Publikationsserver der Universitätsbibliothek Marburg

Titel:DNA translocases and origin region segregation in B. subtilis
Autor:El Najjar, Nina
Weitere Beteiligte: Graumann, Peter (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0075
URN: urn:nbn:de:hebis:04-z2017-00754
DOI: https://doi.org/10.17192/z2017.0075
DDC: Biowissenschaften, Biologie
Titel(trans.):DNA Translokalisation und Segregation von Ursprungsregionen in B. subtilis
Publikationsdatum:2017-09-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Segregation, B. subtilis, Bacillus subtilis, Translokasen, B. subtilis, Translokalisation, Translocases

Summary:
Specialized mechanisms involved in chromosome segregation, septum placement, and chromosome dimer resolution contribute to the maintenance of chromosome integrity throughout the cell cycle. The first part of this work focuses on the investigation of DNA translocases in the Gram positive model organism Bacillus subtilis, which move the chromosomes away from the division plane by directed DNA transport. SpoIIIE is a membrane-integral translocase that also acts during sporulation, while SftA is associated with the division septum by an unknown mechanism and was reported to be a soluble protein in vitro. The solubility of SftA in vivo was proven with cell fractionation experiments, and the part of the protein that serves for septal targeting was determined through the localization of different truncations of fluorescently labeled SftA, which helped narrow down the stretch of amino acids responsible for targeting the protein to the septum. Expression in a Eukaryotic heterologous system revealed an interaction between SftA and FtsA, but not FtsZ. Further evidence was provided by single molecule tracking experiments whereby the fraction of soluble SftA molecules increased in an FtsA depletion background as compared to a wild type background. Concomitant investigation on the single molecule level of SpoIIIE, a membrane associated DNA translocase in B. subtilis, and PfkA, a soluble phosphofructokinase, revealed a different behavior of the two translocases (SftA and SpoIIIE): SftA has a septal bound fraction, and a small soluble fast moving fraction,comparable in diffusion coefficient to the exclusively soluble PfkA tracked under the same conditions. SpoIIIE is much slower in comparison, and even its “fast” moving fraction is much slower than that of SftA. It seems to move slowly along the membrane with no specific enrichment at the septum, even after Mitomycin C (MMC) treatment. The second part of this work focused on the count of nucleoids, origin, and terminus of replication regions under conditions of fast and slow growth, with or without the induction of double strand breaks with MMC. B. subtilis seemed to be predominantly diploid, with a fraction of polyploid and monoploid cells which changed depending on the growth conditions. Replication of the origin proximal regions increased after DNA damage induction, as was shown by the increase in the number of origins during the time of DNA repair, while the number of termini remained constant. Time lapse experiments of the segregation of the tagged origin regions revealed that the movement is best described as directed diffusion, but seems to be quite robust and continues, though slower, after MMC treatment or treatment with Ciprofloxacin which blocks the topoisomerase IV

Zusammenfassung:
Die Segregation von Chromosomen wird durch spezielle Mechanismen sicher gestellt, welche die Position des Septums sowie die korrekte Trennung von chromosomalen Dimeren gewährleisten und somit an der Aufrechterhaltung der Integrität der chromosomalen DNA während des gesamten Zellzyklus beteiligt sind. Anhand des Gram-positiven Modellorganismus Bacillus subtilis wurden im ersten Teil dieser Arbeit DNA-Translokasen untersucht, welche über einen direkten Transport die Chromosomen von der zellulären Teilungsebene weg bewegen. Bei SpoIIIE handelt es sich um eine Membranintegrierte Translokase, die während der Sporulation aktiv ist. Es wurde bereits gezeigt, dass SftA hingegen in vitro löslich ist und über einen bisher unbekannten Mechanismus mit dem Divisionsseptum assoziiert. Die Löslichkeit von SftA in vivo wurde über Zell-FraktionierungsExperimente nachgewiesen. Der Teil des Proteins, welcher zur Bindung an das Septum führt, wurde über die Lokalisation von unterschiedlichen, trunkierten und fluoreszenzmarkierten SftA Derivaten identifiziert, wodurch die für die Bindung an das Septum verantwortlichen Aminosäuren eingegrenzt werden konnten (siehe Manuskript, 4A). Über die Expression in einem eukaryotischen, heterologen System konnte eine Interaktion von SftA mit FtsA, jedoch nicht mit FtsZ nachgewiesen werden. Ein weiterer Nachweis hierfür wurde über Experimente durch single molecule tracking erbracht, wobei die lösliche Fraktion der SftA-Moleküle bei geringer Expression von FtsA im Vergleich zu dem Wildtyp zunimmt. Untersuchungen auf Einzelmolekül-Level von SpoIIIE, einer Membran-assoziierten DNATranslokase in B. subtilis und PfkA, einer löslichen Phosphofructokinase, ließen auf ein unterschiedliches Verhalten der beiden Translokasen (SftA und SpoIIIE) schließen: SftA besitzt eine am Septum gebundene Fraktion und eine kleine, sich schnell bewegende, lösliche Fraktion, welche mit der ausschließlich löslichen PfkA-Fraktion vergleichbar ist. SpoIIIE ist im Vergleich weniger dynamisch, wobei sogar die dynamische Fraktion viel langsamer ist als die statische SftA Fraktion. Scheinbar bewegt sich SpoIIIE langsam entlang der Membran, ohne sich am Septum anzureichern; selbst nach der Zugabe von Mitomycin C (MMC, siehe Manuskript 4B). Der zweite Teil dieser Arbeit befasste sich mit der Anzahl von Nukleoiden, Origin- und Termini unter schnellen und langsamen Wachstumsbedingungen, mit oder ohne Induktion von Doppelstrangbrüchen durch MMC. B. subtilis scheint vornehmlich diploid zu sein, mit polyploiden und monoploiden Zellfraktionen, welche sich abhängig von den gewählten Wachstumsbedinungen verändern. Die Replikation von benachbarten Regionen der Replikationsursprünge nahm nach der Induktion von DNA-Schäden zu, wie schon durch die Zunahme der Anzahl von Origins während der DNA-Reparatur gezeigt wurde, während die Anzahl der Terminatorsequenzen konstant blieb. Time lapse Experimente der Segregation von markierten Replikationsursprüngen zeigte, dass sich die Bewegung der Moleküle am besten durch gezielte Diffusion beschreiben lässt, welche sich durch die Zugabe von MMC oder Ciprofloxacin, welches die Topoisomerase IV inhibiert, zwar verlangsamt, sich jedoch als robust und kontinuierlich beschreiben lässt

Bibliographie / References

  1. 98. Brendler T, Sawitzke J, Sergueev K, Austin S. 2000. A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. The EMBO journal 19:6249-6258.
  2. 96. Fogel MA, Waldor MK. 2006. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes & development 20:3269-3282.
  3. Allosteric regulation of the primase (DnaG) activity by the clamp‐loader (τ) in vitro. Molecular microbiology 72:537-549.
  4. Lecointe F, Sérèna C, Velten M, Costes A, McGovern S, Meile JC, Errington J, Ehrlich SD, Noirot P, Polard P. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. The EMBO journal 26:4239-4251.
  5. Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H. 2015. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proceedings of the National Academy of Sciences 112:E1096-E1105.
  6. Fall R, Kinsinger RF, Wheeler KA. 2004. A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. Systematic and applied microbiology 27:372.
  7. Anderson DE, Gueiros-Filho FJ, Erickson HP. 2004. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. Journal of bacteriology 186:5775-5781.
  8. Köhler P, Marahiel MA. 1997. Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. Journal of bacteriology 179:2060-2064.
  9. Velten M, McGovern S, Marsin S, Ehrlich SD, Noirot P, Polard P. 2003. A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Molecular cell 11:1009-1020.
  10. Gueiros-Filho FJ, Losick R. 2002. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes & development 16:2544-2556.
  11. Graumann P. 2012. Bacillus: cellular and molecular biology. Horizon Scientific Press.
  12. Sonenshein AL, Hoch JA, Losick R. 2002. Bacillus subtilis and its closest relatives: from genes to cells. Asm Press.
  13. Kawai Y, Ogasawara N. 2006. Bacillus subtilis EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division. Microbiology 152:1129-1141.
  14. Graumann PL. 2000. Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. Journal of bacteriology 182:6463-6471.
  15. La Ragione RM, Casula G, Cutting SM, Woodward MJ. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78: K80 in poultry. Veterinary microbiology 79:133-142.
  16. Levin PA, Grossman AD. 1998. Cell cycle and sporulation in Bacillus subtilis. Current opinion in microbiology 1:630-635.
  17. Mascarenhas J, Soppa J, Strunnikov AV, Graumann PL. 2002. Cell cycle‐dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in Bacillus subtilis that interact with SMC protein. The EMBO journal 21:3108-3118.
  18. Jensen S, Thompson L, Harry E. 2005. Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-Ring assembly. Journal of bacteriology 187:6536-6544.
  19. Real G, Autret S, Harry EJ, Errington J, Henriques AO. 2005. Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Molecular microbiology 55:349-367.
  20. Britton RA, Lin DC-H, Grossman AD. 1998. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes & development 12:1254-1259.
  21. 107. Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD. 2006. Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. Journal of bacteriology 188:5595-5605.
  22. 104. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
  23. Bravo A, Serrano-Heras G, Salas M. 2005. Compartmentalization of prokaryotic DNA replication.
  24. Nishitani H, Lygerou Z. 2002. Control of DNA replication licensing in a cell cycle. Genes to Cells 7:523-534.
  25. Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Molecular microbiology 68:1029-1046.
  26. Errington J, Daniel RA, Scheffers D-J. 2003. Cytokinesis in bacteria. Microbiology and Molecular Biology Reviews 67:52-65.
  27. Duigou S, Ehrlich SD, Noirot P, Noirot‐Gros MF. 2004. Distinctive genetic features exhibited by the Y‐family DNA polymerases in Bacillus subtilis. Molecular microbiology 54:439-451.
  28. Barák I, Wilkinson AJ. 2007. Division site recognition in Escherichia coli and Bacillus subtilis. FEMS microbiology reviews 31:311-326.
  29. Bruand C, Farache M, McGovern S, Ehrlich SD, Polard P. 2001. DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Molecular microbiology 42:245-256.
  30. Grainger WH, Machón C, Scott DJ, Soultanas P. 2010. DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic acids research 38:2851- 2864.
  31. Sanjanwala B, Ganesan A. 1989. DNA polymerase III gene of Bacillus subtilis. Proceedings of the National Academy of Sciences 86:4421-4424.
  32. Friedberg EC, Walker GC, Siede W, Wood RD. 2005. DNA repair and mutagenesis. American Society for Microbiology Press.
  33. McHenry CS. 2011. DNA replicases from a bacterial perspective. Annual review of biochemistry 80:403-436.
  34. Kornberg A, Baker TA. 1980. DNA replication. Wh Freeman San Francisco.
  35. Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annual review of biochemistry 71:333- 374.
  36. Earl AM, Losick R, Kolter R. 2008. Ecology and genomics of Bacillus subtilis. Trends in microbiology 16:269-275.
  37. 100. Jun S, Wright A. 2010. Entropy as the driver of chromosome segregation. Nature Reviews Microbiology 8:600-607.
  38. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen K, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P. 2003. Essential Bacillus subtilis genes. Proceedings of the National Academy of Sciences 100:4678-4683.
  39. 102. Dubnau D, Davidoff-Abelson R. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis: I. Formation and properties of the donor-recipient complex. Journal of molecular biology 56:209-221.
  40. Katayama T. 2001. Feedback controls restrain the initiation of Escherichia coli chromosomal replication. Molecular microbiology 41:9-17.
  41. Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ. 1999. FtsK‐dependent and‐independent pathways of Xer site‐specific recombination. The EMBO journal 18:5724-5734.
  42. Susanna KA, Fusetti F, Thunnissen A-MW, Hamoen LW, Kuipers OP. 2006. Functional analysis of the competence transcription factor ComK of Bacillus subtilis by characterization of truncation variants. Microbiology 152:473-483.
  43. Bruand C, Velten M, McGovern S, Marsin S, Sérèna C, Ehrlich SD, Polard P. 2005. Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and reinitiation of DNA replication. Molecular microbiology 55:1138-1150.
  44. Gorbalenya AE, Koonin EV. 1993. Helicases: amino acid sequence comparisons and structurefunction relationships. Current opinion in structural biology 3:419-429.
  45. Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R. 2008. High-precision, wholegenome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139.
  46. 101. Jaacks K, Healy J, Losick R, Grossman A. 1989. Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. Journal of bacteriology 171:4121-4129.
  47. Sciochetti SA, Piggot PJ, Blakely GW. 2001. Identification and Characterization of thedif Site from Bacillus subtilis. Journal of bacteriology 183:1058-1068.
  48. Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, di Fagagna FdA. 2002. Identification of a DNA nonhomologous end-joining complex in bacteria.
  49. 97. Ptacin JL, Shapiro L. 2010. Initiating bacterial mitosis: understanding the mechanism of ParAmediated chromosome segregation. Cell Cycle 9:4033-4034.
  50. Thirlway J, Soultanas P. 2006. In the Bacillus stearothermophilus DnaB-DnaG complex, the activities of the two proteins are modulated by distinct but overlapping networks of residues.
  51. Daniel RA, Errington J. 2000. Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Molecular microbiology 36:278-289.
  52. Involvement of DnaE, the second replicative DNA polymerase from Bacillus subtilis, in DNA mutagenesis. Journal of Biological Chemistry 279:1757-1767.
  53. Bigot S, Saleh OA, Lesterlin C, Pages C, El Karoui M, Dennis C, Grigoriev M, Allemand JF, Barre FX, Cornet F. 2005. KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. The EMBO journal 24:3770-3780.
  54. Yu X-c, Tran AH, Sun Q, Margolin W. 1998. Localization of cell division protein FtsK to theEscherichia coli septum and identification of a potential N-terminal targeting domain. Journal of bacteriology 180:1296-1304.
  55. Barnes MH, Hammond RA, Kennedy CC, Mack SL, Brown NC. 1992. Localization of the exonuclease and polymerase domains of Bacillus subtilis DNA polymerase III. Gene 111:43-49.
  56. Kokoska RJ, Bebenek K, Boudsocq F, Woodgate R, Kunkel TA. 2002. Low fidelity DNA synthesis by a Y family DNA polymerase due to misalignment in the active site. Journal of Biological Chemistry 277:19633-19638.
  57. Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A. 1968. Mechanism of DNA chain growth. I.
  58. 105. Bremer H, Dennis PP. 2008. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3.
  59. Löwe J, Ellonen A, Allen MD, Atkinson C, Sherratt DJ, Grainge I. 2008. Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Molecular cell 31:498-509.
  60. Lemon KP, Grossman AD. 2000. Movement of replicating DNA through a stationary replisome.
  61. Michel B, Grompone G, Florès M-J, Bidnenko V. 2004. Multiple pathways process stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America 101:12783-12788.
  62. Bruand C, Sorokin A, Serror P, Ehrlich SD. 1995. Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology 141:321-322.
  63. Draper GC, McLennan N, Begg K, Masters M, Donachie WD. 1998. Only the N-terminal domain of FtsK functions in cell division. Journal of bacteriology 180:4621-4627.
  64. Wang X, Llopis PM, Rudner DZ. 2013. Organization and segregation of bacterial chromosomes.
  65. Wang LH-C, Schwarzbraun T, Speicher MR, Nigg EA. 2008. Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 117:123- 135.
  66. Tamanoi F, Okazaki T, Okazaki R. 1977. Persistence of RNA attached to nascent short DNA pieces in Bacillus subtilis cells defective in DNA polymerase I. Biochemical and biophysical research communications 77:290-297.
  67. Kaimer C, Graumann PL. 2011. Players between the worlds: multifunctional DNA translocases.
  68. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proceedings of the National Academy of Sciences 59:598-605.
  69. Bruand C, Ehrlich SD, Janniere L. 1995. Primosome assembly site in Bacillus subtilis. The EMBO journal 14:2642.
  70. Fukuoka T, Moriya S, Yoshikawa H, Ogasawara N. 1990. Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis. Journal of Biochemistry 107:732-739.
  71. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America 101:9257-9262.
  72. Sanders GM, Dallmann HG, McHenry CS. 2010. Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Molecular cell 37:273-281.
  73. Fiche J-B, Cattoni DI, Diekmann N, Langerak JM, Clerte C, Royer CA, Margeat E, Doan T, Nöllmann M. 2013. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLoS Biol 11:e1001557.
  74. Katayama T, Ozaki S, Keyamura K, Fujimitsu K. 2010. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nature Reviews Microbiology 8:163- 170.
  75. Mirkin EV, Mirkin SM. 2007. Replication fork stalling at natural impediments. Microbiology and Molecular Biology Reviews 71:13-35.
  76. Merrikh H, Zhang Y, Grossman AD, Wang JD. 2012. Replication-transcription conflicts in bacteria.
  77. Thompson L, Beech P, Real G, Henriques A, Harry E. 2006. Requirement for the cell division protein DivIB in polar cell division and engulfment during sporulation in Bacillus subtilis. Journal of bacteriology 188:7677-7685.
  78. Polard P, Marsin S, McGovern S, Velten M, Wigley DB, Ehrlich SD, Bruand C. 2002. Restart of DNA replication in Gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. Nucleic acids research 30:1593-1605.
  79. Kurokawa M, Nukina M, Nakanishi H, Tomita S, Tamura T, Shimoyama T. 1999. [Resuscitation from the viable but nonculturable state of Helicobacter pylori]. Kansenshogaku zasshi The Journal of the Japanese Association for Infectious Diseases 73:15-19.
  80. 99. Gelles J, Landick R. 1998. RNA polymerase as a molecular motor. Cell 93:13-16.
  81. Daniel RA, Harry EJ, Errington J. 2000. Role of penicillin‐binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Molecular microbiology 35:299-311.
  82. Rivas-Castillo AM, Yasbin RE, Robleto E, Nicholson WL, Pedraza-Reyes M. 2010. Role of the Yfamily DNA polymerases YqjH and YqjW in protecting sporulating Bacillus subtilis cells from DNA damage. Current microbiology 60:263-267.
  83. Hamoen LW, Meile JC, De Jong W, Noirot P, Errington J. 2006. SepF, a novel FtsZ‐interacting protein required for a late step in cell division. Molecular microbiology 59:989-999.
  84. Lu M, Campbell JL, Boye E, Kleckner N. 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413-426.
  85. Zhang W, Machón C, Orta A, Phillips N, Roberts CJ, Allen S, Soultanas P. 2008. Single-molecule atomic force spectroscopy reveals that DnaD forms scaffolds and enhances duplex melting.
  86. Kaimer C, González‐Pastor JE, Graumann PL. 2009. SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in Bacillus subtilis. Molecular microbiology 74:810-825.
  87. 108. Watt PM, Hickson ID. 1994. Structure and function of type II DNA topoisomerases. Biochemical Journal 303:681.
  88. Lindow JC, Kuwano M, Moriya S, Grossman AD. 2002. Subcellular localization of the Bacillus subtilis structural maintenance of chromosomes (SMC) protein. Molecular microbiology 46:997- 1009.
  89. Edwards DH, Errington J. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Molecular microbiology 24:905-915.
  90. Biller SJ, Burkholder WF. 2009. The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Molecular microbiology 74:790-809.
  91. Messer W. 2002. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS microbiology reviews 26:355-374.
  92. Kunst F, Ogasawara N, Moszer I, Albertini A, Alloni G, Azevedo V, Bertero M, Bessieres P, Bolotin A, Borchert S. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256.
  93. Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. 2010. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 6:e1001238.
  94. Lemon KP, Grossman AD. 2001. The extrusion-capture model for chromosome partitioning in bacteria. Genes & development 15:2031-2041.
  95. Keyamura K, Fujikawa N, Ishida T, Ozaki S, Su'etsugu M, Fujimitsu K, Kagawa W, Yokoyama S, Kurumizaka H, Katayama T. 2007. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP-DnaA-specific initiation complexes. Genes & development 21:2083-2099.
  96. Lu Z, Takeuchi M, Sato T. 2007. The LysR-type transcriptional regulator YofA controls cell division through the regulation of expression of ftsW in Bacillus subtilis. Journal of bacteriology 189:5642- 5651.
  97. Migocki MD, Lewis PJ, Wake RG, Harry EJ. 2004. The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Molecular microbiology 54:452-463.
  98. Niki H, Jaffé A, Imamura R, Ogura T, Hiraga S. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. The EMBO journal 10:183.
  99. Pellegrini L. 2012. The Pol α-primase complex, p 157-169, The eukaryotic replisome: a guide to protein structure and function. Springer.
  100. 103. Dubnau D. 1991. The regulation of genetic competence in Bacillus subtilis. Molecular microbiology 5:11-18.
  101. Duggin IG, Wake RG, Bell SD, Hill TM. 2008. The replication fork trap and termination of chromosome replication. Molecular microbiology 70:1323-1333.
  102. 95. Umbarger MA, Toro E, Wright MA, Porreca GJ, Bau D, Hong S-H, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH. 2011. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Molecular cell 44:252-264.
  103. Kaimer C, Schenk K, Graumann PL. 2011. Two DNA translocases synergistically affect chromosome dimer resolution in Bacillus subtilis. Journal of bacteriology 193:1334-1340.
  104. Gamba P, Veening J-W, Saunders NJ, Hamoen LW, Daniel RA. 2009. Two-step assembly dynamics of the Bacillus subtilis divisome. Journal of bacteriology 191:4186-4194.
  105. Wu LJ, Errington J. 1998. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Molecular microbiology 27:777-786.
  106. Webb CD, Graumann PL, Kahana JA, Teleman AA, Silver PA, Losick R. 1998. Use of time‐lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Molecular microbiology 28:883-892.
  107. Lestini R, Michel B. 2007. UvrD controls the access of recombination proteins to blocked replication forks. The EMBO journal 26:3804-3814.
  108. Shah JV, Cleveland DW. 2000. Waiting for anaphase: Mad2 and the spindle assembly checkpoint.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten