Publikationsserver der Universitätsbibliothek Marburg

Titel:Sources, pathways, and deposition of nutrients and pollutants in an Ecuadorian tropical mountain forest
Autor:Makowski, Sandro
Weitere Beteiligte: Bendix, Jörg (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0071
DOI: https://doi.org/10.17192/z2017.0071
URN: urn:nbn:de:hebis:04-z2017-00714
DDC: Naturwissenschaften
Titel(trans.):Sources, pathways, and deposition of nutrients and pollutants in an Ecuadorian tropical mountain forest
Publikationsdatum:2017-02-27
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Nebel, rain, Nährstoff, Schadstoff, Regenwald, Atmospheric transport, Atmosphäre, Ecuador, Niederschlag, emission sources, cloud fog, Atmospheric deposition, Transport, Anden, Modellierung, Chemie, Regen

Summary:
The element cycle is an important control of the ecosystem functioning such as the provision of supporting and regulating ecosystem services. Human induced alterations of this cycle could have deleterious effects on the ecosystem and its services, as e.g., carbon sequestration and water supply. The input of atmospheric elements is a key underlying mechanism of this cycle, supplying new nutrients/pollutants to the ecosystem. Therefore, an in-depth knowledge of the fluxes and the complex factors driving the deposition of ecosystem-relevant elements are indispensable to unravel the impacts of element cycle alterations on the mountain forests function, e.g. by nutrient manipulation experiments. The current work is the first effort in a TMF with a very intricate terrain to reveal the complex causal relationships between the atmospheric fluxes of ecosystem-relevant nutrients and pollutants, the contributing emission sources and the atmospheric circulation drivers responsible for transport. This investigation has shown that the atmospheric deposition is highly conditioned by the interception of OP by vegetation and ground. Therefore, in the study area, the atmospheric constituents explored present a high spatial and temporal heterogeneity mainly based on elevation, aspect, and topographic position of the receptor side, as well as the location and height of the surrounding barriers. In general, the higher the terrain features are, the higher is the frequency of clouds touching the ground and thus, the influence of the synoptical circulation and far-range sources is increased. That is on the condition that the surrounding topography does not act as a barrier for the synoptical winds from specific directions. The exposed findings stress the importance of considering topographical complexity of the receptor site when assessing atmospheric deposition in mountainous areas and should be considered when designing future nutrient manipulation experiments. Due to the importance of the synoptical circulation in the medium to long range transport of nutrient and pollutants, also the location of the sources with respect to the preponderant transport pathways is an important parameter affecting the observed deposition. Additionally, the seasonality, the surface, and the intensity of the emissions are also highly relevant factor determining the state of deposition at the receptor site. The sources and transport pathways of the investigated atmospheric constituents in the study area are illustrated in a synthesis map at the end of the manuscript. The anthropogenic sources dominate the sulfur and nitrogen cycles, on which a very high influence of the biomass-burning sources was observed, especially on high elevation and vegetated areas well-exposed to the preponderant wind direction. Atmospheric sodium and chloride deposition at the study area is still dominated by natural sources, especially the Caribbean Sea and the equatorial Pacific Ocean, mostly fertilizing areas at high elevations, more exposed to the synoptic winds.

Zusammenfassung:
Der Stoffkreislauf nimmt gegenüber Ökosystemfunktionen eine wichtige Kontrollfunktion ein und damit für die Bereitstellung unterstützender und regulierender Ökosystemdienstleistungen wie z.B. die Kohlenstoffbindung und das Wasserangebot. Anthropogen verursachte Veränderungen dieses Kreislaufs könnten jedoch eine schädliche Wirkung auf das jeweilige Ökosystem und dessen Dienstleistungen haben. Der Eintrag von atmosphärischen Spurenelementen ist dabei ein grundlegender Mechanismus innerhalb des Kreislaufs, der die Ökosysteme mit neuen Nährstoffen versorgt. So ist ein fundiertes Verständnis der zu Grunde liegenden Prozesse sowie der komplexen Faktoren, welche die Deposition ökosystemrelevanter Elemente bestimmen, unabdingbar, um den Einfluss eines veränderten Elementkreislaufs auf die Funktionen des Bergregenwalds zu untersuchen. Die vorliegende Dissertation ist ein erster Ansatz in dem sehr komplexen Gelände eines Bergregenwalds in Süd-Ecuador die komplexen Kausalzusammenhänge atmosphärischer Flüsse ökosystemrelevanter Nähr- und Schadstoffe, sowie die dazu beitragenden Emissionsquellen und treibenden Kräfte unter Berücksichtigung der atmosphärischen Zirkulation aufzuzeigen. Die Untersuchungen haben gezeigt, dass die atmosphärische Deposition hauptsächlich von der Interzeption okkulten Niederschlags durch die Vegetation und den Boden bestimmt wird. So unterliegt die atmosphärische Deposition der analysierten Stoffe im Untersuchungsgebiet einer hohen räumlichen und zeitlichen Heterogenität, welche hauptsächlich durch Höhe, Exposition und topographische Position des Immissionsortes sowie Lage und Höhe der ihn umgebenden topographischen Barrieren hervorgerufen wird. Im Allgemeinen gilt, je höher das Gelände desto häufiger haben Wolken Bodenkontakt, wodurch der Einfluss der synoptischen Zirkulation und damit die Bedeutung weit entfernter Quellen erhöht wird. Dies gilt so lange, bis die umgebende Topographie keine Barriere mehr für die synoptischen Winde darstellt. Diese Erkenntnisse betonen die Notwendigkeit, die komplexe Struktur der Topographie bei der Untersuchung atmosphärischer Deposition sowie auch bei der Planung von künftigen Nährstoffmanipulationsexperimenten im Hochgebirgsraum zu berücksichtigen. Da die synoptische Zirkulation einen wichtigen Teil der mittel bis weiten Transportweg von Nähr- und Schadstoffen darstellt, ist auch die Lage der Quellen relativ zu den überwiegend vorherrschenden Transportwegen ein wesentlicher Faktor, welcher die beobachtete Deposition beeinflusst. Darüber hinaus steuern die Saisonalität der atmosphärischen Zirkulation sowie Oberfläche und Intensität der Emmissionen die Deposition am Immissionsort. Die Quellen und Transportwege der untersuchten Spurenstoffe im Untersuchungsgebiet sind in einer Synthesekarte am ende des Manuskriptes zusammengefasst. Anthropogene Quellen dominieren sowohl den Schwefel- als auch den Stickstoffkreislauf, wobei ein sehr starker Einfluss aus den aus der Verbrennung von Biomasse resultierenden Quellen beobachtet wurde. Dies trifft insbesondere in bewachsenen Flächen in großen Höhen auf, die zudem in Richtung der vorherrschenden Windrichtung exponiert sind. Die Deposition von atmosphärischem Natrium und Chlorid im Untersuchungsgebiet ist nach wie vor von natürlichen Quellen geprägt, vor allem der Karibischen See und dem äquatornahen Pazifischen Ozean; auch hier profitieren insbesondere die höher gelegenden Gebiete. Des Weiteren sind diese höher gelegenen Gebiete stärker von mittel- bis -weit entfernten herantransportierten Luftschadstoffen betroffen als die tieferen Gebiete, da sie der atmosphärischen Zirkulation weniger ausgesetzt sind.

Bibliographie / References

  1. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERAInterim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828, URL http://doi.wiley. com/10.1002/qj.828, 2011.
  2. Forti, M. C., Melfi, A. J., Astolfo, R., and Fostier, A.-H.: Rainfall chemistry composition in two ecosystems in the northeastern Brazilian Amazon (Amapá State), J. Geophys. Res., 105, 28895, doi:10.1029/2000JD900235, URL http://doi.wiley.com/ 10.1029/2000JD900235, 2000.
  3. Lee,A.T.K.,Kumar,S.,Brightsmith,D.J.,andMarsden,S.J.: Parrotclaylickdistribution in South America: do patterns of "where" help answer the question "why"?, Ecography, doi:10.1111/j.1600-0587.2009.05878.x, URL http://doi.wiley.com/10. 1111/j.1600-0587.2009.05878.x, 2009.
  4. Wilcke, W., Leimer, S., Peters, T., Emck, P., Rollenbeck, R., Trachte, K., Valarezo, C., and Bendix, J.: The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change, Global Biogeochem. Cycles, 27, 1194-1204, doi:10.1002/ 2012GB004471, URL http://doi.wiley.com/10.1002/2012GB004471, 2013.
  5. Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prospero, J. M., Omar, A., Winker, D., Yang, Y., Zhang, Y., Zhang, Z., and Zhao, C.: The fertilizing role of african dust in the Amazon rainforest: a first multiyear assessment based on CALIPSO lidar Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040, URL http://doi.wiley.com/10.1002/2015GL063040, 2015.
  6. Guelle,W.,Schulz,M.,Balkanski,Y.,andDentener,F.: Influenceofthesourceformulation onmodelingtheatmosphericglobaldistributionofseasaltaerosol,J.Geophys.Res.,106, 27509, doi:10.1029/2001JD900249, URL http://doi.wiley.com/10.1029/ 2001JD900249, 2001.
  7. Reid, J. S., Prins, E. M., Westphal, D. L., Schmidt, C. C., Richardson, K. A., Christopher, S. A., Eck, T. F., Reid, E. A., Curtis, C. A., and Hoffman, J. P.: Real-time monitoring of South American smoke particle emissions and transport using a coupled remote sensing/box-model approach, Geophys. Res. Lett., 31, n/a-n/a, doi:10.1029/ 2003GL018845, URL http://doi.wiley.com/10.1029/2003GL018845, 2004.
  8. Morcrette, J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J.W., Razinger, M., Schulz, M., Serrar, S., Simmons, A.J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: forward modeling, J. Geophys. Res., 114, D06206, doi:10.1029/2008JD011235, URL http://doi.wiley.com/10.1029/2008JD011235, 2009.
  9. Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H., and Wright, S. J.: Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input, Glob. Chang. Biol., 15, 2049-2066, doi:10.1111/j.1365- 2486.2008.01826.x, URL http://doi.wiley.com/10.1111/j.1365-2486. 2008.01826.x, 2009.
  10. Powell, L. L., Powell, T. U., Powell, G. V. N., and Brightsmith, D. J.: Parrots take it with a grain of salt: available sodium content may drive collpa (Clay Lick) selection in southeastern Peru, Biotropica, 41, 279-282, doi:10.1111/j.1744-7429.2009.00514.x, URL http://doi.wiley.com/10.1111/j.1744-7429.2009.00514.x, 2009.
  11. Phoenix, G. K., Hicks, K. W., Cinderby, S., Kuylenstierna, J. C. I., Stock, W. D., Dentener, F. J., Giller, K. E., Austin, A. T., Lefroy, R. D. B., Gimeno, B. S., Ashmore, M. R., and Ineson, P.: Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts, Glob. Chang. Biol., 12, 470-476, doi:10.1111/j.1365-2486.2006.01104.x, URL http://dx.doi.org/10. 1111/j.1365-2486.2006.01104.x, 2006.
  12. Hildemann,L.M.,Markowski,G.R.,andCass,G.R.: Chemicalcompositionofemissions from urban sources of fine organic aerosol, Environ. Sci. Technol., 25, 744-759, doi: 10.1021/es00016a021, URL http://dx.doi.org/10.1021/es00016a021, 1991.
  13. Harrison, R. M. and Pio, C. A.: Major ion composition and chemical associations of inorganic atmospheric aerosols., Environ. Sci. Technol., 17, 169-74, doi:10.1021/ es00109a009, URL http://dx.doi.org/10.1021/es00109a009, 1983.
  14. Clarke, N., Zlindra, D., Ulrich, E., Mosello, R., Derome, J., Derome, K., König, N., Lövblad, G., Draaijers, G., Hansen, K., Thimonier, A., and Waldner, P.: Sampling and analysis of deposition: part XIV, in: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests, chap. 14, UNECE, ICP Forests, Hamburg, URL http://icp-forests.net/ page/icp-forests-manual, 2010.
  15. Voigt, C. C., Capps, K. A., Dechmann, D. K. N., Michener, R. H., and Kunz, T. H.: Nutrition or detoxification: why bats visit mineral licks of the Amazonian rainforest, PLoS One, 3, e2011, doi:10.1371/journal.pone.0002011, URL http://journals.plos. org/plosone/article?id=10.1371/journal.pone.0002011, 2008.
  16. Bendix, J., Beck, E., Bräuning, A., Makeschin, F., Mosandl, R., Scheu, S., and Wilcke, W., eds.: Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador, vol. 221 of Ecological Studies, Springer Berlin / Heidelberg, doi:10.1007/978-3-642-38137-9, URL http://link.springer.com/10. 1007/978-3-642-38137-9, 2013.
  17. Richter, M., Beck, E., Rollenbeck, R., and Bendix, J.: The study area, in: Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of SouthEcuador,editedbyBendix,J.,Beck,E.,Brauning,A.,Makeschin,F.,Mosandl,R., Scheu, S., and Wilcke, W., chap. 1, Springer Berlin / Heidelberg, Berlin, Germany, doi: 10.1007/978-3-642-38137-9_1, URL http://link.springer.com/chapter/ 10.1007/978-3-642-38137-9{_}1, 2013.
  18. Seibert, P., Kromb-Kolb, H., Baltensperger, U., Jost, D., and Schwikowski, M.: Trajectory analysis of high-alpine air pollution data, in: NATO challenges Mod. Soc., edited by Gryning, S.-E. and Millán, M. M., pp. 595-596, Springer US, doi:10.1007/978- 1-4615-1817-4_65, URL http://link.springer.com/chapter/10.1007/ 978-1-4615-1817-4{_}65, 1994.
  19. Hsu, Y.-K., Holsen, T. M., and Hopke, P. K.: Comparison of hybrid receptor models to locate PCB sources in Chicago, Atmos. Environ., 37, 545-562, doi: 10.1016/S1352-2310(02)00886-5, URL http://linkinghub.elsevier.com/ retrieve/pii/S1352231002008865, 2003.
  20. Carslaw, D. C. and Ropkins, K.: Openair - An R package for air quality data analysis, Environ. Model. Softw., 27-28, 52-61, doi:10.1016/j.envsoft. 2011.09.008, URL http://linkinghub.elsevier.com/retrieve/pii/ S1364815211002064, 2012.
  21. Emck, P.: A climatology of South Ecuador, Phd thesis, Fachbereich Geographie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, URL http://www. opus.ub.uni-erlangen.de/opus/volltexte/2007/656/, 2007.
  22. Benedetti,A.,Morcrette,J.,Boucher,O.,Dethof,A.,Engelen,R.J.,Fisher,M.,Flentje,H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for MediumRange Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys.
  23. Malm, W. C., Johnson, C. E., and Bresch, J. F.: Application of principal component analysis for purposes of identifying source-receptor relationships, in: Recept. methods sourceapportionment,editedbyPace,T.G.,Airpollutioncontrolassociation,Pittsburgh, PA, 1986.
  24. Delmelle, P., Stix, J., Baxter, P. J., and Garcia-Alvarez, J.: Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua, Bull. Volcanol., 64, 423-434, doi:10.1007/s00445- 002-0221-6, URL http://link.springer.com/10.1007/s00445-002- 0221-6http://link.springer.com/article/10.1007/s00445- 002-0221-6, 2002.
  25. Lizcano, D. J. and Cavelier, J.: Características químicas de salados y hábitos alimenticios de la Danta de montaña (Tapirus pinchaque Roulin, 1829) en los Andes Centrales de Colombia, Mastozoología Neotrop., 11, 193-201, URL http://www. scielo.org.ar/scielo.php?script=sci{_}arttext{&}pid=S0327- 93832004000200004{&}lng=es{&}nrm=iso{&}tlng=es, 2004.
  26. Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P.: Climate, in: Gradients in a tropical mountain ecosystem of Ecuador, edited by Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., chap. 1, pp. 63-74, Springer Berlin / Heidelberg, ecological edn., URL http://dx.doi.org/10.1007/978- 3-540-73526-7{\protect\T1\textbraceleft}{_}{\protect\T1\ textbraceright}8, 2008b.
  27. Rollenbeck, R., Bendix, J., Fabian, P., Boy, J., Wilcke, W., Dalitz, H., Oesker, M., and Emck, P.: Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions, J. Atmos. Ocean. Technol., 24, 156- Schemenauer, R. S. and Cereceda, P.: A proposed standard fog collector for use in high-elevation regions, J. Appl. Meteorol., 33, 1313-1322, URL http://adsabs. harvard.edu/abs/1994JApMe..33.1313S, 1994.
  28. Pett-Ridge, J. C.: Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico, Biogeochemistry, 94, 63-80, doi:10.1007/ s10533-009-9308-x, URL http://link.springer.com/10.1007/s10533- 009-9308-x, 2009.
  29. Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., and Liousse, C.: Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, J. Geophys. Res. Atmos., 103, 32107-32118, doi:10.1029/98JD00692, URL http: //doi.wiley.com/10.1029/98JD00692, 1998.
  30. Mortatti, J.: Erosão na Amazonia: processos, modelos e balanço, Phd thesis, São Paulo, Brazil, 1995.
  31. Hernández-Ceballos, M. A., Skjøth, C. A., García-Mozo, H., Bolívar, J. P., and Galán, C.: Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula., Int. J. Biometeorol., 58, 2031-43, doi:10.1007/ s00484-014-0804-x, URL http://link.springer.com/10.1007/s00484- 014-0804-x, 2014.
  32. Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D., Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., GalyLacaux, C., Rast, S., Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T., Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V., Müller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M., Sudo, K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and global scales: a Draxler, R.andHess, G.: AnoverviewoftheHYSPLIT_4modelingsystemoftrajectories, dispersion, and deposition, Aust. Meteorol. Mag., 47, 295-308, 1998.
  33. Fleming, Z. L., Monks, P. S., and Manning, A. J.: Review: untangling the influence of air-mass history in interpreting observed atmospheric composition, Atmos. Res., 104-105, 1-39, doi:10.1016/j.atmosres.2011.09.009, URL http://linkinghub. elsevier.com/retrieve/pii/S0169809511002948, 2012.
  34. Bendix, J., Rollenbeck, R., Göttlicher, D., Nauß, T., Fabian, P., Goettlicher, D., Nauss, T., and Fabian, P.: Seasonality and diurnal pattern of very low clouds in a deeply incised valley of the eastern tropical Andes (South Ecuador) as observed by a cost-effective webcam system, Meteorol. Appl., 15, 281-291, doi:10.1002/met, URL http:// onlinelibrary.wiley.com/doi/10.1002/met.72/abstract, 2008a.
  35. Yokouchi, Y., Ikeda, M., Inuzuka, Y., and Yukawa, T.: Strong emission of methyl chloride from tropical plants., Nature, 416, 163-5, doi:10.1038/416163a, URL http://dx. doi.org/10.1038/416163a, 2002.
  36. Matson, P., Lohse, K. A., and Hall, S. J.: The globalization of nitrogen deposition: Consequences for terrestrial ecosystems, Ambio, 31, 113-119, URL http://www. jstor.org/stable/4315223, 2002.
  37. Stohl, A.: Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe, Atmos. Environ., 30, 579-587, doi:10.1016/1352-2310(95)00314-2, URL http:// linkinghub.elsevier.com/retrieve/pii/1352231095003142, 1996.
  38. Bendix, J., Rollenbeck, R., and Reudenbach, C.: Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar, Int. J. Climatol., 26, 829-846, doi:10.1002/ joc.1267, URL http://onlinelibrary.wiley.com/doi/10.1002/joc. 1267/fullhttp://doi.wiley.com/10.1002/joc.1267, 2006.
  39. Wullaert, H.: Response of nutrient cycles of an old-growth montane forest in Ecuador to experimental low-level nutrient amendments, Phd thesis, Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz, Germany, URL http://ubm.opus.hbz-nrw.de/volltexte/2010/2312/, 2010.
  40. Fabian, P., Rollenbeck, R., Spichtinger, N., Brothers, L., Dominguez, G., and Thiemens, M.: Sahara dust, ocean spray, volcanoes, biomass burning: pathways of nutrients into Andean rainforests, Adv. Geosci., 22, 85-94, doi:10.5194/adgeo-22-85-2009, URL http://www.adv-geosci.net/22/85/2009/, 2009.
  41. Wolf, K., Veldkamp, E., Homeier, J., and Martinson, G. O.: Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador, Global Biogeochem. Cycles, 25, GB4009, doi:10.1029/2010GB003876, URL http://www.agu.org/pubs/crossref/ 2011/2010GB003876.shtml, 2011.
  42. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-4072, doi: 10.5194/acp-11-4039-2011, URL http://www.atmos-chem-phys.net/11/ 4039/2011/, 2011.
  43. Robinson, N. H., Newton, H. M., Allan, J. D., Irwin, M., Hamilton, J. F., Flynn, M., Bower, K. N., Williams, P. I., Mills, G., Reeves, C. E., McFiggans, G., and Coe, H.: Source attribution of Bornean air masses by back trajectory analysis during the OP3 project, Atmos. Chem. Phys., 11, 9605-9630, doi:10.5194/acp11-9605-2011,URLhttp://www.atmos-chem-phys.net/11/9605/2011/ acp-11-9605-2011.html, 2011.
  44. Pauliquevis, T., Lara, L. L., Antunes, M. L., and Artaxo, P.: Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution, Atmos. Chem. Phys., 12, 4987-5015, doi:10.5194/acp12-4987-2012,URLhttp://www.atmos-chem-phys.net/12/4987/2012/ acp-12-4987-2012.html, 2012.
  45. Riuttanen, L., Hulkkonen, M., Dal Maso, M., Junninen, H., and Kulmala, M.: Trajectory analysis of atmospheric transport of fine particles, SO2, NOx and O3 to the SMEAR II station in Finland in 1996-2008, Atmos. Chem. Phys., 13, 2153-2164, doi: 10.5194/acp-13-2153-2013, URL http://www.atmos-chem-phys.net/13/ 2153/2013/, 2013.
  46. Makowski Giannoni, S., Rollenbeck, R., Trachte, K., and Bendix, J.: Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador, Atmos. Chem. Phys., 14, 11297-11312, doi:10.5194/acp-14-11297-2014, URL http://www.atmos-chem-phys.net/14/11297/2014/, 2014.
  47. Pozzer, A., de Meij, A., Pringle, K. J., Tost, H., Doering, U. M., van Aardenne, J., and Lelieveld, J.: Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model, Atmos. Chem. Phys., 12, 961-987, doi:10.5194/acp-12-961-2012, URL http://www.atmos-chemphys.net/12/961/2012/, 2012.
  48. Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., HadjiLazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., and Zerefos, C.: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073-4109, doi:10.5194/acp-13-4073-2013, URL http://www.atmos-chemphys.net/13/4073/2013/, 2013.
  49. Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T.: Global distribution of sea salt aerosols: new constraints from in situ and remote Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554, doi:10.5194/bg-9-527-2012, URL http://www.biogeosciences.net/9/527/2012/, 2012.
  50. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecol. Appl., 20, 30-59, doi:10.1890/08-1140.1, URL http://www.esajournals.org/doi/abs/10. 1890/08-1140.1, 2010.
  51. Vitousek, P. M.: Litterfall, nutrient cycling, and nutrient limitation in tropical forests, 65, 285-298, URL http://www.esajournals.org/doi/abs/10.2307/ 1939481, 1984.
  52. Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889-1904, doi:10.5194/gmd-6-1889-2013, URL http://www.geoscimodel-dev.net/6/1889/2013/, 2013.
  53. Wang, F., Li, J., Wang, X., Zhang, W., Zou, B., Neher, D. A., and Li, Z.: Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China., Sci. Rep., 4, 5615, doi:10.1038/srep05615, URL http://www.nature. com/srep/2014/140708/srep05615/full/srep05615.html, 2014.
  54. Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe., Nat. Commun., 4, 2934, doi:10. 1038/ncomms3934,URLhttp://www.nature.com/ncomms/2013/131217/ ncomms3934/full/ncomms3934.html, 2013.
  55. Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U., Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D. T., Rowe, E. C., and Toberman, H.: Atmospheric deposition of phosphorus to land and freshwater., Environ. Sci. Process. Impacts, 16, 1608-17, doi:10.1039/c3em00641g, URL http://www.ncbi.nlm. nih.gov/pubmed/24526176, 2014.
  56. Matson, A. L., Corre, M. D., and Veldkamp, E.: Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization., Glob. Chang. Biol., 20, 3802-13, doi:10.1111/gcb.12668, URL http://www.ncbi.nlm.nih. gov/pubmed/24965673, 2014.
  57. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions., Science, 320, 889-92, doi:10.1126/science.1136674, URL http://www.ncbi.nlm.nih.gov/ pubmed/18487183, 2008.
  58. Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, M., Martinson, G. O., Poma, L. N., Rillig, M. C., Sandmann, D., Scheu, S., Veldkamp, E., Wilcke, W., Wullaert, H., and Leuschner, C.: Tropical andean forests are highly susceptible to nutrient inputs-rapid effects of experimental N and P addition to an ecuadorian montane forest., PLoS One, 7, e47128, doi:10.1371/journal.pone.0047128, URL http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=3468540{&}tool=pmcentrez{&}rendertype=abstract, 2012.
  59. Kirchner, M., Fegg, W., Römmelt, H., Leuchner, M., Ries, L., Zimmermann, R., Michalke, B., Wallasch, M., Maguhn, J., Faus-Kessler, T., and Jakobi, G.: Nitrogen deposition alongdifferentlyexposedslopesintheBavarianAlps,Sci.TotalEnviron.,470-471,895- 906, doi:10.1016/j.scitotenv.2013.10.036, URL http://www.sciencedirect. com/science/article/pii/S0048969713011807, 2014.
  60. Millero, F.: Treatise on Geochemistry, Elsevier, doi:10.1016/B978-0-08-095975- 7.00601-X, URL http://www.sciencedirect.com/science/article/ pii/B978008095975700601X, 2014.
  61. Makowski Giannoni, S., Rollenbeck, R., Fabian, P., and Bendix, J.: Complex topography influences atmospheric nitrate deposition in a neotropical mountain rainforest, Atmos. Environ., 79, 385-394, doi:10.1016/j.atmosenv.2013.06.023, URL http://www.sciencedirect.com/science/article/pii/ S1352231013004780http://linkinghub.elsevier.com/retrieve/ pii/S1352231013004780, 2013.
  62. Beck, E., Makeschin, F., Haubrich, F., Richter, M., Bendix, J., and Valarezo, C.: The Ecosystem (Reserva Biológica San Francisco), in: Gradients in a tropical mountain ecosystem of Ecuador, edited by Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., chap. 1, pp. 1-14, Springer, URL http://www.springer.com/ life+sciences/ecology/book/978-3-540-73525-0, 2008.
  63. Pekney, N. J., Davidson, C. I., Zhou, L., and Hopke, P. K.: Application of PSCF and CPF to PMF-modeled sources of PM 2.5 in Pittsburgh, Aerosol Sci. Technol., 40, 952-961, doi:10.1080/02786820500543324, URL http://www.tandfonline.com/doi/ abs/10.1080/02786820500543324, 2006.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten