Publikationsserver der Universitätsbibliothek Marburg

Titel:The influence of perceived temperature on human well-being in the context of climate change: A multi-level global analysis
Autor:Lee, Daniel
Weitere Beteiligte: Brenner, Thomas (Prof. Dr. Dr.)
URN: urn:nbn:de:hebis:04-z2017-00548
DDC: Geowissenschaften
Titel(trans.):The influence of perceived temperature on human well-being in the context of climate change: A multi-level global analysis


economic growth, Wirtschaftswachstum, Klimaänderung, mortality, Temperatur, temperature, climate change, Sterblichkeit

Anthropogenic climate change is causing global shifts in climate. Mean global temperatures are increasing extremely rapidly. One direct consequence of this is that in many places perceived temperature is higher than before. This is due to shifts in both temperature and humidity as the climate system reacts to the higher level of heat and the accompanying processes redistributing warm air and moisture in the atmosphere. Hot weather has been shown to be potentially dangerous in many contexts to various aspects of human life. From a health perspective, heat creates additional stress for the body, potentially impacting the circulatory and nervous systems. Exhaustion rates increase and the need for hydration rises. Beyond the direct effects on health, heat can also affect other human systems, either directly or indirectly through ancillary mechanisms. Exhausted workers are less productive. Sickness and mortality creates costs for economies and slows economic growth. Heat also affects the temperature of coolant water for power plants, the growth rates of plants, and many other components of economies that are connected with human well-being. In this thesis I discuss the increase in perceived temperature over the past three decades. I examine its effects on mortality in Europe and on economic growth rates worldwide. The findings indicate that perceived temperature is increasing for most of the world, and that higher mortality rates can be expected as a result. Additionally, economic growth can be expected to slow in the presence of longer and more frequent heat waves.

Der anthropogener Klimawandel verursacht globale Veränderungen im Wetter. Eine direkte Folge sind gefühlte Temperaturen, die vielerorts höher sind, als in Vergangenheit beobachtet wurde. Das Klimasystem reagiert auf die zusätzliche Wärme durch eine Umverteilung warmer Luft und Feuchte in der Atmosphäre, was zu Veränderungen in der globalen Verteilung von Humidität und Temperatur führt. Heißes Wetter birgt Gefahren für verschiedene Aspekte menschlichen Lebens. Medizinisch betrachtet, verursachen hohe Temperaturen Stressreaktionen im Körper, die Auswirkungen auf das Nervensystem und den Blutkreislauf haben. Auch steigen mit der Temperatur die Ermüdungsrate und der Bedarf an Wasser. Über die direkten Auswirkungen auf Gesundheit hinaus nimmt Hitze auf verschiedene Weise - sowohl direkt als auch indirekt - auf menschliche Systeme Einfluss. Ermüdete Arbeitskräfte sind weniger produktiv. Krankheit und Mortalität verursachen Kosten für Wirtschaften und bremsen Wirtschaftswachstum. Ebenso beeinflusst Hitze die Temperatur von Kühlwasser für Kraftwerke, die Wachstumsrate von Pflanzen und viele andere Komponenten von Wirtschaften, die mit dem Wohlergeben des Menschen zusammenhängen. In dieser Dissertation untersuche ich die Zunahme gefühlter Temperatur in den letzten drei Jahrzehnten und die Auswirkungen dieser Zunahme auf Mortalität in Europa und globale Wirtschaftswachstumsraten. Die Ergebnisse zeigen, dass gefühlte Temperatur fast überall auf der Welt zunimmt, und dass folglich höhere Sterblichkeitsraten zu erwarten sind. Darüber hinaus ist davon auszugehen, dass Wirtschaftswachstum durch längere und häufiger vorkommende Hitzewellen gebremst wird.

