Publikationsserver der Universitätsbibliothek Marburg

Titel:3D Reconstruction using Active Illumination
Autor:Grochulla, Martin
Weitere Beteiligte: Thormählen, Thorsten (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2017-00501
DDC: Informatik
Titel(trans.):3D-Rekonstruktion mit Hilfe aktiver Beleuchtung


Kamerakalibrierung, Bildverarbeitung, camera calibration, 3D reconstruction, Computervisualistik, 3D-Rekonstruktion

In this thesis we present a pipeline for 3D model acquisition. Generating 3D models of real-world objects is an important task in computer vision with many applications, such as in 3D design, archaeology, entertainment, and virtual or augmented reality. The contribution of this thesis is threefold: we propose a calibration procedure for the cameras, we describe an approach for capturing and processing photometric normals using gradient illuminations in the hardware set-up, and finally we present a multi-view photometric stereo 3D reconstruction method. In order to obtain accurate results using multi-view and photometric stereo reconstruction, the cameras are calibrated geometrically and photometrically. For acquiring data, a light stage is used. This is a hardware set-up that allows to control the illumination during acquisition. The procedure used to generate appropriate illuminations and to process the acquired data to obtain accurate photometric normals is described. The core of the pipeline is a multi-view photometric stereo reconstruction method. In this method, we first generate a sparse reconstruction using the acquired images and computed normals. In the second step, the information from the normal maps is used to obtain a dense reconstruction of an object’s surface. Finally, the reconstructed surface is filtered to remove artifacts introduced by the dense reconstruction step.

In dieser Arbeit präsentieren wir eine Pipeline zur Aufnahme von 3D-Modellen. Die Erzeugung von 3D-Modellen von realen Objekten ist eine wichtige Aufgabe in der Computer Vision mit zahlreichen Anwendungen, wie zum Beispiel 3D-Design, Archäologie und virtueller oder auch erweiterter Realität. Die vorliegende Arbeit liefert drei Beiträge: wir stellen eine Methode zur Kalibrierung von Kameras vor, wir beschreiben einen Ansatz zur Aufnahme und Verarbeitung von photometrischen Normalen, die mit Hilfe von Gradientenbeleuch- tung in der Hardwarekonfiguration aufgenommen worden sind, und schließlich präsentieren wir eine Methode zur Stereorekonstruktion von 3D-Modellen aus photometrischen Daten und mehreren Perspektiven. Um möglichst genaue Rekonstruktionsergebnisse aus mehreren Perspektiven mit Hilfe von photometrischen Daten zu erhalten, werden die Kameras sowohl geometrisch als auch photometrisch kalibriert. Zur Datenaufnahme wird eine sogenannte “Light Stage” benutzt. Dies ist eine Hardwarekonfiguration, die es erlaubt die Beleuchtung während der Aufnahme vollsändig zu kontrollieren. Die verwendete Methode zur Erzeugung der Gradientenbeleuchtung und zur Verarbeitung der aufgenommenen Daten zur Erzeugung genauer photometrischer Normalen wird beschrieben. Der Hauptbestandteil der Pipeline ist eine Methode zur Stereorekonstruktion aus photometrischen Daten und mehreren Perspektiven. Bei dieser Methode erzeugen wir zunächst eine grobe Rekonstruktion mit Hilfe der aufgenommenen Bilder und erzeugten Normalen. In einem zweiten Schritt werden die Normaleninformationen verwendet um eine vollständige Rekonstruktion der Objektoberfläche zu erhalten. Schließlich erfolgt eine Filterung der rekonstruierten Oberfläche, um Artefakte aus dem zweiten Rekonstruktionsschritt zu entfernen.

Bibliographie / References

  1. [52] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis. In Computer Vision and Pattern Recognition, 2007.
  2. [61] C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Alvey Vision Conference, volume 15, pages 147-151, 1988.
  3. [27] J. Canny. A Computational Approach to Edge Detection. Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698, 1986.
  4. [124] S. Petitjean. A Computational Geometric Approach to Visual Hulls. International Journal of Computational Geometry & Applications, 8(4):407-436, 1998.
  5. [101] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133-135, 1981.
  6. [16] P. J. Besl. Active, Optical Range Imaging Sensors. Machine Vision and Applications, 1(2):127-152, 1988.
  7. [73] T. Higo, Y. Matsushita, N. Joshi, and K. Ikeuchi. A Hand-held Photometric Stereo Camera for 3-D Modeling. In International Conference on Computer Vision, pages 1234-1241, 2009.
  8. [17] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes. Transactions on Pattern Analysis and Machine Intelligence, pages 239-256, 1992.
  9. [109] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2):431-441, 1963.
  10. [121] D. Nistér. An Efficient Solution to the Five-Point Relative Pose Problem. Transactions on Pattern Analysis and Machine Intelligence, 26(6):756-770, 2004.
  11. [3] A. H. Ahmed and A. Farag. A New Formulation for Shape from Shading for NonLambertian Surfaces. In Computer Vision and Pattern Recognition, volume 2, pages 1817-1824, 2006.
  12. [105] B. D. Lucas and Takeo T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. In Artificial Intelligence, pages 674-679, 1981.
  13. [113] S. J. Maybank and O. D. Faugeras. A Theory of Self-Calibration of a Moving Camera. International Journal of Computer Vision, 8(2):123-151, 1992.
  14. [2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski. Building Rome in a Day. Communications of the ACM, 54(10):105- 112, 2011.
  15. [26] M. Byröd and K. Åström. Conjugate Gradient Bundle Adjustment. In European Conference on Computer Vision, pages 114-127, 2010.
  16. [51] Y. Furukawa and J. Ponce. Carved Visual Hulls for Image-Based Modeling. In European Conference on Computer Vision, pages 564-577, 2006.
  17. [25] D. C. Brown. Close-range camera calibration. 37(8):855-866, 1971.
  18. [22] K. L. Boyer and A. C. Kak. Color-Encoded Structured Light for Rapid Active Ranging. Transactions on Pattern Analysis and Machine Intelligence, 9(1):14-28, 1987.
  19. [14] M. Beljan, J. Ackermann, and M. Goesele. Consensus multi-view photometric stereo. In DAGM/OAGM Symposium, pages 287-296, 2012.
  20. [24] D. C. Brown. Decentering Distortion of Lenses. Photogrammetric Engineering, 32(3):444-462, 1966.
  21. [116] S. K. Nayar, K. Ikeuchi, and T. Kanade. Determining Shape and Reflectance of Hybrid Surfaces by Photometric Sampling. Robotics and Automation, 6(4):418-431, 1990.
  22. [57] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-Hall, Third edition, 2006.
  23. [118] F. E. Nicodemus. Directional Reflectance and Emissivity of an Opaque Surface. Applied Optics, 4(7):767-775, 1965.
  24. [104] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
  25. [5] T. Bailey and H. Durrant-Whyte. Simultaneous Localization and Mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3):108-117, 2006.
  26. [19] J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient Generation of the Binary Reflected Gray Code and Its Applications. Communications of the ACM, 19(9):517- 521, 1976.
  27. [40] S. C. Eisenstat. Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical Computing, 2(1):1-4, 1981.
  28. [117] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently Combining Positions and Normals for Precise 3D Geometry. Transactions on Graphics, pages 536-543, 2005.
  29. [144] R. Smith, M. Self, and P. Cheeseman. Estimating Uncertain Spatial Relationships in Robotics. In Autonomous robot vehicles, pages 167-193, 1990.
  30. [62] R. I. Hartley. Estimation of Relative Camera Positions for Uncalibrated Cameras. In European Conference on Computer Vision, volume 588, pages 579-587, 1992.
  31. [63] R. I. Hartley. Euclidean Reconstruction from Uncalibrated Views. In Applications of Invariance in Computer Vision, volume 825, pages 235-256, 1994.
  32. [23] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239, 2001.
  33. [168] C. Wu, Y. Liu, Q. Dai, and B. Wilburn. Fusing Multiview and Photometric Stereo for 3D Reconstruction under Uncalibrated Illumination. Visualization and Computer Graphics, 17(8):1082-1095, 2011.
  34. [35] W. B. Culbertson, T. Malzbender, and G. Slabaugh. Generalized Voxel Coloring. In Vision Algorithms: Theory and Practice, pages 100-115, 2000.
  35. [119] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometrical Considerations and Nomenclature for Reflectance, volume 160. National Bureau of Standards, 1977.
  36. [10] B. G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis, Stanford University, 1974.
  37. [169] C. Wu, B. Wilburn, Y. Matsushita, and C. Theobalt. High-quality shape from multiview stereo and shading under general illumination. In Computer Vision and Pattern Recognition, pages 969-976, 2011.
  38. [112] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. McMillan. ImageBased 3D Photography Using Opacity Hulls. Transactions on Graphics (TOG), 21(3):427-437, 2002.
  39. [111] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-Based Visual Hulls. In Computer graphics and interactive techniques, pages 369-374, 2000.
  40. [170] C. Yang, J. Chen, N. Su, and G. Su. Improving 3D Face Details based on Normal Map of Hetero-source Images. In Computer Vision and Pattern Recognition Workshops, pages 9-14, 2014.
  41. [34] J. E. Cryer, P.-S. Tsai, and M. Shah. Integration of Shape from Shading and Stereo. Pattern Recognition, 28(7):1033-1043, 1995.
  42. [4] A. Ansar and K. Daniilidis. Linear Pose Estimation from Points or Lines. Transactions on Pattern Analysis and Machine Intelligence, 25(5):578-589, 2003.
  43. [32] O. Chum and J. Matas. Matching with PROSAC - progressive sample consensus. In Computer Vision and Pattern Recognition, volume 1, pages 220-226, 2005.
  44. [72] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. National Bureau of Standards, 49(6), 1952.
  45. [60] M. D. Grossberg and S. K. Nayar. Modeling the Space of Camera Response Functions. Transactions on Pattern Analysis and Machine Intelligence, 26(10):1272-1282, 2004.
  46. [41] P. Eisert, E. Steinbach, and B. Girod. Multi-Hypothesis, Volumetric Reconstruction of 3-D Objects from Multiple Calibrated Camera Views. In Acoustics, Speech, and Signal Processing, volume 6, pages 3509-3512, 1999.
  47. [64] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Second edition, 2004.
  48. [30] J. Y. Chang, K. M. Lee, and S. U. Lee. Multiview normal field integration using level set methods. In Computer Vision and Pattern Recognition, pages 1-8, 2007.
  49. [1] J. Ackermann, F. Langguth, S. Fuhrmann, A. Kuijper, and M. Goesele. MultiView Photometric Stereo by Example. In International Conference on 3D Vision, volume 1, pages 259-266, 2014.
  50. [123] J. Park, S. N. Sinha, Y. Matsushita, Y.-W. Tai, and I. S. Kweon. Multiview Photometric Stereo using Planar Mesh Parameterization. In International Conference on Computer Vision, pages 1161-1168, 2013.
  51. [56] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-View Stereo for Community Photo Collections. In International Conference on Computer Vision, pages 1-8, 2007.
  52. [55] M. Goesele, B. Curless, and S. M. Seitz. Multi-View Stereo Revisited. In Computer Vision and Pattern Recognition, volume 2, pages 2402-2409, 2006.
  53. [54] H. Gärtner, P. Lehle, and H. J. Tiziani. New, highly efficient, binary codes for structured light methods. Proc. SPIE, 2599:4-13, 1996.
  54. [38] J.-D. Durou, M. Falcone, and M. Sagona. Numerical Methods for Shape-fromShading: A New Survey with Benchmarks. Computer Vision and Image Understanding, 109(1):22-43, 2008.
  55. [21] E. Boyer. Object Models From Contour Sequences. In European Conference on Computer Vision, pages 109-118, 1996.
  56. [103] D. G. Lowe. Object Recognition from Local Scale-Invariant Features. In International Conference on Computer Vision, volume 2, pages 1150-1157, 1999.
  57. [100] J. Lim, J. Ho, M.-H. Yang, and D. Kriegman. Passive Photometric Stereo from Motion. In International Conference on Computer Vision, volume 2, pages 1635- 1642, 2005.
  58. [65] D. C. Hauagge, S. Wehrwein, K. Bala, and N. Snavely. Photometric Ambient Occlusion. In Computer Vision and Pattern Recognition, pages 2515-2522, 2013.
  59. [166] R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19:139-144, 1980.
  60. [8] R. Basri and D. Jacobs. Photometric Stereo with General, Unknown Lighting. In Computer Vision and Pattern Recognition, pages 374-381, 2001.
  61. [29] M. K. Chandraker, S. Agarwal, and D. J. Kriegman. ShadowCuts: Photometric Stereo with Shadows. In Computer Vision and Pattern Recognition, pages 1-8, 2007.
  62. [145] N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring Photo Collections in 3D. In Transactions on Graphics, volume 25, pages 835-846, 2006.
  63. [110] W. Matusik, C. Buehler, and L. McMillan. Polyhedral Visual Hulls for Real-Time Rendering. In Workshop on Rendering, pages 116-126, 2001.
  64. [49] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.
  65. [15] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics, 182(2):418-477, 2002.
  66. [28] D. Caspi, N. Kiryati, and J. Shamir. Range Imaging With Adaptive Color Structured Light. Transactions on Pattern Analysis and Machine Intelligence, 20(5):470-480, 1998.
  67. [107] W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and P. Debevec. Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination. In Eurographics Rendering Techniques, pages 183-194, 2007.
  68. [172] L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. In 3D Data Processing Visualization and Transmission, pages 24-36, 2002.
  69. [76] B. K. P. Horn. Relative Orientation. International Journal of Computer Vision, 4(1):59-78, 1990.
  70. [31] Y.-C. Chang and J. F. Reid. RGB Calibration for Color Image Analysis in Machine Vision. Image Processing, 5(10):1414-1422, 1996.
  71. [127] M. Pollefeys, R. Koch, and L. Van Gool. Self-Calibration and Metric Reconstruction Inspite of Varying and Unknown Intrinsic Camera Parameters. International Journal of Computer Vision, 32(1):7-25, 1999.
  72. [106] Q.-T. Luong and O. D. Faugeras. Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices. International Journal of Computer Vision, 22(3):261-289, 1997.
  73. [37] C. J. Davies and M. S. Nixon. Sensing Surface Discontinuities via Coloured Spots. In International Workshop on Image and Signal Processing, pages 573-576, 1996.
  74. [171] L. Zhang, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and Motion under Varying Illumination: Unifying Structure from Motion, Photometric Stereo, and Multi-view Stereo. In International Conference on Computer Vision, pages 618-625, 2003.
  75. [6] S. Bakshi and Y.-H. Yang. Shape from Shading for Non-Lambertian Surfaces. In International Conference on Image Processing, volume 2, pages 130-134, 1994.
  76. [42] C. Hernández Esteban and F. Schmitt. Silhouette and Stereo Fusion for 3D Object Modeling. Computer Vision and Image Understanding, 96(3):367-392, 2004.
  77. [39] H. Durrant-Whyte and T. Bailey. Simultaneous Localization and Mapping: Part I. Robotics & Automation Magazine, IEEE, 13(2):99-110, 2006.
  78. [11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3):346-359, 2008.
  79. [13] P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The Bas-Relief Ambiguity. International Journal of Computer Vision, 35(1):33-44, 1999.
  80. [98] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo Project: 3D Scanning of Large Statues. In Computer Graphics and Interactive Techniques, pages 131-144, 2000.
  81. [115] J. Moré. The Levenberg-Marquardt Algorithm: Implementation and Theory. In Numerical Analysis, volume 630, pages 105-116, 1978.
  82. [125] M. Pollefeys, L. J. Van Gool, and A. Oosterlinck. The Modulus Constraint: A New Constraint for Self-Calibration. In International Conference on Pattern Recognition, pages 349-353, 1996.
  83. [7] F. O. Bartell, E. L. Dereniak, and W. L. Wolfe. The Theory and measurement of bidirectional reflectance distribution function (BRDF) and bidirectional transmittance distribution function (BTDF). In 1980 Huntsville Technical Symposium, pages 154-160, 1981.
  84. [18] N. Birkbeck, D. Cobzas, P. Sturm, and M. Jägersand. Variational Shape and Reflectance Estimation under Changing Light and Viewpoints. In European Conference on Computer Vision, pages 536-549, 2006.
  85. [108] A. A. Magill. Variation in Distortion with Magnification. Journal of the Optical Society of America, 45(3):148-149, 1955.
  86. [126] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbies, K. Cornelis, J. Tops, and R. Koch. Visual Modeling with a Hand-Held Camera. International Journal of Computer Vision, 59(3):207-232, 2004.
  87. [102] M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. Transactions on Mathematical Software (TOMS), 36(1):2nd, 2009.
  88. [33] D. Coffin. Decoding raw digital photos in Linux. ~dcoffin/dcraw/, Last visited on Aug 8th, 2015.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten