consistent with the proposed 

catalytic mechanism of (p)ppGpp synthesis, which relies on the abstraction of a 

proton from the 3’-OH group of the ribose to subsequently transfer the 

pyrophosphate moiety from ATP (Fig. 46A, compare to chapter 3.2.2). Production of 

the alarmones from their respective substrates by SAS2 classifies as ppGpp > 

pppGpp > pGpp over the whole pH spectrum tested. This order is not altered by the 

addition of ZnCl2 (Fig. 46A). Noteworthy, production of ppGpp is already significant 

at a pH of ~ 6.0 (Fig. 46C). Similar synthesis of pppGpp requires a pH value of ~ 

6.25 (Fig. 46B), while production of pGpp reaches same levels not before a pH of 

approximately 7 (Fig. 46D). The hypothesis that zinc ions only stimulate the 

production of pppGpp by SAS2 seems to be falsified as also synthesis of ppGpp and 

pGpp is significantly stimulated (Fig. 46A). Noteworthy however, the degree of 

stimulation differs. Production of ppGpp is only mildly stimulated by Zn2+ with a 

higher grade of stimulation at low pH values where synthesis proceeds rather slow 

(Fig. 46C). As the basal activity (i.e. in absence of zinc ions) for production of 

pppGpp and pGpp is much lower than that for ppGpp, the stimulatory effect of ZnCl2 

becomes more apparent over the whole pH range (Figs. 46B and D). 

Taken together, zinc ions stimulate the activity of SAS2 to synthesize alarmones. 

However, the pH-dependent grade of stimulation and different stimulatory effects on 

production of the different alarmones suggest that zinc ions do not affect SAS2 per 

se but rather act solely – or at least in concert with the protein - on the substrates or 

products of alarmone synthesis. 
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Figure 46. pH- and zinc-dependent synthesis of pGpp, ppGpp and pppGpp by SAS2. A-D. 

Synthesis of pGpp (red), ppGpp (blue) and pppGpp (green) by SAS2 in the absence (dashed 

line) or presence (solid line) of ZnCl2. Alarmone synthesis at pH of 7.0 was determined for 

both buffer systems and therefore two values shown. 2 µM SAS2 were incubated with 5 mM 

ATP, 5 mM GMP/GDP/GTP and 20 µM ZnCl2 as indicated for 5 min at 37 °C. Data represent 

the mean ± standard deviation of three independent measurements.  

3.5  Mechanism of the bifunctional Rel enzyme from B. subtilis  

The bifunctional Rel enzyme from B. subtilis belongs to the ‘long’ RSH-type family of 

(p)ppGpp synthetases. Long RSH-type (p)ppGpp synthetases are multi-domain 

proteins consisting of an N-terminal catalytic (NTD) and a C-terminal (CTD) 

regulatory part (compare to Fig. 2A). Rel from B. subtilis harbors an active (p)ppGpp 

hydrolase followed by a (p)ppGpp synthetase domain within its NTD rendering the 

protein bifunctional for these opposing catalytic activities. 
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The CTD of long RSH-type (p)ppGpp synthetases mediates binding of Rel to 

ribosomes stalled by uncharged tRNAs bound within the aminoacyl-acceptor site (A-

site). Upon binding, the (p)ppGpp synthetase activity of Rel increases dramatically 

while (p)ppGpp hydrolysis is reduced (51-53, 58). However, it remained largely 

unadressed whether and to what extend the CTD might regulate the opposing 

activities of Rel in the absence of the ribosome. 

3.5.1  Purification of Rel and its truncated variants 

To investigate the influence of the CTD on the activity of Rel from B. subtilis, the full-

length protein and a truncated variant harboring only the NTD (i.e. Rel-NTD, amino 

acids 1-395 of Rel) were fused to an N-terminal hexa-histidine tag and 

heterologously produced in E. coli BL21 (DE3) using auto-induction medium. 

Subsequently, Rel and Rel-NTD were purified by a two-step protocol employing Ni-

NTA affinity chromatography and size-exclusion chromatography (see chapter 5.2.2). 

For purification of Rel, all buffers included 500 mM NaCl to eliminate ribosomes that 

would otherwise remain bound to the protein. Moreover, Rel is prone to degrataion, 

which can be minimized by the increased ionic strength in the buffers (53, 91, 165). 

Nevertheless, only low amounts of Rel could be purified to homogeneity (Fig. 47A). 
Rel-NTD could be readily obtained in high amounts using the same buffers as 

already employed for the purification of SAS1 and SAS2 proteins (Fig. 47B).  

 

Figure 47. Purification of Rel and Rel-NTD. A-B. Size-exclusion chromatography profiles of 

Rel (A) and Rel-NTD (B). Coomassie-stained SDS-PAGE shows the peak fractions indicated 

by arrows in the profiles. 
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3.5.2  The C-terminus of Rel regulates its activity  

To elucidate whether the CTD affects Rel’s activities, the (p)ppGpp synthetic and 

hydrolytic activities of full-length Rel and Rel-NTD were assessed by RP-HPLC. In 

brief, (p)ppGpp synthesis was determined by incubation of 2 µM Rel or Rel-NTD 

together with 5 mM ATP and 5 mM GDP or GTP for 10 min at 37 °C. (p)ppGpp 

hydrolysis was evaluated similarly by incubation of 2 µM protein together with 1 mM 

of ppGpp or pppGpp. 

Rel-NTD shows a ~3-fold increased ppGpp and ~6-fold increased pppGpp synthesis 

compared to full-length Rel (Fig. 48A). This implies that the CTD present in Rel but 

absent in Rel-NTD negatively affects Rel’s (p)ppGpp synthesis. The (p)ppGpp 

hydrolysis by Rel on the other hand was positively affected by the presence of the 

CTD exemplified by an approximately 2-fold difference in hydrolysis between Rel and 

Rel-NTD (Fig. 48B). Noteworthy, (p)ppGpp hydrolysis surmounts (p)ppGpp synthesis 

in these experiments, i.e. in the absence of the ribosome. This is in agreement with 

the presumption that Rel should efficiently reduce (p)ppGpp levels in the bacterial 

cell under non-stringent conditions. Besides, both Rel variants preferentially 

produced pppGpp rather than ppGpp in contrast to SAS proteins (compare to Figs. 
21 and 36) and also slightly differed in their potential to hydrolyse ppGpp and 

pppGpp.  
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Figure 48. The C-terminus of Rel affects its (p)ppGpp synthetic and hydrolytic activity. A. 

Synthesis of ppGpp (black) and pppGpp (grey) by Rel and Rel-NTD. 2 µM enzyme were 

incubated with 1 mM ppGpp/pppGpp for 10 min at 37 °C. B. Hydrolysis of ppGpp (black) and 

pppGpp (grey) by Rel and Rel-NTD. 2 µM enzyme were incubated with 5 mM ATP and 5 mM 

GDP/GTP for 10 min at 37 °C. Data represent the mean ± standard deviation of three 

independent measurements. 

To dissect which of the domains present within the CTD of Rel would be responsible 

for the inhibition of (p)ppGpp synthesis, two additional variants of Rel were probed for 

their activity to synthesize pppGpp. RelΔACT lacks the far C-terminal ACT domain of 

Rel while Rel-NTD+TGS additionally harbors the TGS domain adjacent of Rel-NTD 

(Fig. 2A). The presence of the TGS domain did not result in diminished pppGpp 

synthesis (Fig. 48A). However, truncation of the ACT domain resulted in an 

approximately 6-fold increase in Rel’s activity (Fig. 49). This suggests that the ACT 

domain either alone or in concert with other motifs present within the CTD is involved 

in regulation of Rel’s activity.  

 

Figure 49. The ACT domain is primarily responsible for regulation of Rel’s activities. 2 µM 

Rel or variants thereof were incubated with 5 mM ATP and 5 mM GTP for 10 min at 37 °C. 

Synthesis of pppGpp by Rel was set to 100%. Data represent the mean ± standard deviation 

of three independent measurements. 
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3.5.3  Catalytic properties of the Rel synthetase and hydrolase domains 

To further illuminate the catalytic activities of Rel and the influence of the CTD, I 

performed a kinetic analysis of (p)ppGpp synthesis and hydrolysis for full-length Rel 

and Rel-NTD. In brief, (p)ppGpp synthesis was determined by incubation of 5 µM Rel 

or Rel-NTD together with 5 mM ATP and GDP/GTP at different concentrations at 37 

°C. Linear regression of the amount of AMP released after 6/12/18/24/30 min yielded 

the velocity of (p)ppGpp formation at a given GDP/GTP substrate concentration. The 

so-obtained velocities were fitted according to the equation v = Vmax Sh/(Km
h + Sh) 

(Fig. 50A).   

The maximal velocities for production of ppGpp and pppGpp by Rel-NTD are 9.7 ± 

1.4 and 23.7 ± 0.9, respectively (Fig. 50B) and by this 10-20-fold higher than those 

observed for full-length Rel (i.e. 0.5 ± 0.1 and 2.1 ± 0.1 for ppGpp and pppGpp 

synthesis, respectively). However, it must be noted that the Vmax values for Rel-NTD 

are hard to estimate properly based on the current data. Nevertheless, the v/S 

characteristic of (p)ppGpp synthesis solidifies the observation that the CTD 

negatively affects (p)ppGpp production of Rel. Moreover, it is apparent now that 

pppGpp synthesis exceeds ppGpp synthesis independently of the presence of the 

CTD. This furthermore suggests that differences in the architectures of the (p)ppGpp 

synthetase domains of Rel and SAS proteins might relate to the different preference 

to either the ppGpp or pppGpp product.  

 

Figure 50. (p)ppGpp synthesis by Rel-NTD and Rel. A. v/S characteristic of ppGpp (black) 

and pppGpp (grey) synthesis exhibited by Rel-NTD (dashed lines) and Rel (solid lines). B. 
Kinetic parameters of (p)ppGpp synthesis by Rel-NTD and Rel obtained from A. 
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(p)ppGpp hydrolysis by Rel was determined by incubation of 2 µM Rel or Rel-NTD 

together with varying concentrations of ppGpp or pppGpp at 37 °C. Linear regression 

of the amount of GDP or GTP released after 2/4/6/8/10 min yielded the velocity of 

ppGpp or pppGpp hydrolysis, respectively. The so-obtained velocities were fitted 

according to the equation v = Vmax Sh/(Km
h + Sh)  (Fig. 51A). The alarmone ppGpp 

seems to be preferred over pppGpp as substrate for hydrolysis as evidenced by a 2-

3-fold difference in the maximal velocities. Presence of the CTD slightly influences 

(p)ppGpp hydrolysis in a positive manner as displayed by the higher velocity of 

hydrolysis exhibited by Rel. Surprisingly, (p)ppGpp hydrolysis by Rel seems to 

display a positive cooperative behaviour while hydrolysis by Rel-NTD does not (Fig. 
51B). This observation might be either explained by the appearance of Rel as an 

oligomer (52, 101) although the behavior of the protein on SEC does not suggest so 

(Fig. 47A) or an effect of the GDP/GTP released during (p)ppGpp hydrolysis onto the 

active site of the hydrolase domain. Taken together, the CTD contributes to 

regulation of Rel’s activities even in the absence of the ribosome. 

 

Figure 51. (p)ppGpp hydrolysis by Rel-NTD and Rel. A. v/S characteristic of ppGpp (black) 

and pppGpp (grey) hydrolysis exhibited by Rel-NTD (dashed lines) and Rel (solid lines). B. 
Kinetic parameters of (p)ppGpp hydrolysis by Rel-NTD and Rel obtained from A. 

3.5.4  Crystal structure of Rel-NTD from B. subtilis  

In order to delineate the molecular mechanism of (p)ppGpp synthesis and hydrolysis 

by Rel from B. subtilis and to compare it with Rel from S. equisimilis, full-length Rel 

and Rel-NTD were purified ~500 µM protein concentration as described to in chapter 

3.5.1 and crystals obtained after approximately three days (Fig. 52). Crystal obtained 

for Rel from 0.05 M lithium sulfate, 0.05 M sodium chloride, 0.05 M Tris-HCl, pH 8.5 
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and 30% (w/v) PEG400 were very small, only diffracted to ~7 Å resolution and did 

not allow for successful determination of the crystal structure. Unfortunately, the 

crystals could not be further optimized. Crystals for Rel-NTD were obtained from 0.2 

M sodium chloride, 0.1 M imidazole, pH 8.0 and 1.0 M potassium/sodium tartrate that 

diffracted to ~3.5 Å resolution.  

 

Figure 52. Crystals of Rel and Rel-NTD from B. subtilis after three days. 

The crystal structure of Rel-NTD from B. subtilis was subsequently determined by 

MR employing Rel-NTD from S. equisimilis (Relseq) as a search model (PDB: 1VJ7, 

(54) and Table S3). The structure of Rel-NTD basically resembles the structure of its 

orthologue Relseq (Fig. 53). Rel-NTD comprises the HD and adjacent Syn domain. 

The cofactor manganese bound to Rel-NTD marks the active site of the HD domain. 

In contrast to Relseq to which GDP was bound, the (p)ppGpp synthetase active site is 

unoccupied in Rel-NTD (Fig. 53). This is somehow surprising as GDP was found in 

Relseq although the cofactor was never added to the crystallization condition and 

should therefore originate from the purification of the protein, thereby implying a high 

binding affinity (54). However, no major deviations in the Syn domains of both 

proteins can be identified that might relate to this observation.  
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Figure 53. Crystal structure of Rel-NTD from B. subtilis. Cartoon representation of the crystal 

structures of Rel-NTD (left), Relseq-NTD (middle, PDB: 1VJ7 chain A; (54)) and the 

superimposition of both structures (right). The Syn domains are shown in rainbow colors from 

N- to C-termini.  

3.5.5  Substrate-binding mechanism of the Rel synthetase 

The absence of the nucleotide GDP in the crystal structure of Rel-NTD from B. 

subtilis – in contrast to the nucleotide bound to Rel from S. equisimilis – prompted me 

to investigate the binding modalities of GDP, GTP and ATP (mimicked by the non-

hydrolyzable analog AMPCPP) to Rel-NTD by HDX.  

In brief, 50 µM Rel-NTD were incubated in deuterated SEC-buffer containing no 

nucleotide or 1 mM of GDP, GTP or AMPCPP at 25 °C for 0.25/0.5/1/2/10 minutes. 

Subsequently, the reactions were quenched, digested with pepsin and the resulting 

peptic peptides analyzed by electrospray ionization mass spectrometry. Data 

analysis was carried out using PLGS and DynamX 3.0 (Waters) softwares as 

detailed in chapter 5.2.8. Surprisingly and in contrast to SAS1 (compare to Fig. 16), 

no reduced HDX was observed in regions that confer residues involved in ATP 

coordination (i.e. R1 and R2) thus suggesting no binding of tha ATP-analog 

AMPCPP (Figs. 54A-C). However, binding of GDP and GTP to Rel-NTD could be 

demonstrated by a reduction of HDX in the regions R3 and R4 locating in close 

proximity of the GDP/GTP-binding site of Rel-NTD (Figs. 54A, D and E). This 

disparity of the substrate-binding modes of Rel-NTD and SAS1 (Fig. 54G, compare 

to Fig. 16C) might be explained by the different orientation of helix α13 (α2 in SAS1) 

mediating ATP coordination (Fig. 10). Minor reduction in HDX in presence of GDP 
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and GTP could also be observed for region R5 constituting the nucleotide-binding 

site of the (p)ppGpp hydrolase domain of Rel-NTD (Figs. 54A and F). This might 

suggest that GDP/GTP coordination affects binding of (p)ppGpp to the hydrolase 

domain thereby regulating Rel-NTD’s reciprocal catalytic activites. 

 

 

Figure 54. Substrate binding to Rel-NTD. A. Location of the peptides R1 (green), R2 (blue), 

R3 (red), R4 (yellow) and R5 (cyan) in the crystal structure of Rel-NTD. The nucleotides 

AMPCPP and GDP/GPX are derived from superimpositions of Rel-NTD with the crystal 

structures SAS2-AMPCPP and Relseq (PDB: 1VJ7 chain B (54)), respectively. B-F. HDX time 

course of five representative peptides of Rel-NTD without nucleotides (red) or in the 

presence of AMPCPP (blue), GDP (black) or GTP (green). Amino acids contributing to 

nucleotide-coordination are colored in red. Data represent the mean ± standard deviation of 

three independent measurements. G. The substrates GDP/GTP (dark green triangle) and 

ATP (pale green ball) bind to Rel (blue) in sequential order. Binding of the first substrate 

GDP/GTP should lead to a conformational change within Rel allowing binding of the second 

substrate ATP. The transition state of catalysis in indicated by a double dagger (‡). The 

reaction products (p)ppGpp and AMP are shown as orange and grey balls, respectively. 
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3.5.6 Structural basis for preferential pppGpp synthesis by bifunctional Rel  

The bifunctional Rel from B. subtilis differentially utilizes GDP and GTP as substrates 

for synthesis of ppGpp and pppGpp, respectively in that pppGpp is the preferred 

product (Fig. 49). In contrast, the monofunctional (i.e. only (p)ppGpp synthetically 

active) RelA from E. coli prioritizes synthesis of ppGpp over pppGpp. This 

discrimination between both reactions was attributed by Prakash and coworkers to 

the presence of ‘charge revearsal’ in mono- and bifunctional Rel proteins (80, 81). In 

this, bifunctional Rel proteins from e.g. B. subtilis or S. equisimilis possess a ‘RxKD’ 

motif while monofunctional RelA from E. coli harbors a ‘ExDD’ motif instead 

correlating with preferred synthesis of pppGpp or ppGpp, respectively (Fig. 55A). 

The crystal structure of Rel-NTD reveals that Arg295 and Lys297 from the ‘RxKD’ 

residing in β3 are able to interact with the β- and γ-phosphate moieties of pppGpp or 

also GTP (Fig. 55B). It should be noted, that this interaction is not directly apparent 

as the nucleotide was not found in the crystal structure of Rel-NTD and its location is 

solely based on superimposition of Rel-NTD with SAS2-pppGpp. By this, the location 

of the amino acid side chains does not reflect the ‘true’ nucleotide-bound state for 

Rel-NTD (Fig. 55B). Nevertheless, in the ‘ExDD’-containing Rel from E. coli where 

Glu306 and Asp308 replace Arg295 and Lys297, respectively, similar interactions 

would be impossible and rather repulsion of the β- and γ-phosphate moieties through 

the negatively charged amino acids would occur. By this, binding of GTP should be 

stronger negatively affected than GDP-binding rendering ppGpp synthesis preferred 

over pppGpp (Fig. 55A). 

It however seems that the equivalent motifs in SAS1 and SAS2 do not result in 

similar discrimination between both products. In SAS1 from B. subtilis, Arg105 from 

the motif ‘DxRD’ coordinates the β-phosphate while Asp103 is too far away to exhibit 

any repulsive effect that might exlain SAS1’s preference for ppGpp synthesis (Figs. 
55A and C, compare to Fig. 22). SAS2 from S. aureus possesses a ‘KxKD’ motif that 

might resemble ‘RxKD’ found in bifunctional Rel enzymes (Figs. 55A and D). 

Nevertheless, also SAS2 similar to SAS1 prefers synthesis of ppGpp over pppGpp 

(compare to Fig. 36). 
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Taken together, the presence of a special ‘charge revearsal’ motif in a (p)ppGpp 

synthetase does not completely explain the preference of the enzyme for production 

of either the ppGpp or pppGpp alarmone.   

 

Figure 55. Structural basis for preferential pppGpp synthesis by bifunctional Rel. A. Amino 

acid sequence alignment of the ‘charge revearsal motif’ of Rel and SAS proteins from B. 

subtilis (Bsu), Streptococcus dysgalactiae ssp. equisimilis (Seq), E. coli (Eco) and S. aureus 

(Sau). Preferences for ppGpp or pppGpp synthesis exhibited by the proteins are incdicated. 

B-D. Crystal structures of BsuRel-NTD (B), BsuSAS1-pppGpp (C) and SauSAS2-pppGpp 

(D) with the amino acids from the ‘charge inversion motif’ and the catalytically essential 

tyrosine shown as sticks. The pppGpp in BsuRel-NTD originates from a superimposition with 

SauSAS2-pppGpp.  
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3.6 Physiological implications of alarmone synthetases in B. subtilis 

The alarmones (p)ppGpp are well-known to promote a dormant state in bacteria, 

which is characterized by a reversible but substantial reduction of growth rate and 

metabolism rendering the microorganism more resistant to different environmental 

challenges (36, 166). For example, during prolonged phases of nutrient starvation by 

e.g. lack of amino acids,  (p)ppGpp decreases anabolic processes while in turn 

amino acid biogenesis and uptake are elevated (15, 17). Nevertheless, (p)ppGpp 

also mediates adaptational processes of bacterial physiology in the absence of a 

concise stress stimulus. In this, (p)ppGpp plays a role in the development of 

virulence (29-31), biofilm and persister cell formation (32-37, 167) and development 

of cellular heterogeneity (38, 39). Taken together, alarmones are second 

messengers important in shaping the lifestyle of microorganisms.  

3.6.1 Activity of SAS1 is important for growth of B. subtilis in minimal 
medium 

The small alarmone synthetase SAS1 from B. subtilis exhibits a high activity 

synthesis of ppGpp and pppGpp, respectively (chapter 3.2.4). Hence, SAS1 should 

be important for growth of B. subtilis under nutrient limitation but might also already 

be relevant under nutrient-rich conditions. 

To study the influence of SAS1 on growth of B. subtilis, the yjbM gene encoding for 

SAS1 was replaced by yjbM harboring mutations within the active and allosteric site 

of SAS1 (i.e. SAS1-E139V and SAS1-K25A/F42A, respectively). This approach 

allows for a ‘markerless’ substitution and thereby excludes the possibility of polar 

effects on genes downstream of yjbM caused by a knockout (168). Also, any so far 

unanticipated protein-protein interactions that might be established by SAS1 should 

not be disrupted by this method. 

Growth curves were obtained for SAS1-E139V, SAS1-K25A/F42A and the parenteral 

B. subtilis PY79 wild type strain at 37 °C under vigorous shaking in rich medium (i.e. 

lysogeny broth (LB)) and minimal medium (i.e. S7, (169)). All three strains grew 

almost identical in rich medium (Fig. 56). In minimal medium, however, SAS1-E139V 

exhibited slower growth than wild type and SAS1-K25A/F42A (Fig. 56B). This 
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suggests that (p)ppGpp provided by SAS1 is important for the adaptation to nutrient-

limiting conditions.  

 

Figure 56. Influence of SAS1 on growth of B. subtilis in rich and minimal medium. A. Growth 

of B. subtilis PY79 wild type (black), SAS1-E139V (red) and SAS1-K25A/F42A (green) 

strains in rich medium (LB). Data represent the mean ± standard deviation of three 

independent measurements. B. Growth of B. subtilis PY79 wild type (black), SAS1-E139V 

(red) and SAS1-K25A/F42A (green) strains in minimal medium (S7). Data represent the 

mean ± standard deviation of three independent measurements.   

The S7 minimal medium is composed of the buffer salt MOPS (3-(N-morpholino) 

propanesulfonic acid), trace elements and (NH4)2SO4 and KH2PO4 as sources of 

inorganic nitrogen and phosphate, respectively. Additionally, S7 contains 1% (w/v) 

glucose, 0.1% (w/v) glutamate and 0.004% (w/v) casamino acids. I assumed that 

upon reduction of the glucose content or omission of glutamate and casamino acids 

any putative differences between the strains might me more pronounced in these 

modified minimal media. Moreover, reduction of the carbon source glucose should 

also enable displaying of the stationary phase and death phase of the bacterial 

growth. 

Removal of casamino acids and glutamate from the S7 minimal medium leads to a 

delayed entering of SAS1-E139V and SAS1-K25A/F42A into the logarithmic growth 

phase (Figs. 57A and B). The same effect is also apparent when only 0.2% (w/v) 

glucose is added to the medium (Fig. 57C). Moreover, under these conditions it is 

obvious that both strains harboring amino acid substitutions within SAS1 reach lower 

cell densities in stationary phase than the wild type strain and enter death phase 
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earlier (Fig. 57C). Simultaneous omission of glutatame and reduction of glucose 

does not result in additive effects on the growth behaviour of the B. subtilis strains 

(Fig. 57D). These results indicate SAS1 is important under nitrogen- and carbon-

limiting conditions. Moreover, the similar growth behaviour of catalytically inactive 

SAS1 (i.e. SAS1-E139V) and SAS1 disrupted for allosteric binding of pppGpp (i.e. 

SAS1-K25A/F42A) suggests that allosteric stimulation of SAS1 is an important 

feature of its functionality in the living cell. It might furthermore be suggested that, 

albeit no differences of growth between the three strains are apparent in rich medium 

(compare to Fig. 56), adaptational processes might also already be relayed by SAS1.   

 
Figure 57. Activity of SAS1 is important for growth of B. subtilis in minimal medium. A-D. 

Growth of B. subtilis PY79 wild type (black), SAS1-E139V (red) and SAS1-K25A/F42A 

(green) strains in modified minimal medium (S7). Data represent the mean ± standard 

deviation of three independent measurements.  
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3.6.2  SAS1 impacts cellular heterogeneity of B. subtilis 

Rapidly dividing populations of B. subtilis PY79 consist of either long, sessile chains 

that have completed cytokinesis but have not yet separated from each other or 

actively swimming singlets or duplets (170, 171). Typically, during logarithmic phase 

in full medium approximately 90% of the cells in a population appear as chains while 

10% of the cells are non-chained (38, 170). Disruption of Rel’s (p)ppGpp hydrolase 

activity results in 100% of the cells appearing in single cells or duplets (38). This 

suggests that artificially increased (p)ppGpp levels affect the cellular heterogeneity of 

B. subtilis PY79. 

To test the influence of SAS1 on cellular heterogeneity of B. subtilis in presence of 

the intact bifunctional Rel protein, different B. subtilis PY79 strains were grown in rich 

medium (i.e. lysogeny broth (LB)) to an optical density of approximately 2 and 

analyzed for their distribution of chained/unchained cells by bright-field microscopy 

(see chapter 5.2.9.4). The wild type strain showed a typical distribution of ~90/10% 

chained versus unchained cells (Figs. 58A and B). Overexpression of SAS1 from the 

ectopic amyE locus under the control of the xylose-inducible promotor Pxyl by addition 

of 0.001% (w/v) xylose altered the distribution to ~60/40% (Figs. 58A and B). This 

result is in agreement with the observation by Herman and coworkers that increased 

(p)ppGpp levels result in an elevated number of single cells (38). However, also 

disruption of the catalytic activity of SAS1 through substitution of the catalytically 

essential amino acid Glu139 (i.e. SAS1-E139V, compare to Fig. 18A) induces the 

appearance of the B. subtilis population as single cells (Fig. 58B). Moreover, 

disruption of amino residues conferring coordination of allosteric stimulator pppGpp 

to SAS1 (i.e. SAS1-K25A/F42A, compare to Fig. 24) had a similar effect as the 

complete inactivation of SAS1 activity (Fig. 58B and see above). These results 

demonstrate that reduced (p)ppGpp levels are likely to affect the cellular 

heterogeneity of B. subtilis PY79. Furthermore, they provide further evidence for the 

importance of the allosteric stimulation of SAS1 for the activity of the protein.    
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Figure 58. SAS1 is involved in generation of cellular heterogeneity of B. subtilis. A. Bright-

field microscopic images of B. subtilis PY79 wild type (top) and B. subtilis PY79 

overexpressing SAS1 (bottom). Chained and unchained cells of B. subtilis are marked with 

green and red arrows, respectively. B. Distribution of B. subtilis cells appearing in chains 

(green) or as unchained cells (red). The distribution was determined from cultures of B. 

subtilis grown in rich medium (LB) supplemented with 0.001% (w/v) xylose to an optical 

density of 2. Data represent the mean ± standard deviation of three independent 

measurements. 

3.6.3 pppGpp seems primarily responsible in shaping cellular 
heterogeneity of B. subtilis  

The increased amount of B. subtilis cells appearing as singlets or duplets rather than 

sessile chains in absence of catalytically active SAS1 might be implemented by 

either of the alarmones, ppGpp or pppGpp. At first, I tried to complement the 

phenotype of B. subtilis PY79 SAS1-E139V by overexpressing SAS1. The wild type 

situation of ~90/10% chained versus unchained cells could almost be reestablished 

by very mild overexpression of SAS1 from the ectopic amyE locus (Fig. 59A). In this, 

both the Pxyl-inducing xylose and Pxyl-repressing glucose had to be present, while 

addition of xylose alone to the medium led to presumably too strong overexpression 

of SAS1 (compare to Fig. 58B). To further assess which of the two alarmones is 
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primarily responsible for shaping the observed heterogeneity within the B. subtilis 

population, I introduced Rel-NTD-H77A/D78A into SAS1-E139V at the ectopic amyE 

locus under the control of Pxyl. Rel-NTD-H77A/D78A is devoid of any (p)ppGpp 

hydrolysis through substitution of the conserved and essential catalytic residues 

His77 and Asp78 (50, 54, 60). Moreover, this construct almost exclusively produces 

pppGpp at physiological GTP/GDP levels, i.e. 5 mM GTP and 0.5 mM GDP (Fig. 
59B, (172)). Strikingly, mild overexpression of this Rel-NTD variant in SAS1-E139V 

phenocopied the mild overexpression of SAS1 in the same strain and almost 

reestablished the distribution ratio of chained/unchained cells found in wild type B. 

subtilis PY79 (Fig. 59A). This suggests that pppGpp is primarily responsible in 

shaping cellular heterogeneity of B. subtilis. However, no quantification of the 

amounts of overexpressed SAS1 and Rel-NTD was attempted by e.g. quantitative 

Westen-blotting and therefore it cannot be entirely ruled out that ppGpp synthesis by 

Rel-NTD might still contribute to complementation of the single-cell phenotype of 

SAS1-E139V.  

Figure 59. pppGpp is primarily responsible for generation of cellular heterogeneity of B. 

subtilis. A. Distribution of B. subtilis cells appearing in chains (green) or as unchained cells 

(red). The distribution was determined from cultures of B. subtilis grown in rich medium (LB) 

supplemented with 0.5% (w/v) glucose and 0.001% (w/v) xylose to an optical density of 2. 

Data represent the mean ± standard deviation of three independent measurements. B. 
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Synthesis of pppGpp (black) and ppGpp (grey) by Rel-NTD at intracellular levels of 

GTP/GDP. Data represent the mean ± standard deviation of three independent 

measurements.  

3.6.4 SAS1 confers resistance to zinc stress in B. subtilis  

Zinc ions were shown to stimulate the (p)ppGpp synthetase activity of SAS2 

(compare to Fig. 41). Moreover, a recent study indicated that the addition of zinc 

oxide nanoparticles to B. subtilis growing in rich medium induced the expression of 

SAS2 by approximately 7-fold and led to an approximately 2-fold increase in 

intracellular (p)ppGpp levels (173). I therefore suspected that SAS2 should somehow 

be involved in sensing and/or transducing the zinc signal.  

As the binding site for zinc could not be established on SAS2 and a selective 

disruption of zinc-dependent stimulation was therefore impossible, I constructed a 

strain in which similarly to SAS1 the essential Glu154 of SAS2 was replaced by 

valine (i.e. SAS2-E154V). The growth curve of B. subtilis PY79 SAS1-E139V, SAS2-

E154V and the parenteral strain grown in LB medium supplemented with 0.3 mM 

ZnCl2 suggests that SAS1 rather than SAS2 is important at high zinc concentrations 

present in the medium (Fig. 60A). 

Investigation of the cellular heterogeneity of SAS1-E139V under these conditions 

reveals a slight decrase of cells appearing in chains compared to cultivation in LB 

medium without ZnCl2 (i.e. 30% in presence versus 50% in absence of ZnCl2, 

compare to Figs. 58B and 60A). This might suggest that a functional SAS1 is even 

more important in the presence of ZnCl2. 

Noteworthy, also SAS2-E154V displays a high degree of single cells (i.e. 60%) 

although the growth behaviour was similar to the wild type strain (Figs. 60A and B). 

This demonstrates that (p)ppGpp from whatever source, either SAS1 or SAS2, is 

responsible in altering the cellular heterogeneity of chained and unchained cells in B. 

subtilis.   
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Figure 60. SAS1 confers resistance to elevated zinc levels in B. subtilis. A. Growth of B. 

subtilis PY79 wild type (black), SAS1-E139V (red) and SAS2-E154V (green) strains in rich 

medium (LB) supplemented with 0.3 mM ZnCl2. Data represent the mean ± standard 

deviation of three independent measurements. B. Distribution of B. subtilis cells appearing in 

chains (green) or as unchained cells (red). The distribution was determined from cultures of 

B. subtilis grown in rich medium (LB) supplemented with 0.3 mM ZnCl2 to an optical density 

of 1. Data represent the mean ± standard deviation of three independent measurements. 

3.7 Structural comparison of alarmone binding to different cellular 
targets 

The crystal structure of SAS1 in complex with pppGpp revealed an unusual 

conformation of the nucleotide bound within the allosteric site of the protein (compare 

to Fig. 13). In this, the 3’ and 5’ OH phosphate moieties wrapped around a 

magnesium ion in a ring-like arrangement. I asked whether (p)ppGpp would exhibit a 

similar conformation on any other target protein. To compare the binding modes of 

(p)ppGpp to its effector molecules, I searched the Protein Data Bank (PDB) for 

structures of (p)ppGpp bound to target proteins (Fig. 61).  
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Target Organism Ligand PDB ID Reference 
BipA E. coli ppGpp/magnesium 4ZCM (174) 
BipA E. coli ppGpp 5A9Y  (175) 
Obg B. subtilis ppGpp/magnesium 1LNZ (69) 
GMK S. aureus pppGpp/magnesium 4QRH (18) 
DnaG-RPD S. aureus ppGpp/manganese 4EDT (127) 
DnaG-RPD S. aureus pppGpp/manganese 4EDV (127) 
RNAP T. thermophilus ppGpp/magnesium 1SMY (130) 
RNAP E. coli ppGpp 4JKR (133) 
RNAP E. coli ppGpp 4JK1 (112) 
RNAP E. coli pppGpp 4JK2 (112)  
CadA/LdcI E. coli ppGpp 3N75 (148) 
NatA Saccharomyces 

cerevisiae 
ppGpp 4HNX unpublished 

RF3 Desulfovibrio vulgaris ppGpp 3VR1 (176) 

Figure 61. Structures related to (p)ppGpp bound to cellular targets within the PDB. The 

figure contains parts of Table 1 from ref. (48).  

Comparison of the configuration of the nucleotide adopted at its target proteins reveals three 

major orientations of the ligand: i.) (p)ppGpp adopts a ‘stretched’ conformation, in which the 

3’ and 5’ OH phosphate moieties point away from each other (Fig. 62A-D). ii.) (p)ppGpp 

adopts a ‘ring-like’ arrangement, in which the 3’ and 5’ OH phosphate moieties wrap around 

one or two magnesium ions bound between the phosphates (Fig. 62E-H). iii.) (p)ppGpp 

adopts a ‘ring-like’ arrangements that is not aided by a metal ion cofactor (Fig. 62I-L). 

Strikingly, the binding and/or inhibitory constants exhibited by the bound alarmones seem to 

correlate with their binding mechanism. The ‘stretched’ conformation seems to confer only 

rather weak binding with Ki values above 100 µM. The ‘ring-like’ conformation of (p)ppGpp, 

however, allows for much stronger binding of the alarmones with Ki values ranging from 

approximately 1 µM (LdcI-ppGpp, Fig. 62L) to 30 µM (BipA-ppGpp, Fig. 62I). This stronger 

binding of ‘ring-like’ (p)ppGpp is observed regardless of the presence of a metal ion cofactor 

mediating this conformation. For example, in LdcI, an arginine residue seems to provide the 

basis for the wrapping of the 3’ and 5’ OH phosphate moieties (Fig. 62L). This example also 

illustrates, that residues from two opposing subunits can establish the binding site of the 

alarmone molecule. 

Taken together, (p)ppGpp possesses an enormous conformational flexibility mainly conferred 

through its ribose moiety that allows interaction with a plethora of cellular targets (Figs. 61 
and 62). 
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Figure 62. Stretched and ring-like conformations adopted by (p)ppGpp. Alarmones (shown 

as sticks) were superimposed based on their guanosine moiety. Carbon, nitrogen, oxygen 

and phosphate atoms are colored in green, blue, red and orange, respectively. Cellular 

target, PDB ID and binding, inhibitory or stimulatory constants of the alarmone-bound target 

are given where available. A-D. Stretched conformation of (p)ppGpp. E-H. Ring-like 

conformation of (p)ppGpp aided by magnesium ion(s). I-L. Ring-like conformation of 

(p)ppGpp without the aid of metal ion cofactors. Images were obtained from the structure 

listed in Fig. 61. The figure is rearranged from ref. (48).   
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Discussion 

 

4.1 Structural and functional characterization of small alarmone 
synthetases 

The alarmones ppGpp and pppGpp are the mediators of the stringent response in 

bacteria and are synthesized by proteins of the RSH-type family. Two homologs of 

this protein family have been identified in E. coli, RelA and SpoT (50, 177). While 

RelA proteins are essential for the adaptation of bacteria to amino acid limiting 

conditions (8, 9, 91), SpoT is implicated to confer resistance to carbon starvation (65, 

66). However, two additional RSH-type proteins, the small alarmone synthetases 

(SAS) SAS1 and SAS2 have been discovered recently (56, 57, 70). SAS proteins 

differ from RelA/SpoT in length and domain architecture. Mainly, they lack the C-

terminal regulatory part present in RelA/SpoT that mediates their interaction with 

stalled ribosomes and the acyl carrier protein, respectively (Fig. 2A). Also, SAS 

protein are only present in the firmicutes phylum but absent in e.g. γ-proteobacteria 

obscuring    their role during the stringent response.  

4.1.1 SAS1 integrates cellular energy imbalances into the stringent 
response 

The structural and functional characterization of SAS1 from B. subtilis revealed two 

major features of the protein: i.) SAS1 synthesizes ppGpp and pppGpp with different 

efficiencies (Fig. 21A). ii.) Synthesis of ppGpp and pppGpp by SAS1 is stimulated 

through binding of the product pppGpp to an allosteric cleft provided by the SAS1 

homotetramer (Figs. 11 and 23). These distinct features allow bacteria to convert 

different stress types into (p)ppGpp levels via SAS1 (Fig. 63). Under nutrient-rich 

conditions, the RelA/SpoT homolog Rel would remain absent from the ribosome and 

be in its hydrolytically active state (Fig. 63, I). Cellular alarmone levels should then 

be low and insufficient to allosterically stimulate SAS1. In this synthetically less active 

form, synthesis of ppGpp and pppGpp by SAS1 would solely depend on the 

intracellular concentrations of GDP and GTP, which are estimated to be 
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approximately 0.5 and 5 mM, respectively (172). Simply because GTP is in large 

excess over GDP, pppGpp should be the primary alarmone product. This preference 

is negated when the intracellular GTP/GDP ratio is altered towards higher GDP 

levels (Fig. 63, II). While the total alarmone pool would reach similar levels as in the 

previous scenario (see above), the ratio between the ppGpp and pppGpp alarmone 

should differ. Indeed, few studies report disparate roles of both alarmones on 

bacterial physiology. In E. coli, pppGpp is less potent than ppGpp with respect to 

growth rate regulation and transcription from the ribosomal P1 promoter (2, 112). 

Conversely, the DNA-dependent RNA polymerase DnaG from B. subtilis seems more 

susceptible to inhibition by pppGpp than ppGpp (10). Nevertheless, SAS1 is a rather 

inefficient (p)ppGpp synthetase in the absence of stimulating pppGpp and only mildly 

affeces intracellular alarmone levels (Fig. 63, I and II). Under nutrient limiting 

conditions (i.e. amino acid starvation) however, Rel senses the presence of 

uncharged tRNAs at the ribosome (91). Detection of the so-stalled ribosomes leads 

to synthesis of alarmones by Rel and inactivation of their hydrolysis as both activities 

of Rel are mutually exclusive (53, 54). Because of the preference of Rel for pppGpp 

synthesis and the excess of intracellular GTP over GDP, pppGpp would be the major 

product of (p)ppGpp synthesis by Rel (Fig. 50, (80, 81, 155)). The intracellular 

concentration of pppGpp would exceed a certain threshold allowing for allosteric 

stimulation of SAS1. In this scenario, SAS1 would serve as an amplifier of the signal 

provided by Rel (Fig. 63, III).  

Although the three scenarios are unlikely to occur independently, cells would be able 

to integrate different stress types (i.e. imbalances in GTP/GDP levels via SAS1 and 

amino acid starvation via Rel/SAS1) at the level of ppGpp and pppGpp. This notion is 

supported by the observation that (p)ppGpp levels appear to be linked to the cellular 

energy state as decreased GTP levels render B. subtilis more capable of surviving 

amino acid starvation (15, 17). Moreover, the low basal activity (i.e. allosterically 

stimulating pppGpp below certain threshold) of SAS1 might provide a mechanism 

that allows for control of GTP levels in the absence of nutrient-limiting conditions as 

ppGpp and pppGpp are also able to inhibit multiple enzymes for GTP biosynthesis 

(15-18, 143).   
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Figure 63. Influence of SAS1 on alarmone levels in B. subtilis. Sections I-III depict three 

different scenarios of how SAS1 contributes to alarmone levels in B. subtilis. Further details 

are given in the text.  
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4.1.2 Role of SAS2 in mediation of zinc-depleted stress 

The topology of SAS2 is highly reminiscent to SAS1 (Fig. 30). Nevertheless, both 

proteins decisively differ in their susceptibility to allosteric regulation (Figs. 34 and 
39). At first hand, it seems mysterious where from the SAS2-stimulating Zn2+ might 

originate. 

Zinc is an enormously important cofactor in bacteria, as approximately 6% of the total 

proteome are estimated to coordinate zinc ions. Although most of these proteins (i.e. 

~80%) are enzymes, zinc is also found as cofactor in transcription factors or 

ribosomal proteins (160, 178, 179). In order to acquire sufficient amounts of zinc, 

bacteria developed intricate regulatory circuits ensuring its availability. The 

transcription factor Zur belongs to the class of metal-sensing transcription factors 

whose DNA-binding activity is regulated by the reversible binding of zinc (180). When 

bound to zinc, Zur represses the transcription of the znuABC operon encoding for the 

high-affinity Zn2+ ABC transporter uptake system ZnuABC (180). Under zinc 

limitation, Zur-dependent repression is relieved allowing for increased zinc uptake 

into the bacterial cell.  

Bacteria face zinc limitation e.g. during host infection caused by uptake of free 

extracellular into macrophages that deliver the ion into their phagocytes and other 

intracellular vesicles to activate antimicrobial responses including direct zinc toxicity 

(181). Moreover, the cell wall antibiotic vancomycin induces zinc starvation in 

bacteria by direct interaction with Zn2+ (182) and through sensing by the VraRS two-

component system (183-185). Strikingly, the transcription of SAS2 from B. subtilis 

and S. aureus is upregulated in presence of various stress conditions including 

ethanol, high salt, acidic or alkalic pH and various cell wall antibiotics including 

vancomycin (57, 71, 73-75, 185). This allows to propose a model of how allosteric 

stimulation of SAS2 by zinc ions might confer resistance to vancomycin stress (Fig. 
64). The presence of vancomycin is sensed by the extracellular domain of VraS (Fig. 
64, step 1). The cytosolic domain of VraS is autophosphorylated under consumption 

of ATP and the phosphate subsequently transferred onto the response regulator 

VraR (Fig. 64, step 2). In this activated form, VraR induces transcription of the ywaC 

gene encoding for SAS2 (Fig. 64, step 3). Simultaneously, vancomycin reduces the 
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concentration of free extracellular Zn2+ by chelation (Fig. 64, step 4) resulting in a 

reduced availability of the ion within the microorganism. By this, the repressor of zinc 

uptake Zur is inactivated (Fig. 64, step 5) resulting in increased transcription of 

znuABC (Fig. 64, step 6). ZnuABC, most likely in concert with the zinc scavenging 

lipoprotein ZinT (186-188), provides an increased influx of Zn2+ (Fig. 64, step 7) 

subsequently resulting in increased (p)ppGpp levels through allosteric stimulation of 

SAS2 (Fig. 64, step 8). It is unclear so far how other environmental stress signals 

acting on the bacterial cell wall (see above) are sensed and translated into the 

stringent response network. 

            

 

Figure 64. Model depicting the zinc-dependent stimulation of the stringent response via 

SAS2. Further details are given in the text.  

The zinc ions for allosteric stimulation of SAS2 might however also originiate from 

other sources. Zn2+ is a cofactor of many ribosomal proteins (189). Therefore, during 

unstressed conditions zinc ions are consumed during ribosomal assembly (Fig. 65). 

The GTPases RbgA, HflX, RsgA and Era involved in assembly of mature ribosomes 

from the 30S and 50S ribosomal subunits are subject to inhibition by ppGpp under 

stringent response conditions (Fig. 65B, (14)). This ppGpp might originate from 
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either Rel or SAS1. Reduced ribosomal biogenesis results in a decreased 

consumption of Zn2+ and elevated intracellular levels that might cause allosteric 

stimulation of SAS2 (Fig. 65). Moreover, zinc-independent homologs of the 

ribosomal proteins S14, L31 and L33 were identified in B. subtilis that are expressed 

during zinc deprivation and can replace their zinc-dependent counterparts (180, 189, 

190). 

 

Figure 65. Inhibition of ribosome biogenesis through ppGpp might free up Zn2+ for SAS2. 

The GTPases RbgA, HflX, RsgA and Era (green) are involved in assembly of mature 

ribosomes (ochre) relying on hydrolysis of GTP (red). Inhibition of the GTPases by ppGpp 

(yellow) under stressed conditions frees up Zn2+ (blue) that might serve as stimulator for 

SAS2. The image was adapted from ref. (14).  

In a recent study, the addition of zinc oxide nanoparticles or zinc sulfate to B. subtilis 

led to a strong overexpression of the ywaC gene while an increased expression of 

yjbM could not be observed (173). An indirect effect of the nanoparticles was ruled 

out as titanium oxide nanoparticles failed to result in similar effects on the 

transcriptome. Conversely, in my studies B. subtilis PY79 carrying an inactive SAS1 

variant was severely impaired in growth in the presence of zinc ions contrasted to a 

strain harboring an inactive SAS2 variant that behaved like the parenteral strain (Fig. 
60). It is therefore unclear how elevated zinc levels contribute to the stringent 

response via an increased activity of SAS2. 
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4.1.3 SAS1 and SAS2 are ‘tailored’ for their role during the stringent 
response 

Besides differences in allosteric regulation, SAS1 and SAS2 displayed a different v/S 

characteristic of (p)ppGpp synthesis (Figs. 21 and 36). The maximal velocities of 

(p)ppGpp synthesis by SAS1 and SAS2 are comparable. However, the Km values of 

below 0.5 mM for (p)ppGpp synthesis exhibited by SAS2 are much smaller than the 

Km values of 1.7 and 1.2 for synthesis of ppGpp and pppGpp, respectively, featured 

by SAS1. Differences in the G-Loop conferring coordination of the GDP/GTP 

substrate provide the structural basis for this disparity. Hence, SAS2 synthesizes 

(p)ppGpp much more efficiently at low GDP/GTP concentrations than SAS1. 

These differences in enzymatic activitiy of both proteins are in agreement with their 

different transcriptional profile during growth of B. subtilis (Fig. 66). While the 

transcript of yjbM encoding for SAS1 is mainly present during logarithmic growth, 

transcripts of ywaC encoding for SAS2 are only observed in the stationary phase (57, 

72). Although the presence of transcripts does not necessarily have to correlate with 

protein levels, this observation seems to be in agreement with the different functional 

roles of SAS1 and SAS2. In principle, no stringent response caused by e.g. amino 

acid starvation should occur during logarithmic growth as nutrients are abundant. 

Nevertheless, the presence of SAS1 influences the transition between sessile, non-

flagellated cells appearing in chains and flagellated single cells or duplets (Fig. 66, 

compare to Fig. 58). Despite this heterogeneity in the cell population of B. subtilis, no 

impact on the growth behavior of the culture was evident (Fig. 56). This suggest that 

(p)ppGpp levels are still as low as to not lead to growth inhibition of B. subtilis yet are 

sufficient to cause alterations in the cellular metabolism exemplified by the 

heterogenous cell population. In contrast, SAS2 has been reported to mediate 

hibernation of ribosomes. In this, two ribosomes are hold together at their small 

ribosomal subunits by the hibernation factor YvyD only present in the firmicutes 

(191). Noteworthy, only overexpression of SAS2 but not SAS1 in B. subtilis causes 

this effect (72). However, the appearance of 100S ribosomes was also observed to 

be dependent on the presence of relA in E. coli, which lacks SAS1/SAS2 (192) thus 

suggesting that (p)ppGpp and not SAS2 per se promotes ribosome hibernation. 

Anyhow, the high enzymatic activity of SAS2 already at low GDP/GTP concentrations 

even in the absence of stimulating Zn2+ would allow for a rapid increase of 
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intracellular (p)ppGpp in turn realizing adaptational processes within the 

microorganism (Fig. 66).    

 

Figure 66. SAS1 and SAS2 are tailored for their functional role in the bacterial cell. 

Transcription of yjbM (encoding for SAS1) and ywaC (encoding for SAS2) distinctly differs 

during growth of B. subtilis (indicates by black bars). SAS1 does influence the transition 

between sessile (green) and motile (red) cell types. SAS2 is involved in mediation of the 

formation of translational inactive 100S ribosomes (ochre). 

4.2 The stringent response can be solely mediated by SAS1 and SAS2  

So far, the bifunctional Rel protein and the (p)ppGpp synthetases SAS1 and SAS2 

are the only contributors to (p)ppGpp metabolism in B. subtilis (50, 57). The 

elucidation of their enzymatic properties therefore allows for a preliminary model of 

(p)ppGpp metabolism (Fig. 67). In the absence of amino acid starvation, the 

bifunctional Rel protein predominantly exhibits (p)ppGpp hydrolytic activity (Figs. 50 
and 51). In presence of 1 mM of alarmones, Rel hydrolyzes approximately 22 or 11 

nmol * min-1 * nmol Rel-1 ppGpp or pppGpp, respectively (Fig. 51). Thereby, 

(p)ppGpp hydrolysis by Rel surmounts (p)ppGpp synthesis provided by SAS1 and 

SAS2 (Fig. 67A, compare to Figs. 21 and 36). It must be noted that intracellular 

levels of 1 mM (p)ppGpp are typically only reached during amino acid starvation 

(193). Nevertheless, basal levels of (p)ppGpp are estimated to be below 10 µM 
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evidencing that (p)ppGpp hydrolysis by Rel is indeed more efficient than synthesis by 

SAS1 and SAS2 under these non-stringent conditions. In the presence of allosteric 

stimulators of SAS proteins (i.e. pppGpp and Zn2+), however, (p)ppGpp synthesis 

surmounts (p)ppGpp hydrolysis by Rel (Fig. 67B). Regulatory proteins that inhibit 

Rel’s hydrolytic activity might aid in the subsequent increase of intracellular alarmone 

levels. The membrane associated ATPase ComGA involved in the development of 

genetic competence of B. subtilis is implicated to exhibit this function through direct 

interaction with Rel (194). These considerations are based on the assumption that 

the intracellular concentration of Rel, SAS1 and SAS2 are comparable. The number 

of Rel molecules can be estimated to be approximately 250 given a ratio of one 

moleculre Rel per 200 ribosomes and ~50000 ribosomes per cell (165). However, no 

quantitative measurement of SAS1 and SAS2 molecules per cell is available so far.    

 

Figure 67. Model of stringent response in the absence of amino acid starvation. SAS1 and 

SAS2 (blue) establish the ppGpp (yellow balls) and pppGpp (red balls) pools in B. subtilis. 

These are efficiently cleared by the Rel hydrolase (HD, green) in the absence of amino acid 

starvation (A). In the presence of elevated pppGpp and/or zinc levels, (p)ppGpp synthesis by 

SAS1 and SAS2 surmounts (p)ppGpp hydrolysis by the Rel hydrolase (B). Unknown 

regulatory proteins might permit or assist in increasing (p)ppGpp levels by inhibition of the 

Rel hydrolase. Yellow and red numbers indicate the rates of ppGpp (yellow) and pppGpp 

(red) synthesis by SAS1/2 and hydrolysis by Rel in nmol * min-1 * nmol protein-1. Rates of 

synthesis are given for 0.5 mM and 5 mM GDP and GTP, respectively. Rates of hydrolysis 

are given for 1 mM ppGpp or pppGpp.      
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4.3 Regulation of Rel’s opposing activities in the absence of the 
ribosome  

Recent cryo-EM structures provided detailed insights in the conformation of Rel when 

bound to stalled ribosomes (61, 95, 96). However, the domain topology of Rel in the 

absence of the ribosome is largely unknown so far. In this study, full-length Rel and a 

truncated variant lacking the regulatory CTD of Rel (Fig. 68A) were biochemically 

characterized.  

The CTD of Rel was so far mainly appreciated for mediating binding of Rel to stalled 

ribosomes leading to a rapid accumulation of intracellular (p)ppGpp (30, 82, 90). 

Nevertheless, one study by Cashel and coworkers provided evidence for a regulation 

of Rel’s activites by the CTD in the absence of the ribosome (53). In this, the 

presence of the CTD negatively affected (p)ppGpp synthesis while in turn (p)ppGpp 

hydrolysis was stimulated. Moreover, a hexa-histidine tag fused C-terminally to the 

protein mildly stimulated (p)ppGpp synthesis and almost completely abrogated 

(p)ppGpp hydrolysis similar to the complete lack of the CTD (53). 

The contribution of domains present in Rel’s CTD could be refined in this study. 

Mainly the far C-terminal ACT domain confers diminished (p)ppGpp synthesis of non-

ribosomally associated B. subtilis Rel (Fig. 49) and stands in contrast to an earlier 

study on M. tubercolusis Rel where truncation of the ACT domain did not result in 

increasing (p)ppGpp synthesis (101). Neverthelss, the results from this study allow to 

deduce a model of Rel’s domain topology albeit structural information is lacking (Fig. 
68B). Binding of Rel to stalled ribosomes mediated by the CTD lures the ACT away 

from the Syn domain thereby relieving inhibition of (p)ppGpp synthesis. At the same 

time (p)ppGpp hydrolysis should be reduced (Fig. 51). How the (p)ppGpp synthetic 

activity of Rel is further enhanced by binding to ribosomes remains elusive as the 

limited resolution of the cryo-EM structures do not allow for inspection of 

conformational changes within the Rel-NTD.  
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Figure 68. Domain topology of Rel. A. Domain architecture of Rel. B. Model depicting the 

domain topology of Rel adapopted in the presence and absence of the ribosome. Domains of 

Rel are colored as in (A).  

The presence of uncharged tRNA within the ribosomal A-site is generally considered 

as the primary agent for binding of Rel to and stimulation by the so-stalled ribosome 

(83). However, it is only evident that the activity of Rel is stimulated in the presence 

of uncharged tRNA within the ribosomal A-site (58, 87, 91, 195, 196) and not where 

this tRNA originates. In fact, an interaction between Rel and tRNA has already been 

observed in the absence of the ribosome (51, 52, 101). Vice versa, Rel is able to bind 

to ribosomes in the absence of tRNA but its (p)ppGpp synthesis is only minorly 

stimulated (195). It is therefore not surprising that the Rel protein retained significant 

amounts of tRNA during purification of the protein (personal communication: Patrick 

Pausch). Taken together, further structural and functional studies are required to 

finally decipher the molecular details of the stringent factor Rel. 
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4.4 Disparate effects of ppGpp and pppGpp on bacterial lifestlye 

The alarmones ppGpp and pppGpp are most often collectively referred to as 

(p)ppGpp. Although both alarmones mediate similar adaptational processes in their 

host microorganism, there is also growing evidence that they affect the same targets 

to different extent (10, 112).  

Experiments performed in the course of this work support this notion. Substitution of 

SAS1 by the catalytically inactive variant SAS1-E139V in the genome of B. subtilis 

PY79 resulted in an increased percentage of the population appearing as flagellated 

single cells. An ectopically integrated copy of SAS1 restored the situation present in 

wild type B. subtilis PY79 (Fig. 59A). However, also ectopic introduction of Rel-NTD, 

which almost exclusively produces pppGpp, into B. subtilis PY79-E139V 

reestablished the ratio of flagellatet versus non-flagellated cells present in wild type 

(Figs. 59A and B). This observation does not rule out the possibility that also a lack 

of intracellular ppGpp (caused by inactivation of SAS1) might have contributed to the 

observed phenotype. Nevertheless, pppGpp was able to restore the wild type 

condition. It might therefore also be possible that ppGpp was not present at all under 

the experimental conditions so that only the lack of pppGpp – and subsequently its 

replenishment through ectopic expression of Rel-NTD – resulted in the cellular 

heterogeneity. The kinetic parameters of (p)ppGpp synthesis by SAS1, SAS2 and 

Rel also seemingly favor this idea as all three proteins primarily synthesize pppGpp 

at physiological GDP/GTP levels. Conversely, Rel exhibits a higher rate of ppGpp 

degradation compared to pppGpp (Fig. 67). How might the ability to synthesize and 

degrade (p)ppGpp relate to specific bacterial lifestyles? Two prototypic ‘stringent 

response networks’ do exist in bacteria that are restricted to bacterial clades (Fig. 
69).  
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Figure 69. Scheme of prototypic ‘stringent response networks’ found in bacteria and plant 

chloroplasts. 

In proteobacteria, the two monofunctional long RSH-type proteins RelA and SpoT do 

exist. Additionally, proteobacteria possess the protein GppA able to degrade pppGpp 

to ppGpp by removal of the 5’ OH γ-phosphate (43). Firmicutes, however, only harbor 

one monofunctional long RSH-type protein and the two small alarmone synthetases 

SAS1 and SAS2 but lack the GppA enzyme (Fig. 69). Based on the kinetic properties 

of (p)ppGpp synthesis and hydrolysis exhibited by those enzymes, it might be 

suspected that each network results in the primary production of either ppGpp or 

pppGpp. The monofunctional RelA from E. coli favors synthesis of ppGpp over 

pppGpp. Moreover, the GppA protein converts pppGpp directly into ppGpp. In this, 

mainly ppGpp should be the mediator of the stringent response in proteobacteria, 

which is exemplified by the observation that ppGpp has a stronger impact on growth 

rate control and reduction in rRNA synthesis in E. coli (112). In firmicutes, pppGpp 

should be the predominant alarmone based on its higher synthesis through by the 

three (p)ppGpp synthetases present, the slower degradation by Rel and the absence 

of an interconverting enzyme similar to GppA. This notion is supported by the 

observation made in this study that synthesis of pppGpp by introduction of Rel-NTD 

into a B. subtilis strain lacking catalytically active SAS1 was able to restore cellular 

heterogeneity (Fig. 59).  

Noteworthy, BLAST analysis in firmicutes revealed the presence of an ortholog of 

GppA in M. tuberculosis (Fig. 70), which is has not been described so far (50). 

Besides, M. tuberculosis harbors the Rel and SAS1/2 proteins typical for firmicutes. 
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The contribution of this GppA to the (p)ppGpp pools iand how this might be related to 

the lifestyle of M. tuberculosis is not yet clear.  

Plant chloroplasts heavily differ in their enzymes from bacteria (Fig. 69). This and the 

lack of kinetic data for these enzymes do not allow to deduce any prioritization of 

ppGpp or pppGpp as mediatos of the stringent response.  

 

Figure 70. Presence of enzymes involved in (p)ppGpp metabolism in selected bacterial and 

plant species. The annotation is primarily based on ref. (50).  

4.5 Alarmones gradually adapt microorganisms to environmental cues  

Alarmone levels range between 1-10 µM under non-stringent response conditions 

and reach approximately 1 mM during the stringent response caused by e.g. amino 

acid starvation (193). The alarmones ppGpp and pppGpp exhibit different inhibitory 

constants for regulation of the activity of their respective cellular target (Figs. 61 and 
62), that might be as low as 1 µM.  

Ordering the cellular targets by increasing inhibitory constants reveals a gradual 

effect of (p)ppGpp on the dogmatic cellular processes (Fig. 71). Enzymes involved in 

amino acid (i.e. EcLdcI) and nucleotide metabolism (i.e. BsGMK and BsSAS1) are 

already targeted by (p)ppGpp at basal levels of the alarmones. With increasing 

(p)ppGpp concentrations, translational GTPases are inhibited. Inhibition of DNA 
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replication and transcription by binding to DnaG and RNAP, respectively, should be 

the last adaptational processes mediated at very high (p)ppGpp levels (Fig. 71). This 

ordering exemplifies that the bacterial stringent reponse adapts the host 

microorganism gradually to environmental stresses integrated via (p)ppGpp. 

Nevertheless, this also solidifies the assumption that (p)ppGpp already plays 

fundamental roles under non-stressed or only mild stress conditions in preparation of 

even harsher environmental conditions and/or stresses. 

 

Figure 71. The alarmones (p)ppGpp gradually affect cellular targets. The references for the 

K values are: EcLdcI-ppGpp (148), BsGMK-pppGpp (18), BsSAS1-pppGpp (151), EcRNAP-

DksA-ppGpp (135), EcBipA-ppGpp (174), EcEF-Tu-ppGpp and EcEF-G-ppGpp (197), EcIF2-

ppGpp (198), BsDnaG-pppGpp and BsDnaG-ppGpp (127) and TthRNAP-ppGpp (131). 

4.6 The bacterial stringent response as a target for antibiotic 
treatment 

Given the fundamental role of alarmones as second messengers in microorganismic 

metabolism and the fact that they are seemingly restricted to bacteria and plant 

chloroplasts, an inhibition of (p)ppGpp synthesis and hydrolysis as the basis for 

future antimicrobial treatment seems possible.  
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In this respect, Ben-Yehuda and coworkers reported a the (p)ppGpp analogous 

compound relacin as an inhibitor of (p)ppGpp synthesis by Rel (Fig. 72, (199)). 

Unfortunately, relacin displays only moderate inhibition of Rel. In relacin, the 3’ and 5’ 

OH phosphate moieties were replaced by glycil-glycine dipeptides linked to the 

ribose by carbamate bridges. Although this substitution should confer stability against 

hydrolysis of the phosphates, it impedes the conformational flexibility of the 

phosphates (or its stereoisomeric analogs in relacin) that seems essential for the 

establishment of high-affinity interactions with its target (Fig. 62).   

Figure 72. The antibiotic Relacin targeting the (p)ppGpp synthetase Rel. Chemical formulas 

of (p)ppGpp (A) and Relacin (B). 

An attractive alternative to inhibition of (p)ppGpp synthesis by compounds targeting 

the active site of (p)ppGpp synthetases seems to be offered by the allosteric site of 

SAS1. The possibility of allosteric stimulation through coordination of pppGpp is 

essential for SAS1’s activity. This is exemplified by the observation that a strain with 

a disrupted allosteric binding site displayed similar cellular heterogeneity phenotypes 

as a strain harboring a catalytically inactive variant of SAS1 (Fig. 58). As many 

human-pathogenic bacteria are members of the firmicutes harboring SAS proteins, 

this knowledge might guide the development of future antibiotics. In this regard, 

these antibiotics would also already interefere with (p)ppGpp adaptation at its earliest 

stage, i.e. adaptational changes in nucleotide metabolism (Fig. 71).   
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Materials and Methods 

 

5.1  Materials 

5.1.1  Chemicals and consumables 

Chemicals were purchased from Sigma Aldrich, Carl Roth, AppliChem or Acros in 

biochemical grades unless otherwise stated. Eluents for HPLC (gradient grade) were 

from VWR. Nucleotides were purchased from Sigma Aldrich or Jena Bioscience in 

highest available grade. Consumable plastic ware (reaction tubes, falcon tubes, 

pipette tips, syringes) was from Sarstedt and Braun. HPLC vials and caps were from 

Macherey-Nagel. 

5.1.2  Enzymes and cloning equipment 

Q5 High-Fidelity DNA Polymerase, restriction enzymes and T4 DNA Ligase with their 

corresponding buffers were purchased from New England Biolabs (NEB). 

Desoxynucleoside triphosphates (dNTPs, 100 mM of each dNTP) were from 

Fermentas. Purification of DNA and preparation of plasmids from E. coli cells were 

carried out using the QIAquick Gel Extraction Kit and QIAprep Spin Miniprep Kit, 

respectively (both Qiagen) according to the manufacturer’s manuals. Agarose gels 

for analysis of DNA were prepared in TBE-buffer according to the experimental 

requirements. GeneRuler 1kb (Thermo Scientific) served as size standard for 

agarose gel electrophoresis. 
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5.1.3  Bacterial strains and plasmids 

5.1.3.1 Oligonucleotides 

Oligonucleotides were purchased from Sigma Aldrich or Eurofins Genomics in the 

purity ‘salt free’. All oligonucleotides used in this study are listed in Table S4.   

5.1.3.2 Plasmids 

For overproduction of hexa-histidine tagged proteins in E. coli, the vector pET24d(+) 

(Novagen) was employed. For integration of DNA into B. subtilis, the vectors pMAD 

(200) and pSG1154 (201) were utilized. 

All plasmids used in this study are listed in Table S5. Plasmids were obtained using 

techniques deschribed in chapter 6.2.1. 

5.1.3.3 Strains 

For plasmid amplification, chemically competent E. coli DH5α cells (Thermo 

Scientific) were employed. Proteins were produced in chemically competent E. coli 

BL21 (DE3) cells (Thermo Scientific). Strains of B. subtilis were generated as 

described under 6.2.2 and are listed in Table S6.   

5.1.4  Growth media and buffers 

5.1.4.1 Growth media 

Lysogeny broth (LB) medium was purchased as a premix from Roth and sterilized 

(121 °C, 20 min) before use. For preparation of LB medium for cultivation of E. coli 

and B. subtilis, 20 or 25 g/l of LB premix were used, respectively. S7 minimal medium 

for cultivation of B. subtilis was prepared as described previously (169). Shortly, 

stock solutions of buffer salts (10x), trace elements (100x), glucose (50x), K-

glutamate (100x) and casamino acids (250x) were sterilized by filtration through a 0.2 

µM filter under aseptic conditions and mixed with sterilized (121 °C, 20 min) destilled 

water to obtain the desired final concentrations in the medium.   
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S7 minimal medium 

Stock solution Component Final concentration 

Buffer salts, 

pH 7.0 with KOH 

MOPS 50 mM 

(NH4)2SO4 10 mM 

KH2PO4 5 mM 

Trace elements MgCl2 2 mM 

 CaCl2 0.7 mM 

 MnCl2 50 µM 

 FeCl3 5 µM 

 ZnCl2 1 µM 

 Thiamine-HCl 1 µg/ml 

 HCl 20 µM 

Glucose Glucose 1% (w/v) 

Glutamate Monopotassium glutamate 0.1% (w/v) 

Casamino acids Casamino acids 0.004% (w/v) 

 

5.1.4.2 Antibiotics 

All antibiotics were purchased from Carl Roth and Sigma Aldrich. 1000x concentrated 

stock solutions were prepared by dissolving the antibiotic in the appropriate solvent 

and filtrated through a 0.2 µM filter under aseptic conditions. Antibiotic stock solutions 

were stored at -20 °C until use. Antibiotics were used in the following final 

concentrations:  
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Organism Antibiotic Final 
concentration 

Solvent 

B. subtilis Spectinomycin 100 µg/ml ddH2O 

Erythromycin 1 µg/ml 70% (v/v) ethanol 

Lincomycin 25 µg/ml ddH2O 

E. coli Ampicillin 100 µg/ml ddH2O 

Kanamycine 50 µg/ml ddH2O 

 

5.1.4.3 Buffers for protein purification 

Proteins were purified by a two-step protocol employing Ni-NTA affinity 

chromatography and size-exclusion chromatography (SEC). Buffers in the left 

column were used for purification of SAS1, SAS2 and Rel-NTD. Buffers in the right 

column were used for purification of Rel. PMSF was added to the Rel lysis buffer as 

a 100x concentrated stock solution prepared by dissolving PMSF in isopropanol.  

 

SAS1/SAS2/Rel-NTD  Rel 

Ni-NTA Lysis buffer   Ni-NTA Lysis buffer  

HEPES 20 mM  Tris 50 mM 

MgCl2 20 mM  NaCl 500 mM 

KCl 20 mM  Imidazole 40 mM 

NaCl 250 mM  PMSF 1 mM 

Imidazole 40 mM  pH 8.0 with NaOH 

pH 8.0 with NaOH  

 

 

 

  



	   	   Materials and Methods 
	  

	   119 

Ni-NTA Elution buffer   Ni-NTA Elution buffer  

HEPES 20 mM  Tris 50 mM 

MgCl2 20 mM  NaCl 500 mM 

KCl 20 mM  Imidazole 500 mM 

NaCl 250 mM  pH 8.0 with NaOH 

Imidazole 500 mM   

pH 8.0 with NaOH  

SEC buffer   SEC buffer  

HEPES 20 mM  Tris 50 mM 

MgCl2 20 mM  NaCl 500 mM 

KCl 20 mM  pH 8.0 with NaOH 

NaCl 200 mM   

pH 8.0 with NaOH  

 

5.1.4.4 Buffers for HDX 

D2O-containing SEC buffer for deuteration of SAS1 and Rel during HDX experiments 

(see chapter 5.2.8) was prepared by dissolving the solid components in deuterium 

oxide 99.9% (Sigma Aldrich). The pD value of the solution was adjusted to 7.5 using 

10 M NaOD obtained by dissolving NaOH in deuterium oxide 99.9%. During 

determination of the pD value of deuterated SEC buffer with a pH electrode 

calibrated for H2O, the differing dissociation constants of H2O and D2O were taken 

into account (202). Peptides were separated during HDX employing HDX buffer A 

and B. The quench buffer for stopping the HDX reaction and the wash solution for 

cleaning the columns used in the HDX setup were prepared as follows: 
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HDX quench buffer   HDX column wash solution  

KH2PO4/H3PO4 400 mM  Acetonitrile 4% (v/v) 

pH 2.2 with H3PO4  Guanidine-HCl 500 mM 

 

HDX buffer A   HDX buffer B 

ddH2O   Acetonitrile  

Formic acid 0.1 % (v/v)  Formic acid 0.1 % (v/v) 

 

5.1.4.5 Buffers for HPLC 

For separation and elution of nucleotides during HPLC analysis, the following buffers 

were employed: 

HPLC buffer A   HPLC buffer B  

KH2PO4 50 mM  Acetonitrile 100% (v/v) 

K2HPO4 50 mM    

TPAB 10 mM    

Acetonitrile 15% (v/v)    

 

5.1.4.6 Buffers for AX chromatography 

For separation and elution of nucleotides during AX chromatography, the following 

buffers were employed: 

AX buffer A   AX buffer B  

Tris 20 mM  Tris 20 mM 

pH 8.0 with HCl  NaCl 1 M 

   pH 8.0 with HCl 
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5.1.4.7 Buffers for agarose gel electrophoresis 

Agarose gels were prepared by dissolving agarose in TBE buffer. For visualization of 

nucleic acids, ethidium bromide was directly added to the gels in a final concentration 

of approximately 0.00005% (w/v). The following buffers were used for agarose gel 

electrophoresis:   

TBE buffer   6x DNA loading dye 

Tris 90 mM  TBE buffer 1x concentrated 

Boric acid 90 mM  Glycerole 20% (v/v) 

EDTA 2 mM  Bromophenol 

blue 

0.25% (w/v) 

pH 8.3 with NaOH    

 

5.1.4.8 Buffers for SDS-PAGE 

Gels for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

were prepared using a Mini-PROTEAN 3 Multi-Casting Chamber (Biorad) and stored 

at 4 °C until use. The stacking and separation gels had the following composition: 

Component Stacking gel Separation gel  

Acrylamide/Bisacrylamide (37.5/1) 4.5% (w/v) 15% (w/v) 

Tris 125 mM 375 mM 

SDS 0.1% (w/v) 0.1% (w/v) 

APS 0.1% (w/v) 0.1% (w/v) 

TEMED 0.1% (v/v) 0.1% (v/v) 

Final pH adjusted with HCl 6.8 8.8 
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For loading and running of SDS-PAGE gels and visualization of proteins, the 

following buffers were employed:  

SDS running buffer   5x SDS loading dye  

Tris 25 mM  Tris-HCl pH 6.8 300 mM 

Glycine 192 mM  SDS 10% (w/v) 

SDS 0.1% (w/v)  β-mercaptoethanol 25% (v/v) 

   Glycerine 25% (v/v) 

   Bromophenol blue 0.05% (w/v) 

SDS staining solution    

Comassie R250 0.36% (w/v)  SDS destaining solution  

Ethanol 99% 45.5% (v/v)  Ethanol 99% 30% (v/v) 

Acetic acid 99% 9% (v/v)  Acetic acid 99% 10% (v/v) 

 

5.1.4.9 Nucleotides 

Nucleotides were typically employed as ~50-100 mM concentrated stock solutions in 

ddH2O and were adjusted in pH to 7.5 using NaOH. Concentrations of stock 

solutions were determined by spectrophotometric measurement applying extinction 

coefficients of ε = 15400 M-1 * cm-1 and ε = 11500 M-1 * cm-1 at 260 nm for ATP and 

guanosine nucleoside (GDP, GTP, ppGpp and pppGpp), respectively (203). 

5.1.5  Protein biochemistry 

Prepacked columns (HisTrap FF, 1 ml) for purification of hexa-histidine tagged 

proteins were purchased from GE Healthcare. Purified proteins were concentrated 

using Amicon Ultra-15 centrifugal filter units (Merck Millipore) with molecular weight 

cut-offs of 10 kDa. PageRuler unstained protein ladder (Thermo Scientific) and 

Pierce unstained protein MW marker (Thermo Scientific) served as standards for 

molecular weight estamination on SDS-PAGE gels. 
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5.1.6  Crystallization and Data collection 

Crystallization screens were carried out by the sitting-drop method in SWISSCI MRC 

2-well or SWISSCI MRC 3-well plates (Jena Bioscience) using the JCSG Core Suites 

(Qiagen) with 96 conditions on each plate. Crystals were looped with equipment 

sourced from Hampton Research (CrystalCap Spine HT, CrystalCap SPINE Vial and 

CrystalWand Magnetic). Diffraction data of crystals were collected at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France at beamlines ID23-1, 

ID23-2 and ID29. 

5.1.7  Laboratory equipment 

Equipment Supplier 

Centrifuges 

Sorvall LYNX 6000 Thermo Scientific 

A27-8 x 50 Fixed Angle Rotor Thermo Scientific 

Fiberlite F9-6 x 1000 LEX Fixed Angle Rotor Thermo Scientific 

Heraeus Megafure 40R Thermo Scientific 

Heraeus Fresco 21 Centrifuge Thermo Scientific 

Heraeus Pico 21 Centrifuge Thermo Scientific 

Columns for protein purification 

HiLoad 26/600 Superdex S200 pg GE Healthcare 

HiLoad 26/600 Superdex S75 pg GE Healthcare 

HisTrap FF, 1 ml GE Healthcare 

FPLC systems 

ÄKTApurifier GE Healthcare 

ÄKTAprime GE Healthcare 

HDX equipment 

ACQUITY UPLC M-Class system with HDX 

technology 

Waters 
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Two-arm robotic autosampler LEAP Technologies 

Enzymate BEH Pepsin column 2.1 x 30 mm Waters 

ACQUITY UPLC BEH C18 1.7 µm 1.0 x 100 mm 

column 

Waters 

AQUITY UPLC BEH C18 1.7 µm 2.1 x 5 mm 

VanGuard 

Waters 

SYNAPT G2-Si Waters 

HPLC equipment 

Agilent 1100 Series  Agilent Technologies 

G1311A Quaternary Pump Agilent Technologies 

G1313A Autosampler Agilent Technologies 

G1314A Variable wavelength detector (VWD) Agilent Technologies 

G1316A Column Compartment Agilent Technologies 

G1379A Degasser Agilent Technologies 

EC 250/4.6 NUCLEODUR C18 HTec, 3 µm Macherey-Nagel 

Agilent ChemStation B.04.03 Agilent Technologies 

Microscopes 

SZM-2 Optika Microscopes 

AX70 Research System Microscope Olympus 

UPlanSApo 100x/1.40 objective Olympus 

Photometrics CoolSnap ES2 CCD camera Visitron Systems 

Incubators 

WiseCube Wisd Laboratory Instruments 

Ecotron Infors HT 

Incucell MMM Medcenter Einrichtungen 

GmbH 
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Weights  

Präzisionswaage PCB, d = 0.1g Kern 

S-203, d = 0.001 g Denver Instrument 

SI-203, d = 0.1 mg Denver Instrument 

Miscellaneous 

SDS-PAGE equipment Biorad 

Agarose gel equipment Cleaver Scientific 

Ultrospec 10 Cell Density Meter Amersham 

T100TM Thermal cycler Biorad 

M-110L Microfluidizer Microfluidics 

Gel iX20 Imager Intas 

Crystal Gryphon LCP ARI - Art Robbins Instruments 

Peristaltic pump Gilson 

NanoDrop Lite Thermo Scientific 

HI-2211 Bench Top pH & mV meter Hanna Instruments 

 

5.2   Methods 

5.2.1  Molecular cloning 

Genes encoding for BsSAS1, BsSAS2, BsRel and SaSAS2 were amplified from 

genomic DNA of B. subtilis PY79 and S. aureus SA113 by polymerase chain reaction 

(PCR) using Q5 High-Fidelity DNA Polymerase (NEB) according to the 

manufacturer’s manual. Oligonucleotide primers (see Table S4) were designed 

according to the following gene annotations: BSU11600 (BsSAS1), BSU38480 

(BsSAS2), BSU27600 (BsRel) and SA2297 (SaSAS2). A hexa-histidine tag was 

encoded by the forward primer in-frame with the sequence of the cloned genes (see 

Table S4). Protein variants were generated by overlapping PCR. In brief, two 

fragments of the genes were generated by PCR that overlapped at the mutation site. 
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These fragments were fused and the resulting mutated gene amplified in a second 

round of PCR. PCR fragments and vectors were digested at the introduced restriction 

enzyme sites according to the manufacturer’s manual (NEB). Ligations were carried 

out employing T4 DNA Ligase (NEB) according to the manufacturer’s manual and 

typically contained an approximately 3-fold excess of insert over vector. 

DNA was separated and visualized by agarose gel electrophoresis employing TBE 

as buffer. Purification of DNA and preparation of plasmids from E. coli DH5α cells 

were carried out using the QIAquick Gel Extraction Kit and QIAprep Spin Miniprep 

Kit, respectively (both Qiagen) according to the manufacturer’s manuals.  

5.2.2  Purification of recombinant proteins 

SAS1, SAS2, Rel and variants thereof were purified by the same procedure with the 

buffers stated in chapter 6.1.4.3. E. coli BL21(DE3) cells carrying the expression 

plasmid were grown in LB medium supplemented with 50 µg/ml kanamycine and 

12.5 g/l D(+)-lactose-monohydrate for 16 h at 30 °C and shaking at 150 rpm 

(WiseCube). Cells were harvested (3500 x g, 20 min, 4 °C), resuspended in lysis 

buffer and lysed using a pressure of 18,000 psi through the M-110L Microfluidizer 

(Microfluidics). After centrifugation (47850 x g, 20 min, 4 °C), the clarified supernatant 

was loaded on a 1-ml HisTrap column equilibrated with 10 column volumes (CV) of 

lysis buffer. After washing with 15 CV lysis buffer, the protein was eluted with 5 CV 

elution buffer. The protein was concentrated to ~25 mg/ml using an Amicon Ultracel-

10K (Millipore) and  applied to size-exclusion chromatography (HiLoad 26/600 

Superdex S200 pg) equilibrated in SEC buffer. Fractions containing the pure protein 

were pooled and concentrated according to the experimental requirements. Protein 

concentration was determined spectrophotometrically (NanoDrop Lite). 
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5.2.3  SDS-PAGE 

Prior to SDS-PAGE analysis, protein samples were mixed with 5x SDS loading dye in 

a volume ratio of 5:1. Electrophoresis was performed in a Mini-PROTEAN Tetra cell 

(Biorad) at 260 V for 35 min. The gels were stained for approximately 30 min using 

SDS staining solution. After removal of the staining solution, the gels were destained 

using SDS destaining solution until the protein bands were clearly distinguishable 

from the background. 

5.2.4  Structural biology 

5.2.4.1 Crystallization 

Crystallization screens were carried out at room temperature by the sitting-drop 

method in SWISSCI MRC 2-well or SWISSCI MRC 3-well plates (Jena Bioscience) 

using the JCSG Core Suites (Qiagen). The reservoir volume was 50 µl and the drop 

volume typically 1 µl containing a 1:1 mixture of protein and crystallization solution. 

Crystals of BsSAS1 were obtained from a 20 mg/ml solution after 1 day in 0.1 M 

MES, pH 5.0, 20% (w/v) PEG 6000. For crystallization of nucleotide-bound states of 

SAS1, the protein was incubated together with 1 mM of the respective nucleotides 

(AMPCPP and ATP+GTP yielding pppGpp) for 1 h on ice prior to crystallization. 

Crystals of BsSAS1-AMPCPP were obtained at 11.5 mg/ml protein concentration 

after 1 week in 0.2 M KSCN, 20% (w/v) PEG3350. Crystals of BsSAS1-pppGpp were 

obtained at 11.5 mg/ml protein concentration after 1 week in 0.1 M Citric acid, pH 

4.0, 5% (w/v) PEG 6000. 

Crystals of SaSAS2 were obtained from a 15 mg/ml solution after 1 week in 0.1 M 

CHES, pH 9.5, 40% (w/v) PEG600. For crystallization of nucleotide-bound states of 

SAS2, a 15 mg/ml concentrated solution of the protein was incubated together with 5 

mM of the respective nucleotides (AMPCPP, ATP+GTP yielding pppGpp and 

ATP+GMP yielding pGpp) for 30 min on ice prior to crystallization. Crystals of 

SaSAS2-AMPCPP were obtained after 2 days from 0.1 M Tris, pH 8.5, 0.2 M lithium 

sulfate, 30% (w/v) PEG4000. Crystals of SaSAS2-pppGpp were obtained after 7 

days from 0.2 M tri-potassium citrate, 20% (w/v) PEG 3350. Crystals of SaSAS2-
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pGpp were obtained after three days from 0.2 M tri-potassium citrate, 20% (w/v) PEG 

3350.  

5.2.4.2 Data collection  

Prior to data collection, 0.5 µl of a cryo-protecting solution containing mother liquor 

supplemented with 20% (v/v) glycerol were added to the crystallization drops. 

Subsequently, the crystals were looped and flash frozen in liquid nitrogen. Diffraction 

data of crystals were collected at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble, France at beamlines ID23-1, ID23-2 and ID29 under laminar 

nitrogen flow at 100 K (Oxford Cryosystems 700 Series) with a DECTRIS PILATUS 

6M detector. 

5.2.4.3 Data processing and refinement 

Diffraction data were processed with XDS (204) and the CCP4-implemented program 

SCALA (205). The crystal structure of apo-BsSAS1 was determined by molecular 

replacement (102) using the CCP4-implemented program PHASER (206) and 

employing a truncated structure of Relseq (PDB: 1VJ7, chain A, amino acids 200-340; 

(54)) as a search model. The nucleotide-bound structures of BsSAS1 and apo-

SaSAS2 were determined employing the structure of apo-BsSAS1 (this study) as a 

search model for MR. The nucleotide-bound structures of SaSAS2 were determined 

by MR using the structure of apo-SaSAS2 (this study) as search model for MR. 

Structures were built in COOT (207) and refined with PHENIX refined (208). Figures 

were prepared with PyMOL (www.pymol.org).   

5.2.5 HPLC-based assay for characterization of enzyme kinetics of 
(p)ppGpp synthetases and hydrolases 

All reactions for characterization of enzyme kinetics of (p)ppGpp synthetases and 

hydrolases were carried out in a total volume of 50 µl in a buffer containing 100 mM 

HEPES-Na, pH 7.5, 20 mM MgCl2, 20 mM KCl and 200 mM NaCl. The enzyme 

concentration in the assays and the sampled time points differed between the 

proteins according to the experimental requirements.  
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Enzyme kinetics of (p)ppGpp synthesis by SAS1 were determined by incubating 2 

µM enzyme together with 5 mM ATP and varying concentrations of GDP or GTP (i.e. 

0.1, 0.25, 0.5, 0.75, 1, 2, 3 and 5 mM) at 37 °C. Samples were taken after five 

different time points (i.e. 1, 3, 5, 7 and 15 min), flash frozen in liquid nitrogen and 

stored at -20 °C until measurement. HPLC measurements were performed with an 

Agilent 1100 Series system (Agilent Technologies) and a C18 column (EC 250/4.6 

Nucleodur HTec 3 µm; Macherey-Nagel). The frozen samples were rapidly thawn 

and directly injected into the HPLC system. After running 30 min with HPLC buffer A, 

a linear gradient up to 90% HPLC buffer B over 20 min was applied at 0.8 ml/min 

flow rate. The reaction products ppGpp and pppGpp were detected at a wavelength 

of 260.8 nm and quantified by peak area using ChemStation version B.04.03 (Agilent 

Technologies). 

Enzyme kinetics of (p)ppGpp synthesis by SAS2 were determined by incubating 0.2 

µM enzyme together with 5 mM ATP and varying concentrations of GDP or GTP (i.e. 

0.05, 0.1, 0.2, 0.3, 0.5, 1, 3 and 5 mM) at 37 °C. Samples were taken after five 

different time points (i.e. 2, 4, 6, 8 and 10 min). The enzymatic reactions were 

stopped as follows: Two volume parts chloroform were added to the sample followed 

by thorough mixing for 30 s. After heat treatment for 30 s at 95 °C, the samples were 

flash frozen in liquid nitrogen. Subsequently, samples were centrifuged (17300 x g, 

30 min, 4 °C) while thawing and the aqueous phase containing the nucleotides 

analyzed by HPLC as described for SAS1 (see above). The reaction products ppGpp 

and pppGpp were detected at a wavelength of 260.8 nm and quantified by peak area 

using ChemStation version B.04.03 (Agilent Technologies). 

Enzyme kinetics of (p)ppGpp synthesis by Rel and Rel-NTD were determined by 

incubating 5 µM enzyme together with 5 mM ATP and varying concentrations of GDP 

or GTP (i.e. 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 7.5 and 10 mM) at 37 °C. Samples were 

taken after five different time points (i.e. 6, 12, 18, 24 and 30 min). The reactions 

were stopped and analyzed as described for SAS2 (see above). The reaction product 

AMP released equimolar to (p)ppGpp was detected at a wavelength of 260.8 nm and 

quantified by peak area using ChemStation version B.04.03 (Agilent Technologies).  

Enzyme kinetics of (p)ppGpp hydrolysis by Rel and Rel-NTD were determined by 

incubating 2 µM enzyme together with varying concentrations of ppGpp or pppGpp 
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(i.e. 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 3 and 5 mM) at 37 °C. Samples were taken 

after five different time points (i.e. 2, 4, 6, 8 and 10 min). The reactions were stopped 

and analyzed as described for SAS2 (see above). The amount of GDP or GTP 

released during hydrolysis of ppGpp or pppGpp, respectively, was determined at a 

wavelength of 260.8 nm and quantified by peak area using ChemStation version 

B.04.03 (Agilent Technologies). 

The initial velocities of (p)ppGpp synthesis or hydrolysis were obtained from the 

slope of the linear regression of the amount of reaction product quantified at different 

incubation times. The so-obtained initial velocities were plotted against the 

concentration of reaction substrate, i.e. GDP, GTP, ppGpp or pppGpp. Values of Km, 

Vmax and the Hill coefficient (h) ± standard deviation were obtained from the 

sigmoidal fit of the v/S characteristic using the equation v = Vmax Sh/(Km
h + Sh). All 

analysis of kinetic data were carried out using GraphPad Prism version 6.04 for 

Windows (GraphPad Software, San Diego, California, USA). 

5.2.6 Production and purification of (p)ppGpp  

For production of ppGpp, 5 µM SAS1 were incubated in SEC buffer together with 10 

mM ATP and 10 mM GDP for 30 min at 37 °C. For production of pppGpp, 5 µM 

SAS1 were incubated in SEC buffer together with 10 mM ATP and 10 mM GTP for 

2h at 37 °C. Thereafter, the reaction mixture was thoroughly mixed with one volume 

part chloroform and centrifuged (17300 x g, 5 min, 4 °C). The aqueous phase was 

removed, the organic phase thoroughly mixed with one volume part ddH2O and 

centrifuged (17300 x g, 5 min, 4 °C). The combined aqueous phases were subjected 

to anion-exchange chromatography using a ResourceQ 6-ml column (column volume 

(CV) = 6 ml) at a flow rate of 6 ml/min. A gradient of NaCl was used for separation of 

nucleotides established by employing AX buffer A and AX buffer B. In brief, the 

gradient employed was as follows: 0% B (0-4 CV), 0-18% B (4-9 CV), 18-30% B (9-

21 CV), 30-100% B (21-22 CV), 100% B (22-23 CV), 100-0% B (23-24 CV), 0% B 

(24-27 CV). The alarmones ppGpp and pppGpp typically eluted after 20 and 22% B, 

corresponding to 200 and 220 mM NaCl, respectively. Fractions containing the 

desired nucleotides were pooled and lithium chloride added to a final concentration of 

1 M followed by the addition of four volume parts ethanol. The suspension was then 

incubated at -20 °C for 20 min and centrifuged (5000 x g, 20 min, 4 °C). The resulting 
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pellets were washed twice with absolute ethanol, dried and stored at -20 °C. Quality 

of the so-prepared alarmones was controlled by analytical HPLC and typically yielded 

ppGpp and pppGpp in purities of 98% and 95%, respectively.  

5.2.7 Allosteric regulation of SAS1 and SAS2 by various ligands  

The effect of various ligands on (p)ppGpp synthetase activity of SAS1 and SAS2 was 

basically determined as described in chapter 6.2.6. In brief, proteins were incubated 

in a buffer containing 100 mM HEPES-Na, pH 7.5, 20 mM MgCl2, 20 mM KCl and 

200 mM NaCl at 37 °C and the reactions stopped by flash freezing in liquid nitrogen. 

Protein concentration, incubation time and concentrations of substrates and ligands 

were adjusted to the experimental requirements and are stated in the figures and/or 

text. HPLC analysis was carried out as described in chapter 6.2.6, however, a buffer 

containing 50 mM KH2PO4, 50 mM K2HPO4, 25% (v/v) acetonitrile and 10 mM TPAB 

was employed. Mainly to discriminate between (p)ppGpp added to the reaction and 

newly synthesized (p)ppGpp, the amount of AMP released equimolar to (p)ppGpp 

during the reaction was quantified in agreement with standards at a wavelength of 

260.8 nm. The amount of AMP present as contamination in the ATP substrate was 

quantified by triplicate measurement of ATP in each experiment.   

 

5.2.8 Hydrogen-Deuterium Exchange Mass Spectrometry (HDXMS) 

5.2.8.1 Data acquisition 

For HDX analysis of SAS1, 200 pmol (4 µl of 50 µM solution) SAS1 were incubated 

without or in the presence of nucleotides for 5 min at 37 °C prior to H/D exchange. 

Nucleotides were added to SAS1 in concentrations of 125 µM (ppGpp and pppGpp) 

or 1 mM (AMPCPP, GDP or GTP). The mixtures were diluted 10-fold in D2O-

containing SEC buffer to start the H/D exchange and incubated at 37 °C. The 

reactions were stopped after different incubation times (i.e. 15, 30, 60, 600 sec) 

through addition of an equal volume of ice-cold quench buffer and directly injected 

into an ACQUITY UPLC M-class system with HDX technology (Waters). SAS1 was 

digested online using an Enzymate BEH Pepsin column 2.1 x 30 mm (Waters) at a 

flow rate of 100 µl/min ddH2O + 0.1 % (v/v) formic acid at 11 °C and the resulting 

peptic peptides trapped for 3 min using an AQUITY UPLC BEH C18 1.7 µm 2.1 x 5 
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mm VanGuard Pre-column (Waters) kept at 0.5 °C (209). Thereafter, the trap column 

was placed in line with an ACQUITY UPLC BEH C18 1.7 µm 1.0 x 100 mm column 

(Waters) and the peptides eluted at 0.5 °C using a gradient of water + 0.1 % formic 

acid (Hdx buffer A) and acetonitrile + 0.1 % formic acid (HDX buffer B) at 40 µl/min 

flow rate: 5% B (0 min), 5-35% B (0-7 min), 35-85% B (7-8 min), 85% B (8-10 min), 

85-95% B (10-10.1 min), 95% B (10.1-11 min), 95-5% B (11-11.1 min), 5% B (11.1-

16 min). Mass spectra were acquired in positive ion mode using a SYNAPT G2-Si 

mass spectrometer equipped with an electrospray ionization source (Waters). 

Deuterated peptides were detected in High Definition MS (HDMS, (210)) mode 

including ion mobility separation (IMS). Lock mass spectra were obtained every 30-

45 s using [Glu1]-Fibrinopeptide B standard (Waters). Undeuterated peptides of 

SAS1 were obtained similar as described above by 10-fold dilution of SAS1 in H2O-

containing SEC buffer and detected in Enhanced High Definition MS (HDMSE) mode 

including IMS of precursor ions within the gas phase and alternating high and low 

energies applied to the transfer cell (Waters). All measurements were performed in 

triplicates. Blank runs were performed between each sample to avoid peptide carry-

over. 

Preparation of samples during HDX analysis of Rel-NTD was aided by a two-arm 

robotic autosampler (LEAP Technologies) embedded in the same HDX setup as 

used for SAS1. For each replicate, 6.8 µl of a 50 µM solution of Rel-NTD were mixed 

with 61.8 µl of D2O-containing SEC buffer to start the H/D exchange and incubated at 

25 °C. Nucleotides (GDP, GTP, AMPCPP and combinations thereof) were present in 

the SEC buffer at a concentration of 1.1 mM, yielding 1 mM in the final HDX reaction. 

The reactions were stopped after different incubation times (i.e. 15, 30, 60, 120, 600 

sec) by transfer of 55 µl HDX reaction into an equal volume of quench buffer kept at 

0.5 °C. 95 µl of the quenched solution were injected into an ACQUITY UPLC M-class 

system with HDX technology (Waters). LCMS analysis was carried out as described 

for SAS1 with the exception that a flow rate of 30 µl/min was employed during 

chromatographic separation of Rel-NTD peptic peptides. All measurements were 

performed in triplicates. Blank runs were performed between each sample to avoid 

peptide carry-over. Also, the pepsin column was washed by 3 times injection of 80 µL 

HDX column wash solution during LCMS of Rel-NTD. 
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5.2.8.2 Data analysis 

Analysis of HDX data was aided by the softwares Protein LynX Global Server 

(PLGS) and DynamX 3.0 (both Waters). Identification of undeuterated peptides was 

performed using PLGS with custom-created databases and the setting ‘no enzyme’. 

Only peptides identified in at least two replicates of each nucleotide-bound state were 

used for assignment of deuterium incorporation in DynamX 3.0. Thresholds of 0.5 

min and 25 ppm for retention time and m/z values, respectively, were applied for 

assignment of the deuterated peptides to their undeuterated counterparts. Deuterium 

incorporation into each peptide was calculated by subtracting the centroid of the 

isotope distribution of the undeuterated from the deuterated peptides. Relative 

deuteration was calculated as the quotient between absolute deuteration and the 

number of backbone amide hydrogens of the peptide (211).   

5.2.9 Growth behaviour and cellular heterogeneity of B. subtilis strains 

5.2.9.1 Generation of B. subtilis PY79 strains encoding mutated SAS1 or 
SAS2 

Strains of B. subtilis carrying mutations in yjbM or ywaC encoding for varied SAS1 

and SAS2, respectively, were generated using the pMAD-protocol for markerless 

allelic replacement (200). In brief, yjbMK25A/F42A, yjbME139V and ywaCE154V (where the 

elevations denote the respective amino acid substitutions in the translated proteins 

SAS1 and SAS2) were obtained by overlapping PCR as described in chapter 6.2.1. 

Additionally, two fragments of ~500 base pairs flanking yjbM in the genome were 

generated by PCR using the primers SAS1-flk1-EcoRI-F and SAS1-flk1-R (flank 1) 

and SAS1-flk2-F and SAS1-flk2-NcoI-R (flank 2) (Table S4). For ywaC, only one 

flank downstream of the gene was generated by PCR employing the oligonucleotides 

BsSAS2-EcoRI-F and BsSAS2+fla-NcoI-R (Table S4). Subsequently, the mutated 

yjbM and ywaC genes were fused with their respective flanks by overlapping PCR 

and cloned into the shuttle vector pMAD via EcoRI/NcoI restriction sites. The so-

obtained plasmids were integrated into the B. subtilis PY79 genome by homologous 

recombination (200). Correct replacement of the native yjbM and ywaC alleles was 

verifed by DNA sequencing. 
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5.2.9.2 Generation of B. subtilis PY79 strains harboring ectopic 
integrations 

Plasmids for ectopic integration of SAS1 and Rel-NTD H77A/D78A were obtained 

using the same methods as described in chapter 5.2.1. The so-obtained plasmids 

were integrated into the B. subtilis PY79 genome by homologous recombination 

(200). Correct genomic integration into the amyE locus was verified by deficiency of 

the resulting strains to degrade starch and DNA sequencing. 

5.2.9.3 Investigation of growth behaviour of Bacillus subtilis PY79 

B. subtilis PY79 strains were grown on LB agar plates, solidified with 1.5% agar, for 

16 h at 37°C. Cells were resuspended in LB medium and further grown for 

approximately 1 h under vigorous shaking at 37°C. These precultures were used to 

inoculate 50 ml medium (composition as stated in figures and text) to an OD600nm of 

0.02. Cells were further grown under vigorous shaking at 37°C and the OD600nm of 

the culture determined after regular time intervals (Ultrospec 10 Cell Density Meter, 

Amersham). 

5.2.9.4 Investigation of cellular heterogeneity of Bacillus subtilis PY79 

B. subtilis PY79 strains were grown on LB agar plates, solidified with 1.5% agar, for 

16 h at 37°C. Cells were resuspended in LB medium or LB medium supplemented 

with 0.5% (w/v) glucose, when glucose was also added to the main culture. These 

precultures were used to inoculate 50 ml medium eventually supplemented with 0.5% 

(w/v) glucose and/or 0.001% (w/v) xylose as stated in figures and text, to an OD600nm 

of 0.02. Cells were then grown under vigorous shaking at 37°C. Samples for light 

microscopy were taken at an OD600nm of 2.0 ± 0.2 (1.0 ± 0.1 in presence of ZnCl2) 

and immobilized on an agarose pad, consisting of the respective medium 

supplemented with 1% (w/v) agarose. Light microscopy was carried out using an 

AX70 microscope (Olympus) equipped with a UPlanSApo 100x objective (Olympus) 

with a numerical aperture of 1.40 and a Photometrics CoolSnap ES2 CCD camera 

(Visitron Systems). Images were recorded using VisiView Version 1.5.8 software 

(Visitron Systems). At least 103 cells were counted manually for each replicate of the 

experiment. All experiments were performed in biologically independent triplicates. 
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For data analysis, > 4 cells connected were considered as long, sessile chains while 

≤ 4 connected cells were considered as unchained. 
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Appendix 

 

Supplementary tables 

Table S1. Crystallographic data collection and refinement statistics for B. subtilis 
SAS1 in different nucleotide-bound states. 
 
 BsSAS1 BsSAS1-AMPCPP BsSAS1-pppGpp 
Data collection    
Space group P 21 P 21 C 2 
Cell dimensions    
a, b, c (Å) 78.13 116.67 197.87 
 77.69 103.63 113.49 
 81.61 138.29 139.85 
α, β, γ (°) 90.00 90.00 90.00 
 90.40 104.84 127.17 
 90.00 90.00 90.00 
Energy (keV) 12.6616   
Resolution (Å) 56.63 – 1.86 48.31 – 2.80 50.57 – 2.94 
 (1.96 – 1.86) (2.95 – 2.80) (3.10 – 2.94) 
Rmerge 0.083 (0.46) 0.090 (0.48) 0.103 (0.273) 
I / σI 7.4 (2.5) 10.6 (2.8) 12.1 (5.8) 
Completeness (%) 97.7 (98.1) 100 (100) 99.3 (96.1) 
Redundancy 3.4 (3.5) 3.8 (3.9) 6.8 (6.4) 
    
Refinement    
Resolution (Å) 56.6 – 2.00 48.3 – 2.8 50.6 – 2.94 
No. reflections 64368 78505 51454 
Rwork/ Rfree 19.4/23.8 19.6/25.7 18.1/24.5 
No. atoms 6542 18586 13016 
R.m.s deviations    
Bond lengths (Å) 0.010 0.013 0.014 
Bond angles (°) 1.25 1.242 1.441 
*Values for the highest-resolution shell are given in parentheses. 
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Table S2. Crystallographic data collection and refinement statistics for S. aureus 
SAS2 in different nucleotide-bound states. 
 
 SaSAS2 SaSAS2-

AMPCPP 
SaSAS2-
pppGpp 

SaSAS2- 
pGpp 

Data collection     
Space group P43212 I4122 P61 I4122 
Resolution (Å) 49.06 - 2.25 

(2.33 - 2.25) 
46.46-2.90 
(3.00-2.90) 

47.97-3.30 
(3.42-3.30) 

44.56  - 3.23 
(3.34  - 3.23) 

Unit cell parameters     
a, b, c (Å) 71.80, 71.80, 

190.82 
125.86, 
125.86, 
217.88 

127.84, 
127.84 290.32 

126.029, 
126.029, 
217.912 

α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 120 90, 90, 90 
Rmerge 
CC½ (%) 

0.0364 (0.580) 
1 (0.85) 

0.178 (1.234) 
99.7 (79.7) 

0.052 (0.315) 
99.7 (82.1) 

0.01501 
(0.3236) 
1 (0.69) 

I / σ I 20.37 (2.22) 14.65 (2.19) 10.35 (2.2) 22.82 (2.55) 
No. of total reflections 103930 

(10417) 
231522 
(22086) 

77531 (7672) 28736 (2670) 

Redundancy 4.3 (4.4) 11.7 (11.4) 1.9 (1.9) 2.0 (2.0) 
     
Refinement     
Completeness (%) 99.0 (100.0) 100.0 (100.0) 99.0 (100.0) 99.4 (100.0) 
Rwork/Rfree (%) 0.199 / 0.248 19.9/23.4 

(32.4/34.5) 
21.7/27.0 

(29.0/33.9) 
20.81/25.05 

(35.37/43.85) 
No. of atoms     
Overall 3314 3328 13352 3322 
Protein 
Ligands 

3261 
20 

3211 
64 

13032 
320 

3258 
64 

Water 33 53 0 0 
Average B-factors (Å2)     
Overall 72.00 32.26 42.74 81.38 
Protein 
Ligands 

72.12 
87.05 

31.23 
69.31 

42.51 
52.39 

80.33 
134.54 

Water 50.71 49.70 0.00 0.00 
Root-mean-square 
deviation 

    

Bond lengths (Å) 0.010 0.009 0.013 0.009 
Bond angles    (°) 1.26 1.36 1.27 1.47 
Ramachandran plot 
(%) 

    

Favored 98.74 98.00 96.05 96.89 
Allowed 1.00 1.80 3.50 2.60 
Outliers 0.26 0.20 0.45 0.51 
*Values for the highest-resolution shell are given in parentheses.  
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Table S3. Crystallographic data collection and refinement statistics for B. subtilis Rel-
NTD. 
 
 BsRel-NTD 
Data collection  
Space group P4322 
Cell dimensions  
a, b, c (Å) 80.662  
 80.662 
 125.596 
a, b, g (°) 90.00 
 90.00 
 90.00 
Energy (keV) 12.6616 
Resolution (Å) 37.15 – 3.70 
 (3.83 – 3.70) 
Rmerge 0.052  

(0.901) 
I / σI 23.7 (2.2) 
Completeness (%) 99.7 (98.1) 
Redundancy 8.3 (8.0) 
Refinement  
Resolution (Å) 37.15 – 3.70 
No. reflections 11903 
Rwork/ Rfree 27.9 
 32.7 
No. atoms 2160 
    Protein 2160 
    Ligand 0 
    Water 0 
R.m.s deviations  
    Bond lengths (Å) 0.013 
    Bond angles (°) 1.57 
Ramachandran (%)  
Preferred 94.72 
Allowed 5.28 
Outliers 0.00 
*Values for the highest-resolution shell are given in parentheses. 
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Table S4. List of oligonucleotides. 
 
Oligonucleotide Org Sequence (5’ to 3’) Amplificate 

SAS1-Nco-6H-F Bs ttaaccatgggccaccatcaccatcaccatgatgacaaacaat

gggagc 

 

SAS1 

SAS1-Xho-R Bs ttaactcgagttattgttgctcgcttccttttttc 

BsSAS1-R46G-F Bs gaatttgtgacccgaggcgtcaagcctgtcg SAS1 

R46G BsSAS1-R46G-R Bs ccacaggcttgacgcctccggtcacaaattc 

BsSAS1-E139V-F Bs gaaaagcatgttctcgtagtaatacagatccgtacac SAS1 

E139V BsSAS1-E139V-R Bs gtgtacggatctgtattactacgagaacatgcttttc 

RelP-K25A-F Bs gtgaagctcgcggggatccgcacac SAS1 

K25A RelP-K25A-R Bs gtgtgcggatccccgcgagcttcac 

RelP-F42A-F Bs ccgatcgaagctgtgaccggacgcg SAS1 

F42A RelP-F42A-R Bs cgcgtccggtcacagcttcgatcgg 

RelP-N148G-F Bs ctggcgatgggtttttgggcgac SAS1 

N148G RelP-N148G-R Bs gtcgcccaaaaacccatcgccag 

BsSAS1-H111P-F Bs gcggaacctaaagagagc SAS1 

H111P BsSAS1-H111P-R Bs gctctctttaggttccgc 

SAS2-Nco-6H-F Bs ttaaccatgggccaccatcaccatcaccatgatttatctgtaaca  
SAS2 SAS2-Xho-R Bs ttaactcgagttaatccacttctttcttaatcc 

Sau-RelQ-Nco6H-F Sa ttaaccatgggccaccatcaccatcaccattatgtagatcgaa

aacca 

 

SAS2 

Sau-RelQ-Xho-R Sa ttaactcgagctactctgttatttc 

SaSAS2-H73A-F Sa ctatagctcatatggagc SAS2 

H73A SaSAS2-H73A-R Sa gctccatatgagctatag 

SaSAS2-H74A-F Sa ctatacatgctatggagc SAS2 

H74A SaSAS2-H74A-R Sa gctccatagcatgtatag 

SaSAS2-E76A-F Sa catcatatggcgcgacgtg SAS2 

E76A SaSAS2-E76A-R Sa cacgtcgcgccatatgatg 

SaSAS2-D183A-F Sa ggtatggctatgtgggc SAS2 

D183A SaSAS2-D183A-R Sa gcccacatagccatacc 

SaSAS2-R91A-F Sa cttaatgctaaaggattac SAS2 

R91A SaSAS2-R91A-R Sa gtaatcctttagcattaag 

SaSAS2-K92A-F Sa cttaatcgtgcaggattac SAS2 

K92A SaSAS2-K92A-R Sa gtaatcctgcacgattaag 

SaSAS2-R91A-

K92A-F 

Sa cttaatgctgcaggattac  

SAS2 
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SaSAS2-R91A-

K92A-R 

Sa gtaatcctgcagcattaag R91A/K92A 

SaSAS2-K138A-F Sa caattgatagcacgtaaag SAS2 

K138A SaSAS2-K138A-R Sa ctttacgtgctatcaattg 

SaSAS2-Y142F-F Sa gtaaagattttattcag SAS2 

Y142F SaSAS2-Y142F-R Sa ctgaataaaatctttac 

SaSAS2-H155N-F Sa cagtttaaatatcgttg SAS2 

H155N SaSAS2-H155N-R Sa caacgatatttaaactg 

RelA-Nco-6H-F Bs ttaaccatgggccaccatcaccatcaccataacgaacaagtat  
Rel RelA-Xho-R Bs ttaactcgagttagttcatgacgcggcgcacag 

RelA-Nco-6H-F Bs ttaaccatgggccaccatcaccatcaccataacgaacaagtat  
Rel-NTD RelA-NT-XhoI-R Bs ttaactcgagttaatacaccatgtcagagaa 

SAS1-flk1-EcoRI-F Bs ttaagaattcccgccctgtaaatcttattt  
SAS1 

genomic 
integration 

SAS1-flk1-R Bs tcccattgtttgtcatccatcatacatcccccaattccga 

SAS1-flk2-F Bs aaggaagcgagcaacaataggtaaaggggaagaagagca 

SAS1-flk2-NcoI-R Bs aattccatgggtgctgcctgatggagttga 

BsSAS2-EcoRI-F Bs ttaagaattcatggatttatctgtaacac SAS2 
genomic 

integration BsSAS2+fla-NcoI-R Bs ttaaccatggaatccagccgtacggctgc 

BsSAS2-E154V-F Bs gtcaaagcagtaattc  
SAS2 E154V BsSAS2-E154V-R Bs gaattactgctttgac 

RelP_amyup_ApaI Bs ttaagggcccatggatgacaaacaatgg SAS1 amyE 

integration RelP_ClaI_R Bs ttaaatcgatttattgttgctcgcttcc 

RelA-KpnI-F Bs ttaaggtaccatggcgaacgaacaagtattgac Rel-NTD 
amyE 

integration RelA-NT-XhoI-R Bs ttaactcgagttaatacaccatgtcagagaa 

RelANT-HDmut-F Bs gatttttggccgctgtcgtggaagatac Rel-NTD 

H77A/D78A RelANT-HDmut-R Bs gtatcttccacgacagcggccaaaaatc 

‘Org’ denotes the originating microbial origins B. subtilis (Bs) or S. aureus (Sa). 
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Table S5. List of plasmids. 
 
Vector Insert Organism Affinity tag Cloning sites 
pET-24d(+) SAS1 B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 R46G B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 E139V B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 K25A B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 F42A B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 N148G B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS1 H111P B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS2 B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) SAS2 S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 H73A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 H74A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 E76A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 D183A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 R91A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 K92A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 R91A/K92A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 K138A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 Y142A S. aureus N-His6 NcoI/XhoI 

pET-24d(+) SAS2 H155N S. aureus N-His6 NcoI/XhoI 

pET-24d(+) Rel B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) Rel-NTD (aa 1-395) B. subtilis N-His6 NcoI/XhoI 

pET-24d(+) Rel-NTD (aa 1-395) 

H77A/D78A 

B. subtilis N-His6 NcoI/XhoI 

pMAD SAS1 E139V B. subtilis - EcoRI/NcoI 

pMAD SAS1 K25A/F42A B. subtilis - EcoRI/NcoI 

pMAD SAS2 E154V B. subtilis - EcoRI/NcoI 

pSG1154 SAS1 B. subtilis - ApaI/ClaI 

pSG1154 Rel-NTD (aa 1-395) 

H77A/D78A 

B. subtilis - KpnI/XhoI 
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Table S6. List of Bacillus subtilis strains. 
 
Strain Description Integrated plasmid Reference 
PY79 wild type - (212) 

SAS1-E139V yjbM substituted by yjbME139V pMAD:SAS1 E139V This work 

SAS1-

K25A/F42A 

yjbM substituted by yjbMK25A/F42A pMAD:SAS1 

K25A/F42A 

 
This work 

PY79 + 

SAS1 

Integration of yjbM into the amyE 

locus of PY79 

pSG1154:SAS1  
This work 

SAS1-E139V 

+ SAS1 

Integration of yjbM into the amyE 

locus of SAS1-E139V 

pMAD:SAS1 E139V + 

pSG1154:SAS1 

 
This work 

SAS1-E139V 

+ Rel-NTD 

H77A/D78A 

Integration of a gene encoding for 

Rel-NTD H77A/D78A into the amyE 

locus of SAS1-E139V 

pMAD:SAS1 E139V + 

pSG1154:Rel-NTD 

H77A/D78A 

 

This work 

 
 
 
	  