Bibliographie / References

  1. Ilan Noy. The macroeconomic consequences of disasters. Journal of Development Economics, 88(2):221-231, March 2009. ISSN 0304-3878. doi: 10.
  2. J. Lipiec, C. Doussan, A. Nosalewicz, and K. Kondracka. Effect of drought and heat stresses on plant growth and yield: a review. International Norman V. Loayza, Eduardo Olaberría, Jamele Rigolini, and Luc Christiaensen. Natural disasters and growth: Going beyond the averages. World Development, 40(7): 1317-1336, July 2012. ISSN 0305-750X. doi: 10.1016/j.worlddev.2012.03.002.
  3. Marc Poumadère, Claire Mays, Sophie Le Mer, and Russell Blong. The 2003 heat wave in France: Dangerous climate change here and now. Risk Analysis, 25(6): 1483-1494, December 2005. ISSN 1539-6924. doi: 10.1111/j.1539-6924.2005.
  4. R. Sari Kovats and Shakoor Hajat. Heat stress and public health: A critical review. Annual Review of Public Health, 29(1):41-55, 2008. doi: 10.1146/annurev.publhealth.
  5. Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophysical Research Letters, 36(23), December 2009. ISSN 0094-8276. doi: 10.1029/2009GL040736. URL 10.1029/2009GL040736.
  6. Thomas Fomby, Yuki Ikeda, and Norman V. Loayza. The growth aftermath of natural disasters. Journal of Applied Econometrics, 28(3):412-434, April 2013. ISSN 08837252. doi: 10.1002/jae.1273. URL
  7. New surface temperature analyses for climate monitoring. Geophysical Research Letters, 32(14), July 2005. ISSN 00948276. doi: 10.1029/2005GL023402. URL
  8. Jianguo Tan, Youfei Zheng, Guixiang Song, Laurence S. Kalkstein, Adam J. Kalkstein, and Xu Tang. Heat wave impacts on mortality in Shanghai, 1998 and 2003. International Journal of Biometeorology, 51(3):193-200, 2007. ISSN 1432-1254. doi: 10.1007/s00484-006-0058-3. URL
  9. Klaus Eisenack. Institutional adaptation to cooling water scarcity for thermoelectric power generation under global warming. Ecological Economics, 124:153 - 163, 2016. ISSN 0921-8009. doi:
  10. Hannah Förster and Johan Lilliestam. Modeling thermoelectric power generation in A. Haines, R.S. Kovats, D. Campbell-Lendrum, and C. Corvalan. Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7):585 - 596, 2006. ISSN 0033-3506. doi:
  11. The direct impact of climate change on regional labor productivity. Archives of Environmental & Occupational Health, 64(4):217-227, November 2009. ISSN 1933-8244. doi: 10.1080/19338240903352776. URL 19338240903352776.
  12. Robert C. Feenstra, Robert Inklaar, Marcel Timmer. Penn World Table 8.0, 2013. URL
  13. Lutz Kilian and Robert J. Vigfusson. Are the responses of the U.S. economy asymmetric in energy price increases and decreases? Quantitative Economics, 2(3):419-453, 2011. ISSN 1759-7331. doi: 10.3982/QE99. URL
  14. Intergovernmental Panel on Climate Change, editor. Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 2014. ISBN 9781107415324. URL CBO9781107415324.
  15. Fabio Eboli, Ramiro Parrado, and Roberto Roson. Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model. Environment and Development Economics, 15(05):515-533, October 2010. ISSN 1469- 4395. doi: 10.1017/S1355770X10000252. URL article_S1355770X10000252.
  16. Noah S. Diffenbaugh and Martin Scherer. Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries: A letter. Climatic Change, 107(3-4):615-624, August 2011. ISSN 0165-0009, 1573- 1480. doi: 10.1007/s10584-011-0112-y. URL s10584-011-0112-y.
  17. com/science/article/pii/S0168192311002784. Agricultural prediction using climate model ensembles.
  18. Russell S. Vose, David Wuertz, Thomas C. Peterson, and P. D. Jones. An intercomparison of trends in surface air temperature analyses at the global, hemispheric, and gridbox scale. Geophysical Research Letters, 32(18), September 2005. ISSN 00948276.
  19. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303(5663):1499-1503, March 2004. ISSN 0036-8075, 1095-9203.
  20. Noah S. Diffenbaugh and Moetasim Ashfaq. Intensification of hot extremes in the United States. Geophysical Research Letters, 37(15), August 2010. ISSN 00948276.
  21. Hannah Förster and Johan Lilliestam. Modeling thermoelectric power generation in view of climate change. Regional Environmental Change, 10(4):327-338, 2010.
  22. Zine El Abidine El Morjani, Steeve Ebener, John Boos, Eman Abdel Ghaffar, and Altaf Musani. Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. International Journal of Health Geographics, 6 (1):8, 2007. ISSN 1476072X. doi: 10.1186/1476-072X-6-8. URL http://www.
  23. J Kysely and J Kim. Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave? Climate Research, 38:105-116, January 2009.
  24. Daniel Lee and Thomas Brenner. Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013. Earth System Science Data, 7(2):193-202, 2015. doi: 10.5194/essd-7-193-2015. URL http://www.
  25. Steven C. Sherwood, Cathryn L. Meyer, Robert J. Allen, and Holly A. Titchner. Robust tropospheric warming revealed by iteratively homogenized radiosonde data. Journal of Climate, 21(20):5336-5352, October 2008. ISSN 0894-8755, 1520-0442.
  26. M. Museru, F. Toerien, and S. Gossel. The impact of aid and public investment volatility on economic growth in Sub-Saharan Africa. World Development, 57:138-147, 2014.
  27. T. B. Vu, D. L. Hammes, and E. I. Im. Vocational or university education? A new look at their effects on economic growth. Economic Letters, 117:426-428, 2012.
  28. N. Gregory Mankiw, David Romer, and David N. Weil. A contribution to the empirics of economic growth. The Quarterly Journal of Economics, 107(2):407-437, 1992. doi: 10.2307/2118477. URL
  29. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, D. Arvizu, T. Bruckner, J. Christensen, J.-M. Devernay, A. Faaij, M. Fischedick, B. Goldstein, G. Hansen, J. Huckerby, A. Jäger-Waldau, S. Kadner, D Kammen, V. Krey, A. Kumar, A. Lewis, O. Lucon, P. Matschoss, L. Maurice, C. Mitchell, W. Moomaw, J. Moreira, A. Nadai, L.J. Nilsson, J. Nyboer, A. Rahman, J. Sathaye, J. Sawin, R. Schaeffer, T. Schei, S. Schlömer, R. Sims, A. Verbruggen, C. von Stechow, K. Urama, R. Wiser, F. Yamba, and T. Zwickel. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation - Complete Report. Cambridge, United Kingdom and New York, NY, USA, 06/2011 2011. URL
  30. Robert K. Kaufmann, Sucharita Gopal, Xiaojing Tang, Steve M. Raciti, Paul E. Lyons, Nick Geron, and Francis Craig. Revisiting the weather effect on energy consumpLutz Kilian. The economic effects of energy price shocks. Journal of Economic Literature, 46(4):871-909, December 2008. doi: 10.1257/jel.46.4.871. URL
  31. Modeling and syndromic surveillance for estimating weather-induced heat-related illness. Journal of Environmental and Public Health, 2011:1-10, 2011. ISSN 1687-9805, 1687-9813. doi: 10.1155/2011/750236. URL journals/jeph/2011/750236/.
  32. International Organization for Standardization. Hot environments - estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). Technical Report 7423:1989, International Organization for Standardization, March 2010. URL
  33. Paul M. Romer. Increasing returns and long-run growth. Journal of Political Economy, 94(5):1002-1037, October 1986. ISSN 0022-3808. URL stable/1833190.
  34. National Weather Service. Heat safety, July 2014. URL heat/index.shtml.
  35. Robert Jr Lucas. On the mechanics of economic development. Journal of Monetary Economics, 22(1):3-42, 1988. URL v22y1988i1p3-42.html.
  36. Paul M. Romer. Endogenous technological change. Journal of Political Economy, 98 (5):S71-102, 1990. URL

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten