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17 Abstract / Zusammenfassung 

1 Abstract / Zusammen-

fassung 

The exploration of the structural scope 

of the octahedral coordination mode and 

investigations of defined structural isomers 

regarding their physico-chemical properties 

are of valuable interest for applications in 

the field of catalysis, materials sciences, and 

life sciences. The MEGGERS group establi-

shed a variety of different transition metals 

as structural templates to gain access to 

highly potent and selective kinase inhibitors. 

During this effort, the effectiveness of metal 

complexes as kinase inhibitors with potential 

anticancer properties has repeatedly been 

proven in vitro as well as in vivo. The ambi-

tion to establish metals as structural tem-

plates led from initial half sandwich com-

plexes to highly sophisticated octahedral 

complexes. 

In the current thesis, the challenge to 

selectively synthesise a desired enantiomer 

is presented highlighting the application of 

symmetric polydentate ligands and chiral 

polydentate ligands. 

As a first example, regarding the chem-

ical and biological properties, an N-methyl-

1,4,7-trithiacyclodecan-9-amine based ru-

thenium(II) complex, in context of S6 kinase 

1 (S6K1) inhibition, is presented. Aberrant 

activation of S6K1 is found in many diseas-

es, including diabetes, aging, and cancer. 

The presented ATP competitive organo-

metallic kinase inhibitors were inspired by 

the pan-kinase inhibitor staurosporine, and 

specifically inhibit S6K1, and verify the 

strategy successfully applied previously to 

target other kinases. Furthermore, the ob-

tained biochemical data demonstrate that 

the compounds inhibit S6K1 with an IC50 

value in the low nanomolar range at 100 μM 

ATP. Moreover, the crystal structures of 

S6K1 bound to staurosporine, and two ru-

thenium(II) based inhibitors reveal that the 

compounds bind in the ATP binding site and 

exhibit S6K1-specific contacts, resulting in 

changes to the p-loop, C helix, and D 

helix compared to the staurosporine bound 

structure. In vitro assays reveal inhibited 

S6K phosphorylation in yeast cells. These 

cumulated biological studies demonstrate 

that potent, selective, and cell permeable 

metal based inhibitors can provide a scaffold 

for the future development of compounds 

with possible therapeutic applications. 

However, the so far presented com-

plexes are racemic mixtures. Thus, to apply 

these compounds for the therapeutic use 

the pharmacologic and toxicological charac-

terisation of each present structural isomer 

is obligatory. Therefore, the asymmetric syn-

thesis of desired structural isomers of the 

metal based kinase inhibitors is highly fa-

vourable. 

Thus, controlling the metal centered 

relative stereochemistry represents the key 

to achieve this task. The application of a 

proline based chiral tridentate ligand to de-

cisively influence the coordination sphere of 

an octahedral rhodium(III) complex is de-

scribed as possible solution to face this is-

sue. The mirror-like relationship of synthe-

sised enantiomers and differences between 

diastereomers were investigated. Further-

more, the application of the established pyr-

idocarbazole pharmacophore ligand as part 

                                                

 The term „pharmacophore“ in this thesis is used as a 

structural unit coordinated to the metal core and 

mainly mediating the interactions to the biological 

target. 

The IUPAC definition (1998) of “pharmacophore” is 

given as:  

• A pharmacophore is the ensemble of steric and 

electronic features that is necessary to ensure the 

optimal supramolecular interactions with a specific 

biological target structure and to trigger (or to block) 

its biological response. 

• A pharmacophore does not represent a real molecule 

or a real association of functional groups, but a purely 

abstract concept that accounts for the common mo-

lecular interaction capacities of a group of compounds 

towards their target structure. 

• A pharmacophore can be considered as the largest 

common denominator shared by a set of active mole-

cules. This definition discards a misuse often found in 

the medicinal chemistry literature which consists of 

naming as pharmacophores simple chemical function-
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of the organometallic complexes to obtain 

kinase inhibitors is demonstrated. Moreover, 

the importance of the relative stereochemis-

try at metal in chiral environments like bio-

molecules is highlighted by both, protein 

kinase profiling and competitive inhibition 

studies. The cumulated results confirm that 

the proline based enantiopure rhodium (III) 

complexes differ entirely in their selectivity 

and specificity despite their unmistakably 

mutual origin. 

The successful work using proline as a 

chiral building block inspired to implement 

other chiral amino acids into the ligand de-

sign. For this aim, a versatile set of amino 

acids were elaborated as starting points for 

the ligand synthesis. As highly functional-

ised building blocks, they offer the possibility 

to orient a particular functional group into a 

defined site of the enzyme pocket, overall 

predefined by the chirality-at-metal. Howev-

er, the ambitious attempts were limited by 

the synthetic issues accompanying the im-

plementation of primary amino acids into the 

ligand design due to steric effects influenc-

ing the yields. Nevertheless, the biological 

data evaluating the obtained complexes 

offered valuable hints for the future ligand 

scaffolds. 

                                                                       
alities such as guanidines, sulfonamides or dihy-

droimidazoles (formerly imidazolines), or typical 

structural skeletons such as flavones, phenothiazines, 

prostaglandins or steroids. 

• A pharmacophore is defined by pharmacophoric 

descriptors, including H-bonding, hydrophobic and 

electrostatic interaction sites, defined by atoms, ring 

centers and virtual points 

 

Die Erkundung des dreidimensionalen 

Raumes anhand der Strukturen, welche 

durch die oktaedrische Koordinationssphäre 

ermöglicht werden, führt zu Isomeren, deren 

physiko-chemische Eigenschaften für die 

Forschungsfelder der Katalyse, Material-

wissenschaften und Lebenswissenschaften 

von besonderem Interesse sind. Der Ar-

beitskreis MEGGERS hat hierzu eine Vielzahl 

von unterschiedlichen Übergangsmetallen 

als Strukturtemplate etabliert, um Zugang zu 

hochpotenten, selektiven sowie strukturell 

hochdiversifizierten Kinaseinhibitoren zu 

erhalten. Im Zuge dieser Anstrengungen, 

wurden Kinaseinhibitoren entwickelt, deren 

anitcancerogene Wirkung mehrfach, sowohl 

in vitro als auch in vivo, belegt werden konn-

ten. Hierbei führten die Ambitionen, Metalle 

als Strukturtemplate zu verwenden, über 

anfängliche Halbsandwich-Komplexe zu 

hochdiversifizierten oktaedrischen Komple-

xen. 

In der vorliegenden Arbeit sollen insbe-

sondere die Herausforderungen und die 

Umsetzung der selektiven Synthese von 

angestrebten Enantiomeren anhand von 

mehrzähnigen symmetrischen Liganden 

sowie anhand von mehrzähnigen chiralen 

Liganden verdeutlicht werden. 

Als erstes Beispiel dient hierzu die Be-

trachtung der chemischen und biologischen 

Eigenschaften eines auf N-methyl-1,4,7-tri-

thiacyclodecan-9-amin basierenden Ruthe-

nium(II) Komplexes, im Kontext der S6 

Kinase 1 (S6K1) Inhibierung. Eine gestörte 

Aktivierung von S6K1 wird mit zahlreichen 

Erkrankungen wie z.B.: Diabetes, Krebs und 

Alterungsprozessen in Verbindung gebracht. 

Die vorgestellten ATP kompetitiven metall-

basierten Inhibitoren sind von dem Pan-

Kinaseinhibitor Staurosporin abgeleitet, 

doch inhibieren spezifisch S6K1. Darüber 

hinaus verifizieren sie das Konzept, welches 

bereits erfolgreich bei der Inhibierung ande-

rer Kinasen Anwendung gefunden hat. Die 

erhaltenen biochemischen Daten zeigen, 

dass die Ruthenium(II) basierten Verbin-

dungen S6K1 mit einem IC50 Wert im 
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nanomolaren Bereich inhibieren bei einer 

ATP Konzentration von 100 µM ATP. Zu-

sätzlich konnte anhand der Kristallstrukturen 

von Staurosporin in S6K1 und von zwei Me-

tallkomplexen in S6K1, die Bildung von 

S6K1 spezifischen Kontakten, welche im 

Falle der metallbasierten Inhibitoren im Ver-

gleich zu Staurosporine zu Änderungen in 

der p-Schleife, der C Helix und der D 

Helix führen, gezeigt werden. In vitro Unter-

suchungen zeigten eine inhibierte S6K 

Phosphorylierung in Hefe Zellen. Die Ge-

samtheit der biologischen Studien zeigen, 

dass potente, selektive sowie zellpermeable 

metallbasierte Inhibitoren eine Grundstruktur 

für die Entwicklung von potentiellen Chemo-

therapeutika bereit halten. 

Zu beachten ist, dass die hierbei ge-

zeigten Komplexe in racemischer Form vor-

liegen. Um diese Verbindungen in der The-

rapie einsetzen zu können, müssen somit 

auch die pharmakologischen und die toxiko-

logischen Eigenschaften beider Isomere 

charakterisiert und miteinander verglichen 

werden. In diesem Zusammenhang ist die 

asymmetrische Darstellung eines ge-

wünschten Isomers eines metallbasierten 

Inhibitors sehr erstrebenswert. 

Daher stellt die Kontrolle der relativen 

und absoluten metallzentrierten Stereoche-

mie eine Schlüsselaufgabe zur Realisierung 

dieses Zieles dar. Die Anwendung von pro-

linbasierten dreizähnigen Liganden zur ent-

schiedenen Beeinflussung der Koordinati-

onsphäre von Rhodium(III) Komplexen wird 

daraufhin als mögliche Lösung dieser Her-

ausforderung diskutiert. Die spiegelbildliche 

Beziehung der synthetisierten Enantiomere 

und die Unterschiede zu den entsprechen-

den Diastereomeren werden durchleuchtet. 

Zudem wird die Anwendung des etablierten 

Pyridocarbazole Pharmakophorliganden als 

                                                

 Der Begriff “Pharmakophor“ wird im Rahmen die-

ser Dissertation für eine Struktureinheit verwendet, 

welches als metal-koordinierter Ligand hauptsächlich 

für die Wechselwirkungen mit dem biologischen 

Zielmolekül verantwortlich ist. 

 

Teil des metallbasierten Komplexes zur 

Darstellung von Kinaseinhibitoren demon-

striert. Darüber hinaus, wird die enorme Be-

deutung der relativen Stereochemie am Me-

tallzentrum bei der Wechselwirkung mit 

chiralen Umgebungen wie Biomoleküle 

durch Kinase Profiling Untersuchungen und 

kompetitiven Inhibitionsstudien verdeutlicht. 

Die gesammelten Daten bestätigen, dass 

die unterschiedlichen Rhodium(III) Isomere 

sich gänzlich in Ihrer Selektivität und Spezi-

fität unterscheiden, trotz eines eindeutig 

gemeinsamen Ursprungs. 

Die erfolgreichen Arbeiten mit der Ver-

wendung von Prolin als Gerüstbaustein in-

spirierte folgerichtig zu dem Einsatz weiterer 

Aminosäuren im Ligandendesign. Hierzu 

wurde eine vielseitige Auswahl an Amino-

säuren als Ausgangspunkt für die Liganden-

synthese erarbeitet. Die Arbeiten mit primä-

ren Aminosäuren zeigten deren Potential 

zur Eröffnung von hochdiversifizierten okta-

edrischen Komplexen. Als hochfunktionali-

sierte Gerüstbausteine ermöglichen sie die 

Positionierung von funktionellen Gruppen in 

bestimmte Raumrichtungen einer Enzymta-

sche, welche durch die Chiralität-am-Metall 

vorgegeben wird. Jedoch wird dieses ambi-

tionierte Ziel durch synthetische Schwierig-

keiten bei der Koordination von aminosäu-

renbasierten Liganden, begründet in 

sterischen Effekten und den reduzierten 

Ausbeuten, limitiert. Nichtsdestotrotz, eröff-

nen die erhaltenen biologischen Daten wich-

tige Erkenntnisse für das zukünftige Ligan-

dendesign.  
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2 Introduction 

2.1 Kinases 

 

More than 518 different protein kinas-

es have been identified in the human prote-

ome and represent approximately 1.7% of 

the human genome.[1–3] Among these 518 

kinases, 478 are classified as typical kinas-

es, and 40 as atypical, based on the fact 

that the latter still have biochemical kinase 

activity but lack sequence similarity to the 

typical kinases.[1,4,5] The typical kinases are 

further subdivided into two categories de-

pending on the phosphorylated amino acid 

residue: either serine/threonine (388 kinas-

es) or tyrosine (90 kinases).[6,7] 

2.1.1 Classification and Role in Cellular 

Signal Transduction 

 

The eukaryotic protein kinases have 

evolved in a divergent manner than prokar-

yotic protein kinases, that are indeed abun-

dant, but poorly understood.[8,9] However, in 

eukaryotic cells kinases play an inevitable 

role in the majority of cellular signaling 

pathways by regulating the flow of infor-

mation via protein phosphorylation.[10,11] The 

phosphorylation of protein substrates results 

in versatile effects, covering increased or 

decreased enzyme activity of the effector 

proteins, the creation of recognition sites for 

protein assembly or conformational changes 

inducing structure related effects, like con-

traction and relaxation on macro-molecular 

level.[12] 

An overview of the kinase classifica-

tion is provided in Chapter 6.1. Moreover, a 

detailed discussion of kinase classification, 

structural difference, and role in physiologi-

cal processes is out of the scope of this the-

sis. Therefore, further publications are rec-

ommended giving detailed insights in each 

kinase family, see Chapter 6.1. 

 

Figure 1: Dendrogram of the human kinome. AGC: 

named after protein kinase A, G, and C. CAMK: acro-
nym for Ca

2+
/Calmodulin-dependent protein kinases. 

CMGC: acronym based on initials of key members 
CDK, MAPK, GSK, and CDK. RGC: receptor guanyl-
ate cyclase group. TK: tyrosine kinases. TKL: tyrosine 
kinases like group. STE: homologues of yeast Ster-
ile 7, Sterile 11, and Sterile 20 kinases group. CK1: 
casein kinase 1 group.

[1]
 

 

 

Figure 2: Crystal structure of ATP bound to PKA (pdb: 
1ATP). The N-lobe is coloured in blue and the C-lobe 

in yellow. The ATP molecule is showed as red 
spheres and the hinge region is coloured in magenta. 
The manganese ions and the peptide inhibitor IP20 
were omitted for clarity.

[13]
 

  



 
22 Introduction 

2.1.2 Structural Properties 

 

Protein kinases themselves are regu-

lated by phosphorylation,[14] among other 

mechanisms, leading either to the active 

conformation or the inactive conform-

ation.[12,15] The active conformation was first 

investigated on the protein kinase A (PKA) 

crystal structure;[16] whereas, the inactive 

conformation was first investigated on the 

crystal structure of cyclin-dependent protein 

kinase 2 (CDK2).[17] Moreover, PKA as one 

of the first reported kinases ever in 1968 by 

WALSH et al.,[18] beside the phosphorylase 

kinase by KREBS and FISCHER in the late 

1950´s,[19] is one of the most characterised 

ones in literature.[16,20–22] Thus, numerous 

structural investigations discussing PKA, an 

AGC kinase,[23] have been performed show-

ing that this is an ideal representative for the 

elucidation of the structural properties of 

protein kinases and their catalytic mecha-

nism. The first crystal structure of PKA was 

obtained with manganese ions instead of 

magnesium and the peptide inhibitor 

IP20.[13] Although, PKA serves as the model 

system, the crucial residues are highly con-

served throughout the kinome.[24,25] 

2.1.2.1 The N-Lobe 

 

Two structurally and functionally dis-

tinct lobes contribute in a unique way to the 

catalytic function and the regulation of a 

kinase, see Figure 2.[23,26] The smaller one, 

the N-lobe, is dominated by five -sheets, 

incorporating two -helical subdomain, 

B-helix and the C-helix, see Figure 3. The 

5-sheet is structurally connected via the 

hinge region to the C-lobe. In contrast, the 

C-helix forms functional contacts to the 

C-lobe. Thus, the 5-sheet and the C-helix, 

are the only two structural elements, which 

interact between the two main 

segments.[27,28] The 1, 2, and 3 strands 

possess two highly conserved sequence 

motifs. The first motif (GxGxxG) is called the 

glycine rich loop (Gly-loop), between 1 and 

2 and the second is the AxK motif in the 3 

strand. 

The Gly-loop is the most flexible part 

of the N-lobe. Its main function is to fold 

over and enclose the nucleotide for the 

proper positioning the -phosphate of aden-

osine triphosphate (ATP) for catalysis.[29] 

Further, it is noteworthy to distinct Gly-loop 

from the P-loop (Walker-A motif, 

(GxxxxGKT/S).[30] Although, both loops an-

chor the phosphonucleotides, their interac-

tion mechanism is different. Whereas, the 

P-loop does not form any contacts to the 

purine moiety, the Gly-rich loop connects 

the 1 and 2-strands enclosing the adenine 

ring, see Figure 3. Highly conserved resi-

dues of the P-loop and the Gly-loop are a 

Ser/Thr binding phosphate and a Val resi-

due (Val57 in PKA) forming hydrophobic 

contacts to the purine base, respectively. 

 

Figure 3: Crystal structure of ATP bound to PKA (pdb: 

1ATP). The -sheet core and the -helical domains of 
the N-lobe are highlighted. The distal N-terminal 

A-helix is shown in blue, further turning into the 1 

sheet (red). The 2-sheet is shown in green followed 

by the 3 sheet in yellow. The Gly-loop is depicted in 

orange. The B-helix is coloured in cyan directly driv-

ing into the C-helix (magenta). The 4-sheet is col-

oured in sienna and the 5 in brown followed by the 
hinge region in wheat. The ATP molecule is coloured 

in white and is covered by the 1, 2 sheet and the 
Gly-loop. The C-lobe, manganese ions, and the pep-
tide inhibitor IP20 were omitted for clarity.

[13]
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Figure 4:. Crystal structure of ATP bound to PKA 
(pdb: 1ATP). The hinge region connecting the N-lobe 

and the C-lobe is coloured in wheat. The D (ivory), 

E (green), F (blue), G (olive), H (magenta) and 

I (cyan) form the helical core of the C-lobe. The cata-

lytic loop is shown yellow; the phosphate binding site 
containing the DFG-motif is highlighted in red. Moreo-
ver, the activation segment is presented in orange, 

and the 6-9 sheets in white. The ATP molecule is 
shown as white sticks. The C-terminal end is shown in 
light blue. The N-lobe, manganese ions, and the pep-
tide inhibitor were omitted for clarity.

[13]
 

The second important AxK motif, lo-

cated in the 3 strand, fixes the phosphates 

of ATP towards the C-helix (Lys72 in PKA). 

Moreover, the 3 strand further descends 

into the B-helix and then into the C-helix. 

The latter is very dynamic as well as flexible 

and acts as a crucial regulatory element in 

the protein kinase. Although, belonging to 

the N-lobe due to the primary sequence, it 

occupies an important structural position 

functionally connecting many different parts 

of the kinase. Thus, the C-helix serves as 

a ‘‘signal integration motif’’.[22] Whereas, its 

C-terminus is connected via 4 to 5 and 

subsequently to the C-lobe, its N-terminus 

points towards the activation loop for effi-

cient catalysis. The right positioning of the 

C-helix is one of the crucial steps for the 

kinase catalysis defining the open and 

closed conformations.[31] The C-helix con-

tains a highly conserved glutamate residue, 

Glu91 in PKA, which functionally interacts 

with Lys72 in the 3-strand forming a salt 

bridge. The formation of this interaction is an 

indispensable characteristic of the activated 

state of a kinase. Furthermore, this interac-

tion, when the C-helix is bound to the 

-sheet core, induces a conformational 

change moving the entire rigid N-lobe and 

subsequently the Gly-loop, which forms in-

teractions to the triphosphate of ATP.[20] 

2.1.2.2 The C-lobe 

 

The large C-lobe consists mainly of 

helices, see Figure 4. The C-lobe helical 

subdomains are very stable and harbour the 

substrate binding site. Most of the helices 

(D, E, F, and H) backbone amides are ori-

ented away from solvent,[32,33] despite the 

G-helix, which is solvent exposed. Four 

short -strands, 6 to 9, contain most of 

the amino acid residues responsible for the 

catalytic transfer of the phosphate from 

ATP to the protein substrate. Moreover, the 

anchoring of these loops to the helical core 

is mainly mediated by hydrophobic interac-

tions. The catalytic loop is located between 

6 and 7, whereas 8 and 9 flank con-

served Asp-Phe-Gly (DFG) motif. The as-

partate of the DFG motif, Asp184 in PKA, 

offers the chelating carboxyl group, which is 

urgently needed for magnesium ion com-

plexation and subsequent ATP recognition, 

see Figure 8. The activation segment is fol-

lowed by the F-helix, which is the most vari-

able part in sequence and length throughout 

the kinome, offering the possibility to selec-

tively turning a certain kinase off and on 

beside others.[34–36]. Moreover, it anchors 

firmly other motifs in the C-lobe including the 

catalytic loop, the P+1 loop, the activation 

segment, and the H-I loops via hydro-

phobic interactions. The remaining G, H 

and, I helices, often termed as the 

GHI-domain, play an additional role as allo-

steric binding sites for substrate proteins 

and regulatory proteins.[37]  
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2.1.2.3 The ATP Binding Site 

 

The ATP binding site is highly con-

served through the human kinome assuring 

its common recognition. In general, the ac-

tive conformation is defined by several re-

gions contributing to the -phosphate trans-

fer. A flexible loop, the hinge region, 

connects the 5-sheet of the N-lobe with the 

D-helix of the C-lobe. Further, the C-lobe 

includes the activation segment, which is a 

region of a 20 to 35 amino acids covering 

sequences located between a conserved 

Asp-Phe-Gly motif (the DFG motif) and a 

less conserved Ala-Pro-Glu motif (APE mo-

tif).[26,40] The main characteristic of the active 

conformation is the C helix arranged to-

wards the N-terminal lobe, and the aspartate 

of the DFG chelating an Mg2+ ion to preor-

ganise the ATP substrate, “DFG-in”, see 

Figure 8.[41] In opposite, in the inactive con-

formation the phenylalanine residue is 

turned into the ATP binding site, “DFG-out”, 

excluding a Mg2+ coordination. 

The adenine ring forms specific hy-

drogen bonds between N1 and N6 to the 

main chain of the hinge region along with 

nonpolar aliphatic groups providing 

VAN-DER-WAALS contacts to the purine moie-

ty, see Figure 6. Val57 in 2 and Ala70 from 

the AxK-motif in 3 form VAN-DER-WAALS 

contacts to the adenine ring of ATP in the 

same way as Leu173, which is located in 

the middle of 7 and is always flanked by 

two hydrophobic residues, Leu172 and 

Leu174 in PKA.[42] These two residues con-

tact a hydrophobic residue from the 

D-helix, Met128, which in turn is in touch 

with residues of the F-helix (Leu227 and 

Met231). The hydroxyl groups of the ribose 

ring form hydrogen bonds to the side chain 

of Glu127 and the main chain carbonyl oxy-

gen of Glu170, respectively. The triphos-

phate group is directed offside the adeno-

sine pocket for optimal accessibility and 

transfer of the -phosphate to the peptide 

substrate. For the optimised orientation of 

the - and -phosphate groups the Glu91 

residue, within the C helix, and Lys72 as-

 

 

Figure 5: A schematic version of the interacting regions involved in adenosine triphosphate (1) binding to the cata-

lytic site of PKA. The gatekeeper residue R1 is Met120 (dark blue) in PKA excludes large residues via sterical hin-
drances. The purine moiety of ATP forms two hydrogen bonds to the peptide backbone of R2 and R4 of the hinge 
region (sienna); in PKA residues Glu121 and Val123. The highly negatively charged triphosphate group is oriented 
towards the catalytic DFG motif (maroon) and is further enclosed by the glycine rich loop (dark orange). Moreover 
Mg

2+
 ions assist the preorganization of the triphosphate group. The ribose moiety forms polar interactions with the 

sugar binding region (blue). Two hydrophobic regions, the hydrophobic region I (cyan) and the hydrophobic region II 
(yellow) are poorly addressed by ATP.

[38,39]
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sist the coordination. Furthermore, a net-

work of interactions mediated by a magne-

sium ion, fixed by Asp184 of the DFG motif 

and Asn171, ensure correct positioning re-

quired for ATP binding and catalysis. A sec-

ond magnesium ion chelated by Asp184 

coordinates to the - and -phosphate for 

further stability. Moreover, the compensation 

of the negative charges of the triphosphate 

group by the magnesium ions decreases 

electrostatic repulsion and facilitates the 

convergence of a nucleophilic reaction part-

ner.[43] The glycine rich loop further contrib-

utes to the stabilizing effect mediated by the 

interactions formed with the - and 

-phosphate, see Figure 6. 

Moreover, the HRD-motif is of spe-

cial interest for the catalytic mechanism. In 

PKA the histidine of the HRD-motif is substi-

tuted by a tyrosine leading to the residues 

Tyr164, Arg165, and Asp166. Whereas the 

hydrophobic Tyr164 is part of the regulatory 

spine, Arg165 residue forms ionic interac-

tions to the phosphorylated Thr197 mediat-

ing the conformational change of the activa-

tion loop to the rest of the enzyme.[36] 

Furthermore, Asp166 is positioned to act as 

a weak catalytic base deprotonating the 

peptide substrate for eased nucleophilic 

attack.[43,44] 

An additional important role in pro-

tein kinase activation is occupied by the 

‘‘gatekeeper’’ residue, Met120 in PKA, posi-

tioned at the N-terminal side of the hinge 

region, see Figure 6.[45] An investigation of 

the human kinome reveals that 77% of the 

human kinases possess relatively large res-

idues (Leu, Met, Phe) in opposite to 21%, 

mainly tyrosine kinases, bearing smaller 

gatekeeper residues (Thr, Val).[46] The gate-

keeper residue not directly inflicts the ATP 

binding, but mutagenesis of large gatekeep-

ers to smaller residues allows the binding of 

bulky synthetic analogues of ATP, and con-

sequently influences substrate selectivity.[45] 

 

Figure 6: Crystal structure of adenosine triphosphate 
(1) bound to the catalytic site of PKA (pdb: 1ATP); 

three dimensional representation of Figure 5. ATP 
forms tow hydrogen bonds to the hinge region (red 
dashes). The triphosphate group is coordinated by two 
Mg

2+
 ions (red dashes). Carbon atoms of ATP are 

colored in green. Carbon atoms of the gatekeeper 
residue are colored in dark blue. Carbon atoms of the 
hinge region are colored in sienna. Carbon atoms of 
the hydrophobic region I are colored in cyan. Carbon 
atoms of the hydrophobic region II are colored in yel-
low. Carbon atoms of the sugar region are colored in 
blue. Carbon atoms of the catalytic DFG residues are 
colored in maroon. Carbon atoms of the glycine rich 
loop are colored in dark orange. Magnesium ions are 
shown as magenta spheres. Oxygen atoms are col-
ored in red, nitrogen in blue, phosphorus in orange 
and sulfur in yellow. The residual structure of PKA is 
represented as cartoon in grey. The side chains of the 
highlighted regions, except of the gatekeeper residue, 
were omitted for clarity.

[13]
 

2.1.2.4 The Substrate Binding Site 

 

The substrate-binding is mainly me-

diated by the activation segment. Whereas, 

the activation segment of the inactive kinase 

conformation is often partially disordered, 

the catalytically competent active confor-

mation, forming the peptide binding site, is 

triggered in many kinases by phosphoryla-

tion.[12,14,15] For instance, Thr197 of PKA in 

its phosphorylated phosphothreonine state, 

acts as an organizing centre forming hydro-

gen bonds to the side chains of His87, 

Arg165, and Lys189.[16] The resulting con-

formational changes promote closure of the 
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N- and C-lobe inducing the correct confor-

mational arrangement of the activation seg-

ment for substrate binding. Although, the 

phosphorylation of a regulatory residue of-

fers a control mechanism for kinase activa-

tion and many kinases are capable of adopt-

ing the correct activation segment 

conformation without a preceding phosphor-

ylation, i.e.: phosphorylase kinase (PhK),[47] 

epidermal growth factor receptor 

(EGFR),[48,49] cyclin-dependent kinase 5 

(CDK5).[50] In some kinases, additional sec-

ondary structures in the activation segment 

further increase the substrate 

selectivity.[51,52] 

 

Figure 7: Crystal structure of ATP and peptide inhibi-

tor IP20 bound to PKA (pdb: 1ATP). PKA is presented 

in grey with surface. The peptide inhibitor IP20 (green) 

occupies the substrate binding site. Beside the helical 

core of the C-lobe, the activation segment and the 

P+1 loop (orange) is mainly responsible for the pep-

tide substrate binding. The residue of the peptide 

substrate for phosphorylation is oriented towards the 

catalytic region (yellow) and the DFG motif (red) for 

optimal phosphoryl group transfer.
[13]

 

Besides the highly conserved ATP 

binding site, all kinases share in common 

the orientation of the substrate, whereas the 

the hydroxyl group is directed for functional-

ization directly towards the catalytic aspar-

tate, Asp166 in case of PKA. In serine/thre-

onine kinases, a lysine residue two residues 

next to the catalytic aspartate contacts the 

-phosphate and is assumed to stabilise the 

developing negative charge during 

catalysis.[43] In tyrosine kinases, the stabiliz-

ing amino acid is four residues away and is 

an arginine instead of a lysine offering more 

space for the larger tyrosine residue.[53] 

Moreover, two additional chains of con-

served hydrophobic residues, termed the 

catalytic and regulatory spines, which as-

semble as a response to changes within the 

catalytic site due to kinase activation and 

conduct those changes to the rest of the 

domain.[34,35,54] The regulatory spine de-

scribes an assembly of interactions of resi-

dues located in the N- and C-terminal lobes 

and promoted by the conformational chang-

es of the activation segment.[40] Thus in turn, 

is responsive to peptide binding. Whereas, 

active kinases share a common catalytically 

competent conformation, the inactive kinas-

es are structurally diverse especially in the 

conformation of the hydrophobic regulatory 

spine.[55] This diversity is based on the 

abundance of catalytic requirements and 

constrains missing in the inactive state, al-

lowing the different conformations.[15,26,39,54] 

Although common structural themes across 

the kinome for the inactive form are existing, 

the possible conformations differ more ex-

tensively than the conformations of the ac-

tive form. Therefore, addressing the inactive 

form offers possibilities to selectively ad-

dress single kinases among others, see 

Chapter 2.1.5. 

2.1.3 The Catalytic Mechanism of Phos-

phate Group Transfer 

 

Protein kinases catalyse the transfer 

of the the -phosphate from ATP to the hy-

droxyl group of serine, threonine, or tyrosine 

residues in protein substrates and recognise 

local regions around the site of phosphoryla-

tion. They usually phosphorylate sites of 

less ordered parts of the protein substrate 

exposed on the surface.[56] This preference 

allows the kinase to induce an extended 

conformational change to the substrate pro-

tein fitting the catalytic site and allowing the 
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localization of specificity determining resi-

dues.[57] Moreover in numerous kinases, 

remote docking sites located either offside 

the catalytic domain, i.e.: the mitogen-

activated protein kinases (MAPKs),[58] or on 

separate domains or subunits, i.e.: the 

Cdk2/cyclin complexes,[59] contribute to an 

additional mechanism of target recognition 

and selectivity. 

 The chemical principle of the phos-

phorylate transfer step is simple and de-

pends on the correct orientation of the two 

substrates. The -phosphate of ATP and the 

hydroxyl group of the serine, threonine, or 

tyrosine residue to be phosphorylated must 

be orientated in the right fashion based on 

the structural properties of the kinase, see 

Chapter 2.1. Kinetic studies using 

a) 

 

b) 

               

Figure 8: a) Mechanistic details of the -phosphate group transfer in the PKA binding site.
[7,43]

 Left: The triphosphate 

is preorganised for the catalytic reaction by a network of interactions. One magnesium ion (magenta) coordinates the 

- and -phosphate, and is itself anchored by Asn171 and Asp184, whereas the second ion coordinates to the - and 

-phosphate anchored by Asp184. Further, the Lys72 and Lys168 side chains form hydrogen bonds to the - and 

-phosphate, and to the -phosphate, respectively. Asp166 assists the deprotonation of the substrate hydroxyl group 

for phosphorylate group transfer. Middle: -phosphate in a trigonal-bipyramidal transition state. Right: phosphate 
transferred to the substrate hydroxyl function. Oxygen atoms of the triphosphate group and the substrate are high-
lighted in red; magnesium ions in magenta, phosphor atoms in orange, the substrate carbons in green, and the sub-
strate hydrogen in blue. Ad = Adenosine. b) Crystal structures of the phosphorylate group transfer from ATP to a 

substrate inhibitor molecule, reflecting the principles of a) in the PKA binding site. Left: The triphosphate group is 
preorganised as described above. Note that the peptide inhibitor IP20 has no serine residue being capable of accept-

ing the phosphate, thus bearing an alanine instead at this position for the crystallisation of ATP in the binding site, 
(pdb: 4DH3).

[60]
 Middle: AlF3 is crystallised as a transition state mimic of the trigonal-bipyramidal form of the 

-phosphate during catalytic transfer together with ADP and magnesium ions in the ATP binding site of PKA, (pdb: 
1L3R).

[29]
 In this, and the third case, the peptide inhibitor molecule offers a serine residue at the proper position. Right: 

The -phosphate group has been transferred to the substrate molecule SP20, (pdb: 4IAD).
[61]

 Carbon atoms of ATP 
and ADP are represented in green, phosphor atoms in orange, oxygen in red, nitrogen in blue. The peptide inhibitor 
IP20 and SP20 are shown as cartoon in green. PKA is shown as cartoon in grey as well as the carbon atoms of the 
highlighted residues. 
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[-32P]-ATP or radiolabelled peptide sub-

strate with PKA indicate that both substrates 

have unrestricted access to the catalytic 

site.[62] Moreover, the binding of one sub-

strate does not exclude the other, although 

at high ATP concentrations, which are typi-

cal in the cellular media, there is a prefer-

ence for sequenced binding with ATP 

first.[62] 

 Thereafter, the phosphorylate group 

transfer reaction proceeds attacking the hy-

droxyl group of the substrate in a trajectory 

opposite and in line to the leaving 

-phosphate group, leading to the Walden-

inversion at the phosphorus atom of the 

phosphate, indicating the absence of a 

phosphorylated kinase intermediate. This 

postulated geometry was supported by 

structural studies of PKA co-crystallised with 

the transition state analogue aluminium tri-

fluoride, see Figure 8.[29] Furthermore, the 

reaction mechanism highlights the im-

portance of the coordinated magnesium ions 

stabilising the significant amount of negative 

charges and aiding the controlled release of 

ADP.[43] 

The transition state intermediate is 

discussed to be either dissociative, where 

the bond to the leaving group is broken be-

fore the new bond is formed, or associative, 

where the reaction proceeds through a pen-

tavalent phosphorane intermediate with 

bond formation first by the attacking group 

or at least at the same time as bond break-

ing by the leaving group.[63] Beside the 

phosphorylate group transfer mechanism, a 

base catalysis from the catalytic aspartate 

deprotonating the attacking hydroxyl group 

followed by a subsequent transfer of the 

proton to the reaction product facilitates the 

entire reaction cascade, see Figure 8 a).[64]  

Nevertheless, deprotonation of the nucleo-

philic hydroxyl group in the early stages of 

the reaction is not a rate-limiting step.[65] 

Once the substrates have been correctly 

oriented, the rate-limiting step is the release 

of products.[62,64,66,67] 

2.1.4 Kinases Related Disorders 

 

The regulating mechanisms of protein 

kinases is based on the inhibition or activa-

tion of assembling protein partners,[68] their 

phosphorylation,[14,26,69,70] their cellular ex-

pression and localization,[71] the limitation of 

substrates and activating cofactors, and 

their degradation.[72–74] The dysregulation of 

protein kinase activity mediated by muta-

tions leading to constitutively active forms, 

the loss of down-regulating mechanisms, or 

chromosomal rearrangements are associat-

ed with numerous disorders including can-

cer,[75,76] neurodegenerative,[77,78] neuro-

logic,[79] or cardiovascular disorders.[80] 

Moreover, a detailed physiological and 

pathophysiological role of the investigated 

kinases during this work will be discussed in 

the results section in detail. Nonetheless, 

since the first description of protein kinases, 

they achieved special interest as drug tar-

gets, confirmed today by the numerous FDA 

approved small molecule compounds suc-

cessfully applied in therapy.[81] The increas-

ing insights of the structural properties of the 

protein kinases had a significant impact on 

the development of selective and specific 

inhibitors. 
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                           a)                                                      b)                       

 

                                                          c) 

 

                                   d)                                               e) 

 

Figure 9: Comparison of different types of kinase inhibition mediated by small molecules. a) The irreversible inhibitor 
afatinib (2a) binds to a similar active conformation of EGFR (pdb: 4G5P) as observed for type I inhibitors.

[82]
 b) Type I 

inhibitors like dasatinib (3) bind to the active conformation of the target kinase, here BCR-ABL (pdb: 2GQG),
[83]

 with 
the DFG in motif. c) Type II inhibitors like imatinib (4) bind to the inactive DFG out conformation of the target kinase 
BCR-ABL (pdb: 1IEP).

[84]
 Moreover, the P+1 loop contributing to peptide substrate recognition is disordered. d) Type 

III inhibitors like TAK-733 (6) bind to an adjacent allosteric pocket next to the ATP binding site and still allow the bind-
ing of ATP (1) to target kinase, here MEK1 (pdb: 3PP1).

[85]
 e) Finally, type IV inhibitors like GNF-2 (7) (blue spheres) 

bind to an allosteric site remote the ATP binding site of BCR-ABL (pdb: 3K5V) occupied by imatinib (4) in the inactive 

conformation.
[86]

 All inhibitors binding to or next to the ATP binding site are presented as red spheres; ATP is present-
ed as sticks with the carbon atoms in green. The hinge region is coloured green, the catalytic loop in yellow, the activa-
tion loop with the DFG motif in red, and the P+1 loop in orange. All kinases are represented as cartoon in grey with the 
surface in grey. 
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2.1.5 Mechanisms of Kinase Inhibition 

 

Small-molecule kinase inhibitors rep-

resent useful tools to investigate and evalu-

ate kinase functions in numerous cellular 

activities. Nevertheless, due to the highly 

conserved domains targeting selectively 

single kinases among others was assumed 

to be an unconvertible challenge, unless the 

first selective kinase inhibitors against the 

epidermal growth factor receptor (EGFR) 

were reported in the late 1980s.[87,88] This 

incidence as a starting point, led to a large 

number of kinase inhibitors with various 

structural scaffolds and selectivity profiles 

aiding to elucidate the molecular recognition 

of kinase/inhibitor interactions.[89,90] 

The majority of kinase inhibitors tar-

get the ATP binding site, which is formed 

between the N- and C-lobe, to perturb the 

ATP fixation; see also Chapter 2.1.2.3. The 

flexible activation loop containing the DFG 

motif controls the access to the active site, 

see Figure 4.[91] In principle the developed 

kinase inhibitors can be divided into two 

classes covering the irreversible and re-

versible ones. The former ones bind cova-

lently with a reactive nucleophilic cysteine 

residue adjacent to the ATP binding site 

resulting in a permanent irreversible extru-

sion of ATP. In opposite, reversible inhibi-

tors compete with ATP and do not form 

permanent covalent modifications with the 

target kinase. Moreover, they are subdivided 

into four main types based on the confor-

mation of the kinase occupied during bind-

ing, see Figure 9.[92,93] Nevertheless, a strict 

discrimination into the classes are not al-

ways appropriate since some kinase inhibi-

tors, i.e.: bi-substrates and bivalent inhibi-

tors (type V),[94] exhibit more than one of the 

mentioned binding modes. 

Most of the clinically approved ki-

nase inhibitors are tyrosine kinase 

inhibitors,[95] a few are serine/threonine ki-

nase inhibitors, and only one is a lipid ki-

nase inhibitor.[96] Mechanistically, 26 are 

reversible inhibitors and only two are irre-

versible inhibitors. Moreover, only one type 

III inhibitor is approved so far, although sev-

eral promising allosteric kinase inhibitors are 

being currently in clinical trials at different 

stages.[81] Detailed review discussing FDA 

approved small molecule kinase inhibitors 

are provided in literature.[81] 

 

Figure 10: Chemical structure of afatinib (2a) and 
ibrutinib (2b). In both inhibitors a MICHEAL acceptor 

moiety highlighted in red covalentely connetcs the 
compounds to their corresponding target kinases. In 
case of afatinib, the residues interacting with specific 
regions of the ATP binding site are coloured according 
to Figure 5. The quinazoline core occupies the ade-
nine region, whereas the 3-chloro-4-fluoro-aniline 
residue is steered to the hydrophobic region I. The 
quinazoline ring forms a hydrogen bond to the hinge 
region (red dashed arrow). The N,N-(dimethylamino)-
but-2-enamide residue contains the MICHAEL acceptor 
moiety forming the covalent bond to the Cys797 side 
chain of EGFR. 

2.1.5.1 Irreversible Kinase Inhibitors 

 

Currently, two irreversible kinase in-

hibitors are approved by the FDA, first the 

EGFR inhibitor afatinib (2a), followed shortly 

by the Bruton´s tyrosine kinase (BTK) inhibi-

tor ibrutinib (2b).[97,98] Both of them incorpo-

rate a MICHAEL acceptor moiety in their scaf-

fold forming a covalent bond with a reactive 

cysteine residue in the active site of the ap-

propriate target kinase. Despite the achie-

ved specificity and potency, concerns re-

garding potential toxicities have to be 



 

 

31 Introduction 

considered during the design of irreversible 

inhibitors to avoid unspecific covalent modi-

fication of off-targets.[99] Nevertheless, the 

success of these two examples of kinase 

inhibitors, i.e.: ibrutinib is expected to reach 

US$ 9 billion in 2020,[100] should emphasise 

further drug design endeavours to consider 

irreversible inhibitors as a true alternative to 

develop inhibitors with increased selectivity 

and potency profile. 

 

Figure 11: Crystal structure of afatinib (2a) bound to 

the active site of EGFR (pdb: 4G5P). The quinazoline 
moiety forms a hydrogen bond with the main chain of 
the hinge region residue Met793 (red dashes). The 
reactive cysteine residue of Cys797 forms a covalent 
C–S bond with the MICHAEL acceptor enone group at 
the edge of the active site in the C-lobe. The carbon 
atoms of afatinib are presented in green. Nitrogen 
atoms are shown in blue, oxygen atoms in red, chlo-
rine in green, fluorine in light cyan, and sulfur in yel-
low. EGFR is presented as cartoon with the surface in 
grey and the hinge region as sticks.

[82]
 

However, the detailed mechanism of 

irreversible inhibitor interaction is best high-

lighted on the example of afatinib (2a). The 

crystal structure of afatinib bound covalently 

to the wild type EGFR is shown, see Figure 

11. It is noteworthy, that afatinib shows ap-

parently a type I binding, very similar to oth-

er approved reversible EGFR inhibitors due 

to the same common anilinoquinazoline 

core. For instance, a conserved hydrogen 

bond is formed between hinge residue 

Met793 and the quinazoline moiety of the 

aromatic ring system. The reactive cysteine 

residue Cys797 forms the covalent C–S 

bond with the MICHAEL acceptor enone 

group at the edge of the active site in the 

C-lobe.[82] 

 

Figure 12: Chemical structure of dasatinib (3). The 

residues interacting with specific regions of the ATP 
binding site are coloured according to Figure 5. The 
thiazole core occupies the adenine region, whereas 
the 2-chloro-6-methylaniline residue is steered to the 
hydrophobic region I. The piperazine moiety with the 
attached hydroxyethylene residue is solvent exposed. 
The thiazole core forms two hydrogen bonds hinge 
region region, and the aniline residue forms one addi-
tional hydrogen bond to the gatekeeper residue 
Thr315 (red dashed arrows). 

2.1.5.2 Type I Kinase Inhibitors 

 

Type I inhibitors are ATP competitive 

inhibitors binding to the active conformation 

of the target kinase with the aspartate resi-

due of the DFG motif oriented into the active 

site. For instance, dasatinib (3), as a type I 

inhibitor, binds to BCR-ABL with the fully 

extended activation loop ready for substrate 

binding. In case of dasatinib, see Figure 13, 

the nitrogen of the heteroaromatic thiazole 

core and the adjacent bridging amino group 

form hydrogen bonds with the amid back-

bone of the hinge residue Met318. The ali-

phatic hydroxyethylpiperazinyl residue is 

solvent exposed, whereas the terminal 

2-chloro-6-methyl aniline group is oriented 

towards the hydrophobic pocket I. The latter 

further interacts via the bridging amide with 

the gatekeeper by hydrogen bond formation. 

All compounds addressing the hydrophobic 

region I are affected by mutation-related 

drug resistance often mediated by a T315I 

mutation leading to steric shielding of this 

important grove, see Chapter 2.1.5.3.[101] 
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Figure 13: Crystal structure of dasatinib (3) bound to 

the active site BCR-ABL (pdb: 2GQG). The thiazole 
core forms two hydrogen bond with the main chain of 
the hinge region residue Met318; an additional hydro-
gen bond is formed between the aniline residues and 
Thr318 (red dashes). The carbon atoms of dasatinib 
are presented in green. Nitrogen atoms are shown in 
blue, oxygen atoms in red, chlorine in green, and 
sulfur in yellow. BCR-ABL is presented as cartoon with 
the surface in grey and the hinge region as sticks.

[83]
 

2.1.5.3 Type II Kinase Inhibitors 

 

In contrast to the type I inhibitors, the 

type II inhibitors bind to the inactive forms of 

the target kinase where the aspartate resi-

due of the DFG motif is oriented outwards of 

the ATP binding. Moreover, kinases differ in 

their inactive conformations more extensive-

ly then in their active conformation and sub-

sequently offering more differentiable inter-

action sites, see Chapter 2.1.2.3. Thus, the 

type II inhibitors exploiting these specific 

pockets adjacent to the ATP-binding site 

offer the potential for increased selectivity. 

However, BCR-ABL was the first ki-

nase, which was addressed by the first suc-

cessfully approved small-molecule inhibitor 

imatinib (4).[102] Beside the revolutionary 

success for the treatment of patients suffer-

ing on chronic myeloid leukemia (CML),[103] 

imatinib induced a “gold fever” in the inhibi-

tor development of kinases as druggable 

therapy targets. Numerous SAR studies 

using imatinib led to the design of whole 

classes of second generation inhibitors and 

provided a deeper understanding of the in-

hibition mechanism.[104,105] Thus, the acting 

mechanism of type II inhibitors is best high-

lighted using imatinib as a model. 

 

Figure 14: Chemical structure of imatinib (4). The 

residues interacting with specific regions of the ATP 
binding site are coloured according to Figure 5. The 
pyridinylprimidine residue occupies the adenine re-
gion, whereas the 4-methylbenzene-1,3-diamine core 
is steered to the hydrophobic region I. The piperazine 
moiety binds to an allosteric pocket formed by the 
DFG out motif (olive). Hydrogen bonds were formed 
mainly by the 4-methylbenzene-1,3-diamine and the 
pyridine residue (red dashed arrows). 

Imatinib binds to the inactive BCR-

ABL with the DFG motif occupying the ‘out’ 

conformation by addressing three different 

binding pockets, see Figure 14. The 4-(py-

ridin-3-yl)pyrimidine moiety of imatinib forms 

a conserved hydrogen bond to the back-

bone of the hinge residue Met318. The 

bridging 4-methylbenzene-1,3-diaminyl core 

occupies the hydrophobic pocket I, whereas 

the adjacent amine, connecting the 4-(py-

ridin-3-yl)pyrimidine moiety group, forms a 

hydrogen bond with the side chain of the 

gatekeeper residue Thr315. Moreover, the 

terminal 4-((4-methylpiperazin-1-yl)methyl) 

benzoic acid, connected via an amide group 

to the 4-methylbenzene-1,3-diaminyl core, 

binds to an allosteric pocket, which is 

formed by DFG out conformation. Further-

more, bidentate ionic interactions with 

His361 and Ile360 are formed by the methyl 

piperazinyl group. Closing, the set of molec-

ular interactions is completed by hydrogen 

bonds formed by the amide group and both 

the Glu286 and Asp381, see Figure 15.[84] 
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Figure 15: Crystal structure of imatinib (4) bound to 

the active site BCR-ABL (pdb: 1IEP). The pyridinyl-
primidine moiety forms a hydrogen bond to the main 
chain of Met318 (red dashes). The 4-methylbenzene-
1,3-diamine core forms two hydrogen bond with the 
side chain residues of Thr315 and Glu286, whereas 
the carbonyl oxygen of the amide group forms a hy-
drogen bond to the main chain of Asp381. The 4-((4-
methylpiperazin-1-yl)methyl) benzoic acid residue of 
imatinib occupies an allosteric binding region only 
accessible due to the DFG out conformation of BCR-
ABL. Beside the hydrophobic interactions, ionic inter-
actions (magenta dashes) between the terminal ter-
tiary nitrogen of the piperazine with His361 and Ile360 
complete the set of attracting interactions. The carbon 
atoms of imatinib are presented in green. Nitrogen 
atoms are shown in blue, oxygen atoms in red, and 
sulfur in yellow. BCR-ABL is presented as cartoon with 
the surface in grey and the hinge region as sticks.

[84]
 

Despite high efficacy and limited tox-

icity compared to traditional chemo-

therapeutic drugs, point mutations, in the 

kinase domain of BCR-ABL, especially of 

the gatekeeper residue, led to the develop-

ment of drug resistance against imatinib.[106–

108] Several potential explanations of this 

resistance have been discussed; however, a 

mutation towards larger gatekeeper resi-

dues stabilises the R-spine more efficiently 

than threonine, subsequently shifting the 

equilibrium to the active conformation in-

stead of the imatinib recognised inactive 

conformation.[109] Such a stabilization, in 

combination with simple steric blocking of 

the binding site,[110] prevents the binding of 

imatinib, and inevitably creates a constitu-

tively active oncogenic kinase. To overcome 

these resistance mechanisms a proceeding 

development of next generation compounds 

is necessary to ensure a fast substitutional 

therapy.[111] Indeed, next-generation drugs 

like nilotinib,[112] dasatinib,[113] or ponatinib[114] 

were developed overcoming drug resistance 

towards imatinib, and the latter even toler-

ates the gatekeeper mutation.[115] 

 

Figure 16: Chemical structure of trametinib (5) and 
TAK-733 (6). Specific regions of the ATP binding site 

are coloured according to Figure 5. TAK-733 as a 
trametinib derivative crystallised in MEK1 acts as a 
surrogate to elucidate the molecular interactions of 
type III kinase inhibitors. The pyridopyrimidine core of 
TAK-733 interacts with an allosteric pocket (olive) 
adjacent to the ATP binding site, whereas the halo-
genated phenylaminyl substituent occupies a MEK 
selective hydrophobic pocket I (cyan). Moreover, hy-
drogen bonds are formed between the dihydroxypro-
pyl group and the ATP phosphate as well as Lys97, 
between the carbonyl group of the pyrimidine moiety 
and Lys97, and between the oxygen in the pyridine 
moiety to Val211 and Ser212 (red dashed arrows). 

2.1.5.4 Type III Kinase Inhibitors 

 

The type III inhibitors bind exclusive-

ly in an allosteric pocket adjacent to the ATP 

binding site. The only FDA approved type III 

kinase inhibitor so far is trametinib targeting 

MEK1 and MEK2. It was developed based 

on a high-throughput screening (HTS) hit 

and subsequent SAR studies, driven by 

growth inhibitory activity against cancer cell 

lines,[116] guided by the structural features of 

established MEK inhibitors.[117] 
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Figure 17: Crystal structure of TAK-733 (6) and ATP 
(1) bound to the allosteric and the MEK specific hy-

drophobic pocket I (pdb: 3PP1). The pyridopyrimidine 
core of TAK-733 interacts with the allosteric pocket 
adjacent to the ATP binding site, whereas the halo-
genated phenylaminyl substituent is steered to the 
MEK selective hydrophobic pocket I. The dihydroxy-
propyl group and the ATP phosphate as well as 
Lys97, the carbonyl group of the pyrimidine moiety 
and Lys97, as well as the oxygen in the pyridine moie-
ty and Val211 and Ser212 form hydrogen bonds (red 
dashes). The carbon atoms of TAK-733 are presented 
in green. The carbon atoms of ATP are presented in 
wheat. Nitrogen atoms are shown in blue, oxygen 
atoms in red, sulfur in yellow, and the magnesium ion 
as magenta sphere. MEK1 is presented as cartoon 
with the surface in grey and the hinge region as 
sticks.

[85]
 

Although the co-crystal structure of 

MEK1 or MEK2 with trametinib could not be 

achieved by now, an analogue of trametinib, 

TAK-733, was crystallised successfully in 

complex with MEK1, see Figure 17, which 

also showed a type III binding mode and is 

therefore discussed as a surrogate. The 

pyridopyrimidinedione core occupies an al-

losteric pocket in direct proximity to the ATP 

binding site with hydrogen bond formations 

of both the oxygen on the pyridine moiety to 

Val211 and Ser212, as well as the oxygen 

of the pyrimidine moiety to Lys97. The at-

tached 2-fluoro-4-iodoaniline moiety acts as 

a MEK-selective recognition motif for the 

hydrophobic pocket I. The terminal dihy-

droxypropyl chain forms hydrogen bonds 

with both hydroxyl functions to the ATP 

-phosphate and Lys97 respectively.[85] 

Type III inhibitors, like trametinib, are valua-

ble tools to modify kinase activity distinct to 

type I or type II inhibitors, and as in case for 

the combination strategy along with the 

B-Raf inhibitor dabrafenib, they offer diverse 

possibilities to overcome resistance mecha-

nism.[118,119] 

2.1.5.5 Type IV Kinase Inhibitors 

 

The type IV inhibitors bind to an allo-

steric site completely offside the ATP bind-

ing pocket.[120] Currently, they are no FDA 

approved type IV kinase inhibitors in use; 

although several candidates are in different 

clinical stages.[121–124] For instance, GNF-2 is 

a highly selective non-ATP competitive in-

hibitor of BCR–ABL (IC50 = 0.14 mM).[125] 

The allosteric myristoyl pocket located near 

the carboxyl terminus of the ABL kinase 

domain was discovered as the precise bind-

ing site of GNF-2 to the BCR-ABL fusion 

protein by both NMR and X-ray experi-

ments.[126–128] GNF-2 replaces the myristoy-

lated peptide occupying an extended con-

formation with the trifluoromethyl group 

buried at the same cleft as originally occu-

pied by the final two carbons of the 

myristate ligand, see Figure 19. Moreover, a 

favourable, but probably weak, polar interac-

tion between one fluorine atom and the main 

chain of Leu340 can be described, along 

with water-mediated hydrogen bonds. No 

direct hydrogen bonds with the protein can 

be observed, thus confirms the binding me-

diated mainly by hydrophobic interactions. 

 

Figure 18: Chemical structure of GNF-2 (7). GNF-2 

binds to the myristate binding site of BCR-ABL remote 
the ATP binding site and the catalytic cleft. The mo-
lecular interactions are mainly driven by hydrophobic 
interactions, although a weak polar interaction be-
tween one fluorine atom and Leu340 can be assumed 
(red dashed arrow). 
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Figure 19: Crystal structure of GNF-2 (7) bound to the 

myristate binding site of BCR-ABL remote the ATP 
binding site (pdb: 3K5V). The 4-trifluoromethoxy-
phenylaminyl residue is steered deep into the C-ter-

minal -helices, whereas the benzamide moiety is 
solvent exposed. The carbon atoms of GNF-2 are pre-
sented in green. Nitrogen atoms are shown in blue, 
oxygen atoms in red, and fluorine in light cyan. 
BCR-ABL is presented as cartoon with the surface in 
grey.

[86]
 

Nevertheless, allosteric inhibitors are 

likewise affected by resistance 

mechanisms.[86] For instance, mutation of 

three residues near the entrance of the 

myristate-binding site (C464Y, P465S and 

V506L) is found to evoke GNF-2 resistance, 

presumably caused by steric reasons. How-

ever, as described for type III inhibitors, a 

combination of inhibitors, acting according to 

different mechanisms, lead to increased 

selection pressure on oncogenic kinases. 

Therefore, the likeliness of a kinase suc-

cessfully handling two distinct binding sites 

to overcome inhibition by alterations via mu-

tagenesis is significantly decreased. For 

instance, the simultaneous binding of a 

myristoyl mimic and an ATP-competitive 

inhibitor results in the inhibition of both the 

wild-type and the T315I BCR-ABL kinase 

activity and cell growth.[86] 
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2.2 Metal Complexes as Kinase In-

hibitors 

 

The MEGGERS group established a va-

riety of different transition metals as struc-

tural templates to gain access to highly so-

phisticated organometallic complexes 

serving as catalysts for asymmetric reac-

tions,[129–132] as DNA intercalators and bind-

ers,[133–135] biorthogonal catalysts,[136,137] pho-

tosensitiser,[138,139] or as highly potent and 

selective kinase inhibitors.[140–142] 

Remarkably, the MEGGERS group es-

tablished the pyridocarbazole pharma-

cophore ligand, derived from staurosporine, 

as a bidentate ligand for metal complex-

ation, which proved to be part of highly se-

lective and specific kinase inhibitors with 

potential anticancer effects, see Figure 

21.[143–145] However, the initial ruthenium 

based kinase inhibitors elaborated in the 

MEGGERS group were half-sandwich com-

plexes coordinated to a cyclopentadienyl 

ligand beside the mentioned pyridocarba-

zole pharmacophore and a monodentate 

ligand completing the coordination 

sphere.[146] 

 

Figure 20: Superimposed crystal structures of stauro-

sporine (8) bound GSK-3 (pdb: 1Q3D) and organo-

metallic inhibitor (R)-10 bound GSK-3 (pdb: 2JLD). 

An almost identic position of the indolocarbazole 
moiety of staurosporine and the pyridocarbazole lig-
and of (R)-10 in the ATP binding site can be observed 

forming identical hydrogen bonds to the main chain of 
Tyr134. The carbon atoms of staurosporine are pre-
sented in green and the carbon atoms of (R)-10 are 

presented in cyan. Nitrogen atoms are shown in blue, 
oxygen atoms in red, fluorine in light cyan, and the 

ruthenium core in teal. GSK-3 is presented as car-
toon and the hinge region as sticks with the surface in 
grey.

[146]
 

 

 

 

Figure 21: Staurosporine (8) serves as a lead structure for metal based kinase inhibitors. The bidentate pyrido-

carbazole pharmacophore ligand mimics the indolocarbazole moiety of staurosporine and mediates hydrogen 

bonds to the hinge region as it is true for staurosporine. 
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Subsequent developments led to 

modifications of the cyclopentadienyl ligand, 

of the pyridocarbazole ligand, and of the 

monodentate ligand, see Figure 22.[147–149] 

Moreover, the metal core of the kinase in-

hibitors itself was substituted by a variety of 

transition metals covering platinum, rhodi-

um, rhenium, osmium, or iridium.[138,150–153] 

However, the ambition to establish metals 

as structural templates lead from initial half 

sandwich complexes to highly sophisticated 

octahedral complexes by establishing a va-

riety of ligand scaffolds as part of metal 

based kinase inhibitors.[140,143–145,152,154] 

Indeed, it is an obvious fact that a 

tetravalent carbon with its possible two en-

antiomers is no comparison in its complexity 

to a hexavalent metal ion with 30 possible 

structural isomers in case of six distinguish-

able monodentate ligands, see Figure 

23.[155] But on the other hand, this enormous 

number of possible stereoisomers has a 

high demand of well elaborated methods to 

selectively synthesise the desired structures 

over the undesired ones. This bidentate pyr-

idocarbazole pharmacophore ligand as a 

prerequisite for the mentioned purpose of 

the organometallic compounds, influences 

the number of possible structural isomers. 

Whereas, half-sandwich complexes, con-

taining at least one bidentate ligand, form 

only two enantiomers, octahedral complexes 

can reach up to 24 different structural iso-

mers using four distinguishable monoden-

tate ligands.[147,156] Moreover, introducing 

multidentate ligands into the organometallic 

complex scaffold further alter the possible 

number of structural isomers. Since, initially 

octahedral complexes were designed con-

taining C2-symmetric ligands, like 1,4,7-tri-

thiacyclononane in complex 11, simplifying 

the mentioned challenge, more and more 

sophisticated modified ligands were devel-

oped addressing unexplored chemical 

space, like -12.[157] 

The specificity and selectivity of or-

ganometallic compounds against their target 

kinases of the human kinome are highly 

dependent on the globular shape and the 

ligand sphere which is built by the coordi-

nated ligands.[140,158] Therefore, the conse-

quent development of these organometallic 

compounds as kinase inhibitors from half-

sandwich complexes to octahedral ones is 

accompanied by the increase of the chanc-

es as well as the challenges of the feasibility 

of particular structural isomers.[159,160] As the 

target interaction structures are biomole-

cules consisting of chiral building blocks, 

they create a chiral environment which rec-

ognises sensitively complementary struc-

tures and excludes mismatching ones.[161] 

Therefore, methods for the asymmetric syn-

thesis of octahedral organometallic com-

plexes to obtain certain desired structural 

scaffolds, ideally designed to a correspond-

 

Figure 22: The development of metal based kinase inhibitors led from initial half-sandwich complexes to highly 

sophisticated octahedral complexes with increasing structural diversity. The shown isomers of (R)-9, (R)-10 and 

-12, are the more potent ones, whereas 11 is as racemic mixture of two enantiomers both existing as thiocyanate 

and isothiocyanate.
[147–149]
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ing binding site of a target biomolecule, are 

highly appreciated,[140,152,159,161] and many 

articles report about the structural potential 

disclosed by multivalent organometallic 

complexes and the associated challen-

ges.[155,162–167] 

2.3 Octahedral Complexes – Taming 

the Structural Scope 

 

Many ways to control the metal cen-

tered relative and absolute stereochemistry 

have been published with different ad-

vantages and disadvantages. In principle, 

the approaches can be clustered in several 

groups controlling the relative and absolute 

stereochemistry via chiral ligands, chiral 

anions, chiral auxiliaries, or even via catalyt-

ic asymmetric synthesis.[132,162,168–177] How-

ever, the approach of these methods must 

be correlated to the requirements of an or-

ganometallic compound being capable of 

acting as a kinase inhibitor simultaneously. 

Structural restrictions of the ligands 

inevitably lead to the discrimination of cer-

tain structures over others. These structural 

restrictions are mostly represented by chiral-

ity introduced into the ligand system; either 

in the scaffold in direct proximity of the co-

ordinating atoms of a multidentate ligand or 

via sophisticated linkers which preorganise 

the ligand for complexation.[171,172,178–181] For 

instance, the binaphtyl core of the (S)-2,2'-

(1,1'-binaphthyl-2,2'-diyl)bis(7-tert-butylqui-

nolin-8-ol) ligand (S)-13 incorporates an 

axial chirality into the tetradentate ligand 

subsequently leading to chirality transfer to 

the metal core favouring the shown confor-

mation of cis---(S)-14, Scheme 1. In op-

posite, the (S, S)-[4,5]-chiragen-[6] ligand 15 

projects its chiral information to the metal 

centre via the aliphatic linker. Both dime-

thylbicyclo[3.1.1] heptane moieties of 15 act 

as conformative anchors restricting the pos-

sible coordination patterns of the peripheral 

bipyridinyl residues mediated by the linker. 

Although, the coordination leads to signifi-

cant loss of the number of degrees of free-

dom for the spacious ligand 15 resulting in 

 

Figure 23: a) Staurosporine (8) serves as a lead structure for metal based kinase inhibitors. Depending on the 

design and connectivity of the residual ligands a diversity of different stereoisomers can be achieved. From two 

stereoisomers regarding half sandwich complexes to up to 24 regarding octahedral complexes in case of A ≠ B ≠ 

C ≠ D. M: a diversity of transition metals. b) The number of possible stereoisomers can be reduced by connecting 

monodentate ligands to polydentate ligands. 
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the low yields observed for the formation of 

-17, Scheme 1.[182] In contrast, 

2,6-bis((((S)-2-phenyl-4,5-dihydrooxazol-4-

yl)methylthio)methyl) pyridine ligand 18, 

which is C2-symmetric, results in the shown 

conformation of -19 based on both, the 

incorporated chirality of the oxazoline moie-

ties and the ligand design itself. The corre-

sponding -19 complex would be less fa-

voured, because the peripheral phenyl 

groups of the oxazolines would be placed 

above and below the ligand backbone lead-

ing to steric repulsions, Scheme 1.[183] 

Due to the restricted space offered 

by the active site of a kinase, the strategy 

using large linking systems is not suitable to 

transfer the ligand chirality onto the metal for 

octahedral organometallic compounds with 

the purpose of kinase inhibition.[182,184] The 

same is true for ligands based on axial chi-

rality which often leads to bulky coordination 

spheres.[185] And as the pyridocarbazole is a 

mandatory prerequisite, the dentity of possi-

ble ligands to form an octahedral scaffold 

cannot exceed the number of four making 

many successful approaches with multiden-

tate ligands inapplicable for this case.  

 

Scheme 1: The axial chirality of (S)-13 results into chirality transfer to the metal core leading to cis---(S)-14. The 
chiral information of 15 is mainly projected via the aliphatic linker. In contrast, the C2-symmetric ligand 18 medi-

ates chirality to the metal centre based on the oxazoline moieties and the ligand design itself. 
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Scheme 2: The TRISPHAT ligand 22 can be ap-

plied as auxiliary for the synthesis and separation of 
enantiomers via extraction forming an ion pair.

[169]
 

Moreover, the approach of using chiral 

anions to form certain octahedral scaffolds 

presupposes a matching charge in the de-

sired organometallic complex.[169,176,177] For 

example, the chiral tris(tetrachlorobenzene-

diolato)phosphate(V) anion can be obtained 

either as  or  form.[169] Moreover, this 

compound can be used as an auxiliary in 

the asymmetric synthesis of organometallic 

complexes and for the selective extraction of 

a particular enantiomer via ion pair for-

mation, see Scheme 2.[176,187] However, the 

design of a kinase inhibitor in contrast 

claims ideally for a neutral compound, which 

is suitable to pass the lipid bilayer of a cell 

membrane via passive diffusion.[188] 

High inertness of the complex as well 

as a high persistence of the absolute stere-

ochemistry are desirable features for organ-

ometallic compounds interacting with biolog-

ical structures to avoid unspecific binding or 

unintended release of the metal 

core.[152,189,190] Coordination compounds of 

the d6 metals like RuII, OsII, RhIII, and IrIII 

fulfill these criteria.[167] But at the same time 

this characteristic poses significant chal-

lenges for the asymmetric synthesis using 

auxiliaries coordinating to the metal centre 

compared to anion mediated asymmetric 

synthesis. The harsh conditions to coordi-

nate and to substitute the chirality inducing 

auxiliary by the final ligand limit available 

methods via this strategy.[167] After intensive 

research and experience on this area, the 

MEGGERS group reported innovative strate-

gies to overcome this issue like using 

switchable auxiliaries, which can possess 

different coordination preferences by trigger-

 

 

Scheme 3: The (S)-Salox ligand 24, an auxiliary in asymmetric synthesis, can be labilised by protonation followed 

by the substitution of other ligands under sustained stereoconfiguration.
[186]
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ing a recognition group e.g. via protonation 

or reduction.[131,132,191–194] For instance, the 

(S)-Salox ligand 24, utilised as auxiliary in 

asymmetric synthesis, can be labilised by 

protonation followed by the substitution of 

other coordinating ligands under sustained 

stereoconfiguration, Scheme 3.[186] It is 

noteworthy, that the proper choice of the 

appropriate solvent is crucial for stereo-

chemical outcome of the reaction: only co-

ordinating solvents, like acetonitrile or tetra-

hydrofuran (THF) are capable of 

suppressing racemization at the applied 

reaction temperature.[195] 

The smart optimization of reaction con-

ditions can further develop a former auxiliar 

into a true catalyst. The reaction of 27 

300 mM in ethylene glycol using 0.2 eq. of 

(S)-28 in the presence of TFA and bipyridine 

result in -[Ru(bpy)3]
2+ with a yield of 93 % 

and an er of 8.0:1.0, whereas the chiral 

compounds 27 acts as true catalyst with 

turnover numbers of more than three, 

Scheme 4.[132] Although, the feasibility of 

catalytic asymmetric coordination chemistry 

has been demonstrated, the broad applica-

tion must be established in future. 

Considering all restrictions, being in-

evitable for a metal based kinase inhibitor, 

ends up to following characteristics ideally 

united in one single compound: enantiopure, 

neutral, low molecular weight, inert complex, 

and persistent stereoconfiguration. In this 

work, ways to fulfill these requirements in a 

metal compound were elaborated and com-

pared to established ligand systems. More-

over, the chemical modification of the pre-

sented ligand systems to improve selectivity 

and specificity as well as pharmacological 

properties will be discussed. Closing, sruc-

tural inspirations guided by computer aided 

design will be introduced as a potential use-

ful tool.  

 

Scheme 4: A former auxiliar (S)-28 acts as a true catalyst under specialised conditions. The achiral starting material 
27 is converted to enantiomerically pure Δ-[Ru(bpy)3]

2+
 in an asymmetric catalysis.

[132] 
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3 Results and Discussion 

3.1 The Pyridocarbazole Pharmaco-

phore Ligand 

 

Figure 24: Superimposed crystal structures of pyrido-
carbazole-based complex (R)-9 (pdb: 2BZH)

[196]
 and 

an organoruthenium complex based on the pharma-
cophore ligand 34 (pdb: 4AS0),

[154]
 both bound to 

PIM-1. Both pharmacophore ligands mediate the 
complex binding into the ATP binding site of the target 
kinase. However, the residual ligand sphere is signifi-
cantly shifted in relation to each other, resulting in 
different selectivity and specificity. The carbon atoms 
of (R)-9 are presented in green and the carbon atoms 
of the 34 based organoruthenium complex are pre-

sented in cyan. Nitrogen atoms are shown in blue, 
oxygen atoms in red, sulfur in yellow and the rutheni-
um cores in teal. PIM-1 is presented as cartoon in 
grey. 

The pyridocarbazole pharmacophore 

ligand was established in the MEGGERS 

group as a bidentate ligand for metal com-

plexation mimicking the indolocarbazole 

moiety of staurosporine (8).[149] As depicted 

in Figure 21 the pyridocarbazole pharmaco-

phore ligand steers the entire coordination 

sphere into the kinase hinge region and is 

therefore the major mediator of target 

recognition. Nevertheless, additional phar-

macophore ligands with modified scaffolds 

have been successfully designed in the 

MEGGERS group to enlarge the set of organ-

ometallic compounds with new structures 

addressing the kinome with diverse affinity 

and selectivity profiles.[190,197] 

However, the pyridocarbazole ligand 

(31) serves as the standard pharmacophore 

ligand for the complexation reactions in this 

work. The convergent synthetic route starts 

with 1H-pyrrole-2,5-dione (35) which is re-

acted with bromine in an electrophilic addi-

tion for 18 h under reflux conditions and cat-

alysed by aluminium trichloride, see 

Scheme 5. The resulting 3,4-dibromofuran-

2,5-dione (36) in a yield of 47% serves as 

starting point for different maleimides. 36 

can be processed using either benzyl amine 

or methyl ammonium chloride to obtain 1-

benzyl-3,4-dibromo-1H-pyrrole-2,5-dione 

(37) (87%) or 3,4-dibromo-1-methyl-1H-

pyrrole-2,5-dione (38) (55%), respectively. 

Both reactions were performed in acetic acid 

at 130 °C for 16 h. These two modified ma-

leimides can be used directly for the photo-

cyclisation reaction resulting in modified 

pyridocarbazoles. A sufficient protection 

group must be applied to obtain an unsubsti-

tuted maleimide moiety in the final pyrido-

carbazole pharmacophore ligand. 

 

Figure 25: The pyridocarbazole 31 as the first pharmacophore ligand derived from the indolocarbazole moiety of 

staurosporine served as lead structure for several new pharmacophore ligand scaffolds like 32, 33, 34 shifting the 

position of the coordination sphere and subsequently leading to organometallic kinase inhibitors with diverse affini-

ty and selectivity profiles.
[190,197]

 The coordinating atoms have been indicated by dashed arrows. 
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Scheme 6: FISCHER indole synthesis of 2-(pyridin-2-

yl)-1H-indole (46). 

Therefore, 3,4-dibromo-1H-pyrrole-

2,5-dione (39) obtained under the same re-

action conditions as 37 and 38 in 54% yield 

must be protected with the tert-butyldi-

methylsilyl protection group using tert-

butyl(1-methoxyvinyloxy)dimethylsilane (41) 

(54%) in acetonitrile under reflux conditions 

for 5 h followed by stirring for 8 h at ambient 

temperature. Methyl acetate (40) was react-

ed with lithium diisopropylamine, which was 

generated first in situ, 1,3-dimethyl-tetra-

hydropyrimidin-2(1H)-one (DMPU), and tert-

butyldimethylsilyl triflate in THF over 3 h 

from -78 °C to ambient temperature to ob-

tain 41 in 51% yield. 3,4-dibromo-1-(tert-

butyldimethylsilyl)-1H-pyrrole-2,5-dione (42) 

as the resulting intermediate can then be 

applied for the photocyclisation in analogue 

to 37 and 38. 

The second component for the pho-

tocyclisation reaction is 2-(pyridin-2-yl)-1H-

indole (46) or its modified derivatives. The 

unsubstituted 46 can be obtained in a 

FISCHER indole synthesis by reacting phe-

nylhydrazine (43) and 2-methyl-pyridyl-

ketone (44) in ethanol under slow heating to 

80 °C over a period of 15 min and reflux 

conditions for 45 min, see Scheme 6. The 

resulting 2-(1-(2-phenylhydrazono)ethyl) 

pyridine (45) (98%) is then further reacted to 

46 (94%) by the sequential addition of small 

portions into polyphosphoric acid and heat-

ing at 95 °C under firm stirring for 4 h. 

In contrast to the general reaction 

conditions applicable for maleimide deriva-

tives described above, the FISCHER indole 

synthesis cannot be applied universally to 

obtain modified pyridylindoles due to the 

harsh conditions of the reaction and the re-

action mechanisms itself, which bears the 

potential leading to rearrangements or the 

loss of attached groups.[198] 

 

Scheme 5: The synthesis of maleimide derivatives 37, 38, and 42. 
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Therefore, to synthesise modified 

pyridylindoles a synthetic route applying the 

Suzuki coupling was established, see 

Scheme 7.[149] First, the indole has to be 

protected with the tert-butyl carboxylate 

group using di-tert-butyl dicarbonate. The 

protection group masks the indole nitrogen 

and hinders potential interferences during 

the synthetic route. Moreover, it supports 

the deprotonation of the indole at the 2 posi-

tion for the formation of the boronic acid. 

Therefore, indole (47) was reacted with 

di-tert-butyl-dicarbonate and dimethylamino-

pyridine in THF at 4 °C for 16 h to afford 

tert-butyl 1H-indole-1-carboxylate (51) in 

quantitative yield. The same reaction condi-

tions were applied to obtain tert-butyl-5-(tert-

butyldimethylsilyl)-1H-indole-1-carboxylate 

(52) (93%), tert-butyl-5-benzyl-1H-indole-1-

carboxylate (53) (92%), and tert-butyl-5-

methoxy-1H-indole-1-carboxylate (54) 

(98%). 

All protected indole derivatives were 

then transformed into the appropriate bo-

ronic acids for the SUZUKI coupling using in 

situ generated lithium diisopropylamide and 

triisopropyl borate in THF in almost quantita-

tive yields. Nevertheless, the resulting bo-

ronic acids must be processed promptly due 

to the limited stability of the intermediates, 

see Scheme 8. As coupling partner, a selec-

tion of modified pyridines, 59 to 63, were 

used and combined with the synthesised 

boronic acids 55 to 58. The reaction was 

performed using tetrakis(triphenylphos-

phine) palladium(0) and sodium carbonate 

in a dimethoxyethane : water (4:1) mixture 

under reflux conditions for 16 h. The yields 

of the synthesised pyridylindoles 64 to 70 

varied from 47% to 79%. 

However, due to investigational find-

ings achieved during this work, only three 

different pyridylindoles 46, 71, and 72 were 

processed to the appropriate pyridoc-

arbazoles. Prior to the use of the pyridyl-

indoles for the monobromide synthesis and 

the following photocyclisation step, the 

deprotection of the tert-butyl-carboxylate 

group must be performed. Soaking the 

compounds 64 and 70 on silica gel under 

heating at 80 °C in vacuo for 16 h afforded 

the unprotected pyridylindoles 71 and 72 in 

quantitative and 93% yield, respectively. 

 

Scheme 7: The synthesis of the boronic acids 55 to 58 as coupling partners for the SUZUKI reaction. 

 

Scheme 8: The SUZUKI coupling using different boronic acids in combination with different pyridine derivatives led to 
the formation of a set of protected pyridylindoles 64 to 70. Two derivatives were further proceeded and deprotected. 
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The pyridylindoles 46, 71, and 72 

were reacted with the maleimides 37, 38, or 

42 in a MICHAEL reaction using lithium 

bis(trimethylsilyl)amide as base in THF to 

obtain the monobromides 73 to 76 in varying 

yields from 54% to 71%, see Scheme 9. 

These intermediates had to be converted 

immediately into the corresponding pyrido-

carbazoles due to their instability. The pho-

tocyclisation itself was performed in toluene 

under continuous water cooling. For this 

purpose, the compounds were irradiated 

with an iron iodide endowed mercury UV 

lamp of 700 W power and a wavelength of 

max = 350 nm. The finished pyridocarba-

zoles 77 to 80 were obtained in yields vary-

ing from 53% to 80%. The pyridocarbazoles 

77 to 80 were then used for the complexa-

tion reactions discussed in this work. More-

over, the pyridocarbazole derivatives 81 to 

84 from the internal compound library of the 

MEGGERS group have been used to synthe-

sise novel complexes with diverse inhibition 

profiles, see Figure 26. 

The established pyridocarbazole 

synthesis, offers many possibilities to intro-

duce additional functional groups. Especial-

ly, the convergent synthetic route increases 

the general flexibility and the quick access 

to a plethora of different structures. Never-

theless, the multistep synthesis is a disad-

vantage. One of the major tasks of the alter-

natively established compounds 32, 33, and 

34, beside the development of new scaf-

folds, was to decrease the number of syn-

thetic steps.[190,197] However, the pyrido-

carbazole ligand itself serves as reference 

pharma-cophore ligand to investigate the 

complementarily coordinating ligands pre-

sented in this work. 

 

Figure 26: Pyridocarbazole derivatives retrieved from 

the MEGGERS group internal compound library. 

   

 

Scheme 9: The monobromide synthesis and the following photocyclisation reaction affording the pyridocarbazole 

pharmacophore ligand. 
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3.2 Development of S6K1 Inhibitors 

3.2.1 Target Synopsis and Aim 

 

 

 

Figure 27: Growth factors, hormones, and amino 

acids, as proliferation and anabolism mediators, acti-

vate the downstream located mTORC1. This complex 

consecutively phosphorylates Thr389 in the hydro-

phobic motif of S6K, providing a docking site for 

PDK1, which then phosphorylates Thr229 in the acti-

vation segment, converting S6K into its active form.
[23]

 

S6 kinases (S6K) are members of 

the AGC serine/threonine kinases which 

belong to the RSK family. The catalytic do-

main is highly conserved and the phos-

phorylation of Thr-389 within the activation 

loop triggers the kinase induced by the 

phosphoinositide-dependent kinase-1 

(PDK1), see Figure 27.[199,200] The S6 kinas-

es act downstream of the phosphatidyl-

inositide-3-kinase (PI3K) pathway. Beside 

PDK1, mTOR is also involved in the activa-

tion of S6K1.[199–201] Whereas yeast contains 

one S6K kinase, called sch9, the human 

kinome covers two isoforms called S6K1 

and S6K2. S6 kinases are associated with 

many cellular processes, including protein 

synthesis, mRNA processing, cell growth, 

and cell survival mainly based on the phos-

phorylation of glycogen synthase kinase 3 

(GSK3) and the ribosomal S6 protein.[202,203] 

Both isoforms of S6K phosphorylate and 

activate the 40S ribosomal protein S6, which 

promotes protein synthesis through an in-

creased rate of mRNA transcription.[204] 

S6K1 also regulates cell proliferation 

through the cell cycle, in addition to promot-

ing cell survival by inactivating the pro-

apoptotic protein BAD.[205–207] 

Whereas S6 kinases are involved in 

indispensable cellular processes, a per-

turbed activation leads to severe diseases. 

Alterations in S6 kinase activity have been 

shown to play a critical role in many patho-

logic incidences, including diabetes, obesity, 

aging, and cancer.[208–210] Many melanoma 

cells exhibit constitutive activation of the 

PI3K-AKT pathway, which results in AKT 

phosphorylation and leads to an amplifica-

tion of the downstream targets mTOR and 

S6K1.[211] This increase in phosphorylation 

of ribosomal S6 by S6K1 results in in-

creased protein translation and cell growth. 

This effect can be abolished by the treat-

ment with rapamycin, an allosteric mTOR 

inhibitor, causing a significant dephosphory-

lation of S6K1 and consequently to a de-

creased cell growth.[212] However, the treat-

ment with rapamycin is accompanied by 

drawbacks, mainly reasoned in the abroga-

tion of feedback inhibitions of other path-

ways.[213] This cross-talk perturbance leads 

to side effects such as hyperglycaemia, hy-

percholesterolemia, and hyperlipidaemia.[214] 

Therefore, inhibition of S6K1 represents an 

alternative therapeutic strategy that may 

bypass the disadvantages of mTOR inhibi-

tion. Recent studies reveal S6K as being a 

critical node linking HER-family and PI3K 

pathway signaling, making it an effective 

target for single-agent therapy.[215]  
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3.2.2 Synthesis and Structural Investi-

gations of Organoruthenium(II) 

Complexes 

 

 

Figure 28: Octahedral organoruthenium complexes 

inhibiting S6K1. 

Highly sophisticated octahedral 

complexes were realised by an extensive 

screening of potential ligands suiting the 

requirements of a hexavalent metal 

centre.[143–145,152] The tridentate 1,4,7-trithia-

cyclononane ligand is capable of both, being 

a synthetically quickly accessible com-

pound, and fitting in numerous binding sites 

as a part of organometallic inhi-

bitors.[140,151,152,154] 85 and 86, which were 

synthesised during former studies in the 

MEGGERS group, also contain this motif and 

turned to be selective and potent S6K1 in-

hibitors, beside 87, see Figure 28.[216] But, 

the ligand is only capable of forming hydro-

phobic VAN-DER-WAALS contacts and offers 

no additional functional groups to either form 

hydrogen bonds or to enhance physico-

chemical properties, e.g.: solubility. There-

fore, ligands offering modification sites to 

improve biomolecular recognition as well as 

physico-chemical parameters for the conse-

quent development of octahedral organome-

tallic complexes are highly desirable. 

Keeping the sulfur atoms for com-

plexation sustained, we introduced a meth-

ylene group into the cyclic ring system to 

include a secondary amine function. This 

additional group is known to act as both, a 

hydrogen bond acceptor and hydrogen bond 

donor.[217–219] Moreover, a secondary amine 

influences the protonation state of the com-

plex at different pH levels and subsequently 

the potential membrane permeability.[220–222] 

 

 

Scheme 10: Synthesis of complex precursor 95. The key steps are the formation of the medium-sized ring 90 by a 
nucleophilic substitution, the functional group interconversion by a reductive amination to 91. Prior to the complexa-

tion a potential cross-coordination has to be avoided by protecting the secondary amine group by allyl chlo-
roformiate. To obtain the reactive precursor 95, a substitution of all monodentate ligands towards acetonitrile as 

better leaving group for the pyridocarbazole introduction is necessary. 
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The synthesis of the modified ligand 

is similar to the published one of 

1,4,7-trithiacyclononane, according to Blow-

er et al.,[223] with slight modifications, see 

Scheme 10. First, the ten-membered ring 

has to be formed. For this reason, caesium 

carbonate was suspended in dimethyl-

formamide (DMF) and heated to 60 °C. 

Caesium carbonate acts as a base, depro-

tonating the thiol groups of the 2,2'-thio-

diethanethiol (89) and increasing their nu-

cleophilic character. The use of caesium 

carbonate at this step is substantial, due to 

the size of the caesium ion preorganizing 89 

for the nucleophilic substitution reac-

tion.[223,224] Furthermore, this preorganisation 

reduces the competing polymerisation reac-

tion beside the intended cyclisation. 

1,3-dichloracetone 88 was pre-diluted in 

DMF and added drop wise to the reaction 

mixture. The drop wise addition of the reac-

tants was performed over a time period of 

9 h followed by an additional 9 h of stirring 

at 60 °C. The low concentration (38 mmol/L) 

of both reaction partners is crucial to avoid 

the mentioned polymerisation. This fact lim-

its the amount of reactants applicable in a 

single reaction batch. The yield of 46% is 

low but not unusual for medium-sized ring 

synthesis.[225]

 The resulting 1,4,7-trithiacyclodecan-

9-one (90) was then processed in a reduc-

tive amination using potassium carbonate 

and methyl ammonium chloride to form the 

imine intermediate in situ. The reaction was 

performed in methanol at 34 °C for 2 hours. 

Sodium cyanoborohydride was used as a 

reducing agent and the reaction mixture was 

stirred over night at 34 °C. The N-methyl-

1,4,7-trithiacyclodecan-9-amine (91) ligand 

was obtained at 36% yield. It is noteworthy 

that the sp2-carbon centre of 90 turned into 

a prochiral sp3-carbon during this reaction 

procedure. Due to the symmetric character 

of the ligand, this fact has no further influ-

ence on the synthesis, unless it is coordi-

nated to the metal centre, see Chapter 

3.2.4. 

Prior to complexation, the secondary 

amine of 91 had to be protected to avoid 

competing cross-coordination towards a 

second metal ion. The most suitable protec-

tion group for this purpose is the al-

lyloxycarbonyl group, which can be cleaved 

under mild orthogonal conditions after com-

plexation. Therefore, 91 in methylene chlo-

ride was reacted with allyl chloroformiate 

(92), pyridine, and 4-dimethylaminopyridine 

at 0 °C according to standard protection 

procedure.[226] The allyl methyl (1,4,7-tri-

thiacyclodecan-9-yl) carbamate ligand (93) 

was obtained in a yield of 70% and was fur-

ther processed in the complexation reaction. 

 

Scheme 11: Synthesis of ruthenium(II) complex 87. The acetonitrile ligands of the reactive precursor 95 were 
sequentially substituted by the pyridocarbazole ligand 78 and sodium thiocyanate. The deprotection step of the 
allyloxycarbonyl using tetrakis(triphenylphosphine) palladium(0) results in the final complex 87. 
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Dichlorotetrakis(dimethylsulfoxide) 

ruthenium(II) as a standard precursor was 

used to coordinate (93). The reaction was 

performed in chloroform under reflux condi-

tions for 5 h. The preliminary resulting com-

plex 94 was directly processed to ligand 

exchange by precipitating the chlorido lig-

ands using silver trifluoromethanesulfonate 

in acetonitrile under reflux conditions for 6 h. 

95 could be obtained in 87%. It is notewor-

thy that the prochiral carbon centre of 91 

turns into a stereogenic centre during the 

complexation reaction. Due to the high 

moisture sensibility of this compound, a di-

rect continuance into the complex synthesis 

is necessary. 

Therefore, the pharmacophore lig-

and 78 was reacted with the ruthenium pre-

cursor 95 using potassium carbonate as a 

base, in DMF at 85 °C under microwave 

irradiation for 40 min, followed by addition of 

sodium thiocyanate as the residual mono-

dentate ligand, see Scheme 11. After an 

additional 40 min at 85 °C and column 

chromatography, the organometallic com-

plex 96 was obtained as a racemic mixture 

in 59% yield. The crystal structure of 96 re-

veals the coordination pattern of the ligands 

towards the ruthenium metal centre, see 

Figure 29. The tridentate ligand forms two 

five-membered and one six-membered 

metallacycles. The six-membered metalla-

cycle aligns in a chair conformation as ob-

served for aliphatic rings. It must be high-

lighted, that the secondary amine function is 

oriented in equatorial position minimising the 

steric hindrance of the bulky allyloxycarbon-

yl protection group with the residual coordi-

nation sphere. The isothiocyanate ligand is 

observed to be coordinated in the N-bound 

form. 

To obtain the final complex 87, the 

allyloxycarbonyl protection group was 

cleaved using tetrakis(triphenylphosphine) 

palladium(0) in methylene chloride for 14 h 

and allowing the reaction mixture to warm 

from 0 °C to ambient temperature. The reac-

tion was quenched using sodium hydrogen 

carbonate, and after column chromatog-

raphy, the metal complex 87 was obtained 

in 47% yield. 

 

 

Figure 29:  Crystal structure of 96. Solvent Molecules were omitted for clarity. ORTEP drawing with 50% probabil-

ity of thermal ellipsoids. Selected bond lengths [Å] for 96: Ru1-N1 = 2.1411(18), Ru1-N4 = 2.124(2), 

Ru1-N36 = 2.061(2), Ru1-S1 = 2.2862(7), Ru1-S2 = 2.2802(6), Ru1-S3 = 2.3029(6). 



 

 

51 Results and Discussion 

3.2.3 Biological Investigations 

3.2.3.1 Screening and IC50 Determination 

 

A screening set of ten different stau-

rosporine-inspired organometallic ruthenium 

complexes against a diverse panel of 283 

protein kinases by Millipore (Kinase Profil-

erTM) led to the identification of 85 as a po-

tential inhibitor of S6K1, with 7% activity at a 

concentration of 100 nM in the presence of 

10 µM ATP. 86 has an almost identical 

chemical structure, differing only in the ex-

change of the substituted isothiocyanate 

towards an isocyanate, see Figure 28, lead-

ing to significantly less, only 54%, activity 

under the same conditions. In the kinase 

panel, the inhibitor 85 inhibited only 41 ki-

nases (16%) to less than 10% activity, in-

cluding S6K1 and the related S6K family 

members RSK1, RSK2, RSK3, and RSK4. 

To characterise the preliminary hits, 

biological investigations were performed in 

the MARMORSTEIN group. For this purpose, a 

radioactive kinase assays were performed 

to determine the activity of S6K1 protein 

constructs prepared in baculovirus-infected 

insect cells, in order to identify a construct 

that would be suitable for inhibitor testing. 

The construct preparation and the radio-

active kinase assays were performed by JIE 

QIN and JULIE S. BARBER-ROTENBERG. Initial 

tests revealed, that the full-length -I iso-

form of S6K1, S6K (1-525), and the isolated 

kinase domain, S6K (84-384), had low ki-

nase activity, although the full-length kinase 

showed more activity than the kinase do-

main, see Figure 30. The S6K1 protein con-

structs had low kinase activity because the 

full-length kinase contained the C-terminal 

auto-inhibitory domain. To address this is-

sue and express a more active kinase for 

further inhibitor studies, a S6K1 (1-421) 

construct was prepared, including both the 

Thr-252 and Thr-412 phosphorylation sites, 

based on previous data from Keshwani et 

al.[227] The results indicate that the catalytic 

domain of the S6K1aII isoform (residues 1-

398) is analogous to S6K1 (1-421) of the -I 

isoform. To further enhance the catalytic 

activity of S6K1 (1-421), the T412E mutant 

was prepared to mimic phosphorylation at 

this position and was co-expressed with 

PDK1 to promote phosphorylation of T252. 

Preparation of the S6K1 (1-421, T412E, 

PDK1 activated) protein resulted in a highly 

active kinase that was suitable for further 

inhibition studies in vitro, Figure 30. 

 

Figure 30: Radioactive kinase assays performed by 

JIE QIN and JULIE S. BARBER-ROTENBERG were used to 
determine the activity of five different protein con-
structs of S6K1. Only the S6K1 (1-421, T412E, PDK1 
activated) construct (cyan) resulted in a highly active 
kinase, which was suitable for further radioactive 
competition studies in vitro. 

 Both organoruthenium metal com-

plexes were assayed against the construct 

S6K1 (1-421, T412E, PDK1 activated) in a 

radioactivity-based kinase assay by JULIE S. 

BARBER-ROTENBERG to determine the IC50 

values of 33.9 nM for 85 and 23.5 µM for 86, 

respectively, at an ATP concentration of 

100 µM, see Figure 32. As a control, the IC50 

value of the unselective kinase inhibitor 

staurosporine was determined resulting in 

64.1 nM under the same conditions. Moreo-

ver, the S6K1 inhibitor PF-4708671 (97) was 

tested against S6K1 under the same condi-

tions as a literature known specific S6K1 

inhibitor, see Figure 31. An IC50 value of 

142.8 nM was determined for PF-4708671, 

consistent with published results.[228] 
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Given the apparent specificity and 

potency of 85, it became the lead structure 

for the development of second-generation 

organometallic S6K1 inhibitors covering 

charged and neutral octahedral organo-

ruthenium and organorhodium complexes. 

 
Figure 31: S6K1 inhibitor PF 4708671 (97).

[83] 

 

 

Figure 32: 85 (33.9 nM), 86 (23.5 µM), 87 (7.3 nM), 
Staurosporine (64.1 nM), and PF-4708671 (97) 

(142.8 nM) were assayed by JULIE S. BARBER-
ROTENBERG against the construct S6K1 (1−421, 
T412E, PDK1 activated) in a radioactive kinase assay 
using 100 μM ATP and 2 nM of enzyme. Data points 
represent mean values calculated from triplicates. 

3.2.3.2 Crystallisation Studies of 85 

 

To investigate the binding mecha-

nisms the crystallisation and structure deter-

mination of 85 bound in the ATP binding 

pocket of S6K1 were performed. In this con-

text, the crystal growth, preparation, and 

compound soaking was performed by JIE 

QIN and the structure was solved by JOHN 

DOSMIC. These studies revealed an unusual 

binding conformation. Whereas, initial trials 

to co-crystallise the S6K1 kinase domain 

(S6K1KD, residues 84-384) bound to 85, 

using several factorial screens, failed, the 

reproduction of the crystals of the S6K1 ki-

nase domain in complex with staurosporine, 

according to SUNAMI et al. were 

successful.[229] Thereafter, soaking of these 

crystals with high concentrations of 85, for 

the exchange of staurosporine by the or-

ganoruthenium inhibitor, led to crystals 

which diffracted to about 2.5 Å resolution 

and formed in space group P21 with two 

molecules per asymmetric unit. The struc-

ture was refined to Rwork and Rfree values of 

19.15% and 22.21%, respectively, with ex-

cellent geometry, see Table 13. Closing, the 

inhibitors were modelled after the full re-

finement of the protein. 

 

Figure 33: 85 bound to the active site of one of two 

S6K1 kinase molecules in the asymmetric unit 

(pdb: 4RLO). The -sheet rich N-lobe and the -helix 
rich C-lobe enclose the ATP-binding site. The protein 
surface discloses the substrate binding groove per-
fectly occupied by the organometallic inhibitor. Oxy-
gen atoms are depicted in red, nitrogen in blue, fluo-
rine in light blue, and sulfur in yellow. Carbon atoms of 
85 are depicted in grey. S6K1 is represented as car-

toon in cyan. 

 In accordance to the published struc-

tures of the S6K1 kinase domain, the kinase 

domain is bilobal, consisting of an sheet 

rich N-lobe and a -helix rich C-lobe.[229,230] 

The crystal structure revealed that only one 

staurosporine molecule could be substituted 

by 85 of the two protein molecules in the 

asymmetric unit. This is an additional proof 

that 85 is indeed an ATP-competitive inhibi-

tor, displacing staurosporine from the active 

site. Both, the staurosporine as well as the 
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85-bound protein molecules in the asymmet-

ric units are similar to each other with an 

overall r.m.s.d. of 0.68 Å for the shared at-

oms. 

 

Figure 34: Staurosporine bound to the active site of 

one of two S6K1 kinase molecules in the asymmetric 

unit (pdb: 4RLO). The -lactam ring of staurosporine 
forms two hydrogen bonds (red dashes). The back-
bone nitrogen of Leu-175 interacts with the lactam 
oxygen and the backbone oxygen of Glu-173 with the 
lactam nitrogen. The methylamine group of stauro-
sporine forms a third hydrogen bond (red dashes) to 
the backbone oxygen of Glu-222. Additional amino 
acid residues involved in VAN-DER-WAALS contacts are 
highlighted and labelled. Oxygen atoms are depicted 
in red, nitrogen in blue, and sulfur in yellow. S6K1 is 
depicted as cartoon with carbon atoms in cyan and 
carbon atoms of staurosporine are depicted in orange. 

 Although both molecules bind in the 

ATP binding pocket, the increased S6K1 

potency of the organoruthenium complex is 

caused by extensive interaction compared 

to staurosporine. The latter forms hydrogen 

bonds to S6K1 via the backbone oxygen of 

Glu-222 of the kinase with the nitrogen of 

the methylamine residue of the aliphatic ring 

system of staurosporine. Furthermore, the 

pyrrolidine ring of the aromatic indolocarba-

zole moiety of staurosporine forms hydrogen 

bonds to the backbone nitrogen of Leu-175 

and the backbone oxygen of Glu-173 of the 

kinase hinge region via the oxygen and ni-

trogen atom, respectively. Beside the hy-

drogen bonds VAN-DER-WAALS contacts are 

formed by Leu-97, Lys-99, Gly-98, Val-105, 

Ala-121, Tyr-174, Glu-179, and Met-225, 

see Figure 34. 

 

Figure 35: 85 bound to the active site of one of two 

S6K1 kinase molecules in the asymmetric unit (pdb: 
4RLO). The maleimide moiety of the pyridocarbazole 
ligand forms two hydrogen bonds (red dashes). The 
backbone nitrogen of Leu-175 interacts with the ma-
leimide oxygen and the backbone oxygen of Glu-173 
with the maleimide nitrogen. Additional amino acid 
residues involved in VAN-DER-WAALS contacts are 
labelled. Oxygen atoms are depicted in red, nitrogen 
in blue, fluorine in light blue, and sulfur in yellow. 
S6K1 is depicted as cartoon with carbon atoms in 
green and carbon atoms of 85 are depicted in grey. 

 Compared to staurosporine, 85 re-

tains two hydrogen bonds between the 

backbone atoms of the hinge residues 

(Glu-173 and Leu-175) and the maleimide 

ring of 85, as well as all of the 

VAN-DER-WAALS interactions, but forms addi-

tional interactions between the ruthenium 

coordination sphere and the protein, as 

shown in Figure 35. In particular, the isothi-

ocyanate group of 85 leads to VAN-DER-

WAALS interactions with Gly-100 and 

Val-105 of the kinase p-loop. The 1,4,7-tri-

thiacyclononane ligand forms VAN-DER-

WAALS contacts to Gly-100 of the p-loop, 

Glu-179 and Glu-222 across from the 

p-loop, where the protein substrate is likely 

to bind, as well as to Thr-235 and Asp-236 

of the activation loop. Comparing the stau-

rosprine bound S6K1 structure to the 85 

bound S6K1 structure of the asymmetric unit 

indicate a dramatic movement of these ami-
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no acid residues towards 85, see Figure 36. 

The binding of 85 to S6K1 also introduces 

significant structural changes in the kinase 

relative to the staurosporine complex. These 

structural changes appear to be indirectly 

caused by the 1,4,7-trithiacyclononane lig-

and of 85. The D-helix of the staurosporine 

complex is about two turns longer at its 

N-terminus than the corresponding helix of 

the 85 complex, where the corresponding 

segment takes on a -strand conformation. 

This structural differrence appears to be 

driven by the interaction of the tridentate 

ligand of 85 with Glu-179. 

 

Figure 36: Superimposed structures of S6K1 bound to 
staurosporine and bound to 85. Glu-179, Glu-222, 

Thr-235 and Asp-236 undergo a dramatic movement 
comparing the staurosporine bound conformation to 
the 85 bound conformation (red arrows) (pdb: 4RLO). 
The tridentate 1,4,7-trithiacyclononane ligand of 85 

seems to cause these drastic alterations in the secon-

dary structure, whereas the D-helix of the stauro-
sporine complex is nearly two turns longer at its N-ter-
minus than the corresponding helix in the 85 bound 

form possessing a -sheet conformation instead. 
Oxygen atoms are depicted in red, nitrogen in blue, 
fluorine in light blue, and sulfur in yellow. S6K1 bound 
to 85 depicted as cartoon with carbon atoms in green 
and carbon atoms of 85 in grey; S6K1 bound to stau-

rosporine is depicted as cartoon with carbon atoms 
cyan and carbon atoms of staurosporine in orange. 

On the opposite side of the inhibitor, 

the staurosporine complex has an activation 

loop folded towards the ATP active site in an 

inactive conformation without an ordered 

C-helix, as previously reported.[230] Striking-

ly, the 85 complex contains a well-defined 

C-helix of about 2 turns. The different 

alignment of the C-helix in the two struc-

tures appears to be centred around the 

N-terminal region of the activation loop that 

undergoes about a 6 Å movement towards 

85 compared to staurosporine. The move-

ment of the activation segment towards the 

85 inhibitor appears to be mediated by the 

VAN-DER-WAALS interactions between 

Thr-235 and Asp-236 with the 1,4,7-trithia-

cyclononane ligand, see Figure 36. This in 

turn, provides enough space for the C-helix 

to be formed and being stabilised by VAN-

DER-WAALS contacts between Phe-237 of 

the activation loop and Leu-147 of the 

C-helix as well as a hydrogen bond be-

tween Lys-123 of the small domain and 

Glu-143 of the C-helix, see Figure 37. In-

terestingly, these interactions are character-

istics of the active conformations of kinases, 

even though the activation segment is in an 

inactive conformation. 

 

Figure 37: The αC-helix (magenta) is more ordered in 
the 85-bound S6K1 structure. This conformation is 

based on hydrophobic interactions between Phe-237 
and Leu-147, and a hydrogen bond between Lys-123 
and Glu-143 (pdb: 4RLO). Oxygen atoms are depicted 
in red, nitrogen in blue, fluorine in light blue. S6K1 
bound to 85 is depicted as cartoon with carbon atoms 
in green and carbon atoms of 85 are depicted in grey. 

In contrast, the activation loop is is 

turned outwards in case of the staurosporine 

bound S6K1 placing Phe-237 and Asp-236 
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in sterically hindered positions to form the 

C-helix, see Figure 36. Concluding, 

whereas staurosporine bound to S6K1 in-

duces the inactive conformation, the 

S6K1/85 complex has characteristics of 

both, the inactive and active kinase, confor-

mations. 

3.2.3.3 Development of Second Genera-

tion Organometallic Ruthenium In-

hibitors 

 

85 offered an IC50 value in the mid-

nanomolar range and the co-crystal struc-

ture confirmed that it is a competitive inhibi-

tor binding in the ATP-pocket of the S6K1. 

Therefore, 85 was a promising lead struc-

ture for the design of second generation 

S6K1 inhibitors. The organometallic com-

pounds offer plenty of possible positions for 

modifications regarding e.g.: the pyrido-

carbazole moiety or the different coordi-

nated ligands. As previous work proved, 

modifications in the coordination sphere can 

have significant effects on binding affinities 

and kinase selectivity.[140,149,231] Moreover, 

the crystal structure of 85 bound to S6K1 

indicated several positions suitable for 

chemical elaboration to improve specificity 

for the kinase. A series of 64 derivatives of 

85 were synthesised by the MEGGERS group 

with modifications at the pyridocarbazole 

and the remaining ligand sphere. Then, they 

were tested for inhibition of S6K1 activity 

using both a radioactive kinase assay and 

an ADP-Glo assay with 1 µM of compound, 

by the MARMORSTEIN group.[232] Twenty-five 

of these inhibitors were further screened 

using 250 nM of compound. The eight com-

pounds that inhibited S6K1 to less than 25% 

activity, were assayed to determine their 

IC50 values (at 100 µM ATP). This analysis 

produced several compounds that inhibited 

S6K1 similarly or more potently than 85 with 

compound 87 (Figure 28) as the most potent 

one with an IC50 of 7.3 nM, using 100 µM of 

ATP and 2 nM of enzyme, see Figure 32. 

 

Figure 38: 87 was analysed by JULIE S. BARBER-

ROTENBERG against the construct S6K1 (1−421, 
T412E, PDK1 activated) in a radioactive kinase assay 
using varying concentrations of ATP and 2 nM of en-
zyme. The determined IC50 values are: 3.61 nM (1 µM 
ATP), 4.46 nM (10 µM ATP), 6.90 nM (100 µM ATP), 
11.23 nM (250 µM ATP), and 18.86 nM (500 µM ATP). 
Data points represent mean values calculated from 
triplicates. 

3.2.3.4 Characterisation of 87 

 

The radioactive kinase assays, using 

either S6K1 or S6K2 as target molecule, 

resulting to the following IC50 values were 

performed by JULIE S. BARBER-ROTENBERG. 

Testing the inhibitor 87 at a range of con-

centrations from 1 µM ATP to 500 µM ATP 

resulted in an expected increase of the IC50 

value concurrent with the increasing ATP 

concentrations from 3.61 nM at 1 µM ATP to 

18.86 nM at 500 µM ATP, confirming that 87 

is an ATP competitive inhibitor, see Figure 

38. The increase in IC50 values between 

1 µM and 500 µM ATP is quite modest com-

pared to the range published before, indicat-

ing that the inhibitor binds very tightly within 

the ATP binding site.[232] 

To further prove the specificity of 87 

for the S6K1 isoform, the compound was 

also analysed against recombinant S6K2, 

which resulted in an IC50 value of 11.2 nM, 

which is in the same range as the IC50 value 

for S6K1, see Figure 39. Thus, leads to no 

significant prevalence of 87 for any S6K 

isoform. Indeed, S6K1 and S6K2 share 83% 

sequence identity in the catalytic domain.[233] 
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Figure 39: Radioactive kinase assay of 87 (11.2 nM) 

against S6K2 using 100 µM of ATP and 2 nM of en-

zyme; performed by JULIE S. BARBER-ROTENBERG. 

To establish the kinase selectivity 

profile of 87, the compound was submitted 

at a concentration of 100 nM to the Discov-

eRx KINOMEscanTM performed by 

LeadHunter Discovery Services. 87 was 

tested against 456 kinases. The results for 

primary screen binding interactions are re-

ported as percent of control ('% Ctrl', 

(POC)), where lower numbers indicate 

stronger hits and larger red circles in the 

dendrogram, see Figure 40. Empiric investi-

gations proved that binding constants (Kd) 

are correlated with primary screening re-

sults, whereas lower POC values correlate 

with low Kd values (higher affinity interac-

tions). Moreover, the selectivity score (SS) 

is a quantitative measure of compound se-

lectivity. It is calculated by based on the 

number of kinases bound by the compound 

divided by the total number of distinct kinas-

es tested, excluding variants. Furthermore, 

this score value can be calculated for differ-

ent selectivity levels using POC as a poten-

cy threshold, e.g. below 35% or 10%. These 

SS clustered in different selectivity score 

types (SST) provide a quantitative method 

of describing compound selectivity and allow 

a facilitated comparison of different com-

pounds among each other. 

87 demonstrated a high degree of 

kinase selectivity. Only 10 kinases (2.2%) 

showed less than 10% activity (SST(10)) 

and only 26 kinases (5.7%) showed less 

than 35% (SST(35)). In analogue to 85, 87 

showed characteristic inhibition of the CAM, 

DAP, FLT, PIM, and RSK family member 

kinases. Unexpectedly, S6K1 itself had a 

residual activity of 71% in the DiscoveRx 

KINOMEscanTM with 70 kinases (15.3%) 

showing a higher degree of inhibition than 

S6K1. The potency of 87 seems to be 

greater against the S6K1 prepared by our 

protocol than the preparation performed by 

Lead Hunter Discovery Services. The differ-

ent S6K1 kinase preparation and/or phos-

phorylation state, used by Lead Hunter Dis-

covery Services, may have led to the 

different 87 potencies measured for S6K1. 

Nevertheless, taking together the analysis of 

87 against S6K1 and the kinase profiling 

results led to the conclusion, that 87 exhibits 

a high degree of kinase selectivity. 

 

 

Figure 40: Kinase profiling of 87. The complex was 

tested against 456 human kinases at 100 nM by an 

active-site-directed affinity screening (KINOMEscan
TM

, 

DiscoveRx, LeadHunter Discovery Services). The 

dendrograms show the remaining POC levels of the 

kinases in percent to the control depicted as red cir-

cles. The selectivity score type (SST), the number of 

hits (NH) as well as the selectivity score (SS) of 87 

are: SST(35) NH(20) SS(0.051); SST(10) NH(10) 

SS(0.025); SST(1) NH(2) SS(0.005). 
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3.2.3.5 Crystallisation Studies with 87 

 

To investigate the molecular mecha-

nisms for the increased potency of 87 over 

85, the X-ray crystal structure of 87 in com-

plex with S6K1 to 2.7 Å resolution was de-

termined, see Table 13. In this context, the 

crystal preparation and growth was per-

formed by JIE QIN, the compound soaking 

was performed by JEMILAT SALAMI, and the 

structure was solved by JOHN DOSMIC. The 

overall structure for the 87-bound S6K1 

(pdb: 4RLP) is very similar to the 85-bound 

structure (pdb: 4RLO), with an r.m.s.d. of 

0.54 Å for all atoms. Especially the p- and 

activation-loops, the D, and the C-helices 

take an almost identical conformations, alt-

hough the C-helix is about one turn shorter 

at its N-terminal end, see Figure 41. 

 

Figure 41: Superimposed structures of S6K1 bound 
to 85 (green) (pdb: 4RLO) and bound to 87 (blue) 

(pdb: 4RLP). The αC-helix of S6K1 (red circle) is one 
turn shorter at its N-terminal end of the 87-bound 
structure compared to the 85-bound structure. Oxygen 

atoms are depicted in red, nitrogen in blue, fluorine in 
light blue. S6K1 bound to 85 is depicted as cartoon 
with carbon atoms in green and carbon atoms of 85 in 
grey. S6K1 bound to 87 is depicted as cartoon with 
carbon atoms in navy and carbon atoms of 87 in apri-

cot. 

87 retains all interactions made by 

85, covering some additional interactions 

including a hydrogen bond between the 

backbone carbonyl of Lys-99 of the kinase 

p-loop with the amine ligand of the 

N-methyl-1,4,7-trithiacyclodecan-9-amine 

ligand. The methoxy group of the pyrido-

carbazole moiety forms VAN-DER-WAALS 

interactions with Tyr-174 of the kinase hinge 

region, see Figure 42. These additional in-

teractions of 87 likely contribute to the in-

creased potency of 87 over 85. The protru-

sion of the amine ligand into the region 

where protein substrate binds for phos-

phorylation probably also contributes to the 

increased inhibitor potency. 

 

Figure 42: 87 forms more interactions with the ATP 
binding site of S6K1 compared to 85 (pdb: 4RLP). An 

additional hydrogen bond between the methylamine 
group and Lys-99 can be observed. The methoxy 
group of the pyridocarbazole pharmacophore ligand 
increases VAN-DER-WAALS contacts especially to 
Tyr-174. Oxygen atoms are depicted in red, nitrogen 
in blue, fluorine in light blue. S6K1 bound to 87 is 

depicted as cartoon with carbon atoms in navy and 
carbon atoms of 87 in apricot. 

3.2.3.6 Cellular Properties of 87 

 

After establishing that 87 functions 

as a potent ATP competitive S6K1 inhibitor 

in vitro, studies to characterise the cellular 

activity have been performed by PATRICIA 

REYES-URIBE. 87 was first tested for overall 

cell cytotoxicity and downregulation of 

phosphorylation of S6 in the 451Lu 

(BRAFV600E mutant) and 451Lu-MR 

(BRAF/MEK-inhibitor resistant) melanoma 

cell lines. Cells were treated with inhibitor 
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ranging from 0.001 µM to 10 µM for 22 h, 

see Figure 43. Neither the 451Lu or 451Lu-

MR cell lines showed a significant decrease 

in S6 phosphorylation, nor a decrease in cell 

viability as indicated by the absence of 

cleaved PARP. There was also no change 

in total S6 or peEF2K levels, indicating that 

mTOR was not targeted by 87. 

 

Figure 43: Western Blot of human cells treated with 

87. 451Lu (BRAFV600E mutant) and 451Lu-MR 

(BRAF/MEK-inhibitor resistant) melanoma cells were 

treated with increasing concentrations of 87 for 22 h. 

Cells were lysed and blotted for pS6 and other down-

stream effectors of S6K1. Neither the 451Lu or 

451Lu-MR cell lines showed a significant decrease in 

S6 phosphorylation. The absence of cleaved PARP 

indicates unaffected cell viability. No change in total 

S6 or peEF2K levels indicate that mTOR was not 

affected by 87. The experiment was performed by 

PATRICIA REYES-URIBE. 

 

Figure 44: AZD8055, an ATP-competitive dual 

mTORC1 and mTORC2 inhibitor.
[234,235]

 

 Furthermore, the effect of 87 in 293T 

cells, at both 3 h and 16 h of treatment, was 

investigated, see Figure 46. As controls, 

AZD8055 (98), PF-4708671 (97), and 99 

were measured in parallel. AZD8055 is an 

ATP-competitive dual mTORC1 and 

mTORC2 inhibitor that inhibits their phos-

phorylation and consequently the phos-

phorylation of the substrates S6K1 and 

4EBP1 as mTORC1 substrates, as well as 

the phosphorylation of AKT, which is the 

downstream target of mTORC2.[234,235] 

PF-4708671 is a reported S6K1 inhibitor 

that does not affect the phosphorylation of 

AKT. 99 is an 87 analogue with an IC50 of 

11 nM towards S6K1. In 99 the fluorine of 85 

is substituted by a hydroxymethyl group and 

the thiocyanate ligand by selenocyanate. 

 

Figure 45: Second generation S6K1 inhibitor 99. 

Previous studies using 97 demon-

strated a significant reduction in S6 phos-

phorylation in 293T cells within 30 

minutes.[228] Therefore, both a short time 

point of 3 h and long-time point of 16 h for 

treatment were evaluated. As expected, the 

98 mTOR inhibitor showed a significant de-

crease in downstream target levels of pS6 at 

both the S235 and S240 sites, along with a 

decrease in pAKT at T308 and S473. The 

97 compound showed a modest decrease in 

phosphorylation of S6 at the 3 h time point, 

but this phosphorylation returned to near 

basal levels by the 16 h time point. No effect 

on the phosphorylation of AKT was ob-

served. Notably, neither 87 nor 99 inhibited 

phosphorylation of S6 or AKT. Therefore, 87 

either has poor cell membrane permeability 

or the inhibition of S6K1 in cells does not 

significantly reduce S6 phosphorylation. The 

latter possibility is consistent with the fact 

that the structurally unrelated compound 97 

also shows poor inhibition of S6 phosphory-

lation in cells. 
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Figure 46: Western Blot of 293T cells treated with 

AZD8055 (98) (dual mTORC1 and mTORC2 inhibitor), 

PF-671 (4708671) (97), 87, or 99 for 3 or 16 h. 

AZD8055 shows a significant decrease of pS6 at the 

S235 and S240 sites and a decrease of pAKT at T308 

and S473. PF-4708671 shows a modest decrease in 

phosphorylation of S6 after 3 h, but almost basal lev-

els after 16 h, and no effect on the phosphorylation of 

AKT. Neither 87 nor 99 inhibit phosphorylation of S6 

or AKT. The experiment was performed by PATRICIA 

REYES-URIBE. 

Moreover, S6K2 is also capable of 

S6 phosphorylation and could circumvent an 

S6K1 inhibition in a cellular system.[236] To 

verify if 87 is able to inhibit S6 phos-

phorylation in a setting excluding S6K2, its 

inhibition potency of S6 phosphorylation in 

budding yeast was investigated by HAIYING 

LIU, where only a single kinase, sch9, is 

orthologous to human S6K1. In this system, 

the treatment of wild-type budding yeast 

cells (BY4742) with 87 significantly de-

creased the level of phosphorylated S6 in a 

dose dependent manner, see Figure 47. At 

the highest dosage, S6 phosphorylation was 

reduced to a level similar to the sch9 

knockout strain. This control experiment 

suggests that 87 functions as an inhibitor of 

S6 kinases in vivo in a yeast cellular system. 

 

Figure 47: Western Blot of BY4742 budding yeast 

cells treated with 87 for 4 h. They were then lysed and 

blotted for pS6. 87 significantly decreased the level of 

phosphorylated S6 in a dose-dependent manner. At 

1 µM dosage, S6 phosphorylation level is similar to the 

sch9 knockout strain. Quantitative Western blot sig-

nals were detected by Li-Cor, and the relative pS6 

levels were calculated by normalizing raw pS6 meas-

urements to GAPDH signals. (∗) p< 0.05 (two-tailed 

student-t test, n = 3). The experiment was performed 

by HAIYING LIU. 

3.2.4 Interpretation 

 

The Millipore Kinase Profiler and ra-

dioactivity-based kinase assays proved 85 

as a selective and potent S6K1 inhibitor with 

an IC50 of 100 nM and inhibiting 93% of 

S6K1 activity and only 16% of 283 kinases 

by less than 90%. Furthermore, it served as 

a lead compound for a second generation of 

potent and selective S6K1 inhibitors. 86, an 

analogue in which an isocyanate group re-

places the monodentate isothiocyanate is 

about 1000-fold less potent, implying that 

potency and specificity could be further op-

timised. The crystal structure of 85 bound to 

S6K1 provided important molecular insights 

for the development of 87, a compound con-

taining a novel ligand scaffold and an IC50 in 

the single digit nanomolar range for S6K1. 
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Moreover, the crystal structure of 87 bound 

to S6K1 revealed the molecular basis for the 

compound’s potency and selectivity to 

S6K1. 

 To investigate the efficacy of 87 in 

living cells, the inhibitor was evaluated in 

both human 293T and BRAFV600E mutant 

melanoma cells and in budding yeast. 87 

was only able to inhibit S6 phosphorylation 

in yeast cells. This results may be evoked 

by the following suggested incidences: ei-

ther the compound is unable to enter human 

cells, a significant shift in the IC50 of the 

compound occurs in the presence of physio-

logical levels of ATP, or the uninhibited 

S6K2 isoform in human cells, is still capable 

of maintaining S6 phosphorylation. Regard-

ing that 87 had previously been used to 

successfully target MST1, PAK1, and PI3K 

in cells, the second possibility seems to be 

plausible.[159,188,231]  

The setting of the radioactive kinase 

assay prohibits measurements at physio-

logical levels of ATP. Nevertheless, the ac-

tivity of 87 against S6K1 using an ATP 

range from 10 µM to 500 µM and the subse-

quent increase of IC50 values with increasing 

ATP concentrations, is consistent with 87 

binding competitively to ATP in the ATP 

binding site. Moreover, this conclusion is 

further confirmed by the crystal structure of 

the S6K1/87 complex. Interestingly, the IC50 

ranged from 3.91 nM at 10 µM ATP to only 

25.79 nM at 500 µM ATP (a 6-fold increase), 

suggesting that S6K1 binds ATP relatively 

loosely. Therefore, it is likely that 87 is able 

to displace ATP even at the higher physio-

logical concentration. Based on this accu-

mulated data, 87 is supposed of being una-

ble to inhibit S6 phosphorylation in human 

cells because S6 is still phosphorylated by 

the uninhibited S6K2. 

 S6K1 and S6K2 share 83% 

sequence identity in the catalytic domain.[233] 

A study involving S6K1/2 knockdown in 

mice suggests that both S6K1 and S6K2 are 

required for full phosphorylation of S6, but 

S6K2 may be the more important one for the 

phosphorylation of S6.[236] The MEK inhibitor 

AZD6244 (100) showed additive effects on 

decreasing the phosphorylation of S6 in 

vitro, when treated in combination with 

siRNA inhibition of both S6K1 and S6K2, 

indicating the importance of S6K2 in the 

phosphorylation of S6.[237] Furthermore, 

while pathologically inconspicuous tissues 

often express low levels of S6K2, over-

expression of S6K2 in cancer cells is 

observed more commonly than an over-

expression of S6K1.[238–241] Concluding, 

targeting S6K2 either alone or in 

combination with S6K1 may be a more 

promising option for direct S6 inhibition in 

melanoma cells and potentially other cancer 

forms. 

 

Figure 48: Structure of the MEK inhibitor Selumetinib 
(AZD6244) (100).

[242]
 

 Despite the similarities in the catalyt-

ic domain, homology modelling between 

S6K1 and S6K2 indicates an important dif-

ference in residue Tyr-174 which is crucial 

for binding of 87 and is exchanges for a cys-

teine in S6K2.[243] This residue is located in 

the hinge region of S6K1 and forms an im-

portant VAN-DER-WAALS contact with the 

methyl group of the secondary amine, which 

cannot be formed with a cysteine residue. 

This circumstance suggests that 87 may not 

be a potent inhibitor for S6K2. However, the 

cumulated data show no significant preva-

lence of 87 towards S6K2. The perinatal 

lethality of S6K1-/-/S6K2-/- knockout mice 

implies that S6K2 targeting may need to be 

selective for therapeutic value.[236] Up to 

now, no commercially available S6K2-

selective inhibitors are reported, indicating a 

potential target for the next series of organ-

ometallic inhibitors. 
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Taken together, 87 is a potent and 

selective S6K1 inhibitor that should be use-

ful to probe S6K1 function and could act as 

a starting point for the development of effi-

cacious S6K inhibitors for therapeutic use. 

Although, to realise the selective targeting of 

S6K2, especially the structural challenges of 

the metal based inhibitor had to be solved. 

In particular, 87 is based on the 85 lead 

structure, but it differs by a methoxy group 

instead of the hydroxyl group at the pyrido-

carbazole moiety and the ten-membered 

thioether-containing tridentate ligand instead 

of the nine-membered ring. Especially the 

substitution of the nine-membered ring from 

the symmetrical 1,4,7-trithiacyclononane 

ligand to a prochiral 1,4,7-trithiacyclodecane 

bearing a basic N-methylamine group at the 

9-position significantly increased the struc-

tural complexity of the inhibitor, which is 

exemplified by the number of possible ste-

reoisomers. This prochiral stereogenic cen-

tre becomes a true stereocentre after the 

complexation reaction compared to the tri-

dentate ligand in the uncoordinated state. 

Therefore, the coordination must be 

controlled to obtain the desired complex 

which directs the hydrogen bond accepting 

as well as donating N-methylamine group in 

the ATP binding site of S6K1 in optimised 

fashion. The orientation of the N-methyl-

amine functionality coordinated to the metal 

centre underlies several synthetic principles, 

which can be utilised by a smart reaction 

procedure. Therefore, a detailed analysis of 

the stereogenic effects during complexation 

must be considered to transfer and improve 

the concepts to design future complexes 

with desired structure. 

During this synthetic route, the al-

lyloxycarbonyl group was chosen to protect 

the N-methylamine functionality combining 

several favourable advantages at once. The 

most important reason is to avoid the for-

mation of possible side products during the 

complexation reaction itself due to the 

cross-coordination of the N-methylamine 

group to a second metal ion. Further, the 

synthetically orthogonal deprotection of the 

allyloxycarbonyl group can be performed 

under mild conditions using tetrakis(tri-

phenylphosphine)palladium. Nevertheless, 

due to its bulkiness, the allyloxycarbonyl 

group is an ideal modification to implement 

a large residue to the N-methyl-1,4,7-tri-

thiacyclodecan-9-amine ligand leading to a 

substrate based stereocontrol during the 

complexation reaction. The ruthenium pre-

cursor has two different possibilities to coor-

dinate to the tridentate ligand resulting in 

different orientations of the allyloxycarbonyl 

protected N-methylamine functionality, see 

Figure 49. Both, the coordination from the 

front side and from the back side, lead to a 

six membered ring with the metal ion at one 

end, highlighted in red. This cyclic six mem-

bered metallacycle can be assumed to act 

similarly to cyclohexane with the corre-

sponding sterical and conformational princi-

ples. Therefore, the coordination of the met-

al ion from the front side leading to a six 

membered metallacycle in a stable chair 

conformation as well as setting the allyloxy-

carbonyl protected N-methylamine group 

into an equatorial position is highly favoured 

in contrast to all other possible structural 

isomers. 

The final exchange of the three 

monodentate ligands by the pyridocarbazole 

and the isothiocyanate also underlies mainly 

steric effects forced by the coordinated al-

lyl-N-methyl-(1,4,7-trithiacyclodecan-9-yl) 

carbamate. The bulky pyridocarbazole lig-

and coordinates as far as possible from the 

tridentate ligand and coordinates therefore 

at the opposite positions to the sulfur atoms 

of the six-membered metallacycle, leaving 

only one residual position for the isothiocya-

nate. Furthermore, the described principles 

could be assured by the obtained crystal 

structure of the allyloxycarbonyl protected 

precursor of 87, see Figure 29. Since the 

coordination positions for the two nitrogen 

atoms of the pyridocarbazole ligand towards 

the metal centre are both equal but the pyri-

docarbazole itself is asymmetric, a 180° flip 
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of the pharmacophore ligand leads exactly 

to the enantiomer, which is the bioactive 

one, see Figure 42. 

The stereocontrol of the coordination 

sphere induced by the bulky allyloxycarbon-

yl-group is comparable to the concept intro-

duced in Chapter 2.3. Even though the in-

fluence of the protection group during 

synthesis is valuable, its presence in the 

final inhibitor would be a disadvantage due 

to steric hindrances in the binding site of 

target kinases. For the purpose of inhibitor 

design with predefined structural scaffold, 

large persisting groups controlling the coor-

dination sphere via steric effects cannot be 

applied for future development. Moreover, 

cleavable groups claim for additional syn-

thetic steps, dramatically increasing the ef-

fort of the entire workflow. Nevertheless, the 

chirality-at-metal itself was not affected by 

the N-methyl 1,4,7-trithiacyclodecan-9-

amine ligand due to its intrinsic symmetry. 

Therefore, the investigated complex 87 was 

obtained as a racemic mixture. However, 

the investigation of single enantiomers is 

standard for chiral organic compounds in 

biological context. To make organometallic 

compounds more and more adequate to the 

requirements of drug-like molecules, meth-

ods have to be developed to obtain a partic-

ular isomer in an enantiopure fashion. 

Several concepts could be pursued 

to achieve this goal based on different ap-

proaches. To avoid a racemic mixture the 

synthesis of organometallic kinase inhibitors 

must avoid the formation of enantiomers, 

e.g.: by forming separable diastereomers 

during the complexation, or forming only one 

possible coordination product in analogue to 

organic meso-compounds. Whereas the first 

approach could be achieved using chiral 

ligands transmitting the chiral information 

into the metal complex, the latter one could 

be achieved via highly symmetric ligands. 

Both concepts were investigated and the 

advantages and disadvantages will be dis-

cussed in the following Chapters. 
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Figure 49: Interpretation of steric effects leading to the observed conformation and configuration of 94. 
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3.3 Enantiopure Organorhodium(III) 

Complexes 

3.3.1 Target Synopsis and Aim 

3.3.1.1 PIM Kinases 

 

The proviral insertion in murine (PIM) 

lymphoma protein genes were first identified 

as oncogenes in mouse models in the 

1980s.[244] They are constitutively active and 

the regulation of activity is mainly regulated 

at the transcriptional and translational level 

induced by diverse signals depending on the 

cell type.[245,246] PIM kinases are expressed 

in haematopoietic,[247–249] neuronal,[250,251] 

vascular smooth muscle,[252] cardio-

myocyte,[253] endothelial,[254] and epithelial 

cell lineages.[255,256] Moreover, they are al-

ready expressed in early progenitors of 

some of these cells types,[257,258] and in em-

bryonic stem cells.[248,254,259] 

PIM kinases, covering PIM-1, PIM-2, 

and PIM-3, play important physiological 

roles evidenced by knock-out mice experi-

ments. For instance, PIM-1 deficient mice 

had a specific defect in IL-7 driven growth of 

pre-B cells, as well as IL-3 dependent 

growth of bone marrow-derived mast 

cells.[248,257] PIM-2 deficient mice had re-

duced T cell activation and expansion in the 

presence of the serine/threonine protein 

kinase mTOR inhibitor rapamycin;[260] PIM-3 

deficient mice had an increased glucose 

tolerance.[261] 

However, the physiological activities 

of the PIM kinase family is mediated through 

the phosphorylation of a broad range of cel-

lular effectors subdivided in different clas-

ses, i.e.: transcriptional regulators such as 

Myc,[262] Myb,[263] RUNX1 and RUNX3;[264]  

cell cycle regulators such as p21,[256,265] 

CDKN1B,[266] Cdc25A,[267] Cdc25C;[268] sig-

nalling intermediates such as Socs-1,[269] 

Socs-3,[270] and MAP3K5;[271] protein transla-

tion regulators such as eIF4B,[272] 

eIF4EBP1;[245] and apoptosis regulators 

such as BAD.[245,273–275] 

 

Figure 50: BAD has strong pro-apoptotic activity by 

binding to and neutralizing anti-apoptotic Bcl-2 part-
ners.

[276]
 Moreover, BAD regulates glucose-dependent 

mitochondrial respiration in hepatocytes and pancreat-
ic β-cells by activating glucokinase (GCK) via dimeri-
zation.

[276]
 The regulatory phosphorylation sites of 

BAD are Ser112, Ser135 and Ser155,
[276]

 phosphory-
lation of Ser112 and Ser135 lead to the binding of 
14-3-3

[274,276,277]
 required for phosphorylation on 

Ser155. The Ser155 phosphorylation is the rate-
limiting step for the dissociation from BCL-2 and 
BCL2L1.

[276]
 Several survival kinases like AKT, PIM, 

S6K1, PKA, RSK1 have been found to phosphorylate 
BAD, leading consequently to increased cell 
survival.

[274,276,278]
 

Due to the manifold interaction part-

ners and substrates, and their role in cell 

signaling, PIM kinases are potent onco-

genes overexpressed in a range of hemato-

poietic malignancies and solid cancers. PIM 

kinases are often overexpressed in the con-

text of increased Myc levels,[279] where the 

overexpression of PIM-1 has been observed 

to counteract Myc-induced apoptosis.[280] In 

addition, PIM kinases prevent cells from 

apoptosis by the phosphorylation of the 

proapoptotic BCL-2–associated agonist of 

cell death (BAD), which abolishes the bind-

ing with the anti-apoptotic protein BCL-2, 

leading consequently to increased cell sur-

vival, see Figure 50.[274] Moreover, they are 

involved in the cell proliferation through the 

phosphorylation of the cyclin-dependent 

kinase inhibitors p21.[266] Due to their digres-

sive expression in several human tumors, 

they could be important contributors in the 

pathogenesis of neoplasias including lym-

phomas, gastric, colorectal and prostate 

cancers.[281–283] PIM kinase expression is 

correlated with poor prognosis in most hem-
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atopoietic malignancies.[284–287] A similar 

association was observed in pancreatic duc-

tal carcinoma,[288] non-small-cell lung can-

cer,[289] in gastric cancer,[290] and squamous 

cell carcinoma of the head and neck.[291] The 

cumulated findings make PIM kinases to 

appealing targets for specific treatment of 

cancer and autoimmune diseases.[278,292,293] 

3.3.1.2 FLT-3 

 

The FMS-like tyrosine kinase 3 

(FLT-3) is a 993 amino acid long membrane 

bound receptor tyrosine kinase (RTK) of the 

subclass III family. It is composed of five 

immunoglobulin-like extracellular domains, a 

transmembrane domain, a juxtamembrane 

domain and two intracellular tyrosine kinase 

domains linked by a kinase-insert 

domain.[294] Two forms of human FLT-3 have 

been described: a 158–160-kDa membrane 

bound protein glycosylated at the extracellu-

lar N-terminus and an unglycosylated cyto-

solic 130–143-kDa protein.[295,296] In the inac-

tive state, the conformation of the receptor 

might result in steric inhibition of dimeriza-

tion and to the exposure of phosphorylate 

acceptor sites in the tyrosine kinase domain 

by the juxtamembrane domain. This occurs 

to be a general inhibition mechanism also 

found in other families of tyrosine 

kinases.[297] Thus, after ligand binding, the 

membrane-bound FLT-3 changes its con-

formation, forming a homodimer and expos-

ing phosphorylate acceptor sites in the tyro-

sine kinase domain.[298] The dimerization 

leads to a stabilizing conformational change, 

further increasing the activation of the re-

ceptor.[299] In contrast, the receptor inactiva-

tion is mainly driven by receptor internaliza-

tion and degradation.[298] 

 

Figure 51: FLT-3 signalling cascade has not been 

entirely characterised. However, the binding of FLT-3 
ligand (L) to FLT-3 activates the Akt/mTOR and 
Ras-Raf pathways resulting in increased cell prolifera-
tion and the inhibition of apoptosis.

[300–302]
 

FLT-3, triggers both the Ras-Raf-

MEK signaling pathway via the activation of 

the growth factor receptor-bound protein 2 

(Grb2)[303,304] and the Akt/mTOR signaling 

pathway mediated by Gab, Ship, Cbl, which 

subsequently activate the phosphatidyl-

inositol-3-kinase (PI3K),[303,305,306] see Figure 

51.[301,302] These interactions lead to the 

phosphorylation of associated proteins and 

the activation of downstream effectors in-

volved in haematopoiesis.[301,302] Moreover, 

the FLT-3 receptor was found to be associ-

ated with SH2-domain-containing inositol 

phosphatase (Ship) activity.[307] Beside the 

primary role of Ship in phospholipid metabo-

lism, it also acts as a negative regulator of 

cell proliferation mediated by the competitive 

binding of phosphorylated SHC proteins, 

which would otherwise activate the Ras–

Raf–Mek–Erk pathway.[303] However, FLT-3 

pathways seem to be highly species and 

tissue specific;[301,303,306] whereas, in healthy 

state, FLT-3 is expressed mainly in early 
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myeloid and lymphoid progenitors,[308] but 

not in erythroid cells,[309] megakary-

ocytes,[310] or mast cells.[311] 

As all members of the RTK class III, 

FLT-3 plays an important role in the early 

hematopoiesis, being involved in pro-

liferation, differentiation and apoptosis.[300,312] 

Moreover, its increased expression was re-

ported in 70-90% cases of acute myeloid 

leukemia and acute lymphoblastic 

leukemia,[296,308,313–315] but not in chronic my-

eloid leukemia (CML) and chronic lympho-

cytic leukemia (CLL) above all possessing a 

common progenitor stem cell.[316] Despite 

the widespread expression of FLT-3 and its 

role in signaling pathways, it is surprising 

that flt-3-knockout mice had relatively incon-

spicuous haematopoiesis without severe 

morphological changes in the bone 

marrow.[317] However, mice with both, kit and 

flt-3 knockouts, developed lethal haemato-

poietic deficiencies indicating a conjunction 

of FLT-3 with other growth factor receptors 

to promote the proliferation and differentia-

tion of myeloid and lymphoid cells. [317] 

These findings suggest a significant 

but not absolute role of FLT-3 in healthy 

haematopoiesis and thus indicate selective 

FLT-3 inhibition as a treatment option to 

block inappropriate FLT-3 activation in leu-

kaemia cells avoiding severe haematopoiet-

ic side-effects. Moreover, considering the 

high frequency of activating FLT-3 mutations 

in patients with AML, FLT-3 and its down-

stream pathway members are attractive tar-

gets for directed inhibition.[300,318] 

3.3.1.3 Aurora Kinases 

 

The serine/threonine Aurora kinases, 

play important roles in the control of the cen-

trosome and nuclear cycles, and have es-

sential functions in mitotic processes cover-

ing the chromosome condensation, spindle 

dynamics, kinetochore-microtubule interac-

tions, chromosome orientation and estab-

lishment of the metaphase plate.[319–325] 

Moreover, they are also involved in cytoki-

nesis. Due to the first description of Aurora 

A in the spindle pole regions, it was named 

after the polar lights.[322] However the family 

consist of Aurora A, B, and C whereas hu-

man Aurora A and B share 71% 

identity.[326,327] Nevertheless, the main differ-

ences are located in the amino-terminal do-

main.[328,329] Especially Aurora A and B are 

of high interest in research, whereas little is 

known about Aurora C.[326,327] 

Aurora A associates with the sepa-

rating centrosomes during late S/early G2, 

which is directed independently by the ami-

no-terminal region as well as the carboxy-

terminal catalytic domain.[330] But the catalyt-

ic kinase activity is not necessarily required 

for the association. Thereafter TPX2 has 

been found to mediate Aurora-A activation 

and localization to the spindle microtubules, 

but not to the spindle poles.[331] During cell 

maturation the absence of Aurora A, has 

significant adverse effects on the recruit-

ment of several components of the pericen-

triolar material, like -tubulin, to the centro-

some and downstream effectors leading to a 

decreased microtubule mass of spindles by 

about 60%.[332–334] Moreover, Aurora A was 

identified as a component of the progester-

one signalling pathway.[335] Its activation is 

an early event after progesterone induced 

signal transduction resulting in the activation 

of the ERK/MAPK pathway. 
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The regulation of Aurora A is com-

plex and involves phosphorylation and 

dephosphorylation as well as protein degra-

dation.[336] Aurora A has three phosphoryla-

tion sites, Ser53, Thr288, Ser349, whereas 

the first two sites are important for kinase 

regulation, the third is not essential for cata-

lytic activity but structural stability.[336] The 

degradation of Aurora A occurs in the late 

mitosis/early G1 by the APC/C.[73,74] 

Human Aurora B is a chromosomal 

passenger protein with full expression peak 

at the G2–M transition state, and maximal 

kinase activity during mitosis.[328,337] Where-

as the protein exchanges continuously with 

the surrounding cytoplasmic pool, the kinase 

association with central spindle microtubules 

during anaphase is highly reduced.[338] Auro-

ra B also seems to have an important role in 

the regulation of kinetochore–microtubule 

interactions in higher eukaryotes, whereas 

perturbance of its activity causes defects in 

chromosome congression.[339–342] Moreover, 

Aurora-B kinases are important for the 

phosphorylation of histone H3.[343] 

To date, most interest has focused 

on Aurora A, due to its high potential as on-

cogene and its amplified expression in a 

number of cancer cell lines and primary tu-

mours.[328,344,345] Moreover, malfunction of 

Aurora A, as well as the overexpression of 

Aurora B or Plk1, cause cytokinesis failure 

and perturbed centrosome duplication.[346,347] 

Remarkably, even catalytically inactive ki-

nase forms induce cytokinesis failure and 

centrosome amplification.[347] Aurora in-

duced mitotic abnormalities are exacerbated 

in cells that lack p53 due to its inactivating 

influence on the kinase function.[347,348] Nev-

ertheless, Aurora B has also been implicat-

ed in cancer reasoned in the elevated levels 

of phosphorylated histone H3 and defects in 

chromosome segregation and cyto-

kinesis.[349] The resulting cells are aneuploid 

and can produce aggressive tumours as 

observed in human colorectal tumour cell 

lines.[349] Taking all together, the important 

role of Aurora kinases in cell cycle progres-

sion and their role as oncogene in several 

tumor types revealed them as potential new 

target for cancer treatment, i.e.: of the 

treatment of prostate cancer.[350–352] Further 

information is provided in literature.[320,353–355] 

 

Figure 52: Starting from G1 phase, the expression of 

Aurora kinase A (green boxes) and Aurora B (red 
circles) increases turning into the prophase. Aurora A 
is mainly concentrated around the centrosomes. In 
opposite, Aurora B associated nuclear. During meta-
phase, Aurora A is attached to the microtubules adja-
cent to the spindle poles, whereas Aurora B is fixed to 
the inner centromere. In the next cell cycle phase, the 
anaphase, Aurora A is mainly located on the polar 
microtubules, although some might also be located in 
the spindle midzone. In contrast, Aurora B is exclu-
sively concentrated in the area of spindle midzone and 
at the appropriate cell cortex at the site of cleavage-
furrow ingression. In cytokinesis, both kinases are 
concentrated in the midbody.

[320]
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3.3.2 Synthesis and Structural Investi-

gations 

 

One strategy to control relative and 

absolute configuration of a metal centre is 

the use of chiral multidentate ligands, see 

Chapter 2.3. Along these lines, during previ-

ous work of the MEGGERS group, a chiral 

tridentate proline-containing ligand as being 

part of a cyclometalated rhodium(III) com-

plex with the pharmacophore ligand 32 led 

to enantiopure metal complexes. [197] This 

promising initial work inspired us to investi-

gate this chiral ligand in the context of the 

established metallo-pyridocarbazole kinase 

inhibitors. 

3.3.2.1 Synthesis of Enantiopure Prolinato 

Organorhodium(III) Complexes 

 

Starting with either enantiopure (R) 

or (S)-pyrrolidine-2-carboxylic acid ((R)-101 

and (S)-101) first the protection of the car-

boxyl group to methyl ester was performed 

by suspending the starting material in meth-

anol and adding thionylchloride drop wise at 

0 °C, followed by a slow warm up to ambient 

temperature over 16 h, see Scheme 12. The 

methyl pyrrolidine-2-carboxylate hydrochlo-

ride product was obtained in quantitative 

yield for (R)-102 and 96% for (S)-102. 

After the protection of the carboxyl 

group, a reductive amination using picolin-

aldehyde (103) was performed to attach a 

pyridine ring to (R)-102 and (S)-102, respec-

tively. Hence, palladium on carbon 

(10 wt. %) was suspended in methanol, pic-

olinaldehyde, and sodium acetate were 

added at 0 °C. After addition of (R)-102 or 

(S)-102, the reaction mixture was stirred for 

1 h and the nitrogen atmosphere was com-

pletely substituted by hydrogen in three 

turns. The reaction was continued for 16 h 

allowing the mixture to warm up to ambient 

temperature. After chromatographic puri-

fication, 61% of (R)-104 and 58% of (S)-104 

were obtained. Prior to the complexation 

reaction the methyl ester must be cleaved to 

reveal the carboxyl group. Therefore, both 

compounds were dissolved in sodium hy-

droxide (1 M, aq.) and reacted for 16 h at 

ambient temperature. (R)-105 was obtained 

in 91% and (S)-105 in quantitative yields. 

The rhodium(III) complexes were 

synthesised in a one-pot reaction under ni-

trogen atmosphere in sealed vessels, see 

Scheme 13. Accordingly, the pyridocarba-

zole ligand 79 was reacted first in a sequen-

tial addition to a suspension of RhCl3∙3H2O 

in an ethanol/water mixture at 90 °C for 3 h 

followed by addition of the chiral tridentate 

ligand (R)-105 or (S)-105. Reacting the mix-

tures at 90 °C for 16 h led to the formation of 

the two diastereomers -(R)-106 (22%) plus 

-(R)-107 (15%) starting from (R)-105, and 

-(S)-106 (24%) plus -(S)-107 (14%) start-

ing from (S)-105. Note that the absolute 

configuration of the chiral ligand controls the 

absolute metal centred configuration with 

R-ligand leading to -metal and S-ligand to 

-metal so that in the course of each reac-

tion only two diastereomers are generated. 

These two diastereomers could be separat-

ed by silica gel chromatography with meth-

ylene chloride/methanol 20:1 to 10:1 fol-

lowed by a preparative TLC for each single 

 

Scheme 12: Synthesis of enantiopure chiral tridentate ligand (R)-105 and (S)-105. 
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compound using methylene chloride/me-

thanol 15:1. The tert-butyl-dimethyl silyl pro-

tection group of ligand 79 was cleaved un-

der the reaction conditions. Additional 

isomers were not detected which can be 

rationalised with the restricted possible con-

formations of the proline-based ligand. The 

low yields of this reaction may arise from the 

usage of RhCl3∙3H2O as staring material. 

Indeed, rhodium(III) complexes typically 

react very slowly.[356] Moreover, the labilizing 

trans effect of chloride is greater than that of 

the aqua ligand leading among others to a 

fac-[RhCl3(H2O)3] configuration possessing 

all aqua ligands in opposite positions to the 

chloride ligands.[356] This fac-[RhCl3(H2O)3] 

configuration is inert to further aquation and 

thus may also be adverse for the ligand ex-

change by i.e. ligand 79, (R)-105, or (S)-105 

respectively. The formation of 

fac-[RhCl3(H2O)3] is promoted by free chlo-

ride ions which are inevitably released dur-

ing the coordination of 79 to the metal cen-

tre of already reacted RhCl3∙3H2O. 

Therefore, scavenging free chloride ions in 

solution or pre-activating RhCl3∙3H2O into 

precursors with labilised ligands like 

[Rh(C4H8S)3Cl3] may improve the product 

yield.[151] 

3.3.2.2 Assignment of The Relative Stere-

oconfiguration 

 

The assignment of the stereo-

configuration in case of the presented com-

plexes -(R)-106, -(R)-107, -(S)-106 and 

-(S)-107 is not trivial. Thus, a short ab-

stract of the operations leading the nomen-

clature is mandatory. To describe the abso-

lute configuration, and to distinguish the 

enantiomers of coordination compounds, 

two major, but fundamentally different, sys-

tems have been elaborated and docu-

mented by the IUPAC in the Red Book.[357] 

Although, a short overview is indispensable: 

The first is based on the chemical 

constitution of the compound and is related 

to the R/S convention established by Cahn-

Ingold-Prelog (CIP) and is applied to de-

scribe tetrahedral centres. In contrast, the 

closely related C/A (C = clockwise, A = anti-

clockwise) convention was established for 

other polyhedral coordination spheres. The 

R/S and C/A conventions use the priority 

sequencing according to Cahn-Ingold-

Prelog, where the atomic number and the 

substituents of the coordinating atoms have 

to be respected to assign a priority, see Fig-

ure 53 a) and b).[358,359] This system is often 

also applied to describe the configuration of 

 

Scheme 13: Asymmetric synthesis of organorhodium complexes -(R)-106, -(R)-107, -(S)-106 and -(S)-107. 
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coordinated ligands beside the tetrahedral 

metal centres. Moreover, in case of pseudo-

tetrahedral organometallic complexes, i.e.: a 

cyclopentadienyl ligand, the π-ligands were 

treated as monodentate ligands of highest 

priority, as it is true for (R)-9, see Figure 53 

a). To assign the correct chirality symbol to 

an octahedral complex according to the C/A 

nomenclature the reference axis has to be 

identified: the coordinating atom of the high-

est CIP priority and the trans coordinated 

atom of lowest possible CIP priority form the 

reference axis. The reference axis is then 

oriented pointing the highest CIP priority 

ligand upwards and the residual coordina-

tion plane aligned perpendicular to the ref-

erence axis. Thereafter, the orientation of 

the ligands and their sequence of CIP priori-

ty numbers are compared, see Figure 53 b). 

Closing, a sequence readable in clockwise 

orientation is assigned by the symbol C, and 

a sequence readable in anticlockwise orien-

tation is assigned by the symbol A. 

The second nomenclature principle 

is based on the geometry of the molecule 

and is based on the skew-lines convention. 
[357] This principle is mainly established to 

describe octahedral complexes and the two 

enantiomers are identified by the symbols  

and , Figure 53 c). A chiral enantiomeric 

pair of octahedral complexes in three-

dimensional space corresponds unambi-

guously to a screw (or often referred as a 

helix) and is either right-handed leading to 

the  isomer or left-handed leading to the  

isomer. 

To describe the absolute configura-

tions of octahedral complexes, both, the / 

system or the C/A system can be applied, 

but the first is used more commonly. Never-

theless, the C/A system is more general and 

probably used for most complexes. Moreo-

ver, the / system is only applicable to 

tris(bidentate), bis(bidentate) and closely 

related systems. 

 

Figure 53: Assigning the relative stereoconfiguration 
of metal complexes. a) Tetraedic metal centres can be 

assigned analogously to the Cahn-Ingold-Prelog (CIP) 
nomenclature established for organic compounds. 
[358,359]

 The same priority rules are valid. However, 
π-ligands were treated as monodentate ligands of 
highest priority as in case of (R)-9. b) The coordinating 

atom of the highest CIP priority defines the reference 
axis. The highest CIP priority ligand is oriented up-
wards and the residual coordination plane is oriented 
perpendicular to the reference axis. The clockwise (C) 
or anticlockwise (A) oriented sequence of ligands 
leads to the appropriate chirality symbol. c) A chiral 

enantiomeric pair of octahedral complexes in three-
dimensional space forms a screw beeing right-handed 

() or left-handed ( isomer. d) The -nomen-

clature is also applicable to bis(bidentate) and other 

related systems as illustrated for -12. 
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Figure 54: The terminal edge convention (TEC) sim-

plifies polydentate ligands coordinated to octahedral 

complexes to apply the -nomenclature. a) Only the 

edges of polydentate ligands were taken to account, 
whereas the connections inbewteen were disrespect-
ed.

[360]
 The simplification via the TEC operation results 

in model complexes suitable for the  system. b) 

The TEC operation results not in a doubtless assign-

ment of  or  configuration in case of octahedral 
complexes containing both a bidentate and a triden-
tate ligand. 

To transfer the /-nomenclature on 

complexes of higher polydentate ligands 

additional rules are required and some solu-

tions have been suggested in literature, i.e: 

the terminal edges convention (TEC). [360] 

However, they were not aimed as general 

nomenclature proposal, see Figure 54, and 

consequently the possible solutions to fit 

polydentate ligands to the /-nomenclature 

have not been adopted by the IUPAC to a 

general recommendation by now.[357] 

However, as the aim of this work is 

the clean comparison of enantiomers of oc-

tahedral complexes and their biological ac-

tivities, the unambiguous definition of the 

stereoconfiguration according to the 

/-nomenclature is highly appreciable. 

Moreover, this would offer a quick correla-

tion of the newly synthesised complexes to 

former ones based on tris(bidentate) or 

bis(bidentate) scaffolds as -12. Unfortu-

nately, the mentioned TEC fails considering 

octahedral complexes containing both bi-

dentate and tridentate ligands as it is true for 

-(R)-106, -(R)-107, -(S)-106 and 

-(S)-107; there is simply no terminal edge 

in a tridentate ligand, see Figure 54 b). 

Thus, to assign the stereocon-

figuration of the newly synthesized com-

plexes an additional stereodescription step 

was introduced based on the already esta-

blished conventions, see Figure 55. First, 

the priority of all coordinating atoms were 

determined according to CIP. Then, the lig-

and with the highest priority was assigned 

as reference ligand and oriented upwards in 

the vertical lane according to the established 

procedure of the C/A nomenclature. At this 

point, the assignment of chirality symbols 

according to the C/A nomenclature is possi-

ble as recommended by the IUPAC. How-

ever, as the aim is to apply the  nomen-

clature for these octahedral complexes, the 

stereodescriptive operation “reference lig-

and expansion” (RLE) was introduced. In 

this operation the reference ligand is virtual-

ly connected to the tridentate ligand. The 

virtual connection has to be performed be-

tween the coordinating atom of the triden-

tate ligand with highest priority and the ref-

erence ligand. Furthermore, the coordinating 

atom of the tridentate ligand has to be in the 

plane which is oriented perpendicular to the 

vertical lane of the reference ligand. This 

operation converts the tridentate ligand into 

a virtual tetradentate ligand, which is now 

suitable for the TEC operation, see Figure 

55. The additional stereodescriptive RLE 

operation turns octahedral complexes con-

taining both bidentate and tridentate ligands 

into models suitable to apply the 

nomenclature. All further complexes 

with these specifications, presented in this 

thesis, have been processed analogously. 
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Figure 55: Assignment of stereoconfiguration -(S)-106 (a), -(S)-107 (b), -(R)-106 (c), and -(R)-107 (d) accord-

ing to the -nomenclature. In the second column the assignment according to the C/A-nomenclature is demon-

strated. The reference ligand expansion (RLE) adds a virtual connection form the ligand of highest priority to the 

tridentate ligand shown in the third column. The connection is formed to the atom of highest Cahn-Ingold-Prelog 

(CIP) priority located in the perpendicular plane of the tridentate ligand. After this virtual operation the terminal edg-

es convention can be applied as reported in literature to fit the complex to the  system.
[360]
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Figure 56: 2D-spectra of -(R)-107 as an example for the determination of the stereoconfiguration (500 MHz, 

(CD3)2SO). (a) H-H-COSY spectrum of -(R)-107 of the aromatic protons. (b) HSQC spectrum of -(R)-107 of the 

aliphatic protons and carbons. (c) HSQC spectrum of -(R)-107 of the aromatic protons and carbons. 
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3.3.2.3 Determination of The Relative Ste-

reoconfiguration 

 

To determine the relative stereo-

configuration the unambiguous assignment 

of the protons and carbons of the obtained 

complexes was necessary. For this purpose, 

several 2D-NMR techniques were applied to 

elucidate the structural properties of the 

compounds. As a model -(R)-107 is pre-

sented in Figure 56, whereas -(R)-106, 

-(S)-106, and -(S)-107 were processed 

analogously. The assignment of all aromatic 

protons by a proton-proton correlation spec-

troscopy experiment (H,H-COSY) revealed 

a significant upfield shift of the hydrogen 

atom at position 11 of the pyridocarbazole in 

-(R)-107 to a chemical shift of  = 5.7 ppm, 

see Figure 56 a) and Figure 58 a). Further-

more, the assignment of the carbon atoms 

bearing the investigated protons via an het-

eronuclear single quantum coherence ex-

periment (HSQC) revealed that also an up-

field shift of the C-11 is observed to a 

chemical shift of  = 112.23 ppm, see Figure 

56 c). The aliphatic proton signals were 

identified also via the HSQC experiment, 

whereas the DMSO-d6 solvent signal over-

lays one proton of the prolinato ligand (H), 

see Figure 56 b). After the assignment of 

proton and carbon atoms via H,H-COSY 

and HSQC experiments, the bridging carbon 

atoms of the compound were assigned via 

an heteronuclear multiple bond correlation 

(HMBC) experiment. Figure 57 illustrates 

the assignment of C-5, C-7, C-7a and C-4b 

via the HMBC signals of H-6. This proce-

dure was repeated in case of the protons 

H-4, H-8, and H-11 to identify the proximal 

carbon atoms. Closing, the remaining brid-

ging carbon atoms were assigned correla-

ting their observed chemical shifts in the 
13C-NMR spectrum to their chemical envi-

ronment. 

As both, the H,H-COSY and HSQC 

experiments, in case of -(R)-107, unambi-

guously correlated the previously described 

signals  = 5.7 ppm to H-11 and 

 = 112.23 ppm to C-11, structural 

properties had to be considered leading to 

the signifycant upfield shift. Due to the 

characteristics of the pyridocarbazole and 

the applied tridentate ligand, certain 

structural features can be exploited to distin-

guish the stereoisomers and explaining the 

observed spectral incidences highlighted by 

the comparison of the diastereomers 

-(R)-106 and -(R)-107. Correlating their 
1H-NMR spectra reveals that the H-11 

proton of -(R)-106 posses a chemical shift 

 

Figure 57: HMBC spectrum of H-6 of -(R)-107 to determine the bridging carbon atoms (500 MHz, (CD3)2SO). 
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of  = 7.8 ppm which is located 2.1 ppm 

lowfield than the H-11 signal of -(R)-107. 

This is based on the aromatic ring current 

induced by the cis-coordinated pyridine ring, 

see Figure 58. The H-11 proton positioned 

inside the aromatic ring of the pyridine ring 

moiety of the tridentate ligand experiences a 

shielding effect. This effect can only be 

observed when the pyridine ring of either 

(R)-105 or (S)-105 is coordinated cis and 

almost perpendicular to the indole moiety of 

the pyridocarbazole ligand as it is the case 

for -(R)-107 and -(S)-107. This effect has 

been described also previously in context of 

other complexes synthesised in the 

MEGGERS group with related structures and 

therefore support the concluded stereo-

configuration.[361] 

 

 

Figure 58: 
1
H-NMR spectra of the diastereomers -(R)-107 and -(R)-106 (500 MHz, (CD3)2SO). The proton H-11 

(red circle) of -(R)-107 (a) is upfield shifted by 2.1 ppm compared to -(R)-106 (b) and allows to assign its relative 

configuration. (in b) additional solvent signal of methylene chloride) 

 

Figure 59:  Crystal structures of -(R)-106 and -(S)-106. Solvent Molecules were omitted for clarity. ORTEP 

drawing with 50% probability of thermal ellipsoids. Selected bond lengths [Å] for -(R)-106: Rh1-O35 = 2.004(4), 

Rh1-N21 = 2.032(4), Rh1-N4 = 2.032(4), Rh1-N28 = 2.057(5), Rh1-N1 = 2.071(5), Rh1-Cl1 = 2.3399(16). Selected 

bond lengths [Ǻ] for -(S)-106: N1-Rh1 = 2.076(3), N4-Rh1 = 2.036(3), N21-Rh1 = 2.043(3), N28-Rh1 = 2.058(3), 

O34-Rh1 = 2.004(3), Cl1-Rh1 = 2.3440(11). 
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The crystal structures of -(R)-106 

and -(S)-106 lead to the determination of 

their relative stereoconfiguration and sup-

ported the conclusions resulted from the 

NMR experiments, see Figure 59. The com-

parison of the crystal structures of both iso-

mers demonstrates that they are enantio-

mers and diastereomeric towards -(R)-107 

and -(S)-107. This relationship between 

the structural isomers was further investi-

gated via CD-spectroscopy as shown in 

Figure 61, revealing the enantiomeric char-

acter of -(R)-106 compared to -(S)-106; 

the same is true for -(R)-107 and 

-(S)-107. 

 

Figure 60: Stability of rhodium complexes in 
DMSO-d6/D2O 9:1 (5 mM) in the presence of 

mercaptoethanol (5 mM) determined by ELISABETH 

MARTIN. Excerpts of the 
1
H-NMR spectra of the dia-

stereomers -(R)-106 and -(R)-107 are shown after 

30 min (red), 6 h (kaki), 24 h (green), and 48 h (blue) 
at 25 °C as well as 24 h (purple) at 37 °C. 

 

Figure 61: CD-spectra of the rhodium(III) complexes 

in dimethylsulfoxide (DMSO) at a concentration of 

0.25 mM. The direct correlation of -(S)-106 to 

-(R)-106 as well as -(S)-107 to -(R)-107 reveals a 

mirror-inverted relationship of CD-light refraction be-
tween the corresponding enantiomers. 

3.3.2.4 Stablity of Enantiopure Prolinato 

Organorhodium(III) Complexes 

 

The time dependent complex stability 

was performed by ELISABETH MARTIN. Thus, 

-(R)-106 and -(R)-107 were dissolved in 

DMSO-d6/D2O (9:1) at a final concentration 

of 5 mM. In addtion, to investigate the com-

plex inertness towards free nucleophiles, 

mercaptoethanol at a final concentration 

of 5 mM was added. Indeed, during the in-

vestigated time period covering either up to 

48 h at 25 °C or 24 h at 37 °C no alterations 

in the 1H-NMR spectra could be observed. 

This confirms the complex stability in the 

presence of free thiol groups which are 

ubiquitous in biological environments, see 

Figure 60. 
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3.3.3 Kinome Profiling and Biological 

Investigations 

 

To investigate the potential kinase 

inhibition properties of the four stereo-

isomeric rhodium complexes, they were 

tested for their protein kinase binding affinity 

profile against in the DiscoveRx 

KINOMEscanTM by LeadHunter Discovery 

Services. This was accomplished by an 

active-site-directed affinity screening against 

456 human protein kinases.[362,363] The com-

pounds were screened at 1 µM and results 

for primary screen binding interactions are 

reported as “percent of control” (POC), 

where lower numbers indicate stronger 

interactions, correlating with larger red 

circles in the dendrogram, see Figure 62. 

Empiric investigations demonstrated that 

binding constants (Kd) are correlated with 

such primary screening results, where lower 

POC values are associated with low Kd 

values (higher affinity interactions). 

Moreover, the selectivity score (SS) is a 

quantitative measure of compound 

selectivity. It is calculated by dividing the 

number of kinases that compounds bind to, 

by the total number of distinct kinases 

tested, excluding mutant variants. Further, 

this score value can be calculated for 

different selectivity levels using POC as a 

potency threshold, e.g. below 35% or 10%. 

These SS clustered in different selectivity 

score types (SST) provide a quantitative 

method of describing compound selectivity 

and allow a facilitated comparison of 

different compounds among each other. 

Depending on using L- or D-proline 

as the starting point for the ligand synthesis 

of (S)-105 or (R)-105, the derived complex-

es differ entirely in their biological proper-

ties. Whereas complexes (R)-107, 

-(S)-107, and -(S)-106 act as kinase in-

hibitors, complex -(R)-106 is almost inef-

fective against the tested kinase panel. 

 This is evidenced by the different 

selectivity scores of the individual com-

pounds. Indeed, -(R)-107 possesses a 

selectivity score of 0.041 at a SST of 35% 

and 0.013 at a SST of 10%; -(S)-107 pos-

sesses a selectivity score of 0.025 at a SST 

of 35% and 0.005 at a SST of 10%; 

-(S)-106 possesses a selectivity score of 

0.076 at a SST of 35% and 0.025 at a SST 

of 10%. In opposite, -(R)-106 didn’t hit any 

kinase at the SST level of 35%, 10%, or 

even 1% in the tested concentration of 1 µM. 

None of the four compounds inhibited a ki-

nase in the tested panel at a POC lower 

than 1%, see Figure 62. These remarkable 

differences of the tested compounds, not 

only regarding the selectivity across the 

whole kinome but also the preference to 

distinct kinase subfamilies addressed by 

them, indicate the importance of the relative 

configuration around the rhodium metal cen-

tre. 

To further verify the primary hits of 

the kinome profiling, all four compounds 

were tested in competitive studies using 

[33P]-ATP. Therefore, one target kinase for 

each compound with a POC lower than 10% 

was selected. Three kinases were chosen 

regarding their commercial availability and 

role in human pathogenesis: FLT-3 (4.9%) 

addressed by -(S)-107, Aurora A (2.4%) 

addressed by -(S)-106, and PIM-1 (1.8%) 

addressed by -(R)-107. The [-33P]-ATP 

competitive studies confirmed the primary 

results of the KINOMEscanTM. As expected, 

the target kinases were inhibited profoundly 

by the compound identified in the kinome 

profiling, see Figure 62 and Figure 63. 
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Figure 62: Kinase profiling of -(R)-106, -(R)-107, -(S)-107, and -(S)-106. All complexes were tested against 456 

human kinases at a concentration of 1 µM by an active-site-directed affinity screening (KINOMEscan
TM

, DiscoveRx, 

LeadHunter Discovery Services). The dendrograms show the remaining POC levels of the kinases depicted as red 

circles. The selectivity score type (SST), the number of hits (NH) as well as the selectivity score (SS) of the single 

enantiomers are: -(R)-107: SST(35) NH(16) SS(0.041); SST(10) NH(5) SS(0.013). -(S)-107: SST(35) NH(10) 

SS(0.025); SST(10) NH(2) SS(0.005). -(S)-106: SST(35) NH(30) SS(0.076); SST(10) NH(10) SS(0.025). 
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Figure 63: One single target kinase for each com-

pound with a POC lower than 10% was selected for 

[-
33

P]-ATP competitive assays with an ATP concen-

tration of 10 µM (double determination). -(R)-106 

(purple triangle), -(R)-107 (blue triangle), -(S)-107 

(black squares), and -(S)-106 (red circle). a) FLT-3: 

-(R)-106 = 8.47 µM, -(R)-107 = 1.2 µM, -(S)-107 = 

137 nM, and -(S)-106 = 8.26 µM. b) Aurora A: 

-(R)-106 = 164 µM, -(R)-107 = 39 µM, -(S)-107 = 

35 µM, and -(S)-106 = 121 nM. c) PIM-1: -(R)-106 = 

1.99 µM, -(R)-107 = 15 nM-(S)-107 = 1.03 µM, and 

-(S)-106 = 0.88 µM. 

Indeed, -(R)-107 inhibited PIM-1 

with an IC50 of 15 nM, -(S)-107 inhibited 

FLT-3 with an IC50 of 137 nM, and -(S)-106 

Aurora A with an IC50 of 121 nM. Further, 

other structural isomers of the rhodium(III) 

complexes differ significantly in their IC50 

values towards the non-target kinases. For 

instance, -(R)-106 (8.47 µM), -(R)-107 

(1.2 µM), and -(S)-106 (8.26 µM) are signif-

icantly less affine towards FLT-3 than 

-(S)-107. The same is true for Aurora A: 

-(R)-106 (164 µM), -(R)-107 (39 µM), and 

-(S)-107 (35 µM) in opposite to -(S)-106; 

as well as for PIM-1: -(R)-106 (1.99 µM), 

-(S)-107 (1.03 µM), and -(S)-106 

(0.88 µM) in opposite to the original screen-

ing hit -(R)-107. Moreover, it is noteworthy, 

that -(R)-106 is the weakest inhibitor to-

wards all tested kinases. All gathered results 

of the [-33P]-ATP competitive studies are in 

very good congruence to the results of the 

kinome profiling highlighting the importance 

of the stereochemistry at the metal centre 

for metal based kinase inhibitors. 

3.3.4 Interpretation 

 

The pros and cons comparing classic 

organic kinase inhibitors to organometallic 

complexes have been discussed intensively 

in literature.[152,159–161,189,190,364–368] The PIM 

kinase family have been described above to 

possess oncogenic and survival promoting 

properties, see Chapter 3.3.1.1.[266,274,281–

283,287,292,369–371] Therefore, targeting mem-

bers of the PIM kinase family offers potential 

treatment options, i.e.: various 

leukemias,[372] mantle cell lymphoma,[287] 

and diffuse large B-cell lymphoma.[369] An 

actual example of a phase I clinical trial PIM 

kinase inhibitor is AZD1208 (108) by Astra-

Zeneca.[370] AZD1208 inhibits the kinase 

activity of all three PIM kinases with an IC50 

of 0.4 nM (PIM-1), 5.0 nM (PIM-2), and 

1.9 nM (PIM-3).[371] Moreover, the organic 

inhibitor AZD1208 was evaluated by the 

KINOMEscanTM (DiscoveRx) using a panel 
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of 442 kinases, whereas only 16 kinases 

had an residual activity of less than 50%, 

including all three PIM kinases.[371] In com-

parison, the kinase profiling of -(R)-107 

against 456 kinases revealed 23 kinases 

with an residual activity of less than 50%. 

Moreover, PIM-2 with an POC of exactly 

50% was not adequately addressed by 

-(R)-107 as PIM-1 or PIM-3, both 1.8%. 

This example shows that -(R)-107 with its 

low nanomolar IC50 of 15 nM against PIM-1 

and its selectivity profile is quite comparable 

to literature known fully organic kinase inhib-

itors, although the exact selectivity profile 

inevitably differ. 

 

Figure 64: Chemical Structure of AZD1208 (108).
[370] 

Though, differences in the selectivity 

profiles comparing classic organic inhibitors 

with metal based complex inhibitors are like-

ly to expect, similarities like in case of FLT-3 

confirm a related mode of action. For in-

stance, FLT-3 inhibitors often affect other 

members of the type III receptor tyrosine 

kinases including KIT and PDGFR due to 

their close structural relationship.[373] This is 

true for i.e. SU11248 (109) (Sunitinib, 

Pfizer)[374] approved for the treatment of re-

nal cell carcinoma (RCC) and imatinib-

resistant gastrointestinal stromal tumor 

(GIST). Beside also affecting other type III 

receptor tyrosine kinases like KIT and 

PDGFR in the kinome profiling, the rhodi-

um(III) inhibitor -(S)-107 possesses an 

determined IC50 of 137 nM for FLT-3 which 

is in the same range as the IC50 of SU11248 

(250 nM).[373] 

 

Figure 65: Chemical structure of SU11248 (109).
[374]

 

Closing, many inhibitors targeting the 

Aurora kinases have been reported before 

and some are evoking increasing focus in 

clinical trials.[353,355,375] For instance, AT9283 

developed by Astex Therapeutics is current-

ly in several Phase II studies under the 

Cancer Research UK.[376] It is a multi-target 

tyrosine kinase inhibitor, including Aurora A 

(IC50 = 3 nM) and B (IC50 = 3 nM), JAK (IC50 

= 1.2 nM), and T315I ABL (IC50 = 4 nM).[377] 

In opposite, -(S)-106 inhibits Aurora A in 

the medium range of an IC50 of 121 nM. 

Moreover, the kinase profile does not un-

doubtedly support the mentioned targets of 

AT9283 as additional targets for -(S)-106, 

see Figure 62. 

 

Figure 66: Chemical structure of AT9283 (110).
[377]

 

Despite the short provided framing of 

the presented rhodium(III) complexes into 

the context of classic organic kinase inhibi-

tors, it is noteworthy that the obtained re-

sults reflect just the beginning of enanti-

opure metal based kinase inhibitor design. 

Further improvements of target selectivity 

and potency are achievable by modifying i.e. 

the pyridocarbazole pharmacophore ligand 

79[149] or attaching additional functional 

groups to the tridentate ligands (R)-105, or 

(S)-105, as described in the following Chap-

ters. 
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3.3.5 Scanning the Binding Pocket - 

Further Development of Tridentate 

Chiral Ligands 

 

The successful synthesis of prolinato 

organorhodium(III) complexes and the sub-

sequent conclusion of the ligand character-

istics leading to the enantiopure kinase in-

hibitors resulted into new modified ligands. 

They were able to act both, as tools to 

asymmetrically synthesise organometallic 

complexes and being part of highly sophis-

ticated kinase inhibitors. 

Many synthetically accessible proline 

derivatives have been reported.[378–382] Nev-

ertheless, prior to start, a multistep ligand 

synthesis with different substitution patterns, 

slight modifications to explore the available 

chemical space in the ATP binding site of 

the target kinases must be evaluated first. 

Moreover, the transferability of the ligand 

requirements must be verfied. Thus, a small 

set of comercially available proline deriva-

tives like (S)-methyl-proline (S)-111, 

(2S, 4R)-hydroxyproline (115), and pipe-

colinic acid ((S)-120 and (R)-120) were se-

lected, see Scheme 14. In general, the es-

tablished synthetic route was applied to the 

single compounds in analogy to (R)-105 and 

(S)-105. 

 

 

Scheme 15: Cleavage of the ester function of 
(S, R)-118. 

The methyl esters of the correspond-

ing amino acid building blocks were formed 

by reacting them with thionylchloride in 

methanol at 0 °C during the drop wise addi-

tion, followed by 16 h of stirring the reaction 

mixture at ambient temperature. The methyl 

esters were obtained as pure hydrochloride 

salts after repeated co-evaporation of ex-

cessive thionylchloride. The protected amino 

acid building blocks were obtained in quant. 

yields in case of (S)-112, (S, R)-116, and 

(R)-121; in case of (S)-121 the ester for-

mation led to a yield of 97%. 

The methyl esters were then pro-

cessed to the reductive amination reaction 

using 103 in methanol. The reaction mix-

tures were stirred for 72 h at 0 °C under 

hydrogen atmosphere and using palladium 

on carbon as catalyst. During this period the 

reaction mixture was allowed to warm up to 

ambient temperature. After the separation of 

the heterogeneous catalyst via filtration over 

CELITE, the intermediates could be purified 

by flash chromatography using methylene 

chloride : methanol. Unexpectedly, the re-

 

Scheme 14: Synthesis of enantiopure chiral tridentate proline derived ligands (I). 
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ductive amination reactions were performed 

with decreased yields as compared to the 

synthesis of (R)-105 and (S)-105. The yields 

of 38% in case of (S)-113 and 40% in case 

of (S, R)-117 led to the counteraction of ap-

plying a substitutional reaction using 2-(chlo-

romethyl)pyridine hydrochloride (122) in-

stead of the established reductive ami-

nation. This alternative route was applied in 

the synthesis of (S)-1-(pyridin-2-ylmethyl)pi-

peridine-2-carboxylic acid ((S)-124) and 

(R)-1-(pyridin-2-ylmethyl) piperidine-2-car-

boxylic acid ((R)-124). Therefore, (R)-methyl 

piperidine-2-carboxylate ((R)-121), or the 

corresponding (S) enantiomer ((S)-121), 

was reacted with 122 in DMF at 50 °C for 

36 h using sodium carbonate and sodium 

iodide. This alternative synthetis with 81% 

yield outperformed the reductive amination, 

see Scheme 16. 

Finally, after basic ester cleavage, 

using 1 M sodium hydroxide at ambient tem-

perature for 16 h, the finished tridentate lig-

ands were obtained in 93% ((S)-114), 81% 

(S, R)-119, and quant. yields ((R)-124 and 

(S)-124), respectively. Additional functional 

groups, like in case of (S, R)-117, were pro-

tected to avoid a potential cross coordina-

tion with a second metal ion during the 

complexation reaction, see Scheme 14. The 

attached tert-butyl-dimethylsilyl protection 

group at the hydroxyl residue fulfills this 

function, which was attached using diiso-

propylethylamine (DIPEA) and tert-butyl-

dimethylsilyl triflate in DMF. 

3.3.6 Synthesis and Structural Investi-

gations 

 

The newly designed ligands for 

chemical space exploration and asymmetric 

organorhodium(III) complexation were re-

acted under the same conditions applied for 

the synthesis of -(R)-106, -(S)-106, 

-(R)-107 and -(S)-107, see Chapter 3.3.2. 

Thus, makes the reactions comparable, 

Scheme 17. As observed before the reac-

tion mixtures led to the formation of two dia-

stereomers for each used ligand, like for the 

ligands (R)-105 and (S)-105. 

 

Scheme 16: Synthesis of enantiopure chiral tridentate proline derived ligands (II). 

 

Scheme 17: Asymmetric synthesis of organorhodium complexes -(S, R)-125 and -(S, R)-126. 
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In analoguous way, the diastereo-

mers could be separated by flash column 

chromatography using methylene chlo-

ride : methanol (20:1  10:1) followed by a 

preparative TLC for each single compound 

using methylene chloride : methanol 15:1 for 

further purification. Like observed before, 

the tert-butyl-dimethylsilyl protection group 

of ligand 79 was cleaved, see Scheme 17 

and Scheme 18. Moreover, the tert-butyl-

dimethyl silyl protection group of (S, R)-119 

was also cleaved under the reaction condi-

tions, see Scheme 17. All second genera-

tion organorhodium(III) complexes were 

obtained in comparable yields to the proline 

based progenitors: (S, R)-119 derived 

-(S, R)-125 (23%) and -(S, R)-126 (17%); 

(S)-124 derived -(S)-127 (21%) and 

-(S)-128 (15%); as well as (R)-124 derived 

-(R)-127 (24%) and -(R)-128 (16%). 

The relative stereoconfiguration of 

-(S)-125 and -(R)-127 was determined 

via X-ray crystallography, see Figure 67 and 

Figure 68, respectively. Moreover, corre-

lating all physico-chemical properties to the 

obtained data of -(R)-106, -(R)-107, 

-(S)-106, and -(S)-107 covering crystal 

structures and the 1H-NMR shift of the H-11 

proton of the coordinated pyridocarbazole 

for allowed a doubtless assignment of the 

relative stereoconfiguration of each second 

generation organorhodium(III) complex as 

depicted. 

 

Figure 67: Crystal structure of -(S,R)-125. Solvent 

molecules were omitted for clarity. ORTEP drawing 
with 50% probability of thermal ellipsoids. Selected 

bond lengths [Å] for -(S,R)-125: Rh1-N1 = 2.055(3), 

Rh1-N4 = 2.038(3), Rh1-N23 = 2.073(4), Rh1-N26 
= 2.039(4), Rh1-O1 = 2.010(3), Rh1-Cl1 = 2.3256(10). 

 

 

Figure 68: Crystal structure of -(R)-127. Solvent 

molecules were omitted for clarity. ORTEP drawing 
with 50% probability of thermal ellipsoids. Selected 

bond lengths [Å] for -(R)-127: Rh1-N1 = 2.069(3), 

Rh1-N4 = 2.043(2), Rh1-N23 = 2.080(2), Rh1-N30 
= 2.044(2), Rh1-O1 = 2.009(2), Rh1-Cl1 = 2.3417(7). 

  

 

Scheme 18: Asymmetric synthesis of organorhodium complexes -(R)-127, -(R)-128, -(S)-127 and -(S)-128. 
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Additionally, beside exploring the ligand 

sphere using modified chiral tridentate lig-

ands, the monodentate chlorine ligand of the 

enantiopure organorhodium complexes was 

also substituted by bromine, see Scheme 

19. For this purpose, the established syn-

thetic procedure was applied using 

RhBr3∙xH2O (24% Rh) instead of 

RhCl3∙3H2O. 79 was reacted in a sequential 

addition to a suspension of RhBr3∙xH2O in 

an ethanol/water mixture at 90 °C for 3 h 

followed by the chiral tridentate ligand 

(R)-105. Reacting the mixture at 90 °C for 

16 h led to the formation of two diastere-

omers, which were separated by silica gel 

chromatography with methylene chlo-

ride : methanol 20:1 to 10:1 followed by a 

preparative TLC for each single compound 

using methylene chloride : methanol 15:1. 

The complex -(R)-129 was obtained in 

16% yield and -(R)-130 in 10%. 

3.3.7 Biological Investigations 

 

To further investigate the biological 

properties and kinase inhibition potentials of 

selected second generation organo-

rhodium(III) complexes, they were tested in 

competitive assays against PIM-1, FLT-3, 

and Aurora A. Therefore, each investigated 

structural isomer was correlated to the ap-

propriate prolinato progenitor against its 

primary target kinase. 

FLT-3 was inhibited by -(S, R)-126 

with an IC50 of 780 nM which is 5.7-fold 

higher than the IC50 of 137 nM for -(S)-107 

as the appropriate progenitor. A similar rela-

tion can be observed for Aurora A. 

-(S)-106 inhibited Aurora A with an IC50 

value of 121 nM, whereas the IC50 value of 

12.5 µM of -(S, R)-125 is about 100-fold 

higher. These two examples demonstrate 

that the substitution of (S)-105 towards 

(S, R)-119 introducing an additional hydroxyl 

group significantly impairs the affinity of the 

resulting inhibitors. The same is true for the 

enlargement of the aliphatic ring size from a 

five-membered ring in case of using (R)-105 

to a six-membered ring using (R)-124. The 

resulting -(R)-128 inhibits PIM-1 with an 

IC50 of 206 nM which is almost 14-fold higher 

compared to the IC50 of 15 nM in case of 

-(R)-107. The enlarged ring size and the 

subsequent conformational changes of the 

ligand sphere significantly decrease the af-

finity of the second generation organorhodi-

um(III) complex. In contrast, the substitution 

of the monodentate ligand to bromine in-

stead of chlorine has only little influence on 

the affinity as confirmed by the IC50 of 32 nM 

of -(R)-130, which is quite comparable to 

the value obtained for -(R)-107. Moreover, 

as PIM-1 offers a relatively large 

ATP-binding site for interactions, the com-

plexes -(R)-129 (735 nM) and -(R)-127 

(3.76 µM) were also tested for their affinity. 

However, the obtained values for them con-

firmed the primary expectations. 

 

Scheme 19: Asymmetric synthesis of organorhodium complexes -(R)-129, -(R)-130. 
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Figure 69: The target kinases of the prolinato or-

ganorhodium(III) complexes were tested using the 
second generation enantiopure organorhodium(III) 

complexes in [-
33

P]-ATP competitive assays with an 
ATP concentration of 10 µM. The data points repre-
sent mean values of double determinations and an 
independent verification assay under same conditions. 
Additionally, the most potent prolinato organorhodi-
um(III) inhibitor is sown for comparison. a) FLT-3: 

-(S)-107 (black squares) IC50 = 137 nM, -(S, R)-126 

(green triangle) IC50 = 780 nM. b) Aurora A: -(S)-106 

(red circles) IC50 = 121 nM; -(S, R)-125 (orange trian-

gle) IC50 = 12.5 µM. c) PIM-1: -(R)-107 (blue trian-

gles) IC50 = 15 nM, -(R)-130 (yellow circles) 

IC50 = 32 nM, -(R)-128 (grey rhombi) IC50 = 206 nM, 

-(R)-129 (green hexagons) IC50 = 735 nM, -(R)-127 

(brown triangles) IC50 = 3.76 µM. 

 
 
Figure 70: Superimposed crystal structures of organ-

ometallic inhibitor (R)-10 (pdb: 2JLD) and -12 (pdb: 

3PUP) bound GSK-3. The binding pose of both pyri-
docarbazole pharmacophore ligands are flipped by 
180° in relation to each other. The pyridocarbazole 
carbon atoms of (R)-10 are presented in cyan and the 

pyridocarbazole carbon atoms of -12 in green. Nitro-

gen atoms are shown in blue, oxygen atoms in red, 

and fluorine in light cyan. GSK-3 as well as the re-
sidual coordination sphere is presented as cartoon or 
sticks in white for clarity.

[146]
 

3.3.8 Interpretation 

 

The initial modifications of the proline 

core of the chiral tridentate ligands signifi-

cantly influenced the inhibition profiles of the 

resulting organorhodium(III) complexes 

compared to the corresponding structural 

isomers of the prolinato rhodium(III) com-

plex progenitors. In case of the additional 

hydroxyl function of (S, R)-119 or enlarging 

the ring size as in case of (R)-124 led to 

decreased affinities towards the kinase tar-

gets indicating sterical hindrances induced 

by these groups. Due to the findings of the 

complexes -(S, R)-125, -(S, R)-126, 

-(R)-127, and -(R)-128 the (S)-124 de-

rived complexes -(S)-127, and -(S)-128 

were not further investigated regarding their 

inhibitory potential. Moreover, scanning the 

binding pocket of PIM-1 revealed the tolera-

tion of a larger monodentate ligand like 

bromine instead of chlorine. Indeed, PIM-1 

has been reported to possess a relatively 
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large ATP binding site compared to other 

kinases.[140,147,231,292] Thus, PIM-1 is often hit 

as a target in metal based complex inhibitor 

investigations examined by the MEGGERS 

group.[140,147,231] 

Moreover, due to the symmetry of the 

maleimide moiety of the pyridocarbazole 

pharmacophore ligand, the residual coordi-

nation sphere has an important influence on 

the binding pose of the entire complex. For 

instance, superimposing the crystal struc-

tures of (R)-10 and -12 in the binding 

pocket of GSK-3 reveals a 180 ° flip of both 

pyridocarbazole ligands in relation to each 

other, one occupying the same chemical 

space with its indole moiety whereas the 

other with its pyridine moiety and vice versa, 

see Figure 70. The different binding poses 

of the pyridocarbazole ligands in relation to 

each other are mainly driven by the mono-

dentate carbonyl ligands, which point to-

wards the glycine rich loop, and the addi-

tional substituents at the pyridocarbazoles 

picking up different molecular interactions. 

However, it is noteworthy, that the dia-

stereomers obtained in a single reaction, 

using the chiral tridentate ligands presented 

so far, arise from a 180 ° flipped coordina-

tion of the pyridocarbazole. Therefore, the 

ligand sphere of two diastereomers can be 

superimposed, whereas the pyridocarbazole 

ligands of each complex is inverted com-

pared to the other. Keeping this fact in mind, 

modifications in the ligand sphere or intro-

ducing additional functional groups at the 

pyridocarbazole could completely change 

the preferred binding poses of the resulting 

isomers. 

Therefore, this effect has been investi-

gated in the case of PIM-1 and both, 

-(R)-127 and -(R)-128, have been tested 

in competitive assays. In case of PIM-1, 

despite offering the mentioned large binding 

site, the results of the IC50 determinations 

show the same trends as observed for 

-(R)-106 and -(R)-107. Although, the de-

scribed assumption was not confirmed in 

this case, the possibility, that modifications 

leading to new complexes might also result 

into distinct binding poses compared to the 

cooresponding progenitor, has to be consid-

ered for future investigations to prevent mis-

interpretations and undisclosed conclusions. 
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3.3.9 Scanning the Binding Pocket – 

Modifications of the Pyrido-

carbazole Pharmacophore 

 

After the results scanning the binding 

pockets with modified tridentate chiral lig-

ands, additional functional groups to the 

pyridocarbazole pharmacophore ligand itself 

were attached to investigate their influences 

on the inhibition profile. Therefore, different 

pyridocarbazoles were reacted according to 

the established synthetic route, see Chapter 

3.3.2. Accordingly, the pyridocarbazole lig-

ands 78, 81, 82, and 83 were reacted in a 

sequential addition to a suspension of 

RhCl3∙3H2O in an ethanol/water mixture at 

90 °C for 3 h followed by addition of the chi-

ral tridentate ligand (S)-105 or (R)-105, see 

Scheme 20 and Scheme 21. Reacting the 

mixtures at 90 °C for 16 h led to the for-

mation of the two diastereomers for each 

pharmacophore ligand as observed before 

for 79. The diastereomers of each single 

reaction could be separated by silica gel 

chromatography followed by a preparative 

TLC for each single compound resulting in 

purple complexes. Moreover, the general 

loss of tert-butyl-dimethylsilyl protection 

groups of the ligands, not only at the malei-

mide moiety but also at the hydroxyl groups, 

was observed. 

The yields of the obtained complexes 

are quite comparable to the initial reactions, 

see Chapter 3.3.2. Although, the disad-

vantage of protection group cleavage seems 

to affect the solubility of the ligands and 

subsequently impairs the yield of the reac-

tion. However, screening of different solvent 

systems and reaction temperatures failed to 

form the intended reaction products. Fur-

thermore, the established synthetic route 

was still applied as a reference procedure to 

compare the influences of the ligand modifi-

cations. 

 
Scheme 20: Asymmetric synthesis of organorhodium complexes with modified pyridocarbazole ligands (I). 

 
Scheme 21: Asymmetric synthesis of organorhodium complexes with modified pyridocarbazole ligands (II). 
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3.3.10 Biological Investigations 

 

Closing, the obtained complexes of 

the pyridocarbazole modifications were test-

ed according to the IC50 determination to-

wards the target kinases FLT-3, Aurora A, 

and PIM-1, as described in Chapter 3.3.3. 

FLT-3 was inhibited by -(S)-132 

(474 nM), -(S)-134 (51 nM), -(S)-136 

(622 nM), but not by -(S)-138 (5.85 µM). 

Moreover, -(S)-134 outperforms the IC50 of 

137 nM for -(S)-107. -(S)-106 inhibited 

Aurora A with an IC50 value of 121 nM, 

whereas -(S)-131 (6.95 µM), -(S)-133 

(12.5 µM), -(S)-135 (7.71 µM), and 

-(S)-137 (9.46 µM) are significantly worse 

inhibitors. PIM-1 was inhibited by -(R)-107 

with an IC50 of 15 nM, whereas the inhibitors 

-(R)-134 (19 nM), and -(R)-136 (32 nM) 

inhibit the kinase at comparable concentra-

tions. Nevertheless, -(R)-132 (326 nM) and 

-(R)-138 (1.29 µM) possess a decreased 

affinity to the PIM-1 kinase than the original 

structural progenitor. 

3.3.11 Interpretation 

 

Modifying the chiral tridentate pro-

linato ligands showed, that the investigated 

target kinases do not tolerate additional 

groups on this side of the complex. Moreo-

ver, Aurora A excludes simultaneous modifi-

cations on the indole as well as on the pyri-

dine moiety of the pyridocarbazole ligand. 

Nevertheless, in some cases modifications 

of the pyridocarbazole ligand led to the for-

mation of inhibitors with increased affinity, 

i.e.: -(S)-134. However, these functional 

groups may offer an additional adjusting 

point to increase solubility and lipophilic 

properties to modulate and improve ADME 

properties. 

 

 

 

Figure 71: IC50 determination by [-
33

P]-ATP competi-

tive assays with an ATP concentration of 10 µM. The 
data points represent mean values of double determi-
nations and an independent verification assay under 

same conditions. a) FLT-3: -(S)-132 (474 nM), 

-(S)-134 (51 nM), -(S)-136 (622 nM), and -(S)-138 

(4.31 µM). b) Aurora A: -(S)-131 (6.95 µM), -(S)-133 

(12.5 µM), -(S)-135 (7.71 µM), and -(S)-137 

(9.46 µM). c) PIM-1: -(R)-132 (326 nM), -(R)-134 

(19 nM), -(R)-136 (32 nM), and -(R)-138 (1.29 µM). 
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3.4 Design of Phosphatidylinositol-

3-Kinases (PI3K) Inhibitors 

3.4.1 Target Synopsis and Aim (III) 

 

The phosphatidylinositol-3-kinases 

(PI3K) belong to the family of lipid kinases. 

In opposite to the regular protein kinases, 

membrane bound lipids are the phosphory-

lation targets of PI3Ks acting as subsequent 

second messenger.[383] The phosphorylation 

products play important roles for the regula-

tion of cellular processes like gene expres-

sion, carbohydrate metabolism, or apopto-

sis.[383,384] Moreover, some members are key 

players of pathologic processes involved in 

diseases like diabetes, cancer, cardiovascu-

lar diseases and autoimmune defi-

ciencies.[384,385] Therefore, PI3Ks are inter-

esting targets for the pharmaceutical 

research.[386–388] 

The PI3Ks consist of a regulatory 

domain (p85 or p101) and a catalytic do-

main (p110). Thus, they were clustered into 

three different classes covering class I, II, 

and III, due to their structural differences 

and substrate specificity.[389,390] The class I is 

further subdivided into two groups, IA and IB 

based on their different structure and activa-

tor recruitment. Both result into the phos-

phorylation of phosphatidylinositol-4,5-bis-

phosphate (PIP2) to phosphatidylinositol-

3,4,5-trisphosphate (PIP3). In contrast, 

phosphatase and tensin homologue (PTEN) 

acts as the cellular counterpart of the PI3Ks 

class I cleaving the attached phosphorylate 

group.[391] PIP3 as the second messenger 

activates various effectors via the pleckstrin 

homology domain (PH), i.e.: PDK1 and 

mTORC2. Further, it regulates the PIP3 acti-

vated protein kinase B (AKT), which itself 

regulates a plenty of downstream effectors 

covering p53, and BAD, see Figure 

73.[389,392] 

Class IA PI3Ks are heterodimers 

consisting of a regulatory p85 binding do-

main isoform (for p110, p110 and p110), 

a Ras binding domain, a protein kinase C 

homology domain 2 (C2), a PI3Ka domain, 

and a catalytic PI3Kc domain.[389,390] The 

different binding domains lead to the three 

isoforms , , and . The extracellular do-

main of an attached membrane bound re-

ceptor tyrosine kinase activated by growth 

factors, and insulin among others, phos-

phorylates the regulatory domain of the 

PI3Ks. This leads to an activated state of 

the catalytic domain.[383] Nevertheless, also 

synergistic effects of G and RTKs depend-

ent activation have been reported.[393–395] 

Class IB PI3Ks are also heterodi-

mers. However, in contrast to class IA the 

regulatory domain (p101) offers an adaptor 

binding site (AdB).[383,389] Only one isoform of 

class IB, PI3K was identified by now.[389,390] 

Moreover, the activation is mediated by a 

Gi/o-protein coupled receptor 

(GPCR).[384,394,396] It is noteworthy, that in 

opposite to the usual activation of effectors 

by the G subunit, the G subunit activates 

PI3K beside other effectors. Thus acceler-

ates the whole signal transduction event 

faster than the class IA mediated signal 

cascade.[388] 

Whereas the PI3K and PI3K are 

expressed ubiquitous in all cell types, the 

isoforms PI3K and PI3K are mainly ex-

pressed in cells of the native and adaptive 

immune system, the blood pressure regula-

tion, and the blood coagulation.[385,397] More-

over, PI3K is often expressed for a cooper-

ative activation of other receptors and 

effector proteins, i.e.: PI3K.[388] Chemo-

kines, pro-inflammatory lipids, and bacterial 

products represent extracellular ligands for 

PI3K activation in immune cells.[385] The 

activation subsequently increases the effi-

ciency of neutrophils by accelerated excre-

tion of proteases, reactive oxygen species, 

and antimicrobial substances.[398] Moreover, 

PI3K and PI3K mediated cellular events 

leads to the enhanced recruitment of mac-

rophages and monocytes to the inflamma-
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tion site.[398,399] PI3KandPI3K coopera-

tion is responsible for the ADP dependent 

platelet coagulation.[388] Moreover, PI3K 

seems to be involved in myocardial muscle 

cell contraction.[400] A direct binding to the 

cAMP-phosphodiesterase and the subse-

quent reduction of the cAMP level leading to 

reduced muscle contraction is discussed as 

the mechanism of action.[400] 

However, the class II PI3Ks lack the 

p85 domain but offer a C-terminal Phox do-

main and an additional C2 domain. In con-

trast, the class III are reduced to the rudi-

mentary structural properties responsible for 

phosphatidylinositol binding and catalysis, 

see Figure 72.[389] 

The described important roles of 

PI3Ks in physiological processes and patho-

logical events turn them to interesting tar-

gets for the treatment of hypertonia, auto-

immune diseases, and cancer.[385] Beneficial 

effects targeting PI3Ks have been observed 

in mouse models for rheumatoid arthritis 

and systemic lupus.[397,401] 

 

Figure 72: PI3Ks are divided into three classes. All 

PI3K catalytic subunits consist of a C2 domain, a 
helical PI3Ka domain and a catalytic PI3Kc domain. 
Class IA PI3Ks exist in complex with a regulatory p85 
subunit isoform. Class II lack the regulatory subunits 
but have amino- and carboxy-terminal extensions to 
the PI3K core structure. Class III are structurally re-
duced to the rudimentary PI3K core.

[389]
 

 

 

Figure 73: PI3K pathway is initialised by RTKs recruit resulting in increased phosphatidylinositol-3,4,5-tris-

phosphate (PIP3) levels. PIP3 subsequently concentrates many effector proteins to the membrane via their pleck-
strin homology (PH) domains including AKT, PDK1, PHLPP. Furthermore, PDK1 and mTORC2 activate AKT, 
whereas the inactivation is mediated via the dephosphorylation by PHLPP. Activated AKT phosphorylates various 
substrates, influencing effectors of cellular growth, survival, and proliferation. However, an AKT-independent acti-
vation of downstream targets, such as RAC1/CDC42, by PI3K is also possible.

[391]
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3.4.2 Organometallic Inhibitor Design 

 

The cumulated results obtained for 

the investigations described for chiral triden-

tate ligands claim for a more efficient way to 

design and anticipate ligand modifications 

increasing the binding affinity. Scanning a 

kinase binding pocket by the subsequent 

introduction of additional functional groups 

into the ligand scaffold inevitably increases 

the number of synthetic steps. Moreover, a 

beneficial effect is not guaranteed turning 

some elaborated synthetic routes into super-

fluous efforts. Thus, to avoid the dissipation 

of time and resources a more sophisticated 

way to design new organometallic inhibitors 

has to be elaborated. To face this issue, 

initial efforts were spent to apply methods 

established for the molecular modelling of 

pure organic inhibitors onto the concept of 

organometallic inhibitors. 

The challenge of synthesising enan-

tiopure organometallic complexes has been 

discussed previously, see Chapter 2.3., and 

appropriate possible solutions have been 

presented, see Chapter 3.3.2 and Chapter 

3.3.5. Nevertheless, the importance and the 

need of such systems for the asymmetric 

synthesis of octahedral complexes is high-

lighted once again in the context of PI3K 

inhibition. The complex 139 synthesised by 

STEFAN MOLLIN in the MEGGERS group was 

only obtained as a racemic mixture consist-

ing of -139 and 139. 139. The racemic 

mixture was found to inhibit PI3K. Although, 

a crystal structure of 139 bound to PI3K 

was obtained by JIE QIN in the MARMOR-

STEIN group, the correct assignment of the 

eutomer in congruence to the measured 

electron density was not unambiguously 

possible. Moreover, a complicated separa-

tion of the enantiomers was not performed 

during the former investigations, see Figure 

75. 

 

Figure 74: Single enantiomers of /-139, which was 

used as racemic PI3K inhibitor. 

 

Figure 75: PI3K in complex with organoruthenium(II) 
complex 139 (internal data from MEGGERS group). The 

map is the fofc.map at 2  level. The crystals were 

recorded for 8 h and the resolution was 2.55 Å. The 
electron density do not allow an accurate assignment 

of the eutomer. The chemical structure of -139 is 

shown as sticks with the carbon atoms in green. Nitro-
gen atoms are shown in blue, oxygen atoms in red, 
sulfur in yellow, and the ruthenium core in purple. 

PI3Kis presented as cartoon in white. 

To circumvent these problems, the 

elaborated concepts to synthesise enanti-

opure metal based inhibitors could be ap-

plied to develop a PI3K selective inhibitor. 

Moreover, computer aided design could as-

sist the development of new complexes 

avoiding superfluous synthetic efforts. 
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3.4.3 Hot Spot Analysis – a First Clue to 

Address the Right Sites 

 

The next generation complexes of 

PI3K inhibitors were intended to be de-

signed as octahedral complexes. To assist 

these attempts a hot spot analysis was ap-

plied first to achieve a first clue, if there are 

favourable interactions present. Thus, two 

different programs, FCONV and HOTSPOTSX 

developed by GERD NEUDERT, were applied 

in collaboration with TOBIAS CRAAN to design 

the new scaffold. 

 

Figure 76: Representative atoms (highlighted in red) 

assigned according to the internal annotation of 
FCONV. The annotation includes element symbol, 
chemical environment, hybridisation state, bonding 
state and interaction group. 

3.4.3.1 FCONV – a program for format con-

version, manipulation and feature 

computation of molecular data 

 

FCONV is applicable for molecule data 

handling and data parsing problems.[402] This 

program assignes internal predefined atom 

types to the atoms of an input structure. The 

internal atom type classification considers 

the element itself, the hybridisation state, 

and the intermolecular interaction of the ap-

propriate functional group, see Figure 76 for 

representatives; i.e.: the oxygen of an hy-

droxyl group is assigned by the descriptors 

O for oxygen, 3 for sp3 hybridisation, and oh 

as the oxygen is bound to an hydrogen atom 

beside the alkyl residue. On one hand, the 

hydroxyl group could form hydrogen bonds 

providing its own hydrogen atom; on the 

other, it could provide one of its lone pairs 

for hydrogen bond formation. In the first 

case the hydroxyl group acts as a donor and 

in the second as an acceptor. Therefore, the 

O.3oh atom type belongs to the doneptor 

group. In opposite, an oxygen of an alkyloxy 

Table 1: Overview of the internal atom types of FCONV clustered by their physico-chemical properties. Acceptor 

(Acc), doneptor (AnD), aromatic (Aro), donor (Don) and hydrophobic (Hyd) properties. 

 

Doneptors Aromatic Donor Hydrophobic

O.carb O.co2 O.3oh C.ar6 N.guh C.1s

N.ar2 O.2po N.r3 C.ar6x N.ar6p C.2r3

N.1 O.2so N.gu1 C.arp N.arp C.3r3

N.oh O.2p N.gu2 C.arx N.ar3h C.1p

N.aas3 O.2so N.mi1 C.ar N.ohac C.2p

N.aat3 O.3po N.mi2 N.ar6 N.ims C.2s

N.2n O.3so N.aap N.ar3 N.amp C.2t

N.2s O.o N.2p O.ar N.ams C.et

N.3t O.3es N.3n S.ar N.samp C.ohp

O.r3 O.3eta N.3p N.sams C.ohs

O.n O.3eta N.3s N.mih C.oht

O.2co2 S.r3 O.h2o N.4H C.3p

O.2es S.thi O.noh C.3s

O.2hal S.2 O.3ac C.3t

O.am O.ph C.3q

S.sh

S.s

S.3

15 9 12 18

Acceptors

29



 

 

93 Results and Discussion 

group assigned by the descriptors O.3eta (O 

for oxygen, 3 for sp3 hybridisation, and eta 

for ether) can not act as a donor and thus 

belongs solely to the acceptor group. 

In total, 157 different atom types were 

considered and clustered into five different 

groups considering their main generic phys-

icochemical properties: acceptor (29), 

doneptor (15), aromatic (9), donor (12), and 

hydrophobic (18), see Table 1. The atom 

types that can not be accounted to any of 

the described groups were defined as X 

(74). Thus, by correlating and assigning 

each atom of a molecule by FCONV, enables 

a description of the local chemical environ-

ment, hybridisation, and bonding state. 

3.4.3.2 HotSpotsX – a program to generate 

contour maps and hot spots 

 

The second applied program during 

these investigations was HOTSPOTSX. This 

program is applicable to predict interaction 

fields, expressed by contour maps, for the 

previously defined atom types of an input 

structure. If the input structure is i.e.: a pro-

tein structure, contour maps for the catalytic 

center, an allosteric binding site, any other 

binding site, or a protein surface of interest 

can be predicted. The predictions are 

knowledge based.[403,404] 

First, atoms of functional groups and 

structural motifs were assigned and clus-

tered by FCONV as described before. These 

process was performed not only for the 

structure of interest, but also for a reference 

data set like entries from the Cambridge 

Structural Database (CSD) or the Protein 

Data Bank (PDB). Then, the experimentally 

determined distances and angles, deposited 

in the reference data set, for a predefined 

atom type and its appropriate interaction 

partner were correlated by HOTSPOTSX. 

Here, contour maps for each predefined 

atom types were calculated expressing the 

ideal coordinates for the matching interac-

tion partner. The coordinates with high oc-

curance frequencies in the databases, re-

garding distance and angle were represent-

ed by high propensity and subsequently 

result into hot spots. 

The contour maps can be represented 

at different map levels, which will be ex-

plained by the example of hydrogen bonds 

below. The length of hydrogen bonds vary 

between approximately 1.6 Å and 2.0 Å. It 

depends on different factors like bond 

strength, temperature, and pressure.[405,406] 

Moreover, the bond strength in turn is de-

pendent on temperature, pressure, bond 

angle, and the individual environment of the 

interacting molecules.[405,406] Thus, i.e.: the 

FCONV atom type N.3p, a primary amine 

could form an hydrogen bond with a certain 

partner, i.e.: O.carb (carbonyl oxygen) under 

a particular distance and a particular angle 

in one entry of the PDB reference set, see 

Figure 77 a). However, in a second entry, 

the hydrogen bond between the same atom 

types differ slightly due to the environment 

of the entry in the reference set, see Figure 

77 b). Thus, evaluating all N.3p – O.carb 

pairs of the reference set inevitably leads to 

a scattering of the ideal coordinates of N.3p 

around a certain mean value for the dis-

tance of interest, see Figure 77 c). The 

same observation is true for varying dis-

tances retaining a particular angle. 

Therefore, a single coordinate for the 

ideal position of N.3p related to O.carb can 

not be provided. Moreover, plenty of combi-

nations of distances and angles of the hy-

drogen bonds are possible. However, all 

converge an ideal distance and angle. Thus, 

leads to a three dimensional scattering and 

results subsequently into the mentioned 

contour maps. Three-dimensional areas with 

high propensity of N.3p coordinates result 

into a hot spot for this doneptor group. 

Moreover, by altering the grade of propensi-

ty subsequent contour map levels can be 

examined. 
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Figure 77: The general principle of countour map 

calculation by HOTSPOTSX highlighted on an example 
with altering angles and fixed hydrogen bond distance. 
a) The coordinates of an interaction pair forming hy-

drogen bonds like N.3p and O.carb were determined. 
Their coordinates are crucially influenced by the hy-
drogen bond length and the angle. b) In a second 

N.3p – O.carb interaction pair the individual environ-
ment of the molecules force a slight difference in the 
angle of the hydrogen bond by retaining the hydrogen 
bond length. This entry of the reference data set leads 
to slightly altered coordinates for the N.3p atom type 
related to the O.carb atom type as shown in a). c) 

With increasing number of compared N.3p – O.carb 
interaction pairs the coordinates for N.3p scatter 
around a certain mean value. However, plenty of 
combinations of lengths and angles of the hydrogen 
bonds are possible. Thus, leads to a three dimension-
al scattering. This subsequently results into a contour 
map rather than a single ideal coordinate. Three-
dimensional areas with high propensity of N.3p coor-
dinates result into a hot spot for this doneptor group. 

The same described procedure was 

applied for any combination of atom type 

pairs, which form intermolecular interac-

tions, i.e.: acceptor – donor, acceptor – 

doneptor, hydrophobic – hydrophobic, aro-

matic - aromatic, etc. The combined contour 

maps of all FCONV atom types, which belong 

to a distinct group of physico-chemical inter-

action, represent the contour map of the 

interaction group itself. For instance, the 

combined contour maps of all 15 single at-

om types of the doneptor group represent 

the contour map of the doneptor group itself, 

see Table 1. However, some atom types like 

N.guh, a protonated guanidinium nitrogen, 

posses less entries in the reference set then 

other like O.3oh. Thus, the absolute levels 

for each generic physicochemical interaction 

group inevitably differ and negative values 

are favorable values. However, a relative 

comparison is more appropriate to compare 

different interaction types than a correlation 

of the absolute contour map level. There-

fore, the percentage above the minimal map 

level was considered for each physicochem-

ical interaction group for comparison. High 

percentages are based on high propensities 

for certain interaction types representing 

more accurate hot spot. 

However, the main focus of the investi-

gations performed during this work was not 

the evaluation of every single FCONV atom 

type of PI3K to a particular interating atom 

type via HOTSPOTSX as described in previ-

ous studies.[407] A general comparison of the 

different generic physicochemical interaction 

groups was sufficient to achieve a first clue. 

These impulses could be implemented in 

the ligand scaffold. Thus initial hints could 

significantly inspire the future metal complex 

design. 

3.4.3.3 PI3K as investigation target for the 

hot spot analysis 

 

As a three dimensional structure of 

the target protein is necessary to perform 

the hot spot analysis, the crystal structure of 

140 in complex with PI3K (pdb: 3CST) was 

selected as template.[188] The metal based 

half sandwich inhibitor is composed of a 

modified pyridocarbazole ligand, a mono-

dentate carbonyl ligand and a modified cy-

clopentadienyl ligand. Nevertheless, only 

the structural information of the kinase was 

accounted for the analysis. 
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Figure 78: PI3K inhibitor 140 (pdb: 3CST). 

 

Figure 79: Contour map of the physicochemical inter-

action type donor (blue) at contour map level of 69% 
above minimal map level. The carbon atoms of the 
organometallic complex 140 are depicted in green, the 

oxygen atoms in red, the nitrogen atoms in blue, the 
fluorine in light cyan, and ruthenium in purple. The 

surface of the PI3K binding site is shown in white. 

The hot spot analysis, applying the in-

troduced programs FCONV and HOTSPOTSX, 

in case of PI3K was performed for each of 

the five generic physicochemical interaction 

types: acceptor, donor, doneptor, hydro-

phobic and aromatic. The donor contour 

map at a level of 69% is shown in Figure 79 

and the acceptor contour map at a level of 

46% in Figure 80, both for the PI3K binding 

site.  

Figure 79 already reveals a coincidence 

of the hydroxyl group of the pyridocarbazole 

ligand of 140 and the donor contour map. 

Moreover, one of the two hydroxyl groups of 

the 2-amino-2-methylpropane-1,3-diol resi-

due of 140 is oriented towards but not cov-

ered by the donor contour map. However, 

the surface of PI3K suggests that this bind-

ing site area is of limited accessibility. 

In Figure 80 the monodentate carbonyl 

ligand is close to be covered by the acceptor 

contour map. However, the carbonyl ligand 

can not be considered as a true hydrogen 

bond acceptor. Thus, a metal coordinating 

ligand acting as a true acceptor could im-

prove the affinity. This hypothesis remains 

to be proven. However, these examples 

confirm the worthiness of the hot spot anal-

ysis for future drug design. 

 

Figure 80: Contour map of the physicochemical inter-

action type acceptor (red) at contour map level of 46% 
above the minimal map level. The carbon atoms of the 
organometallic complex 140 are depicted in green, the 

oxygen atoms in red, the nitrogen atoms in blue, the 
fluorine in light cyan, and ruthenium in purple. The 

surface of the PI3K binding site is shown in white. 

The separate inspection of already 

these two contour maps of the PI3K binding 

site suggests, that a simultaneous compari-

son of all five physicochemical interation 

types would rapidly lead into a confusing 

overall picture for visual evaluation. There-

fore, the contour maps of the investigated 

physicochemical interaction types were con-

verted into discrete spheres by MICHAEL 

BETZ. These spheres represent a contour 

map at a certain map level, but allow to se-

lectively hide spheres of disinterest for clari-
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ty as shown for the acceptor contour map in 

Figure 81. 

The hot spots are depicted as spheres 

with ideal positions for hydrogen bond ac-

ceptors (red), hydrogen bond donors (blue), 

doneptors (purple), hydrophobic groups 

(white) and aromatic groups (yellow). They 

were selected by visual inspection according 

to their relevance for prediction, verification, 

and guidance for synthetic modifications, 

see Figure 82. The size of the spheres re-

flect their appropriate contour maps at a 

certain map level. 

 

Figure 81: Conversion of the acceptor contour map to 

corresponding spheres offers the possibility to selec-
tively omit spheres of disinterest for clarity. In this 
example, three spheres adjacent to the pyridine moie-
ty of the pyridocarbazole ligand of 140 are displayed 

and others were hided. The contour map level is 40% 
above the minimal map level. The carbon atoms of the 
organometallic complex 140 are depicted in green, the 

oxygen atoms in red, the nitrogen atoms in blue, the 
fluorine in light cyan, and ruthenium in purple. The 

surface of the PI3K binding site is shown in white. 

Regarding the hot spots in the binding 

site reveals that the pyridocarbazole ligand 

of 140 exactly occupies the ideal position for 

a hydrophobic interaction partner with its 

maleimide moiety. The hot spot represents 

the contour map at 82% above minimal map 

level. This indicates that the hydrophobic 

interaction might be of major importance for 

the overall ligand-protein interaction. This 

observation is in good congruence to the 

fact, that the pyridocarbazole ligand faces 

an aromatic amino acid residue (Tyr-867) in 

the PI3K binding site, see also Figure 83. 

This residue, along with others in the bind-

ing site, indeed favours an hydrophobic in-

teraction partner. 

 

Figure 82: PI3K in complex with 140 (pdb: 3CST). 

The five interaction groups are depicted as spheres: 
hydrogen bond acceptor (red, 46%), hydrogen bond 
donor (blue, 69%), doneptors (purple, 52%), hydro-
phobic (white, 82%) and aromatic (yellow, 80%). 140 

is presented as sticks with the carbon atoms in green. 
Nitrogen atoms are shown in blue, oxygen atoms in 
red, fluorine in light cyan, and the ruthenium core in 

purple. PI3Kis presented as cartoon in white, 
whereas the only the ATP binding site is shown for 
clarity. 

Moreover, the hydroxyl function of the 

pyridocarbazole ligand almost occupies the 

predicted ideal position for a donor interac-

tion type. The hot spot represents the con-

tour map at 72% percent above the minimal 

map level. Thus, a hydrogen bond donor at 

this area of the binding site might result into 

a beneficial contribution to the ligand-protein 

interaction. A predicted hot spot for a donep-

tor is in a 2.67 Å distance to the carbonyl 

group of the maleimide function represent-

ing the contour map at 52% above the min-

imal map level. However, the pyrido-

carbazole does not meet this potential 

interaction. A selective modification of the 

pharmacophore ligand on this moiety is diffi-

cult, although synthetically possible and re-

alised in former studies.[408] 
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Furthermore, a hot spot for a hydrogen 

bond acceptor was identified 3.62 Å away of 

the fluorine atom of the pyridocarbazole re-

flecting the corresponding contour map at 

46% above the minimal map level. However, 

addressing this potential interaction could be 

quite challenging due to its location in a cleft 

of the binding pocket, which is difficult to 

reach from the inhibitor binding site. 

Closing, the hot spot for an aromatic 

group (82% above minimal map level) and 

the hot spot for a hydrogen bond donor 

(80% above the minimal map level) are both 

located next to the indole moiety of 140. 

Although, 140 does not address these inter-

actions, suitable functional groups could be 

elaborated to address both simultaneously. 

The hot spot analysis has not resulted in 

favourable interactions covered by the cy-

clopentadienyl ligand of 140 at arguable 

map levels. In addition, potential adjacent 

favourable donor interactions, as indicated 

by the contour map, might be difficult to 

meet, see Figure 81. 

However, the hot spots for the acceptor, 

doneptor, and the donor interaction types 

are all representing their corresponding con-

tour maps at a map level below 69%. This 

fact should evaluated critically, as valuable 

hot spots for ligand design should aspire 

map levels of about 90% or even 

higher.[407,409,410] However, the hydrophobic 

and the aromatic interaction types, both 

above 80% above minimal map level, seem 

to be the main contributing interactions for 

the binding of 140. This observation is of 

very good congruence to the characteristics 

of complex 140 as its pyridocarbazole ligand 

is methylated at the maleimide moiety. This, 

significantyl turns it into a hydrophobic com-

plex compared to the unmodified ones. 

It is noteworthy, that the hot spot analy-

sis was performed only for the binding site 

itself leading to results only for the ATP 

binding site. Indeed, different sites of PI3K 

may offer much favourable positions for 

these interaction types and may reveal po-

tential allosteric binding sites. However, no 

further favourable functional groups or struc-

tural moieties have to be respected for the 

ligand design using 140 as a starting point. 

Thus, the ligand design can be entirely fo-

cused to face the enantiopure complex syn-

thesis. 

 

Figure 83: PI3K in complex with 140 (pdb: 

3CST).
[188]

 The hydroxyl group forms two hydrogen 
bonds to Val882 and Asp884 (red dashes). Tyr-867 
forms hydrophobic interactions to the pyridocarbazole 
ligand of 140. 140 is presented as sticks with the car-

bon atoms in green. Nitrogen atoms are shown in 
blue, oxygen atoms in red, fluorine in light cyan, and 

the ruthenium core in purple. PI3Kis presented as 
cartoon in white and the main chain of the hinge re-
gion is depicted additionally as sticks. 

The results of the hot spot analysis 

are over all in a very good congruence to 

the experimentally determined results; es-

pecially, comparing them to the crystal 

structure of 140 in complex with PI3K, see 

Figure 83. First, the hydroxyl group of the 

pyridocarbazole forms two hydrogen bonds 

with Val882 and Asp884 and simultaneously 

occupies the space adjacent to the predict-

ed hot spot for a hydrogen bond donor. 

Nevertheless, as the hydroxyl group acts as 

a doneptor, in this case a doneptor hot spot 

should have been identified at this position. 

Second, the Tyr-867 determines the corre-

sponding interaction partner and the pyrido-

carbazole ligand fulfillls these requirements 

ideally occupying the hydrophobic hot spot. 

This position was assigned as a hydropho-
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bic hot spot due to the clustering of the atom 

types into the different pysico-chemical in-

teraction types. However, the atom types 

assigned to either aromatic or hydrophobic 

hot spots are related to each other regarding 

their chemical properties. Therefore, the 

discrimination is not strict and both interac-

tion types can be addressed by related 

structures. 

However, discrepancies in the posi-

tioning should not be overrated. The flexibil-

ity of the protein leads to a subsequent shift 

of the hot spots, which can not be respected 

in an analysis based on a rigid model. How-

ever, further verification experiments for the 

hot spot analysis could help to improve its 

accuracy and the effect of preliminary prep-

aration procedures. For instance, the influ-

ence of the scope of the input structure, 

considering binding site versus the use of 

the entire protein domain could be investi-

gated. Nervertheless, the hot spot analysis 

on this example indicated its beneficial po-

tential to the future design of PI3K inhibi-

tors.  
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3.4.4 Elaborating the Ligand Scaffold 

3.4.4.1 Tetradentate C2-Symmetric Lig-

ands 

 

As the hot spot analysis has not re-

vealed favourable interactions ideally to ad-

dress by the residual ligands offside the pyr-

idocarbazole, the focus was set on the 

synthesis of enantiopure metal based PI3K 

inhibitors. Different ways to achieve this goal 

were pursued. The first approach was the 

use of C2-symmetric ligands to avoid the 

formation of diastereomers during a single 

complexation reaction. Ligands like 2,5,8-tri-

thia-{9}(2,6)pyridinophane (144), 2,11-di-

thia[3.3](2,6)pyridinophane (146), and 

1,4,7,10-tetrathiacyclododecane (151) fulfill 

the requirements of being symmetric and 

offering coordinating atoms for metal com-

plexation. 

The synthesis of the pyridinophane de-

rivatives 144 and 146 starts from the com-

mon precursor 2,6-bis(bromomethyl) pyri-

dine 142, see Scheme 22. 142 can be syn-

thesised in 98% yield starting from 2,6-py-

ridinedimethanol (141) in melted phosphoryl 

bromide at 60 °C. 142 was extracted and 

dried in vacuo to obtain white needles. 

Then, different cyclisation conditions result 

into the related compounds 144 and 146. 

Caesium carbonate suspended in DMF at 

60 °C for 20 h reacting a homogenous solu-

tion of 142 with 2,2-Bis(2-mercaptoethyl)sul-

fide (143) leads to the formation of 144 in 

28% yield. It is noteworthy, that a drop wise 

addition of the reactants via a syringe pump 

is mandatory to form the medium size ring 

and to avoid polymerisation to side prod-

ucts. Reacting 142 with thioacetamide (145) 

and lithium carbonate in DMF at 55 °C for 

3 h result to the formation of 146. After ex-

traction and column chromatography the 

product was obtained as yellow, highly vis-

cous oil. 

In opposite 2,2'-(ethane-1,2-diylbis (sul-

fanediyl))diethanol (147) was refluxed with 

thiourea (148) in hydroboric acid (47% aq.) 

for 8 h followed by the addition of sodium 

hydroxide and an additional 16 h of reflux 

condition. After extraction the intermediate 

 

Scheme 22: Synthesis of C2-symmetric tetradentate ligands. 
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2,2'-(ethane-1,2-diylbis(sulfanediyl))diethan-

ethiol (149) was obtained as highly viscous 

pale oil in 42% yield. The cyclisation was 

then performed using caesium carbonate 

suspended in DMF heated to 50 °C and the 

addition of a homogenous solution of 149 

and 1,2-dibromoethane (150) drop wise over 

a period of 12 h via a syringe pump. The 

reaction was continued for an additional 2 h. 

The crude material was extracted and the 

product was recrystallised from chloroform 

to obtain 151 as white crystals in 10% yield. 

Ligand 151 and subsequent precursor were 

synthesised by the research intern SOPHIE 

FRANZ. 

For the synthesis of the medium sized 

rings, the general problem is the low yields 

observed for all three examples. Although, 

the ligands were synthesised successfully, 

the complexation to the intended complexes 

were not pursued during this work as these 

complexes would have been positively 

charged. This incidence could be adverse 

for the passive diffusion for targeting PI3K 

or other kinases, in a cellular model. There-

fore, tetradentate C2 symmetric ligands do 

not offer a suitable solution to synthesise 

enantiopure metal based kinase inhibitors 

from the pharmacokinetic point of view. 

Meanwhile, the success of the chiral pro-

linato ligand concept in combination with 

rhodium as the metal centre was applied for 

PI3K inhibitor synthesis leading to pro-

mising results. Thus, the tetradentate ligand 

project was stopped despite the potential of 

obtaining interesting compounds, due to the 

lack of time. Nevertheless, the concept itself 

offers the possibility to achieve access to 

novel enantiopure octahedral metal com-

plexes. Therefore, they should be consid-

ered for future enantiopure complexes with 

a distinct aim. 

3.4.4.2 Amino Acids as Building Blocks for 

Chiral Multidentate Ligands 

 

The successful work using proline in ei-

ther L- or D-configuration as a building block 

for chiral multidentate ligand synthesis in-

spired to apply the residual proteinogenic 

amino acids in a similar way to control the 

stereochemistry of the complexes. 

A. STRECKER had synthesised metal 

based complexes based on amino acids 

already in 1850, and many successful appli-

cations have been reported in literature by 

now.[411–415] Crucial for the use of amino ac-

ids in metal complexation is the proper han-

dling of the present side chain.[416] The dif-

ferent functional groups can be either 

applied as steric effectors, coordinating 

structural motifs, or interaction partners for 

other molecules influencing physico-

chemical, biological, and toxicological ef-

fects.[416] 

 

Figure 84: The incorporation of chiral primary amino 

acids into the design of tridentate ligands lead to the 
formation of four diastereomers a)-d) assuming a 
fac-coordination. 
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Transferred to the principles of octahe-

dral metal complexes observed for prolinato 

ligands, the incorporation of chiral primary 

amino acids into the synthetic route should 

result into several changed characteristics of 

the expected complexes, see Figure 84: 

1. The rigid structure of proline led to 

the formation of only two dia-

stereomers during the complexation; 

using primary amino acids should re-

sult into four, if the tridentate ligand 

still occupies a fac-coordination and 

the pyridine ring remains in the same 

plain as the pyridocarbazole. 

2. If enantiopure amino acids are uti-

lised, all resulting four structural iso-

mers of a complexation reaction are 

diastereomers as the C chirality 

centre of the amino acid breaks 

symmetry. 

3. All resulting four diastereomers 

should differ in their physico-

chemical properties and therefore a 

standard purification should be appli-

cable. 

However, as there is a large set of 

commercially available amino acids, both in 

(S) as well as (R) configuration, a rational 

selection of suitable ones has to be elabo-

rated. The resulting coordination spheres 

using distinct amino acids result in a differ-

ent steric demand of the complexes. Mo-

rover, the different functional groups of the 

amino acid residues may interact with the 

kinase binding site. In addition, applicability 

to the synthetic route has to be considered. 

These aspects have to be weighed wisely to 

reduce the synthetic effort and the con-

sumption of resources. 

3.4.5 The Selection of Amino Acids for 

the Ligand Design 

3.4.5.1 General Strategy 

 

First, the tridentate ligand was retrosyn-

thetically separated into his two main com-

ponents, see Figure 85. The general ligand 

design 152 was simplified to two fragments 

resulting in 2-methylpyridine (153) and the 

amino acid fragment (154). 153 remains 

unmodified in the intended ligands and the 

focus was set onto the amino acids and their 

residues. Thus, to solve the introduced is-

sues, see chapter 3.4.4.2, the relevant ami-

no acids were compared regarding their 

distinct characteristics. Moreover, the pyri-

docarbazole ligand and the metal core were 

defined as structural anchors remaining un-

touched. 

 

 

Figure 85: Fragmentation of the tridentate ligand 

scaffold. 
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3.4.5.2 Selection Criteria 

 

The estimated accessible space in the 

binding site of PI3K has to be assessed to 

obtain a first hint for the ligand design. Thus, 

coordinates for the pyridocarbazole ligand 

and the metal core were extracted from the 

PI3K (pdb: 3CST) crystal structure and 

predefined as template structures. All amino 

acids of the primary sequence of PI3K in 

4 Å distance to the pyridocarbazole and the 

metal core were identified and respected as 

binding site of the pyridocarbazole moiety. 

Two different anchor points were de-

fined as A1 and A2. The coordinates of 

these two anchor points were extrapolated 

from the crystal structure of -(S)-106, see 

Figure 59, as an octahedral template in op-

posite to 140. These anchor points occupy 

approximately the same positions as the 

corresponding coordinating atoms of the 

tridentate proline-based ligand of -(S)-106. 

The distance was set to 2 Å, in congruence 

to -(S)-106, and the anchor points are in 

the same plane as the pyridocarbazole lig-

and. Thus, the anchor points A1 and A2 

represent the positions, where the coordi-

nating atoms of the intended ligands should 

be located. Then, the centre Z1 was de-

fined, whereas A1 is located 2 Å away from 

Z1, which in turn is located 4 Å away from 

the metal core; all three of them form a line. 

The same is true for Z2 and A2 related to 

the metal core, see Figure 86 a). The exact 

coordinates can be extrapolated by vector 

calculations based on the coordinates for 

the coordinating nitrogen atoms of the pyri-

docarbazole and the ruthenium metal core. 

The spheres of Z1 and Z2 were defined with 

5 Å diameter, see Figure 86 b). These hypo-

thetic spheres represent guidance volumes, 

which should not be exceeded by the in-

tended amino acids. Indeed, a sphere of 5 Å 

seems to be a proper limit avoiding steric 

hindrances. 

a) 

 

b) 

 

Figure 86: a) Overview of the anchor points A1 to A4 

and the two centres Z1 and Z2. A1, Z1, the metal 
core, as well as the nitrogen atom of the pyridine moi-
ety of the pyridocarbazole are all in line. The distance 
Z1-metal core is 4 Å, the distance A1-metal core is 
2 Å. The same is true for Z2 in correspondence to A2 
and the metal centre. A1, A2, Z1 and Z2 as well as the 
pyridocarbazole and the ruthenium core are all located 
in the same plane. A3 and A4 mark the residual ideal 
positions for coordinating atoms. b) The zones around 

Z1 and Z2 include the space within 5 Å and represent 
an hypothetic guidance volume. This volume should 
not be exceeded by the intended amino acids for the 

tridentate ligand synthesis. The PI3Kstructure as 
well as the pyridocarbazole structure are derived from 
the data set pdb: 3CST.

[188]
 The pyridocarbazole lig-

and is presented as sticks with the carbon atoms in 
green. Nitrogen atoms are shown in blue, oxygen 
atoms in red, fluorine in light cyan, and the ruthenium 

core in purple. PI3Kis presented as cartoon in 
wheat. 
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For a further definition of the desired 

complex structure two additional anchor 

points A3 and A4, see Figure 86 a), were 

defined, which are derived from the residual 

coordinating atoms in -(S)-106. They de-

scribe favourable positions to form an octa-

hedral complex. Therefore, ideal poses of 

the fragments 153 and 154 should adress 

the anchorpoints A1 and A2, occupying the 

zones around Z1 and Z2, but not A3 and A4. 

This is congruent with a presumed fac-coor-

dination. Thus, an estimated space of 65.45 

Å3 (represented by the spheres around Z1 

and Z2 with a diameter of 5 Å) should be 

accessible and therefore considered as 

guidance for the amino acid selection. 

However, it is also important which 

sphere, around Z1 or Z2, is occupied either 

by the amino acid fragment 154 or the 

2-mehylpyridine moiety 153, see Figure 86. 

As the two spheres, in a chiral environment, 

like the binding site of PI3K, are not equal. 

The different fragments will experience dif-

ferent interactions, when located either in 

the sphere of Z1 or Z2. For instance, a bulky 

amino acid residue, like phenylalanine, tyro-

sine, or tryptophane, could hypothetically 

lead to steric hindrances, when occupying 

the sphere of Z2. In opposite, the offered 

space occupying the sphere of Z1 could be 

sufficient for the mentioned bulky amino 

acids.[417–419] In contrast, a polar charged 

amino acid, could experience high attraction 

in Z2 by forming a salt bridge or could expe-

rience high repulsion due to adverse hydro-

phobic interactions or charges of the same 

polarity.[418–420] 

Further, the chirality at the C of the 

amino acid influences significantly the 

globular shape of the entire complex, see 

also Figure 84. The C atom crucially de-

fines the three dimensional space, which is 

occupied by the corresponding functional 

group of the amino acid fragment. Thus, 

whereas a complex based on a (S)-confi-

gurated amino acid could hypothetically fit 

into the binding site, the complex based on 

the corresponding (R)-configurated amino 

acid could experience steric hindrances and 

a subsequent repulsion. 

Moreover, desolvatation effects of the 

amino acid residues have to be considered. 

Thus, stripping off the hydrate shell of 

charged or polar groups could significantly 

decrease the binding affinity towards PI3K, 

if the polar or ionic group is not captured by 

a sufficient counterpart inside the binding 

pocket.[421] Analogous principles are true for 

hydrophobic side chains and aromatic side 

chains. [417–419] In contrast, if they find a suf-

ficient grove to displace water molecules 

and to meet hydrophobic or aromatic inter-

actions a valuable contribution to the binding 

affinity could be achieved. However, amino 

acids with large hydrophobic and aromatic 

residues result into bulky complexes, which 

in turn possess decreased water 

solubility.[140,156,157,422] They require an in-

creased amount of solvation mediators like 

dimethylsulfoxid for in vitro assays. Howev-

er, an excessive use of dimethylsulfoxid 

influences the structural integrity of proteins 

on secondary, tertiary and quartery level 

leading to falsified assay results.[423] 

 

Figure 87: Possible placements of the fragments 153 (a) or 154 (b) into the sphere around Z1. a) 153 occupying 

the sphere of Z1 as a rigid fragment experiences different interactions in a chiral environment like the binding site 

of PI3K as occupying the sphere of Z2. b) the same is true for 154. For both fragments the placement into the 

sphere of Z1 is shown but the examples are analogously true for the placement into sphere of Z2. 
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Thus, a simple selection on steric crite-

ria of the amino acids compared to the ac-

cessible space of the binding site is ac-

ceptable but not entirely sufficient. In 

addition, functionalised side chains of amino 

acids require the application of protection 

group chemistry to avoid interfering coordi-

nation during the complexation 

reaction.[416,424] These protection groups 

have to be planed orthogonal to the residual 

reaction sequence to ensure a cleavage 

after a certain planned step. 

Therefore, a first generation set of ami-

no acids with distinct characteristics to cover 

the mentioned aspects were selected. 

Moreover, both positive and negative con-

trols were covered, see also Table 2. These 

amino acids should ideally act as represent-

atives for related ones, i.e.: phenylalanine 

as representative for aromatic amino acids. 

In addition, to minimise protection group 

chemistry, amino acids with ideally ortho-

gonal protectable functional groups regard-

ing the complex synthesis were preferred. 

Thus, the first representative amino acid 

group consisted of L-alanine ((S)-155), 

D-alanine ((R)-155), and L-serine ((S)-159) 

as small sized ones. These amino acids, 

regarding their VAN-DER-WAALS volume, 

should hypothetically fit into the binding site. 

This is only true if the estimated accessible 

volume of approximately 65.45 Å3 of Z2 

complies to the existing conditions of the 

PI3K binding site. Moreover, the influence 

of the C stereoconfiguration, during these 

investigations, should be covered comparing 

both L-alanine ((S)-155) and D-alanine 

((R)-155). 

The second group was represented by 

L-phenylalanine ((S)-156), L-leucine 

((S)-158), and L-valine ((S)-160). These 

large unpolar amino acids should result into 

bulky complexes experiencing steric hin-

drances. Thus, they should subsequently 

possess a reduced affinity towards the 

PI3K binding site. Due to the rotation 

around the C and the C bond, the bulky 

residues of the members of this group could 

potentially avoid steric clashes. To investi-

gate the elimination of this rotational free-

dom D-phenylglycine ((R)-179) as a non-

coded amino acid was added to this group. 

As a third group L-histidine ((S)-157) 

and L-tyrosine ((S)-161) were selected rep-

resenting large aromatic but simultaneously 

polar amino acids. As for the second selec-

tion group, the resulting complexes should 

hypothetically be excluded from the binding 

site by steric hindrance. Thus, the resulting 

complexes should also represent negative 

controls. 

As the last group, L-proline ((S)-101) as 

well as D-proline ((R)-101) were applied 

again as established ligand systems due to 

their successful former application, see 

Chapter 3.3.2. 

Table 2: Amino Acid Characteristics 

 

Amino Acid S
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Alanine aliphatic neutral apolar 67 1.8

Arginine aliphatic basic polar 148 -4.5

Asparagine aliphatic neutral polar 96 -3.5

Aspartate aliphatic acidic polar 91 -3.5

Cysteine aliphatic neutral polar 86 2.5

Glutamate aliphatic acidic polar 109 -3.5

Glutamine aliphatic neutral polar 114 -3.5

Glycine aliphatic neutral apolar 48 -0.4

Histidine aromatic basic polar 118 -3.2

Isoleucine aliphatic neutral apolar 124 4.5

Leucine aliphatic neutral apolar 124 3.8

Lysine aliphatic basic polar 135 -3.9

Methionine aliphatic neutral apolar 124 1.9

Phenylalanine aromatic neutral apolar 135 2.8

Proline heterocyclic neutral apolar 90 -1.6

Serine aliphatic neutral polar 73 -0.8

Threonine aliphatic neutral polar 93 -0.7

Tryptophan aromatic neutral apolar 163 -0.9

Tyrosine aromatic neutral polar 141 -1.3

Valine aliphatic neutral apolar 105 4.2
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3.5 Proof of Concept 

3.5.1 Subsequent Synthesis of Selected 

Amino Acid 

 

The synthetic route described for the 

synthesis of (R)-105 and (S)-105 was ap-

plied analogously to synthesise the amino 

acid derived tridentate ligands, see Chapter 

3.3.2. The amino acids (1 eq.) were suspen-

ded in methanol and thionylchloride (1.1 eq.) 

was added drop wise at 0 °C. The reaction 

mixture was refluxed for 16 h. Thereafter, 

the solvent was removed under reduced 

pressure, the residue resolved in methanol 

and then concentrated. This procedure was 

repeated three times to afford the meth-

ylesters as white solids. The yields for the 

ester formation were excellent as observed 

before. (S)-162 to (S)-168 were obtained in 

quantitative yields except of (S)-164 and 

(S)-165, both in 98% yield. The same is true 

for (S)-168, (R)-162, and (R)-180 all ob-

tained in quantitative yields. Ligand (S)-178 

and subsequent precursor were synthesised 

by the research intern OLIVER BORN. 

Esters derived from amino acids with 

unfunctionalised side chains like (R)-155, 

(S)-155, (S)-156, (S)-158, (S)-160, and 

(R)-179 could be processed straight for-

ward. In contrast, functionalised amino acids 

(S)-157, (S)-159, and (S)-161 had to be pro-

tected at different stages of the ligand syn-

thesis to become compatible to the com-

plexation conditions, see Scheme 25, 

Scheme 26, and Scheme 27. A reductive 

amination as described for (R)-104 and 

(S)-104, see Chapter 3.3.2, was preferred 

over a nucleophilic substitution as described 

for (R)-123 and (S)-123, see Chapter 3.3.5, 

to avoid side product formation. In general, 

palladium on carbon (3%) was suspended in 

methanol and picolinaldehyde (103) 

(1.2 eq.) was added at 0 °C. Sodium acetate 

(2 eq.) was added to the reaction mixture. 

Then, the methylester of the appropriate 

amino acid (1 eq.) was dissolved in metha-

nol and added to the reaction mixture. The 

reaction mixture was stirred for 1 h and the 

nitrogen atmosphere was completely substi-

tuted by hydrogen in three turns during this 

time. The reaction was continued for 15 h 

allowing the mixture to warm up to ambient 

temperature. The reaction mixture was fil-

trated over CELITE to separate the palladium 

 

Scheme 23: Synthesis of tridentate chiral ligands based on L-amino acids. 

 
Scheme 24: Synthesis of tridentate chiral ligands based on D-amino acids. 
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on carbon and the crude material was sub-

jected to column chromatography using 

methylene chloride : methanol. The reduc-

tive amination products were obtained as 

yellow oil in modest to good yields, see 

Scheme 23 and Scheme 24. 

The L-histidine derived methylester 

(S)-164 afforded a special preparation due 

to the imidazole ring in the side chain. The 

side chain had to be protected to avoid inter-

ferring effects during complexation. For this 

purpose a sequential protection and selec-

tive deprotection procedure according to 

published methods was pursued.[179,425] 

Therefore, (S)-164 (15.4 g, 63.7 mmol) 

was dissolved in methanol (70.0 mL) and di-

tert-butyl dicarbonate (27.8 g, 127 mmol) 

presolved in methanol (10.0 mL) was added 

drop wise. Then, triethylamine was added 

drop wise under extensive stirring at 0 °C for 

1 h. The reaction was proceeded for 16 h 

and warmed up to ambient temperature. 

The entire reaction mixture was poured into 

water (100 mL) and then extracted with 

methylene chloride (3 x 100 mL). The com-

bined organic layer was dried over sodium 

sulfate, filtrated and concentrated under 

reduced pressure. (S)-183 was purified by 

column chromatography using dieth-

yl ether : ethyl acetate (3:1  ethyl acetate) 

to obtain it as a white solid (16.6 g, 

45.1 mmol, 70.7%). Due to protonation and 

deprotonation effects, determined by 
1H-NMR, a second fraction of the product 

was obtained as colourless oil (3.45 g, 

8.50 mmol, 13.4%). 

To cleave the tert-butyloxycarbonyl-

protection group at the imidazole ring moiety 

(S)-183 (16.6 g, 44.7 mmol) was dissolved 

in methanol (65.0 mL) and potassium car-

bonate (617 mg, 4.47 mmol) was added. 

The reaction mixture was refluxed and the 

reaction was finished after 2 h. The entire 

mixture was cooled to ambient temperature 

and poured into water (80 mL) and extracted 

with ethyl acetate (3 x 80 mL). The com-

bined organic layer was dried over sodium 

sulfate, filtrated and concentrated under 

reduced pressure. The product (S)-184 was 

obtained as a white solid (10.1 g, 

37.5 mmol, 84.1%). Ligand (S)-184 and 

subsequent precursor were synthesised by 

the research intern KHANG NGO. 

The hydroxyl group of the L-tyrosine de-

rived intermediate (S)-174 can be protected 

in a late step of the ligand synthesis. There-

fore, (S)-174 (2.00 g, 6.98 mmol) was dis-

solved in DMF (60 mL) and cooled to 0 °C. 

Then, DIPEA (6.0 mL, 34.90 mmol) was 

added drop wise over a period of 2 h fol-

lowed by the dropwise addition of tert-

butyldimethylsilyl trifluoromethanesulfonate 

(2.1 mL, 7.81 mmol) over a period of 1 h. 

The reaction was continued for 45 h and 

allowed to warm up to ambient temperature. 

Ammonium acetate (60 mL, 1 M aq.) was 

added and the reaction mixture was extract-

ed with ethyl acetate (3 x 60 mL). The com-

bined organic layer was washed with BRINE, 

dried over sodium sulfate, filtrated and con-

centrated under reduced pressure. After 

purification by column chromatography us-

ing methylene chloride : methanol (35:1) the 

product (S)-187 was obtained as yellow oil 

(2.77 g, 6.92 mmol, 99%). Ligand (S)-187 

and subsequent precursor were synthesised 

by the research intern GEORG RENNAR. 

 

Scheme 25: Introduction of protection groups to mask the imidazole moiety of L-histidine derived (S)-164. 
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Scheme 26: Protection of the hydroxyl group. 

The protection of the hydroxyl func-

tion of the L-serine derived (S)-172 interme-

diate was performed next to the reductive 

amination. Thus, to prevent a cross coordi-

nation of the hydroxyl group a cyclisation to 

an oxazolidine in analogy to Schöllkopf et 

al.[426] was performed. This published meth-

od was preferred over a more common pro-

tection with 2,2-dimethoxypropane due to 

concerns of the resulting dimethyl meth-

ylene group adjacent to the nitrogen atom 

potentially perturbing the ligand complexa-

tion to the metal centre. For this purpose, 

(S)-172 (1.00 g, 4.75 mmol) was dissolved 

in methylene chloride (45 mL) at 0 °C and 

trifluoroacetic acid (366 µL, 4.75 mmol, 

0.1 N) was added drop wise followed by the 

dropwise addition of water (45 mL). Under 

extensive stirring formaldehyde (705 µL, 

7.12 mmol, 37% aq.) was added drop wise 

to the reaction mixture. The reaction was 

performed for a total period of 16 h at ambi-

ent temperature. The solvent was evapo-

rated under reduced pressure and the crude 

material subjected to column chromato-

graphy using methylene chloride : methanol 

(35:1). After drying in vacuo (S)-185 was 

obtained as yellow oil (760 mg, 3.72 mmol, 

72%). The cleavage of the ester function 

was performed as established for the previ-

ous amino acids suspending (S)-185 

(760 mg, 3.42 mmol) in sodium hydroxide 

(4.50 mL, 1 M) at 0 °C for 16 h. The reaction 

mixture was washed with methylene chlo-

ride (3 x 20 ml) to separate organic side 

products. The combined aqueous layer was 

neutralised to pH 7 with hydrochloric acid 

(1 M) and solvent removed under reduced 

pressure. The residue was suspended in 

ethanol (5.00 mL) and filtrated via a syringe 

filter. After drying in vacuo (S)-186 was ob-

tain as a white solid (705 mg, 3.39 mmol, 

quant.). 

Beside the chiral amino acids, addi-

tional achiral glycine derived tridentate lig-

ands 188 and 189, from the MEGGERS group 

intern compound library were applied for 

complex synthesis. These ligands were al-

ready applied in former studies and could 

therefore act as reference ligands for the 

complexation conditions.[197] 

 

 

Figure 88: Glycine derived achiral tridentate ligands. 

 

Scheme 27: Protection of the hydroxyl group of (S)-173 via oxazolidine formation and subsequent ester cleavage. 
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3.5.2 Complex Synthesis 

 

The new amino acid derived ligands 

were processed to rhodium(III) complexes 

according to the same conditions applied for 

the synthesis of -(R)-106, -(S)-106, 

-(R)-107 and -(S)-107, see Chapter 3.3.2, 

thus making the reactions comparable. 

However, using primary amino acid derived 

ligands, the formation of four diastereomers 

were expected, see Chapter 3.4.4.2. 

Moreover, the diastereomers pos-

sessing the pyridine ring of the tridentate 

ligands in cis-coordination to the indole moi-

ety of the pyridocarbazole ligand were ex-

pected to be identified via the 1H-NMR spec-

tra in analogy to the described procedure of 

-(R)-107, see Figure 58. Nevertheless, the 

orientation of the coordinating amino group, 

either towards A3 or A4 of the hypothetical 

complex had to be identified. For this pur-

pose, complexes of the L-valine derived lig-

and (S)-178 were synthesised using the 

N-benzylated pyridocarbazole 80, see 

Scheme 28. In former studies, organo-

metallic complexes using the ligand 80 were 

successfully applied as model systems to 

investigate their structural properties, as the 

resulting complexes had an increased crys-

tallisation tendency.[140,156,157,422] The subse-

quent studies, solving the chemical structure 

via X-ray experiments and correlating the 

retention times of each isomer of the 

N-benzyl pyridocarbazole complexes to the 

ones obtained using other pyridocarbazoles 

with distinct modification patterns, led to 

correct conclusions of their structural con-

figuration.[140,156,157,422] 

However, after the complexation reac-

tion and subsequent column chroma-

tography using methylene chloride : meth-

anol (15:1), only -(S)-191 (Rf value: 0.45) 

could be obtained as pure compound in 7% 

yield, synthesised by the research intern 

OLIVER BORN. The successful crystallisation 

of -(S)-191 allowed to solve its relative ste-

reoconfiguration, see Figure 89. Moreover, 

only one additional spot via TLC analysis 

was observed (Rf = 0.19). Despite eva-

luating different solvent systems and pre-

parative TLC conditions, to assign correct 

yields, the second compound could not be 

purified indicating the major disadvantage of 

the complex synthesis. On one hand, a sin-

 

Scheme 28: Synthesis of rhodium(III) complexes -(S)-190, -(S)-191. The expected -(S)-192 and -(S)-193 

were not observed (n.o.). -(S)-190 could not be characterised (n.c.). 
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gle complexation reaction should have re-

sulted in four different compounds to explore 

the chemical space; on the other, the com-

plex purification seems to significantly limit 

the applicability of this concept. 

 

Figure 89: Crystal structures of -(S)-191. Solvent 

Molecules were omitted for clarity. ORTEP drawing 
with 50% probability of thermal ellipsoids. Selected 

bond lengths [Å] for -(S)-191: Rh1-N1 = 2.065(4), 

Rh1-N4 = 2.041(5), Rh1-N27 = 2.044(4), Rh1-N30 
= 2.032(5), Rh1-O1 = 2.013(3), Rh1-Cl1 = 2.3575(13). 

Despite the good crystallization ten-

dency of pyridocarbazole 80 and resulting 

complexes, also adverse solubility charac-

teristics and agglomeration effects were 

reported.[140,156,157,422] These effects in com-

bination with the increased number of pos-

sible isomers probably hindered the purifica-

tion. These effects could be circumvented 

using pyridocarbazole ligands with distinct 

substitution patterns as intended for the de-

velopment of PI3K selective inhibitors. Es-

pecially, pyridocarbazole 77 was identified 

as a pharmacophore ligand addressing 

metal based kinase inhibitors towards 

PI3K.[188] 

 

Figure 90: Crystal structure of -(S)-195. Solvent 

Molecules were omitted for clarity. ORTEP drawing 
with 50% probability of thermal ellipsoids. Selected 

bond lengths [Å] for -(S)-195: Rh1-N1 = 2.0284(17), 

Rh1-N4 = 2.0580(17), Rh1-N22 = 2.0436(17), 
Rh1-N25 = 2.0200(17), Rh1-O31 = 2.0320(14), 
Rh1-Cl1 = 2.3429(5). 

Further, to synthesise biologically active 

PI3K inhibitors, the pyridocarbazole 77 was 

applied in the complexation reaction instead 

of 80, see Scheme 29. Interestingly, the 

complexation reaction resulted in a single 

product formation observed by TLC control 

prohibiting comparisons between the reten-

tion times as intended by the model system 

using 80. Thus, the relative stereoconfigura-

tion of the purified complex -(S)-194 (18%) 

could not be assigned or concluded by the 

comparison to the former results. Neverthe-

less, the relative position of the pyridine ring 

of the tridentate ligand could be determined 

due to the upfield shift of the pyridocarba-

zole H-11 proton in the 1H-NMR spectra of 

-(S)-194 in analogy to -(R)-107.

 

Scheme 29: Synthesis of rhodium(III) based inhibitor -(S)-194. 
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A similar effect was observed using 

(R)-182 as chiral tridentate ligand, see 

Scheme 30. Again, only one spot during the 

complexation reaction was detected via TLC 

control during the synthesis performed by 

the research intern KHANG NGO. Moreover, 

the pyridine ring of the (R)-182 was again 

coordinated cis to the indole moiety of the 

pyridocarbazole 77 in the resulting complex, 

as observed for -(S)-194, verified by the 
1H-NMR spectra. Attempts to determine the 

relative stereoconfiguration of the (R)-182 

derived complex via crystallisation were 

successful. However, beside the expected 

-(R)-195 the corresponding enantiomer 

-(S)-195 was formed as a racemic mixture 

in 9% yield, see Figure 90. As the optical 

rotation of (R)-182 was  20

D  = -16.3, the 

racemisation must have been occurred dur-

ing the complexation reaction itself, whereas 

the exact mechanism of this observation 

remains unclear. Perhaps, due to protona-

tion and deprotonation effects at the carb-

oxylate group, during the complexation reac-

tion, a conjugated vinylogue double bond is 

formed, which subsequently eliminates the 

chiral information at the C atom of the 

D-phenylglycine derived ligand (R)-182. 

Due to the unexpected difficulties during 

complexation and purification, a further app-

lication of the primary chiral amino acid de-

rived ligands had to be discarded and sev-

eral ligands were not finished as initially 

intended. The unreproducible reaction out-

come excluded an adequate investigation of 

the possible isomers, because neither the 

intended directed formation or the proper 

purification could be handled. 

Nevertheless, to generate as much 

different structural scaffolds as possible, the 

achiral ligand 189, as well as the chiral pro-

line derived ligands (R)-105 and (S)-105, 

due to their former successful application, 

were processed to the complexation reac-

tion, Scheme 33. Moreover, chlorine was 

substituted by bromine to validate the influ-

ence of the monodentate ligand size, keep-

 

Scheme 30: Synthesis of rhodium(III) based inhibitors -(R)-195 and -(S)-195 obtained as racemic mixture. 

 

Scheme 31: Synthesis of rhodium(III) based inhibitor -196 as racemic mixture. 
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ing the established reaction conditions un-

touched but using RhBr3 instead of RhCl3. 

Interestingly, using the achiral ligand 

189, only the racemic mixture of /-196, 

where the pyridine ring of the tridentate lig-

and is coordinated cis to the pyrido-

carbazole moiety, could be obtained in 17% 

yield. In opposite, using RhBr3 both ex-

pected diastereomers were obtained as ra-

cemic mixtures /-197 and /-198 in 19% 

and 10% yield, respectively. 

The use of (R)-105 and (S)-105 re-

sulted in enantiopure complexes with de-

fined relative stereoconfiguration using pyri-

docarbazole ligand 79, see Chapter 3.3.2. 

Moreover, due to the cumulated results, a 

 

Scheme 32: Synthesis of rhodium(III) based inhibitors -197 and -198, both as racemic mixtures. 

 

Scheme 33: Synthesis of rhodium(III) based inhibitors -(R)-199, -(R)-200, -(S)-199,-(S)-200, -(S)-201, and 

(S)-202 as enantiopure compounds. 
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correct assignment of the stereoconfigura-

tion is possible. The complexes -(R)-199 

(21%), -(S)-199 (23%), (R)-200 (13%), 

and -(S)-200 (16%) were obtained in ex-

pected yields. The same is true for 

(S)-201 (19%) and -(S)-202 (12%), both 

with a substituted monodentate ligand from 

chlorine to bromine compared to (S)-199 

and -(S)-200, see Scheme 33. 

3.5.3 Biological Investigations and Tar-

get Selectivity 

 

All synthesised PI3K inhibitors were 

tested in Kinase Glo-Assays performed by 

JASNA MAKSIMOSKA. Moreover, to achieve a 

first insight into the compounds selectivity 

among the PI3K isoforms, PI3K was tested 

in parallel as target molecule, see Figure 91. 

Table 3: Determined IC50 values against PI3K and 

PI3K. The single values for -(R/S)-195 were out of 

specification (OOS), as an intra- and interassay repro-
ducibility at low inhibitor concentrations were not giv-
en, and thus an accurate calculation of the IC50 value 
was not possible. Experiments were performed by 
JASNA MAKSIMOSKA. The data points for curve fitting 
were determined in triplicates and the experiments 
were repeated independently, the shown data points 
represent mean values. 

 

Regarding PI3K (Figure 91 c) and 

d)) the tested compounds possess following 

IC50 values: -(S)-194 (21.5 µM), -196 

(130.8 µM), -197 (30.0 µM), -198 

(26.3 µM), -(S)-199 (6.5 µM), -(R)-199 

(14.5 µM), -(S)-200 (2.6 µM), -(R)-200 

(7.7 µM), -(S)-201 (3.6 µM), -(S)-202 

(4.4 µM). The obtained data for 

-(R/S)-195 in case of PI3K were out of 

specification as the data points at low con-

centrations scattered irregularly. Thus, an 

accurate fit was not possible, see Table 3. 

Regarding PI3K (Figure 91 a) and 

b)) the tested compounds possess following 

IC50 values: -(S)-194 (14.2 µM), 

-(R/S)-195 (23.2 µM), -196 (67.6 µM), 

-197 (4.8 µM), -198 (3.2 µM), 

-(S)-199 (13.5 µM), -(R)-199 (1.4 µM), 

-(S)-200 (3.2 µM), -(R)-200 (2.7 µM), 

-(S)-201 (19.6 µM), -(S)-202 (4.1 µM), see 

Table 3. 

3.5.4 Interpretation 

 

The biological investigations deter-

mining the IC50 of each compound against 

the primary target PI3K as well as the se-

lectivity check against PI3K, revealed 

mostly compounds inhibiting both with al-

most similar IC50. However, some preferred 

either PI3K or PI3K. Aligning the protein 

sequences of PI3K (UniProt Code: 

P48736.3) and PI3K (UniProt Code: 

P42336.2) via BLAST identified 358 identical 

amino acids of 997 compared ones reflect-

ing 36% sequence homology, and 536 

chemically similar amino acids of 997 com-

pared ones reflecting 53% sequence similar-

ity. Moreover, an E-value of 1e-177 reflects a 

high relationship of both sequences.[427,428] 

A comparison of the three dimen-

sional structure of PI3K (3CST) with the 

entire deposited entries in the PDB was per-

formed using the program VAST. VAST is the 

acronym for Vector Alignment Search Tool, 

and is a open source computer algorithm 

developed at NCBI. This algorithm can be 

used to identify similar protein three dimen-

sional structures by purely geometric criteria 

to identify distant homologues that cannot 

be recognized by sequence comparison.[429] 

Complex IC50 PI3K  [µM] IC50 PI3K  [µM]

-(S )-194 21.5 14.2

-(R /S )-195 OOS 23.2

-196 130.8 67.6

-197 30.0 4.8

-198 26.3 3.2

-(S )-199 6.5 13.5

-(R )-199 14.5 1.4

-(S )-200 2.6 3.2

-(R )-200 7.7 2.7

-(S )-201 3.6 19.6

-(S )-202 4.4 4.1
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The VAST search resulted in 13 

neighbours applying the three-dimensional 

structure of PI3K (pdb: 3CST) as query 

starting point. These are representatives 

from the medium redundancy subset, mean-

ing that they posses a BLAST p value of 

10e-40 to each other. In Figure 91 the red 

regions are aligned segments forming three-

dimensional structures compared and dis-

played on primary sequence level. The 

structure deposited under the pdb code 

4OVU reveals several three-dimensional 

motifs related to the query starting structure 

3CST. Indeed, the structure 4OVU belongs 

to the crystal structure of PI3K.[430] 

Moreover, comparing the ATP bind-

ing site of both PI3K (pdb: 3CST) and 

PI3K (pdb: 4OVU) reveals many identical 

amino acids on important motifs for ligand 

binding like the hinge region, the hydropho-

bic region I, or the catalytic region, see Fig-

ure 92. 

 

Figure 92: Alignment of the crystal structures of PI3K 

(pdb: 3CST) and PI3K (pdb: 4OVU). The comparison 
of the ATP-binding site of both isoform reveals highly 
conserved amino acids among these two isoforms. 
The amino acids of the hinge region, the hydrophobic 
region I, and the catalytic region, all depicted as 
sticks, indicate a related primary sequence. All struc-
tural motifs except the ATP binding site were omitted 

for clarity. PI3K is shown as cartoon in white. PI3K 
is shown as cartoon in green. Nitrogen atoms are 
shown in blue, oxygen in red, and sulfur in yellow. 

 

 

 

Figure 91: Results of the VAST search over the entire primary sequence. 13 neighbours were found for the three-

dimensional structure of PI3K (pdb: 3CST) as starting point. 13 representatives from the medium redundancy 
subset are displayed, meaning that they posses a BLAST p value of 10e

-40
 to each other. The red regions are 

aligned segments, where a corresponding comparison of three-dimensional structures can be visualised on prima-
ry sequence level. Especially the structure deposited under the pdb code 4OVU reveals several three-dimensional 

motifs similar to the query 3CST. Indeed, the structure 4OVU belongs to the crystal structure of PI3K.
[430]
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In addition, the sequence alignment 

and comparison of especially the ATP bind-

ing site reveals several identical amino ac-

ids, see Figure 93. For example, the hinge 

region represented by the residues 877 to 

882 on the primary sequence of PI3K (pdb 

4OVU) posses 3 identical amino acids to the 

primary sequence compared to PI3K. 

Moreover, both isoforms have the identical 

gatekeeper residue isoleucine. The similari-

ties in the catalytic loop starting from 957 to 

964 on the primary sequence of PI3K 

compared to PI3K are much more impres-

sive, as every amino acid residue of the 8 

considered ones are identical. 

Much more structural motifs could be 

investigated in detail as described above. 

However, the focus set on the hinge region, 

hydrophobic region I, and the catalytic loop 

already highlights the similarities between 

the two isoforms at the ATP binding site. 

Therefore, selectively binding compounds 

are valuable tools not only for target inhibi-

tion for pharmacologic purpose, but also for 

systemic biological investigations. 

However, a clear selectivity tendency 

for one of the two investigated PI3K 

isoforms by any of the tested complexes 

could not be identified. Moreover, it is note-

worthy, that the complexes -196, 

-197, -198 were tested as racemic 

mixtures. Thus, a correct assignment which 

enantiomer mediates the inhibition remains 

unclear. Using a racemic mixture, the affini-

ties of the eutomer to the non-binding enan-

tiomer may differ significantly. Therefore, the 

apparent IC50 value of the racemic mixture is 

not representative for the true conditions. 

The compounds -196 (1.93-fold), 

-197 (6.25-fold), -198 (8.21-fold), 

-(R)-199 (10.35-fold), and -(R)-200 (2.85-

fold) showed a modest tendency of in-

creased PI3K inhibition compared to 

PI3K. In opposite, the compounds 

-(S)-199 (2.07-fold) and -(S)-201 (5.44-

fold) offered an increased tendency towards 

PI3K compared to PI3K. The compounds 

-(S)-200 (1.2-fold) and -(S)-202 

(1.07-fold) showed no preferences and can 

be considered as unselective among the 

investigated kinases. Nevertheless, none of 

the compounds showed an IC50 in the na-

nomolar range indicating structural potential 

to increase affinity. In contrast, former inves-

tigated half sandwich complexes targeting 

PI3K showed IC50 values in the nanomolar 

range. This might be a hint of adverse steric 

effects for the octahedron itself.[188] 

A closer look on the obtained IC50 val-

ues targeting PI3K could help to under-

stand a potential correlation between the 

structure of the compounds and their corre-

sponding activity. Potential hints could help 

to synthesise a second generation of PI3K 

 

Figure 93: Comparison of the primary sequence of PI3K (VS82, an VAST query annotation) and PI3K (pdb: 

4OVU). Identical amino acids in aligned sequences are highlighted in red. The hinge region (residues 877 to 882 
on 4OVU) posses 3 identical amino acids between both isoforms. The catalytic loop from 957 to 964 on the primary 

sequence of PI3K consists of 8 identical amino acids. 
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inhibitors with enhanced selectivity profiles 

and affinities. However, the iterpretation can 

only represent a conservative evaluation as 

for true structure-activity relationhips the 

compounds must to be ultrapure to avoid 

misinterpretation. However, Figure 95 high-

lightes the stereoconfigurations of -(R)-200 

and -(R)-199 and correlates them to the 

binding areas, which could be hypothetically 

occupied as introduced in Figure 86. 

-(R)-200 possesses the tridentate lig-

and in fac-coordination with the pyridine ring 

cis to the indole moiety of the pyridocarba-

zole. This leads to an hypothetical occupa-

tion of the binding sphere Z1. Subsequently, 

the chlorine is oriented towards A4. In the 

PI3K binding site, it is the area next to the 

C-termial domain of PI3K. Closing, the ni-

trogen of the amino group is oriented to-

wards A3 converging to the N-terminal do-

main of PI3K. -(R)-200 possesses an IC50 

of 2.7 µM against PI3K and is one of the 

best inhibitors investigated during these 

studies. 

However, the best investigated PI3K 

inhibitor is -(R)-199 (1.4 µM). This complex 

possesses the pyridine ring of the 

fac-coordinated tridentate ligand cis to the 

pyridine moiety of the pyridocarbazole. 

Thus, this moiety should occupy the binding 

sphere of Z2. Subsequently, the monoden-

tate chlorine ligand is oriented towards A3. 

The proline moiety of complex -(R)-199 is 

coordinated towards A4. 

Thus, in case of PI3K the structural ar-

rangement of the tridentate proline ligand, 

has little influence on the selectivity. The 

same is true for PI3KMoreover, as the 

other two proline based complexes, 

-(S)-199 und -(S)-200 are also single 

isomers with defined stereoconfigurations, 

their structural properties were analoguously 

    

     

Figure 94: IC50 values of metal based compounds against PI3K (a) and b)) and PI3K (c) and d)). The IC50 val-

ues of the synthesised inhibitors were determined using a Kinase-Glo Assay (Promega
®
) at 10 µM ATP. Samples 

with 2% DMSO in absence of kinase served as 100% control and the corresponding signals were related to them. 
Each measuring point was determined in triplicates and the experiments were repeated independently, the shown 
data points represent mean values. Experiments were performed by JASNA MAKSIMOSKA. The sigmoidal dose re-
sponse curve fitting was processed using Origin8. 
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investigated as described for -(R)-199 to 

-(R)-200. However, again a clear correla-

tion can not be elaborated. For instance, the 

conclusion that an orientation of the pyridine 

moiety of the tridentate ligand in the binding 

sphere of Z1 of PI3K is superior to an ori-

entation towards the binding sphere of Z2 or 

vice versa is not legitime. These observa-

tions again confirm, that the octahedral 

shape itself could be adverse for the inhibi-

tion of PI3K as former investigated half 

sandwich complexes showed IC50 values in 

the nanomolar range.[188] 

Closing, to investigate the influence of 

the monodentate ligand the demand of 

space from chlorine to bromine was com-

pared. Interestingly, the obtained complexes 

-(S)-201 (19.6 µM) and -(S)-202 (4.1 µM) 

resulted in the same inhibition tendencies 

against PI3K as their chlorine counterparts 

-(S)-199 (13.5 µM) und -(S)-200 (3.2 µM). 

Thus, in this case the enlarged monodentate 

ligand seems to have little influence and had 

not resulted into significant alterations. 

Unfortunately, the difficulties during the 

synthesis of rhodium(III) complexes derived 

from chiral primary amino acids resulted 

only into the complexes -(S)-194 and 

-(R/S)-195. Moreover, as the stereo-

configuration of -(S)-194 was not entirely 

solved and -(R/S)-195 was tested as 

racemic mixture, their value for structural 

interpreations compared to their affinites are 

limited. Nevertheless, both complexes inhibit 

PI3K and L-valine incorporated in -(S)-194 

was identified as a suitable building block. In 

case of -(R/S)-195 a final statement 

which one, either -(S)-195 or -(R)-195, is 

the eutomer could not be verified with the 

investigations performed during this work. 

Closing, a detailed interpretation reflect-

ing the difficulties during the synthesis of 

primary chiral amino acid derived rhodi-

um(III) complexes is mandatory to elucidate 

the basic principles. During the synthetic 

procedure, despite the expectation of four 

possible diastereomers, not all possible 

structural isomers were obtained. 

The most likely reason could be steric 

effects, which have been overlooked during 

the conceptual planning of this project, see 

Figure 96. Introducing residues in the back-

bone of the tridentate ligand results in steric 

conflicts as highlighted by the methyl group 

of L-alanine in this example. The most im-

portant fact is that the tridentate ligand loses 

degrees of rotational freedom of at least four 

bonds during the coordination step. Moreo-

ver, the coordination to the metal forces the 

 

Figure 95: Comparison of the stereoconfiguration of -(R)-199 and (R)-200 and the resulting affinities towards 

PI3K and PI3K. a) In fac coordination the pyridine ring of the tridentate ligand could be either coordinated cis 
(shown in a)) or trans to the indole moiety of the pyridocarbazole occupying either zone Z1 (as shown in a)) or Z2 (red 
shaded circles). The amino acid moiety is then subsequently fac-coordinated in cis position to the pyridine moiety of 
the pyridocarbazole occupying the binding sphere of Z2 (red shaded circle). The nitrogen of the amino acid building 
block could be coordinated to the metal centre occupying A3 (yellow shaded circle). Thus, it would be oriented to-
wards the N-terminal domain of the kinase. The monodentate chlorine ligand could be coordinated to the metal centre 
occupying anchor point A4 (green shaded circle). Thus, it would be oriented towards the C-terminal domain of the 

kinase. b) (R)-200 reflect the situation described in a). c) (R)-199 orientates the pyridine moiety towards binding 

sphere Z2, the carboxyl moiety towards binding sphere Z1, the coordinating amino acid towards A4, and the 
mondentate chlorido ligand towards the A3. 
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tridentate ligand into sterically disfavoured 

conformations, as depicted in case of Figure 

96 b) and c). In this coordination pattern, the 

methylene hydrogens adjacent to the pyri-

dine ring of the tridentate ligand and the 

hydrogen atoms of the methyl residue of the 

amino acid experience a high steric repul-

sion. Moreover, the rigid structure of the 

complex offers no possibility for these resi-

dues to circumvent these repulsions by a 

conformational change. This is also true for 

any other amino acid as they possess larger 

residues than alanine. Moreover, the ob-

tained crystal structures of -(S)-191 and 

-(S)-195 support the described hypothesis 

of steric hindrance. 

 

Figure 96: The incorporation of chiral primary amino 

acids into the design of tridentate ligands may cause 
adverse steric effects in at least two of the four possi-
ble diastereomers, b) and c) assuming a fac-coor-

dination. 
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4 Conclusion and Outlook 

We here reported our progress in de-

veloping structurally complicated and at the 

same time stereochemically defined organ-

ometallic protein kinase inhibitors. Multiden-

tate prochiral ligands, tridentate chiral pro-

line-based ligands and the attempts to 

introduce amino acids as building blocks for 

the ligand design represented the line-up. 

In the first study, the development of an 

organometallic ruthenium compound and 

the structural comparison to other modified 

complexes inhibiting S6K1 were elucidated. 

The Millipore Kinase Profiler and radioactive 

kinase assays identified 85 as lead com-

pound. The potent and selective inhibitor 85 

using 100 nM inhibited 93% of S6K1 activity 

and only 16% of 283 kinases by less than 

90%. The compound 86 possessing an iso-

cyanate group instead of an isothiocyanate 

is about 1000-fold less potent. This indicat-

ed the importance of already slight differ-

ences in the coordination sphere and high-

lighted the potential for further potency and 

specificity optimisation. 

Valuable insights for the complex de-

sign were gathered by the crystal structure 

of 85 bound to S6K1 lead to the develop-

ment of 87. The novel ligand scaffold of 87 

resulted in an IC50 in the single digit nano-

molar range targeting S6K1. Moreover, the 

crystal structure of 87 bound to S6K1 re-

vealed the molecular basis for the com-

pounds potency and selectivity. The subse-

quent in vivo testing of the compounds also 

lead to valuable insights. The cell permeabil-

ity and effects on signaling pathways could 

be elaborated. 

Taking all gathered data together also 

lead to the suggestion, that targeting S6K2 

either alone or in combination with S6K1 

inhibition could be a better option for direct 

S6 inhibition in melanoma and potentially 

other cancer cells. However, to date there 

are no commercially available S6K2 selec-

tive inhibitors. Thus, S6K2 could be target 

for the next series of organometallic inhibi-

tors. 

However, the development of S6K1 se-

lective metal based inhibitors also highlight-

ed the issues arising with complicated coor-

dinating ligands resulting in increased 

numbers of potential structural isomers. 

Thus, the enantiopure rhodium(III) complex-

es presented in this work highlight the im-

portance to access defined structural iso-

mers. The have unique properties regarding 

molecular recognition with chiral interaction 

partners like proteins. The remarkable dif-

ferences in target specificity and affinity are 

an additional example for the potential of 

octahedral metal based compounds as ki-

nase inhibitors. Moreover, we paired these 

benefits with the possibility to investigate 

single enantiomers, as it is standard for chi-

ral organic compounds in the biological con-

text. These possibilities turn organometallic 

compounds more and more adequate to the 

requirements of drug-like molecules and 

suitable for appropriate investigations. 

Moreover, different structural isomers 

may not only possess different kinase inhibi-

tion effects, but also different toxicity pro-

files. They may based on changes in the 

overall physico-chemical properties of each 

isomer. Finally, the scaffold offers plenty of 

possibilities to introduce additional functional 

groups in order to improve target specificity 

and affinity or to enhance pharmacological 

properties, as it is the subject of current in-

vestigations.  
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5 Experimental 

5.1 General Information 

 

All reactions were carried out under ni-

trogen atmosphere with magnetic stirring. 

The glass vessels were heated up and 

chilled down to ambient temperature for at 

least three times. HPLC-Grade solvents 

were used for reactions and distilled under 

nitrogen and dried using calcium hydride 

(CH3CN, CH2Cl2, CHCl3, DMF), sodium/ben-

zophenone (THF, EtO2), or magnesium 

shavings (MeOH) prior usage. All reagents, 

if not declared otherwise, were purchased 

from commercial suppliers and used without 

further purification. 

Flash column chromatography was 

performed with distilled solvents using silica 

gel 60 M from Macherey–Nagel (irregular 

shape, 230–400 mesh, pH 6.8, pore volume: 

0.81 mL/g, mean pore size: 66 Å, specific 

surface: 492 m2/g, particle size distribution: 

0.5% < 25 m and 1.7% > 71 m, water 

content: 1.6 %). 

1H-NMR and proton decoupled 
13C-NMR spectra were measured using ei-

ther Avance 300 A (1H-NMR: 300 MHz, 
13C-NMR: 75 MHz), Avance 300 B (1H-NMR 

300 MHz, 13C-NMR: 75 MHz), DRX 400 

(1H-NMR: 400 MHz, 13C-NMR: 100 MHz), or 

a DRX 500 (1H-NMR: 500 MHz, 13C-NMR: 

125 MHz) spectrometer from Bruker at am-

bient temperature. The NMR data were 

evaluated using MestReNova 6.0.2-5475 

(Mestrelab Research S.L.). NMR standards 

were used as follows: 1H-NMR spectrosco-

py: δ = 7.26 ppm (residual CDCl3), δ = 

2.50 ppm (residual (CH3)2SO), δ = 2.05 ppm 

(residual (CH3)2CO), δ = 1.94 ppm (residual 

CD3CN). 13C{1H}-NMR spectroscopy: δ = 

77.16 ppm (residual CDCl3), δ = 39.52 ppm 

(residual (CH3)2SO), δ = 29.84 ppm (residu-

al (CH3)2CO), δ = 1.32 ppm (residual 

CD3CN). 

IR spectra were measured using a 

Bruker Alpha FT-IR spectrophotometer. IR 

spectra were evaluated using OPUS 6.5 

(Bruker Optik GmbH). 

High-resolution mass spectra were 

measured using a LTQ-FT Ultra mass spec-

trometer (Thermo Fischer Scientific) using 

ESI technique. 

Crystals were measured on a 'STOE 

IPDS2 Image Plate' or on a 'Bruker D8 

QUEST area detector' diffractometer. The 

temperature was kept at 100.15 K during 

data collection. Using Olex2, the structure 

was solved with the SIR2011 structure solu-

tion program using Direct Methods and re-

fined with the XLMP refinement package 

using Least Squares minimisation. The cell 

refinement software SAINT V8.27B (Bruker 

AXS Inc., 2012) and the data reduction 

software SAINT V8.27B (Bruker AXS Inc., 

2012) as well as SAINT V8.30C (Bruker 

AXS Inc., 2013) and SAINT V8.30C (Bruker 

AXS Inc., 2013) were used. The programs 

applied for solution and refinement were 

SHELXS-97 (Sheldrick, 2008), 

SHELXL-2013 (Sheldrick, 2013), and DIA-

MOND (Crystal Impact) as well as XS 

(Sheldrick, 2008), SHELXL-2013 (Sheldrick, 

2013) and DIAMOND (Crystal Impact). The 

programs used for visualization are either 

Pymol Molecular Graphics System, v0.99 

(DeLano Scientific LLC) or ORTEP-III v1.0.3 

(C.K. Johnson and M.N. Burnett). 

CD spectra were recorded on a JAS-

CO J-810 CD spectropolarimeter with cu-

vettes of 1 mm diameter. 

The counts per minute (CPM) per-

forming radioactive kinase assays were 

measured using a Beckmann Coulter 

LS6500 multipurpose scintillation counter 

and corrected by the background CPM. 

PyMOL Molecular Graphics System 

DeLano Secientific LLC, Version 1.1, was 

used to visualize the protein crystal-

structures.[431]  
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5.2 Synthetic Procedures 

5.2.1 Synthesis of pyridocarbazoles and 

related intermediates 

5.2.1.1 3,4-dibromofuran-2,5-dione (36) 

 

 

1H-pyrrole-2,5-dione (40.0 g, 

408 mmol), and aluminium trichloride 

(832 mg, 6.3 mmol) were suspended in 

bromine (42.0 mL, 810 mmol) and refluxed 

at 130 °C for 18 h. The resulting solid crude 

material was recrystallised from a mixture of 

toluene : ethylacetate (70 mL, 6:1). The pre-

cipitate was washed with hexane and dried 

in vacuo. The product 36 was obtained as 

beige solid (27.74 g, 108 mmol, 27%). After 

concentration of the filtrate and a second 

recrystallisation procedure under same con-

ditions, additional product was obtained 

(20.72 g, 81 mmol, 20%). 13C-NMR 

(75 MHz, CDCl3): δ(ppm) 157.9 (2xCO), 

131.1 (2xCBr). IR (film): v (cm-1) 3081, 3000, 

2649, 2520, 1699, 1584, 1417, 1389, 1268, 

1224, 1181, 1136, 1056, 944, 906, 809, 761, 

688. 

5.2.1.2 1-benzyl-3,4-dibromo-1H-pyrrole-

2,5-dione (37) 

 

 

36 (17.0 g, 66.3 mmol) and benzyl 

amine (10.7 g, 99.5 mmol) were dissolved in 

acetic acid (150 mL) and heated to 130 °C 

for 16 h. The solvent was removed under 

reduced pressure and residual acetic acid 

was coevaporated using toluene 

(3 x 40 mL). The dark crude material was 

subjected to column chromatography using 

hexane : ethylacetate (10:1) and dried in 

vacuo. The product 37 was obtained as 

beige solid (17.84 g, 51.7 mmol, 78%). 

Rf = 0.33 (hexane : ethylacetate 10:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 7.40–

7.29 (m, 5H, Har), 4.75 (s, 2H, Hbenzyl). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 163.76 

(2xCO), 135.37 (Car), 129.66 (2xCBr), 

129.02 (2xCar), 128.93 (2xCar), 128.48 (Car), 

43.41 (Cbenzyl). IR (film): v (cm-1) 1781, 1709, 

1592, 1519, 1491, 1432, 1388, 1336, 1233, 

1158, 1100, 1060, 906, 851, 812, 752, 722, 

695, 626, 583. 

5.2.1.3 3,4-dibromo-1-methyl-1H-pyrrole-

2,5-dione (38) 

 

 

36 (5.0 g, 19.5 mmol) and methyl 

ammonium chloride (2.02 g, 29.9 mmol) 

were dissolved in acetic acid (50 mL) and 

heated to 130 °C for 16 h. The solvent was 

removed under reduced pressure and resid-

ual acetic acid was coevaporated using tol-

uene (3 x 30 mL). The dark crude material 

was subjected to column chromatography 

using hexane : ethylacetate (3:1) and dried 

in vacuo. The product 38 was obtained as 

beige solid (2.85 g, 10.6 mmol, 55%). 

Rf = 0.46 (CHCl3). 
1H-NMR (300 MHz, 

CDCl3): δ(ppm) 3.13 (t, J = 2.1 Hz, 3H, 

CH3).
13C-NMR (75 MHz, CDCl3): δ(ppm) 

164.1 (2xCO), 129.5 (2xCBr), 25.6 (CH3). IR 

(film): v (cm-1) 2951, 2853, 1772, 1705, 

1599, 1465, 1304, 1258, 1164, 1066, 1026, 

848, 819, 790, 744, 706, 678. 
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5.2.1.4 3,4-dibromo-1H-pyrrole-2,5-dione 

(39) 

 

 

36 (20.0 g, 78.2 mmol) and ammoni-

um acetate (9.04 g, 117.2 mmol) were dis-

solved in acetic acid (250 mL) and heated to 

130 °C for 16 h. The solvent was removed 

under reduced pressure and residual acetic 

acid was coevaporated using toluene 

(3 x 50 mL). The dark crude material was 

subjected to column chromatography using 

hexane : ethylacetate (5:1  2:1) and dried 

in vacuo. The product 39 was obtained as 

beige solid (10.81 g, 42.4 mmol, 54%). 

Rf = 0.16 (hexane : ethylacetate 8:1). 
1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 11.7 

(bs, 1H, NH). 13C-NMR (75 MHz, (CD3)2SO): 

δ(ppm) 165.15 (2xCO), 129.72 (2xCBr). IR 

(film): v (cm-1) 3231, 3071, 1776, 1704, 

1576, 1408, 1323, 1271, 1197, 1170, 1129, 

1026, 994, 910, 872, 826, 788, 725. 

5.2.1.5 tert-butyl(1-methoxyvinyloxy) di-

methylsilane (41) 

 

 

Diisopropylamine (22.4 mL, 

159.6 mmol) were dissolved in THF 

(134 mL) and cooled to 0 °C. n-butyl lithium 

(58.5 mL, 146 mmol, 2.5 M in hexane) was 

added over a period of 30 min at -78 °C fol-

lowed by the drop wise sequential addition 

of methylacetate (10.58 mL, 133 mmol), 

DMPU (24.1 mL, 199 mmol) over a period of 

40 min. Tert-buytldimethylsilylchloride (20 g, 

133 mmol) was dissolved in THF (32 mL) 

and added to the reaction mixture. The reac-

tion was continued for 1 h at -78 °C. The 

solvent was evaporated under reduced 

pressure and the crude material was solved 

in pentane (400 mL). The organic layer was 

washed with water (3 x 50 mL), saturated 

cupper sulfate solution (3 x 50 mL) and sat-

urated sodium carbonate solution 

(3 x 50 mL). The combined aqueous layer 

was extracted with pentane (4 x 50 mL). The 

combined organic layer was dried over so-

dium sulfate. The solvent was removed un-

der reduced pressure and the crude material 

was subjected to bulb to bulb distillation 

(50 °C, 8 mbar). The product 41 was ob-

tained as colourless oil (15 g, 68.7 mmol, 

51%). Rf = 0.48 (hexane : ethylacetate 8:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 3.53 (s, 

3H, OCH3), 3.23 (d, J = 2.6 Hz, 1H, 

CvinylHH), 3.10 (d, J = 2.6 Hz, 1H, CvinylHH), 

0.93 (s, 9H, Cq(CH3)3), 0.17 (s, 6H, 

Si(CH3)2). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 162.49 (Ccarbonyl), 60.26 (CvinylH2), 

55.15 (OCH3), 25.75 (3xCq(CH3)3), 18.26 

(Cq(CH3)3), -4.57 (Si(CH3)2). 

5.2.1.6 3,4-dibromo-1-(tert-butyldimethyl-

silyl)-1H-pyrrole-2,5-dione (42) 

 

 

39 (10.7 g, 42 mmol) were dissolved 

in acetonitrile (100 mL) and stirred at ambi-

ent temperature. 41 (10 mL, 46 mmol) were 

added dropwise and the reaction was then 

refluxed for 5 h. The reaction mixture was 

cooled down to ambient temperature over a 

period of 8 h. The solvent was evaporated 

under reduced pressure and the crude ma-

terial was subjected to column chromatog-

raphy using hexane : ethyl acetate (9:1  

3:1). The product was 42 was obtained as 

white solid (8.38 g, 22.65 mmol, 54%). 

Rf = 0.67 (hexane : ethylacetate 8:1). 
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1H-NMR (300 MHz, CDCl3): δ(ppm) 0.94 (s, 

9H, Cq(CH3)3), 0.46 (s, 6H, Si(CH3)2). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 168.87 

(2xCO), 131.72 (2xCBr), 26.24 

(3xCq(CH3)3), 19.02 (Cq(CH3)3), -4.44 

(Si(CH3)2). 

5.2.1.7 (E)-2-(1-(2-phenylhydrazono) 

ethyl)pyridine (45) 

 

 

2-Methyl-pyridylketone (3.70 mL, 

33.0 mmol) and phenylhydrazine (3.35 mL, 

34.1 mmol) were dissolved in ethanol 

(10 mL, abs.) under nitrogen atmosphere. 

The reaction mixture was heated up slowly 

to 80 °C over a period of 15 min and re-

fluxed for another 45 min until a yellow pre-

cipitate was formed. The reaction mixture 

was cooled down to 0 °C and filtrated. The 

yellow precipitate was washed with cooled 

ethanol (150 mL, abs.) and dried in vacuo. 

The residual filtrate was concentrated and 

cooled to 0 °C to precipitate additional crude 

material which was filtrated and washed with 

cooled ethanol (100 mL, abs.) and dried in 

vacuo as the first product fraction. The com-

bined product fractions led to the product 45 

as a yellow solid (6.84 g, 32.4 mmol, 98%). 

Rf = 0.55 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.58 (d, J = 4.7 Hz, 1H, Har), 8.19-8.15 (m, 

1H, Har), 7.73-7.68 (m, 1H, Har), 7.33-7.18 

(m, 5H, Har), 6.93-6.88 (m, 1H, Har), 2.41 (s, 

3H, CH3). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 148.0, 144.7, 136.5, 129.4, 122.4, 

120.9, 120.2, 113.6, 10.1 (CH3). IR (film): v 

(cm-1) 3204, 3171, 3019, 2939, 1596, 1564, 

1470, 1427, 1289, 1246, 1149, 1110, 1077, 

1048, 993, 967, 892, 781, 748, 695, 652, 

636, 549, 508, 411. HRMS calculated for 

C13H13N3H (M + H+) 212.1188 found 

(M + H+) 212.1183. 

5.2.1.8 2-(pyridin-2-yl)-1H-indole (46) 

 

 

Polyphosphoric acid (34.0 g, 1.1 g 

per mmol of educt) were heated to 95 °C 

and firm stirring. 45 (6.50 g, 30.8 mmol) was 

added sequentially in small portions to the 

clear viscose reaction mixture. After 4 h the 

reaction mixture was cooled down to ambi-

ent temperature and sodium hydroxide solu-

tion (20%) was added until pH 9 was set. A 

crude material precipitated as yellow solid. 

The reaction mixture was extracted with 

methylene chloride (3 x 150 mL). The com-

bined organic layer was washed with BRINE 

(4 x 25 mL) dried over sodium sulfate, fil-

trated and dried in vacuo. The product 46 

was obtained as yellow solid (5.63 g, 

29.0 mmol, 94%). Rf = 0.71 (hex-

ane : ethylacetate 10:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 9.76 (s, 1H, NH), 8.57(dt, J 

= 5.0 Hz, J = 1.1 Hz, 1H, CHar), 7.83 (dt, J = 

8.0 Hz, J = 1.0 Hz, 1H, CHar), 7.75 (td, J = 

7.7 Hz, J = 1.4 Hz, 1H, CHar), 7.66 (d, J = 

7.9 Hz, 1H, CHar-10), 7.44 (dd, J = 8.1 Hz, J 

= 0.7 Hz, 1H, CHar), 7.24-7.17 (m, 2H, CHar), 

7.14-7.09 (m, 1H, CHar), 7.05 (dd, J = 2.1 

Hz, J = 0.7 Hz, 1H, CHar). IR (film): v (cm-1) 

3114, 2968, 1591, 1557, 1439, 1408, 1337, 

1299, 1255, 1143, 994, 776, 741, 616, 602, 

563, 520, 493, 427, 400. HRMS calculated 

for C13H10N2Na (M + Na+) 217.0742 found 

(M + Na+) 217.0740. 
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5.2.1.9 5-(tert-butyldimethylsilyloxy)-1H-

indole (48) 

 

 

5-(benzyloxy)-1H-indole (5.00 g, 

22.39 mmol) were dissolved in 200 mL 

ethylacetate in a 1 L reaction flask. Pd/C 

(3.95 g, 3.81 mmol, 10% v/w) were sus-

pended and the nitrogen atmosphere was 

completely substituted by hydrogen in three 

turns. The mixture was reacted at ambient 

temperature for 16 h under intensive stirring. 

The suspension was filtrated over CELITE 

and the filtrate was dried in vacuo. The resi-

due was dissolved in 80 mL DMF and 

cooled to 4 °C. Over a period of 10 min di-

isopropylethylamine (19.4 mL, 111.95 mmol) 

were added drop wise. Then, tert-butyl-

dimethylsilyltriflate (6.1 mL, 22.39 mmol) 

was added drop wise over 16 h and the re-

action mixture was warmed up to ambient 

temperature simultaneously. The orange 

coloured reaction mixture was quenched 

with ammonium acetate (200 mL, 1 M) and 

then diluted with of water (100 mL). The 

mixture was then extracted with ethylacetate 

(4 x 200 mL), the organic layer was sepa-

rated, washed with BRINE (3 x 50 mL), and 

dried over sodium sulfate. The crude mate-

rial was dried in vacuo and subjected to sili-

ca gel chromatography hexane : ethyl-

acetate (9:1). The product 48 was obtained 

as pale oil (3.78 g, 15.28 mmol, 68% over 

two steps). Rf = 0.57 (hexane : ethylacetate 

3:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.03 (s, 1H, NH), 7.23 (d, J = 8.7 Hz, 1H, 

CHar-7), 7.18-7.15 (m, 1H, CHar-2), 7.07 (d, 

J = 2.3 Hz, 1H, CHar-4), 6.76 (dd, J = 8.7, 

2.3, 1H, CHar-6), 6.44 (m, 1H, CHar-3), 1.01 

(s, 9H, Cq(CH3)3), 0.20 (s, 6H, Si(CH3)2). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 149.53 

(Car-5), 131.59 (Car-7a), 128.71 (Car-3a), 

124.95 (Car-2), 116.48 (Car-6), 111.33 (Car-

7), 110.23 (Car-4), 102.42 (Car-3), 25.97 

(3xCq(CH3)3), 18.39 (Cq(CH3)3), -4.26 

(Si(CH3)2), -4.45 (Si(CH3)2). HRMS calculat-

ed for C14H21NOSiNa (M + Na+) 270.1285, 

found (M + Na+) 270.1285. 

5.2.1.10 tert-butyl 1H-indole-1-carboxylate 

(51) 

 

 

Indole (10.0 g, 85.4 mmol) was dis-

solved in THF (25 mL) and cooled to 4 °C. 

Di-tert-butyl-dicarbonate (18.6 g, 85.4 mmol) 

was presolved in THF (25 mL) and added to 

the reaction mixture. Dimethylaminopyridine 

(DMAP, 15.7 g, 128 mmol) was added slow-

ly. The reaction mixture was stirred for 16 h 

and warmed up to ambient temperature. 

The reaction mixture was cooled to 4 °C and 

hydrochloric acid (60 mL, 1 M) was added 

followed by 15 min of stirring. The organic 

layer was separated. The aqueous layer 

was extracted with ethylacetate (5 x 50 mL). 

The combined organic layer was washed 

with BRINE (3 x 50 mL), and dried over sodi-

um sulfate. The solvent was evaporated 

under reduced pressure and the crude ma-

terial was subjected to column chromatog-

raphy using hexane : ethylacetate (8:1). The 

product 51 was obtained as colourless oil 

(18.34 g, 84.5 mmol, quant.). Rf = 0.37 (hex-

ane : ethylacetate 8:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.11 (d, J = 8.1 Hz, 1H, 

CHar-7), 7.55 (d, J = 3.7 Hz, 1H, CHar-2), 

7.51 (ddd, J = 7.6, 1.3, 0.8 Hz, 1H, CHar-4), 

7.26 (ddd, J = 8.4, 7.3, 1.4 Hz, 1H, CHar-6), 

7.21–7.14 (m, 1H, CHar-5), 6.51 (dd, J = 3.7, 

0.7 Hz, 1H, CHar-3), 1.62 (s, 9H, 

OCq(CH3)3). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 149.92 (Ccarbonyl), 135.35 (Car-7a), 

130.71 (Car-3a), 125.98, 124.29, 122.74, 

121.03, 115.28, 107.38, 83.70 (Cq(CH3)3), 

28.31 (Cq(CH3)3). IR (film): v (cm-1) 2978, 
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2933, 1728, 1604, 1535, 1450, 1375, 1333, 

1248, 1208, 1152, 1114, 1076, 1018, 935, 

881, 850. 

5.2.1.11 tert-butyl 5-(tert-butyldimethylsilyl-

oxy)-1H-indole-1-carboxylate (52) 

 

 

48 (3.78 g, 15.28 mmol) was dis-

solved in THF (12 mL) and cooled to 4 °C. 

Di-tert-butyl-dicarbonate (4.20 g, 

19.32 mmol) was presolved in THF (3 mL) 

and added to the reaction mixture. Dime-

thylaminopyridine (DMAP, 2.35 g, 

19.22 mmol) was added slowly. The reac-

tion mixture was stirred for 16 h and turned 

from orange to green while warming to am-

bient temperature. The reaction mixture was 

cooled to 4 °C and hydrochloric acid (11 mL, 

1 M) was added followed by 5 min of stirring. 

The organic layer was separated. The 

aqueous layer was extracted with 

ethylacetate (4 x 50 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), and dried over sodium sulfate. 

The solvent was removed in vacuo and the 

crude material subjected to column chroma-

tography hexane : ethylacetate (20:1). The 

product 52 was obtained as colourless oil 

(4.95 g, 14.24 mmol, 93%). Rf = 0.63 (hex-

ane : ethylacetate 10:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 7.96 (d, J = 8.6 Hz, 1H, 

CHar-7), 7.55 (d, J = 3.6, 1H, CHar-2), 6.99 

(d, J = 2.4 Hz, 1H, CHar-4), 6.84 (dd, J = 8.9, 

2.4, 1H, CHar-6), 6.46 (d, J = 3.7, 1H, CHar-

3), 1.66 (s, 9H, OCq(CH3)3), 1.00 (s, 9H, 

SiCq(CH3)3), 0.20 (s, 6H, Si(CH3)2). 
13C-NMR 

(75 MHz, CDCl3): δ(ppm) 151.53 (Ccarbonyl), 

131.66 (Car-7a), 130.54 (Car-3a), 126.61, 

117.74, 115.70, 111.12, 107.16, 83.55 

(OCq(CH3)3), 28.39 (OCq(CH3)3), 25.92 

(SiCq(CH3)3), 18.40 (SiCq(CH3)3), -4.27 

(Si(CH3)2). IR (film): v (cm-1) 2956, 2932, 

2892, 2858, 1731, 1614, 1580, 1462, 1372, 

1274, 1218, 1149, 1118, 1081, 1022, 966, 

878, 840, 811, 770. HRMS calculated for 

C19H29NO3SiNa (M + Na+) 370.1809, found 

(M + Na+) 370.1811. 

5.2.1.12 tert-butyl 5-(benzyloxy)-1H-indole-

1-carboxylate (53) 

 

 

5-(benzyloxy)-1H-indole (49) (3.8 g, 

17.1 mmol) was dissolved in THF (12.5 mL) 

and cooled to 4 °C. Di-tert-butyl-dicarbonate 

(3.9 g, 17.9 mmol) was presolved in THF 

(3 mL) and added to the reaction mixture. 

Dimethylaminopyridine (DMAP, 3.2 g, 

25.6 mmol) was added slowly. The reaction 

mixture became solid and was fluidised by 

heating to 50 °C for 5 min. The reaction mix-

ture was then stirred for 16 h at ambient 

temperature. The reaction mixture was 

cooled to 4 °C and hydrochloric acid (12 mL, 

1 M) was added followed by 10 min of stir-

ring. The organic layer was separated. The 

aqueous layer was extracted with 

ethylacetate (3 x 20 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), and dried over sodium sulfate. 

The solvent was evaporated under reduced 

pressure and the crude material was sub-

jected to column chromatography using 

hexane : ethylacetate (15:1). The product 53 

was obtained as colourless oil (5.08 g, 

145.71 mmol, 92%). Rf = 0.59 (hex-

ane : ethylacetate 8:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 7.93 (d, J = 9.1 Hz, 1H, 

CHar-7), 7.63 (d, J = 3.7 Hz, 1H, CHar-2), 

7.48 (d, J = 1.7 Hz, 1H, CHar-o), 7.45 (d, J = 

1.2 Hz, 1H, CHar-o), 7.43–7.29 (m, 3H, 

CHar-p, CHar-m), 7.23 (d, J = 2.5 Hz, 1H, 

CHar-4), 7.01 (dd, J = 9.0, 2.5 Hz, 1H, 
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CHar-6), 6.62 (d, J = 4.3 Hz, 1H, CHar-3), 

5.13 (s, 2H, CH2benzyl), 1.61 (s, 9H, 

OCq(CH3)3). 

5.2.1.13 tert-butyl 5-methoxy-1H-indole-1-

carboxylate (54) 

 

 

5-methoxy-1H-indole (50) (5.0 g, 

33.9 mmol) was dissolved in THF (15 mL) 

and cooled to 4 °C. Di-tert-butyl-dicarbonate 

(7.5 g, 34 mmol) was presolved in THF 

(3 mL) and added to the reaction mixture. 

Dimethylaminopyridine (DMAP, 6.11 g, 

50 mmol) was added slowly. The reaction 

mixture became solid and was fluidised by 

heating to 50 °C for 5 min. The reaction mix-

ture was then stirred for 16 h at ambient 

temperature. The reaction mixture was 

cooled to 4 °C and hydrochloric acid (30 mL, 

1 M) was added followed by 15 min of stir-

ring. The organic layer was separated. The 

aqueous layer was extracted with 

ethylacetate (4 x 50 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), and dried over sodium sulfate. 

The solvent was evaporated under reduced 

pressure and the crude material was sub-

jected to column chromatography using 

hexane : ethylacetate (10:1). The product 54 

was obtained as white solid (8.2 g, 

33.2 mmol, 98%). Rf = 0.54 (hex-

ane : ethylacetate 8:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.01 (d, J = 8.0 Hz, 1H, 

CHar-7), 7.56 (d, J = 3.5 Hz, 1H, CHar-2), 

7.03 (d, J = 2.5 Hz, 1H, CHar-4), 6.92 (dd, J 

= 9.0, 2.5 Hz, 1H, CHar-6), 6.50 (d, J = 3.7 

Hz, 1H, CHar-3), 3.85 (s, 3H, OCH3), 1.66 (s, 

9H, OCq(CH3)3). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 155.98 (Car-5), 149.83 (Ccarbonyl), 

131.49 (Car-7a), 130.08 (Car-3a) 126.58, 

115.91, 113.07, 107.21, 103.66, 83.53 

(OCq(CH3)3), 55.74 (OCH3), 28.28 

(OCq(CH3)3). IR (film): v (cm-1) 2978, 2937, 

1726, 1614, 1585, 1471, 1443, 1373, 1342, 

1260, 1152, 1117, 1081, 1019, 937, 842, 

805, 761, 720, 627. 

5.2.1.14 1-(tert-butoxycarbonyl)-1H-indol-2-

ylboronic acid (55) 

 

 

Diisopropylamine (19 mL, 135 mmol) 

was dissolved in THF (50 mL) and cooled 

to -78 °C. n-Butyllithium (54 mL, 135 mmol, 

2.5 M in hexane) was added drop wise. The 

reaction mixture was warmed up to 0 °C and 

stirred for 30 min. 51 (19.7 g, 90 mmol) was 

predried in vacuo, and dissolved in a second 

flask with THF (100 mL). Triisopropyl borate 

(32 mL, 139 mmol) was added drop wise 

while cooling the reaction mixture to 0 °C. 

The lithium diisopropylamide solution was 

added over a period of 1.5 h. After 16 h of 

stirring hydrochloric acid (150 mL, 2 M) was 

added to quench the reaction over 15 min at 

ambient temperature. The organic layer was 

separated and the aqueous layer was ex-

tracted with ethylacetate (4 x 50 mL). The 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate and concentrated in vacuo to dryness. 

The dark orange oil (23.5 g, 90 mmol, 

quant.) was processed directly to the cou-

pling reaction without further characterisa-

tion due to the instability of the boronic acid 

intermediate. 
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5.2.1.15 1-(tert-butoxycarbonyl)-5-(tert-butyl-

dimethylsilyloxy)-1H-indol-2-ylboro-

nic acid (56) 

 

 

Diisopropylamine (1.21 mL, 

8.64 mmol) was dissolved in THF 

(0.865 mL) and cooled to -78 °C. n-

Butyllithium (3.46 mL, 8.64 mmol, 2 M in 

hexane) was added drop wise. The reaction 

mixture was warmed up to 0 °C and stirred 

for 30 min. 52 (1.95 g, 5.61 mmol) was 

predried in vacuo, and dissolved in a second 

flask with THF (15 mL). Triisopropyl borate 

(2.0 mL, 8.64 mmol) was added drop wise 

while cooling the reaction mixture to 0 °C. 

The lithium diisopropylamide solution was 

added over a period of 1.5 h. The colour of 

the reaction mixture turned from pallid to 

yellow. After 2 h of stirring hydrochloric acid 

(15 mL, 2 M) was added to quench the reac-

tion over 15 min at ambient temperature. 

The organic layer was separated and the 

aqueous layer was extracted with ethyl-

acetate (4 x 25 mL). the combined organic 

layer was washed with BRINE (3 x 50 mL), 

dried over sodium sulfate and concentrated 

in vacuo to dryness. The dark brown oil 

(2.1 g, 5.5 mmol, 98%) was processed di-

rectly to the coupling reaction without further 

characterisation due to the instability of the 

boronic acid intermediate. 

5.2.1.16 5-(benzyloxy)-1-(tert-butoxycarbo-

nyl)-1H-indol-2-ylboronic acid (57) 

 

 

53 (2.98 g, 9.2 mmol) was predried 

in vacuo, and dissolved in a second flask 

with THF (15 mL). Triisopropyl borate 

(3.2 mL, 14.2 mmol) was added drop wise 

while cooling the reaction mixture to 0 °C. 

Lithium diisopropylamide solution (6.96 mL, 

13.8 mmol, 2 M in hexane) was added over 

a period of 1 h. The colour of the reaction 

mixture turned from pallid to yellow. After 

2 h of stirring hydrochloric acid (22 mL, 2 M) 

was added to quench the reaction over 

15 min at ambient temperature. The organic 

layer was separated and the aqueous layer 

was extracted with ethylacetate (5 x 25 mL). 

The combined organic layer was washed 

with BRINE (3 x 50 mL), dried over sodium 

sulfate and concentrated in vacuo to dry-

ness. The dark brown oil (3.3 g, 9 mmol, 

98%) was processed directly to the coupling 

reaction without further characterisation due 

to the instability of the boronic acid interme-

diate. 
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5.2.1.17 1-(tert-butoxycarbonyl)-5-methoxy-

1H-indol-2-ylboronic acid (58) 

 

 

54 (4 g, 16.2 mmol) was predried in 

vacuo, and dissolved in THF (18.8 mL). 

Triisopropyl borate (5.7 mL, 24.9 mmol) was 

added drop wise while cooling the reaction 

mixture to 0 °C. Lithium diisopropylamide 

solution (13.5 mL, 24.3 mmol, 1.8 M in hex-

ane) was added over a period of 1 h. After 

2 h of stirring hydrochloric acid (40 mL, 2 M) 

was added to quench the reaction over 

15 min at 0 °C. The organic layer was sepa-

rated and the aqueous layer was extracted 

with ethylacetate (5 x 25 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), dried over sodium sulfate and 

concentrated in vacuo to dryness. The dark 

orange oil (4.6 g, 15.8 mmol, 98%) was pro-

cessed directly to the coupling reaction 

without further characterisation due to the 

instability of the boronic acid intermediate. 

5.2.1.18 tert-butyl 2-(5-(trifluoromethyl) pyri-

din-2-yl)-1H-indole-1-carboxylate 

(65) 

 

 

Sodium carbonate (4.7 g, 

45.0 mmol), and tetrakis(triphenylphos-

phine)palladium (1.04 g, 0.90 mmol) were 

reacted with the boronic acid 55 (4.7 g, 

18 mmol) dissolved in dimethoxy-

ethane : water (95 mL, 4:1). 2-bromo-5-(tri-

fluoromethyl)pyridine (3.7 g, 16.4 mmol) was 

added and the entire reaction mixture re-

fluxed for 16 h. The dark red suspension 

was cooled to ambient temperature and di-

luted with water (65 mL). The organic layer 

was separated. The aqueous layer was ex-

tracted with ethylacetate (3 x 50 mL), the 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate. The crude material was concentrated in 

vacuo and subjected to column chromatog-

raphy using hexane : ethylacetate (20:1  

5:1). The product 65 was obtained as a 

white solid (3.71 g, 10.2 mmol, 61.6%). 

Rf = 0.54 (hexane : ethylacetate 8:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 8.80 

(dd, J = 1.4, 0.9 Hz, 1H, CHar-6´), 8.05 (dd, J 

= 8.4, 0.8 Hz, 1H, CHar-7), 7.83 (ddd, J = 

8.2, 2.3, 0.6 Hz, 1H, CHar), 7.52 – 7.43 (m, 

2H, CHar-4, CHar), 7.26 (ddd, J = 8.6, 7.2, 

1.3 Hz, 1H, CHar-6), 7.18 – 7.10 (m, 1H, 

CHar-5), 6.73 (d, J = 0.6 Hz, 1H, CHar-3), 

1.25 (s, 9H, OCq(CH3)3). 
13C-NMR (75 MHz, 

CDCl3): δ(ppm) 156.62 (Car-2´), 149.93 (Ccar-

bonyl), 145.98 (q, J = 4.0 Hz), 138.18, 138.08, 

133.25 (q, J = 3.4 Hz), 128.80, 125.76, 

125.22, 124.78, 123.31, 122.85, 121.45, 

115.25, 112.67, 84.08 (OCq(CH3)3), 27.74 

(OCq(CH3)3). IR (film): v (cm-1) 2983, 1726, 

1601, 1557, 1479, 1449, 1398, 1367, 1316, 

1227, 1153, 1114, 1076, 1036, 1008, 938, 

852, 822, 770, 743. 
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5.2.1.19 tert-butyl 2-(5-hydroxypyridin-2-yl)-

1H-indole-1-carboxylate (66) 

 

 

Sodium carbonate (4.7 g, 45 mmol), 

and tetrakis(triphenylphosphine)palladium 

(1.04 g, 0.9 mmol) were reacted with the 

boronic acid 55 (4.7 g, 18 mmol) dissolved 

in dimethoxyethane : water (95 mL, 4:1). 

6-bromopyridin-3-ol (2.85 g, 16.4 mmol) was 

added and the entire reaction mixture re-

fluxed for 16 h. The dark brown suspension 

was cooled to ambient temperature and di-

luted with water (65 mL). The organic layer 

was separated. The aqueous layer was ex-

tracted with ethylacetate (3 x 50 mL), the 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate. The crude material was concentrated in 

vacuo and subjected to column chromatog-

raphy using methylene chloride : methanol 

(35:1  10:1). The product 66 was obtained 

as brown oil (2.40 g, 7.7 mmol, 47%). 

Rf = 0.51 (hexane : ethylacetate 8:1). The 

product could only be obtained as mixture of 

tert-butyloxycarbonyl protected and unpro-

tected form and was therefore processed 

without further characterisation. 

5.2.1.20 tert-butyl 2-(5-nitropyridin-2-yl)-1H-

indole-1-carboxylate (67) 

 

 

Sodium carbonate (4.7 g, 

45.0 mmol), and tetrakis(triphenylphos-

phine)palladium (1.04 g, 0.90 mmol) were 

reacted with the boronic acid 55 (4.7 g, 

18 mmol) dissolved in dimethoxy-

ethane : water (95 mL, 4:1). 2-bromo-5-

nitropyridine (3.3 g, 16.4 mmol) was added 

and the entire reaction mixture refluxed for 

16 h. The dark red suspension was cooled 

to ambient temperature and diluted with wa-

ter (65 mL). The organic layer was separat-

ed. The aqueous layer was extracted with 

ethylacetate (3 x 50 mL), the combined or-

ganic layer was washed with BRINE 

(3 x 50 mL), dried over sodium sulfate. The 

crude material was concentrated in vacuo 

and subjected to column chromatography 

using hexane : ethylacetate (20:1  5:1). 

The product 67 was obtained as a yellow 

solid (3.58 g, 10.5 mmol, 64%). Rf = 0.27 

(hexane : ethylacetate 8:1). 1H-NMR 

(300 MHz, CDCl3): δ(ppm) 9.48 (dd, J = 2.6, 

0.5 Hz, 1H, CHar-6´), 8.55 (dd, J = 8.7, 2.6 

Hz, 1H, CHar-4´), 8.14 (d, J = 9.2 Hz, 1H, 

CHar-7), 7.72 (dd, J = 8.7, 0.6 Hz, 1H, 

CHar-3´), 7.64 (d, J = 7.8 Hz, 1H, CHar-4), 

7.43 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H, CHar-6), 

7.35–7.28 (m, 1H, CHar-5), 7.02 (d, J = 0.6 

Hz, 1H, CHar-3), 1.46 (s, 9H, OCq(CH3)3). IR 

(film): v (cm-1) 3048, 2974, 2929, 1731, 

1595, 1566, 1513, 1474, 1445, 1399, 1342, 

1314, 1266, 1223, 1189, 1142, 1110, 944, 

848, 830, 768. 



 

 

131 Experimental 

5.2.1.21 tert-butyl 2-(5-aminopyridin-2-yl)-

1H-indole-1-carboxylate (68) 

 

 

Sodium carbonate (4.7 g, 45 mmol), 

and tetrakis(triphenylphosphine)palladium 

(1.04 g, 0.9 mmol) were reacted with the 

boronic acid 55 (4.7 g, 18 mmol) dissolved 

in dimethoxyethane : water (95 mL, 4:1). 

6-bromopyridin-3-amine (2.8 g, 16.4 mmol) 

was added and the entire reaction mixture 

refluxed for 16 h. The dark brown suspen-

sion was cooled to ambient temperature and 

diluted with water (65 mL). The organic layer 

was separated. The aqueous layer was ex-

tracted with ethylacetate (3 x 50 mL), the 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate. The crude material was concentrated in 

vacuo and subjected to column chro-

matography using methylene chlo-

ride : methanol (35:1  10:1). The product 

68 was obtained as a brown oil (2.40 g, 

14 mmol, 77%). Rf = 0.56 (hexane : ethyl-

acetate 8:1). The product could only be ob-

tained as mixture of tert-butyloxycarbonyl 

protected and unprotected form and was 

therefore processed without further charac-

terisation. 

5.2.1.22 tert-butyl 2-(5-cyanopyridin-2-yl)-

1H-indole-1-carboxylate (69) 

 

 

Sodium carbonate (4.7 g, 

45.0 mmol), and tetrakis(triphenylphos-

phine)palladium (1.04 g, 0.90 mmol) were 

reacted with the boronic acid 55 (4.7 g, 

18 mmol) dissolved in dimethoxye-

thane : water (95 mL, 4:1). 6-bromo-

nicotinonitrile (2.9 g, 16.4 mmol) was added 

and the entire reaction mixture refluxed for 

16 h. The dark red suspension was cooled 

to ambient temperature and diluted with wa-

ter (65 mL). The organic layer was separat-

ed. The aqueous layer was extracted with 

ethylacetate (3 x 50 mL), the combined or-

ganic layer was washed with BRINE 

(3 x 50 mL), dried over sodium sulfate. The 

crude material was concentrated in vacuo 

and subjected to column chromatography 

using hexane : ethylacetate (15:1  3:1). 

The product 69 was obtained as a brown oil 

(3.9 g, 12.2 mmol, 68%). Rf = 0.62 (methyl-

ene chloride : methanol 35:1). 1H-NMR 

(300 MHz, CDCl3): δ(ppm) 8.76 (dd, J = 2.1, 

0.8 Hz, 1H, CHar-6´), 8.00 (dd, J = 8.4, 0.8 

Hz, 1H, CHar-7), 7.82 (dd, J = 8.2, 2.2 Hz, 

1H, CHar-4´), 7.49–7.42 (m, 2H, CHar-4, 

CHar-3´), 7.26 (ddd, J = 8.3, 7.3, 1.3 Hz, 1H, 

CHar-6), 7.18–7.09 (m, 1H, CHar-5), 6.77 (d, 

J = 0.4 Hz, 1H, CHar-3), 1.28 (s, 9H, 

OCq(CH3)3). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 156.26 (Car-2´), 151.74 (Ccarbonyl), 

139.09, 128.65, 126.10, 124.78, 123.40, 

122.79, 121.87, 121.62, 120.87, 119.28, 

116.89, 115.18, 113.52, 84.35 (OCq(CH3)3), 

27.81 (OCq(CH3)3). IR (film): v (cm-1) 2227, 

1731, 1587, 1552, 1470, 1445, 1391, 1363, 

1316, 1227, 1139, 1023, 945, 849, 824, 794, 

772, 743, 686, 660. HRMS calculated for 
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C19H18N3O2 (M + H+) 320.1394 found 

(M + H+) 320.1395. 

5.2.1.23 tert-butyl 5-(tert-butyldimethyl-

silyloxy)-2-(5-fluoropyridin-2-yl)-1H-

indole-1-carboxylate (70) 

 

 

Sodium carbonate (1.53 g, 

14.44 mmol), and tetrakis(triphenylphos-

phine)palladium (350 mg, 0.303 mmol) were 

reacted with the boronic acid 56 (2.25 g, 

5.76 mmol) dissolved in dimethoxy-

ethane : water (30 mL, 4:1). 5-Fluoro-2-

bromopyridine (0.95 g, 5.40 mmol) was 

added and the entire reaction mixture re-

fluxed for 16 h. The dark red suspension 

was cooled to ambient temperature and di-

luted with water (25 mL). The organic layer 

was separated. The aqueous layer was ex-

tracted with ethylacetate (4 x 25 mL), the 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate. The crude material was concentrated in 

vacuo and subjected to column chromatog-

raphy with hexane : ethylacetate (15:1). The 

product 70 was obtained as a colourless oil 

(1.52 g, 3.43 mmol, 60%). Rf = 0.53 (hex-

ane : ethylacetate 15:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.52 (dd, J = 2.0, 1.0, 1H, 

CHar-6´), 8.01 (d, J = 8.9 Hz, 1H, CHar-7), 

7.53 - 7.42 (m, 2H, CHar-3´,CHar-4´), 7.00 (d, 

J = 2.3 Hz, 1H, CHar-4), 6.89 (dd, J = 8.9, 

2.4, 1H, CHar-6), 6.64 (s, 1H, CHar-3), 1.37 

(s, 9H, OCq(CH3)3), 1.00 (s, 9H, SiCq(CH3)3), 

0.20 (s, 6H, Si(CH3)2). 
13C-NMR (75 MHz, 

CDCl3): δ(ppm) 158.72 (d, J = 256. Hz, 

Car-5´), 151.78 (Ccarbonyl), 150.06 (Car-5), 

149.71 (d, J = 3.9 Hz, Car-2´) , 138.78 

(Car-2), 137.23 (d, J = 23.7 Hz, Car-6´), 

132.98 (Car-7a), 129.79 (Car-3a), 124.47 (d, 

J = 4.4 Hz, Car-3´), 122.99 (d, J = 18.79 Hz, 

Car-4´), 118.77 (Car-6), 115.91 (Car-7), 

111.28 (Car-4), 110.99 (Car-3), 83.59 

(OCq(CH3)3), 27.86 (OCq(CH3)3), 25.91 

(SiCq(CH3)3), 18.40 (SiCq(CH3)3), -4.28 

(Si(CH3)2). HRMS calculated for 

C24H31FN2O3SiNa (M + Na+) 465.1980 found 

(M + Na+) 465.1981. 

5.2.1.24 2-(5-fluoropyridin-2-yl)-5-methoxy-

1H-indole (71) 

 

 

Sodium carbonate (4.5 g, 

42.5 mmol), and tetrakis(triphenylphos-

phine)palladium (1.9 g, 1.7 mmol) were re-

acted with the boronic acid 58 (4.95 g, 

17 mmol) dissolved in dimethoxye-

thane : water (72 mL, 4:1). 2-Bromo-5-

fluoropyridine (2.69 g, 15.4 mmol) was add-

ed and the entire reaction mixture refluxed 

for 16 h. The dark yellow suspension was 

cooled to ambient temperature and diluted 

with water (50 mL). The organic layer was 

separated. The aqueous layer was extracted 

with ethylacetate (5 x 30 mL), the combined 

organic layer was washed with BRINE 

(3 x 50 mL), dried over sodium sulfate. The 

crude material was concentrated in vacuo 

and subjected to column chromatography 

using hexane : ethylacetate (10:1). The tert-

butyloxycarbonyl protected intermediate was 

obtained as a brown oil (4.43 g, 12.9 mmol). 

The intermediate was dissolved in methyl-

ene chloride and subjected to silica gel 

(40 g). After complete removal of the solvent 

under reduced pressure, the soaked com-

pound was heated to 80 °C in vacuo for 

16 h. The silica gel was suspended in ethyl-

acetate and filtrated over CELITE. The prod-

uct was dried in vacuo to obtained 71 as a 

beige solid (3.24 g, 13.4 mmol, 79% over 2 

steps). Rf = 0.26 (hexane : ethylacetate 8:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 9.38 

(bs, 1H, NH), 8.41 (d, J = 2.9 Hz, 1H, CHar-
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6´), 7.75 (dd, J = 8.8, 4.3 Hz, 1H, CHar-3´), 

7.47–7.40 (m, 1H, CHar-4´), 7.30 (d, J = 8.8 

Hz, 1H, CHar-7), 7.09 (d, J = 2.4 Hz, 1H, 

CHar-4), 6.90 (dd, J = 8.9, 2.5 Hz, 1H, 

CHar-6), 6.88–6.86 (m, 1H, CHar-3), 3.87 (s, 

3H, OCH3). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 158.63 (d, J = 255.7 Hz, Car-5´), 

154.72 (Car-5), 147.01 (d, J = 3.9 Hz, Car-2´), 

137.17 (d, J = 24.4 Hz, Car-6´), 136.48 (Car-

2), 132.11 (Car-7a), 129.68 (Car-3a), 124.01 

(d, J = 19.1 Hz, Car-4´), 120.73 (d, J = 4.3 

Hz, Car-3´), 114.13 (Car-6), 112.26 (Car-7), 

102.66 (Car-4), 100.34 (Car-3), 55.98 (OCH3). 

IR (film): v (cm-1) 3446, 1545, 1455, 1354, 

1297, 1216, 1148, 1111, 1027, 942, 888, 

825, 787, 738, 652, 616, 577, 516. 

5.2.1.25 5-(tert-butyldimethylsilyloxy)-2-(5-

fluoropyridin-2-yl)-1H-indole (72) 

 

 

Pyridylindole 70 (1.44 g, 3.26 mmol) 

was dissolved in methylene chloride and 

subjected to silica gel (15 g). After complete 

removal of the solvent under reduced pres-

sure, the soaked compound was heated to 

80 °C in vacuo for 16 h. The silica gel was 

suspended in ethylacetate and filtrated over 

CELITE. The crude material was concen-

trated in vacuo and subjected to column 

chromatography with hexane : ethylacetate 

(6:1). The product 72 was dried in vacuo 

and obtained as a white solid (1.04 g, 

3.04 mmol, 93%). Rf = 0.40 (hexane : ethyl-

acetate 6:1). 1H-NMR (300 MHz, CDCl3): 

δ(ppm) 9.35 (s, 1H, NH), 8.41 (d, J = 2.8 Hz, 

1H, CHar-6´), 7.76 (dd, J = 8.5, 4.3 Hz, 1H, 

CHar-3´), 7.45 (ddd, J = 8.7, 8.2, 2.9 Hz, 1H, 

CHar-4´), 7.25 (d, J = 8.7 Hz, 1H, CHar-7), 

7.06 (d, J = 2.3 Hz, 1H, CHar-4), 6.84 (d, J = 

1.4 Hz, 1H, CHar-3), 6.80 (dd, J = 8.7, 2.3 

Hz, CHar-6), 1.01 (s, 9H, SiCq(CH3)3), 0.21 

(s, 6H, Si(CH3)2). 
13C-NMR (75 MHz, 

CDCl3): δ(ppm) 158.59 (d, J = 255.7 Hz, 

Car-5´), 155.18 (Car-2´), 149.86 (Car-5), 

136.99 (d, J = 24.55 Hz, Car-6´), 132.54 

(Car-2), 132.53 (Car-7a), 129.85 (Car-3a), 

124.18 (d, J = 18.98 Hz, Car-4´), 120.81 (d, J 

= 4.46, Car-3´), 118.12 (Car-4), 111.86 

(Car-6), 110.40 (Car-7), 100.30 (Car-3), 25.96 

(SiCq(CH3)3), 18.40 (SiCq(CH3)3), -4.25 

(Si(CH3)2). IR (film): v (cm-1) 3457, 2957, 

2858, 2251, 1625, 1549, 1459, 1385, 1288, 

1229, 1152, 1118, 1010, 965, 903, 835, 784, 

724, 650, 585, 527, 488, 440, 395. HRMS 

calculated for C19H23FN2OSiH (M + H+) 

343.1642 found (M + H+) 343.1636. 

5.2.1.26 3-bromo-4-(5-(tert-butyldimethyl-

silyloxy)-2-(5-fluoropyridin-2-yl)-1H-

indol-3-yl)-1-methyl-1H-pyrrole-2,5-

dione (73) 

 

 

72 (921 mg, 2.69 mmol) was dis-

solved in THF (8 mL) and cooled to -15 °C. 

Lithium bis(trimethylsilyl)amide (8.1 mL, 

8.07 mmol, 1 M in hexane) was added drop 

wise over a period of 90  min and the solu-

tion turned from colourless to yellow. 38 

(796 mg, 2.96 mmol) was dissolved in THF 

(5 mL) and added drop wise to the reaction 

mixture over a period of 20 min. An immedi-

ate colour change from yellow to dark purple 

was observed. The reaction mixture was 

protected from light and stirred for 1 h 

at -15 °C followed by 16 h at ambient tem-

perature. The reaction was finished by pour-

ing the entire reaction mixture into ice 

cooled hydrochloric acid (63 mL). The or-

ganic layer was separated and the aqueous 

layer was extracted with ethylacetate 

(4 x 50 mL). The combined organic layer 

was washed with BRINE (3 x 50 mL), and 
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dried over sodium sulfate. The crude mate-

rial was concentrated in vacuo and subject-

ed to column chromatography hex-

ane : ethylacetate (6:1  1:1). The product 

73 was dried in vacuo and obtained as a red 

solid (923 mg, 1.74 mmol, 65%). Rf = 0.26 

(hexane : ethylacetate 3:1). Due to its light 

sensitivity the mono bromide intermediate 

was directly processed to the cyclisation 

reaction without further characterisation. 

5.2.1.27 3-bromo-1-(tert-butyldimethylsilyl)-

4-(2-(5-fluoropyridin-2-yl)-5-meth-

oxy-1H-indol-3-yl)-1H-pyrrole-2,5-

dione (74) 

 

 

71 (3.25 g, 13.4 mmol) was dis-

solved in THF (40 mL) and cooled to -15 °C. 

Lithium bis(trimethylsilyl)amide (40 mL, 

40 mmol, 1 M in hexane) was added drop 

wise over a period of 90  min and the solu-

tion turned from colourless to yellow. 42 

(5.43 g, 14.74 mmol) was dissolved in THF 

(30 mL) and added drop wise to the reaction 

mixture over a period of 30 min. An immedi-

ate colour change from yellow to dark purple 

was observed. The reaction mixture was 

protected from light and stirred for 1 h 

at -15 °C followed by 16 h at ambient tem-

perature. The reaction was finished by pour-

ing the entire reaction mixture into ice 

cooled hydrochloric acid (400 mL). The or-

ganic layer was separated and the aqueous 

layer was extracted with ethylacetate 

(5 x 75 mL). The combined organic layer 

was washed with BRINE (3 x 50 mL), and 

dried over sodium sulfate. The crude mate-

rial was concentrated in vacuo and subject-

ed to column chromatography using hex-

ane : ethylacetate (8:1  1:1). The product 

74 was dried in vacuo and obtained as a red 

solid (5.03 g, 9.46 mmol, 71%). Rf = 0.78 

(hexane : ethylacetate 1:1). Due to its light 

sensitivity the mono bromide intermediate 

was directly proceeded to the cyclisation 

reaction without further characterisation. 

5.2.1.28 3-bromo-1-(tert-butyldimethylsilyl)-

4-(2-(pyridin-2-yl)-1H-indol-3-yl)-

1H-pyrrole-2,5-dione (75) 

 

 

46 (875 g, 4.5 mmol) was dissolved 

in THF (15 mL) and cooled to -15 °C. Lithi-

um bis(trimethylsilyl)amide (13.5 mL, 1 M in 

hexane) was added drop wise over a period 

of 45  min and the solution turned from col-

ourless to yellow. 42 (1.85 g, 5.0 mmol) was 

dissolved in THF (20 mL) and added drop 

wise to the reaction mixture over a period of 

20 min. An immediate colour change from 

yellow to dark purple was observed. The 

reaction mixture was protected from light 

and stirred for 1 h at -15 °C followed by 16 h 

at ambient temperature. The reaction mix-

ture turned into a dark purple colour. The 

reaction was finished by pouring the entire 

reaction mixture into ice cooled hydrochloric 

acid (135 mL). The organic layer was sepa-

rated and the aqueous layer was extracted 

with ethylacetate (5 x 50 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), and dried over sodium sulfate. 

The crude material was concentrated in 

vacuo and subjected to column chroma-

tography using hexane : ethylacetate (6:1  

1:1). The product was dried in vacuo and 

obtained as a red solid (1.47 g, 3.1 mmol, 

68%). Due to its light sensitivity the mono 
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bromide intermediate was directly pro-

ceeded to the cyclisation reaction without 

further characterisation. 

5.2.1.29 1-benzyl-3-bromo-4-(2-(pyridin-2-

yl)-1H-indol-3-yl)-1H-pyrrole-2,5-

dione (76) 

 

 

46 (1.1 g, 5.68 mmol) was dissolved 

in THF (14.5 mL) and cooled to -15 °C. Lith-

ium bis(trimethylsilyl)amide (25 mL, 1 M in 

hexane) was added drop wise over a period 

of 90  min and the solution turned from col-

ourless to yellow. 37 (2.05 g, 5.95 mmol) 

was dissolved in THF (18 mL) and added 

drop wise to the reaction mixture over a pe-

riod of 20 min. An immediate colour change 

from yellow to dark red was observed. The 

reaction mixture was protected from light 

and stirred for 1 h at -15 °C followed by 16 h 

at ambient temperature. The reaction mix-

ture turned into a dark purple colour. The 

reaction was finished by pouring the entire 

reaction mixture into ice cooled hydrochloric 

acid (125 mL). The organic layer was sepa-

rated and the aqueous layer was extracted 

with ethylacetate (4 x 50 mL). The combined 

organic layer was washed with BRINE 

(3 x 50 mL), and dried over sodium sulfate. 

The crude material was concentrated in 

vacuo and subjected to column chroma-

tography using hexane : ethylacetate (3:1  

1:1). The product 76 was dried in vacuo and 

obtained as a orange solid (1.4 mg, 

3.7 mmol, 54%). Rf = 0.51 (hexane : ethyl-

acetate 3:1). Due to its light sensitivity the 

mono bromide intermediate was directly pro-

ceeded to the cyclisation reaction without 

further characterisation. 

5.2.1.30 9-(tert-butyldimethylsilyloxy)-3-

fluoro-6-methylpyrido[2,3-a]pyr-

rolo[3,4-c]carbazole-5,7(6H,12H)-

dione (77) 

 

 

Mono bromide 73 (860 mg, 

1.62 mmol) was suspended in toluene 

(900 mL), continuously purged with nitrogen 

and subjected 2 h to an iron iodide endowed 

mercury UV lamp (700 W, max = 350 nm) 

under intensive stirring and water cooling in 

a UV reactor. The crude material was con-

centrated under reduced pressure and sub-

jected to column chromatography using 

methylene chloride : methanol (100:0  

20:1). The product 77 was dried in vacuo 

and obtained as an orange solid (388 mg, 

0.86 mmol, 53%). Rf = 0.39 (methylene chlo-

ride 100%). 1H-NMR (300 MHz, 

CDCl3/(CD3)2SO (4:1)): δ(ppm) 8.65 (dd, J = 

6.3, 2.7 Hz, 2H, CHar-2, CHar-4), 8.24 (d, J = 

2.3 Hz, 1H, CHar-8), 7.48 (d, J = 8.6 Hz, 1H, 

CHar-11), 6.99 (dd, J = 8.7, 2.4 Hz, 1H, 

CHar-10), 3.10 (s, 3H, NCH3), 0.97 (s, 9H, 

SiCq(CH3)3), 0.23 (s, 6H, Si(CH3)2). 
13C-NMR 

(75 MHz, CDCl3/(CD3)2SO (4:1)): δ(ppm) 

168.90 (Car-7), 168.04 (Car-5), 156.80 (d, J = 

257.7 Hz, Car-3), 149.83 (Car-9), 140.20 

(Car), 139.79 (d, J = 27.6 Hz, Car-2), 135.05 

(Car), 134.11 (Car), 128.67 (Car), 121.46 (Car), 

121.29 (Car), 121.20 (Car), 120.51 (Car), 

116.02 (d, J = 19.0 Hz, Car-4), 113.22 (Car), 

112.20 (Car), 25.29 (SiCq(CH3)3), 23.13 

(NCH3), 17.70 (SiCq(CH3)3), -4.88 (Si(CH3)2). 

IR (film): v (cm-1) 3322, 2931, 2892, 2857, 

1753, 1689, 1620, 1566, 1527, 1468, 1442, 

1415, 1373, 1331, 1279, 1250, 1219, 1167, 

1125, 959, 891. HRMS calculated for 

C24H25FN3O3Si (M + H+) 450.1644 found 

(M + H+) 450.1664. 
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5.2.1.31 6-(tert-butyldimethylsilyl)-3-fluoro-9-

methoxypyrido[2,3-a]pyrrolo[3,4-

c]carbazole-5,7(6H,12H)-dione (78) 

 

 

74 (2.2 g, 4.15 mmol) were dissolved 

in toluene (900 mL), continuously purged 

with nitrogen and subjected 5 h to an iron 

iodide endowed mercury UV lamp (700 W, 

max = 350 nm) under intensive stirring and 

water cooling in a UV reactor. The orange 

coloured crude material was concentrated 

under reduced pressure and subjected to 

column chromatography using methylene 

chloride : methanol (100:1  10:1). The 

product 78 was dried in vacuo and obtained 

as an orange solid (1.25 g, 2.7 mmol, 67%). 

Rf = 0.42 (hexane : ethylacetate 3:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 10.12 

(bs, NH), 9.27 (dd, J = 9.1, 2.6 Hz, 1H, 

CHar-4), 8.89 (d, J = 2.7 Hz, 1H, CHar-2), 

8.61 (d, J = 2.2 Hz, 1H, CHar-8), 7.63 (d, J = 

8.9 Hz, 1H, CHar-11), 7.29 (m, 1H, CHar-10), 

4.04 (s, 3H, OCH3), 1.06 (s, 9H, SiCq(CH3)3), 

0.63 (s, 6H, Si(CH3)2). IR (film): v (cm-1) 

3443, 2929, 2855, 1744, 1687, 1627, 1557, 

1528, 1473, 1412, 1363, 1337, 1305, 1252, 

1213, 1179, 1153, 1035, 938, 904, 823, 804. 

HRMS calculated for C24H25FN3O3Si 

(M + H+) 450.1644 found (M + H+) 450.1644. 

5.2.1.32 6-(tert-butyldimethylsilyl)pyrido[2,3-

a]pyrrolo[3,4-c]carbazole-

5,7(6H,12H)-dione (79) 

 

 

Mono bromide 75 (1.00 g, 

2.08 mmol) was suspended in toluene 

(900 mL), continuously purged with nitrogen 

and subjected 3 h to an iron iodide endowed 

mercury UV lamp (700 W, max = 350 nm) 

under intensive stirring and water cooling in 

a UV reactor. The crude material was con-

centrated under reduced pressure and sub-

jected to column chromatography using 

methylene chloride : methanol (100:0  

20:1). The product 79 was dried in vacuo 

and obtained as an orange solid (526 mg, 

1.31 mmol, 63%). Rf = 0.71 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 10.27 (bs, 1H, NH), 9.41 

(dd, J = 8.6 Hz, J = 1.6 Hz, 1H, CHar), 9.09 

(d, J = 7.9 Hz, 1H, CHar), 9.02 (dd, J = 4.2 

Hz, J = 1.7 Hz, 1H, CHar), 7.65 (dd, J = 8.4 

Hz, J = 4.3 Hz, 1H, CHar), 7.65-7.54 (m, 2H, 

CHar), 7.45–7.40 (m, 1H, CHar), 1.07 (s, 9H, 

SiCq(CH3)3), 0.64 (s, 6H, Si(CH3)2). 
13C-NMR 

(75 MHz, CDCl3): δ(ppm) 175.5 (Car-7), 

173.9 (Car-5), 150.4, 140.1, 139.7, 138.5, 

134.5, 130.8, 127.3, 125.7, 122.8, 122.3, 

121.7, 121.9, 120.9, 115.3, 111.6, 26.6 

(SiCq(CH3)3), 19.1 (SiCq(CH3)3), −4.0 

(Si(CH3)2). HRMS calculated for 

C23H24N3O2Si (M + H+) 402.1632 found 

(M + H+) 402.1632. 
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5.2.1.33 6-benzylpyrido[2,3-a]pyrrolo[3,4-

c]carbazole-5,7(6H,12H)-dione (80) 

 

 

76 (334 mg, 729 µmol) were dis-

solved in toluene (900 mL), continuously 

purged with nitrogen and subjected 2.5 h to 

an iron iodide endowed mercury UV lamp 

(700 W, max = 350 nm) under intensive stir-

ring and water cooling in a UV reactor. The 

orange coloured crude material was concen-

trated under reduced pressure and subject-

ed to column chromatography using meth-

ylene chloride : methanol (100:1  10:1). 

The product 80 was dried in vacuo and ob-

tained as an orange solid (220 mg, 

583 µmol, 80%). Rf = 0.28 (hexane : ethyl-

acetate 1:1). 1H-NMR (300 MHz, CDCl3): 

δ(ppm) 10.40 (s, 1H, NH), 9.28 (dd, J = 8.5, 

1.6, Hz, 1H, CHar), 8.93 (d, J = 8.0 Hz, 1H, 

CHar), 8.89 (dd, J = 1.6, 4.3 Hz, 1H, CHar), 

7.58-7.50 (m, 5H, CHar), 7.41-7.28 (m, 4H, 

CHar), 4.94 (s, 2H, CHbenzyl). IR (film): v 

(cm-1) 3334, 2924, 2853, 2078, 1754, 1695, 

1640, 1529, 1499, 1461, 1430, 1385, 1334, 

1295, 1234, 1145, 1104, 1070, 976, 934, 

796, 737, 694, 624, 498. HRMS calculated 

for C24H15N3O2Na (M + Na+) 400.1062 found 

(M + Na+) 400.1056. 
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5.2.2 Synthesis of ligands and related 

intermediates 

5.2.2.1 1,4,7-trithiacyclodecan-9-one (90) 

 

 

Caesium Carbonate (860 mg, 

2.64 mmol) were suspended in 150 mL 

freshly distilled DMF and heated to 60 °C 

under a nitrogen atmosphere. The reaction 

mixture was stirred continuously while 

2,2’-thiodiethanthiol (311 µL, 2.39 mmol) 

and 1,3-dichloracetone (304.5 mg, 

2.39 mmol) were added dropwise via a 

dropping funnel diluted in a total amount of 

150 mL DMF. The drop wise addition of the 

reactants was performed over a time period 

of 8 h followed by an additional 8 h of stir-

ring at 60 °C. The white suspension turned 

into a pale red solution. The reaction mixture 

was concentrated to dryness in vacuo. The 

crude product was absorbed onto silica gel 

and purified by column chromatography us-

ing hexane : ethylacetate (3:1). The com-

bined product eluents were dried in vacuo to 

provide 90 as a white solid (229 mg, 

1.09 mmol, 46%). Rf = 0.47 (hexane : ethyl-

acetate 3:1). 1H-NMR (300 MHz, CDCl3): 

δ(ppm) 3.53 (s, 4H, 2xSCH2CO), 2.72 (s, 

8H, 4xCH2). 
13C-NMR (75.5 MHz, CDCl3): 

δ(ppm) 199.84 (Ccarbonyl), 37.68, 32.03, 

31.35. IR (film): ν (cm-1) 2961, 1695, 1417, 

1394, 1365, 1252, 1193, 1144, 1070, 680, 

565, 485. HRMS calculated for C8H12OS3Na 

(M + Na)+ 230.9948, found (M + Na)+ 

230.9975. 

5.2.2.2 N-methyl-1,4,7-trithiacyclodecan-9-

amine (91) 

 

 

Potassium carbonate (548 mg, 

3.97 mmol) was added to a solution of 

MeNH2∙HCl (268 mg, 3.97 mmol) stirring in 

methanol (5 mL) at 0 °C under a nitrogen 

atmosphere. The resulting mixture was 

stirred at 0 °C for an additional 1 hour, fol-

lowed by the addition of 90 (694.8 mg, 

3.33 mmol) in methanol (45 mL). The sus-

pension was then stirred at 34 °C for 1 hour. 

After the addition of NaBH3CN (419 mg, 

6.66 mmol) the reaction mixture was stirred 

over night at 34 °C. After the addition of sat-

urated NaHCO3 (25 mL) the crude product 

was extracted using methylene chloride 

(3 x 50 mL). The combined organic layers 

were dried using Na2SO4, filtered and con-

centrated to dryness in vacuo. The crude 

material was adsorbed onto silica gel and 

subjected to silica gel chromatography with 

methylene chloride : methanol (35:1  

20:1). The combined product eluents were 

dried in vacuo to provide 91 (271 mg, 

1.21 mmol, 36%) as a pale oil. Rf = 0.21 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 3.34-

2.86 (m, 13H), 2.82 (br, 1H, NHCH3), 2.51 

(s, 3H, NHCH3). 
13C-NMR (75.5 MHz, 

CDCl3): δ(ppm) 59.85 (CNHCH3), 34.33, 

34.22, 34.09, 34.05. IR (film): ν (cm-1) 3381, 

3321, 2919, 1697, 1415, 1264, 1188, 1129, 

1066, 1025, 951, 812, 685, 507, 429. HRMS 

calculated for C8H18NS3 (M + H)+ 224.0596, 

found (M + H)+ 224.0596. 
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5.2.2.3 Allyl-N-methyl-(1,4,7-trithiacyclo-

decan-9-y)carbamate (93) 

 

 

To a solution of 91 (271 mg, 

1.21 mmol) in methylene chloride (9 mL) at 

0 °C were added allyl chloroformiate (92) 

(194 µL, 1.82 mmol), pyridine (98 µL, 

1.21 mmol), and 4-dimethylaminopyridine 

(7 mg, 57 µmol) under a nitrogen atmo-

sphere. The resulting mixture solution was 

then allowed to warm up to ambient tempe-

rature slowly and stirred overnight. The solu-

tion was diluted with methylene chloride and 

washed with water (3 x 20 mL) and brine 

(3 x 20 mL). The organic layer was separat-

ed and dried using Na2SO4, filtered and 

concentrated to dryness in vacuo. The crude 

material was subjected to silica gel chroma-

tography using hexane : ethyl acetate 

(10:1  8:1). The product 93 (259 mg, 

844 µmol, 70%) was obtained as a pale oil. 

Rf = 0.47 (hexane : ethylacetate 3:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 6.01-

5.88 (m, 1H, CCH2), 5.34-5.19 (m, 2H, 

CCH2), 4.60 (d, J = 5.5 Hz, 2H, CH2allyl), 

3.29-3.00 (m, 13H), 2.88 (s, 3H, NCH3). 
13C-NMR (75.5 MHz, CDCl3): δ(ppm) 71.0, 

70.5, 70.4, 38.4, 36.7, 34.1, 33.8, 33.1, 32.4 

IR (film): ν(cm-1) 2910, 1692, 1448, 1399, 

1321, 1266, 1231, 1198, 1145, 992, 928, 

768. HRMS calculated for C12H21NO2S3Na 

(M + Na)+ 330.0627, found (M + Na)+ 

330.0626. 

5.2.2.4 (R)-methyl pyrrolidine-2-carboxy-

late hydrochloride ((R)-102) 

 

 

(R)-pyrrolidine-2-carboxylic acid 

(2.00 g, 17.4 mmol) was suspended in 

methanol (25.0 mL) and thionylchloride 

(1.52 mL, 20.8 mmol) was added drop wise 

at 0 °C. The reaction mixture was refluxed 

for 18 h. The solvent was removed under 

reduced pressure and the residue resolved 

in methanol (10.0 mL) then concentrated 

again under reduced pressure. This proce-

dure was repeated three times. The product 

(R)-102 was obtained as white solid (2.91 g, 

17.6 mmol, quant.). Rf = 0.41 (methylene 

chloride : methanol 5:1). 1H-NMR (300 MHz, 

CD3OD): δ(ppm) 4.29 (s, 3H, OCH3), 3.89 

(m, 1H, CH), 2.90–2.78 (m, 2H), 1.98–1.80 

(m, 1H), 1.68–1.46 (m, 3H). 13C-NMR 

(75 MHz, CD3OD): δ(ppm) 170.47 (Ccarbonyl), 

60.67 (C), 53.94 (OCH3), 47.16 (C), 29.26 

(C), 24.49 (C). IR (film): v (cm-1) 3396, 

2917, 2732, 2555, 1738, 1632, 1568, 1441, 

1389, 1356, 1287, 1234, 1091, 1042, 1002, 

918, 859, 658, 551, 459. HRMS calculated 

for C6H12NO2 (M + H+) 180.0863 found 

(M + H+) 180.0863. 
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5.2.2.5 (S)-methyl pyrrolidine-2-carboxylate 

hydrochloride ((S)-102) 

 

 

(S)-pyrrolidine-2-carboxylic acid 

(5.00 g, 43.5 mmol) was suspended in 

methanol (50.0 mL) and thionylchloride 

(3.17 mL, 43.5 mmol) was added drop wise 

at 0 °C. The reaction mixture was refluxed 

for 16 h. The solvent was removed under 

reduced pressure and the residue resolved 

in methanol (10.0 mL) then concentrated 

again under reduced pressure. This proce-

dure was repeated three times. The product 

(S)-102 was obtained as white solid (6.95 g, 

42.0 mmol, 96%). Rf = 0.41 (methylene chlo-

ride : methanol 5:1). 1H-NMR (300 MHz, 

CD3OD): δ(ppm) 10.84 (s, 1H, NHH), 8.68 

(s, 1H, NHH), 4.39–4.23 (m, 1H, CH), 3.68 

(s, 3H, OCH3), 3.48–3.33 (m, 2H), 2.34–2.20 

(m, 1H), 2.07–1.81 (m, 3H). 13C-NMR 

(75 MHz, CD3OD): δ(ppm) 170.45 (Ccarbonyl), 

60.69 (C), 53.95 (OCH3), 47.19 (C), 29.27 

(C), 24.51 (C). IR (film): v (cm-1) 3403, 

2952, 2731, 2551, 1739, 1632, 1569, 1443, 

1389, 1355, 1234, 1091, 1046, 1003, 918, 

862, 730. HRMS calculated for C6H12NO2 

(M + H+) 130.0863 found (M + H+) 130.0867. 

5.2.2.6 (R)-methyl 1-(pyridin-2-ylmethyl) 

pyrrolidine-2-carboxylate ((R)-104) 

 

 

Palladium on carbon (460 mg, 

0.4 mmol, 10 wt. %) was suspended in 

methanol (30.0 mL) and picolinaldehyde 

(103) (1.37 mL, 14.3 mmol) was added at 

0 °C. Sodium acetate (2.34 g, 28.6 mmol) 

was added to the reaction mixture. Then, 

(R)-102 (2.00 g, 14.3 mmol) was added. The 

reaction mixture was stirred for 1 h and the 

nitrogen atmosphere was completely sub-

stituted by hydrogen in three turns. The re-

action was continued for 16 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was sub-

jected to column chromatography using 

methylene chloride :  methanol (35:1  

10:1). The product (R)-104 was obtained as 

a brown oil (1.92 g, 8.73 mmol, 61%). 

Rf = 0.45 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.53 (dd, J = 4.8, 0.7 Hz, 1H, CHar-6), 7.65 

(td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.46 (d, J = 

7.8 Hz, 1H, CHar-3), 7.20 – 7.12 (m, 1H, 

CHar-5), 4.05 (d, J = 13.5 Hz, 1H, NCHH), 

3.79 (d, J = 13.5 Hz, 1H, NCHH), 3.66 (s, 

3H, OCH3), 3.49 – 3.33 (m, 1H, CH), 3.18 – 

3.03 (m, 1H), 2.54 (dd, J = 16.7, 7.9 Hz, 

1H), 2.26 – 2.09 (m, 1H), 2.05 – 1.72 (m, 

3H). 13C-NMR (75 MHz, CDCl3): δ(ppm) 

174.21 (Ccarbonyl), 158.24 (Car-2), 148.65 

(Car-6), 136.96 (Car-4), 123.83 (Car-3), 

122.41 (Car-5), 65.33 (NCH2), 59.76 (C), 

53.56 (OCH3), 51.87 (C), 29.33 (C), 23.24 

(C). IR (film): v (cm-1) 3380, 3056, 2953, 

1665, 1628, 1590, 1570, 1529, 1474, 1435, 

1384, 1306, 1205, 1151, 1090, 1047, 995, 

927, 888, 824, 752. HRMS calculated for 
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C12H17N2O2 (M + H+) 221,1285 found 

(M + H+) 221.1286. 

5.2.2.7 (S)-methyl 1-(pyridin-2-ylmethyl) 

pyrrolidine-2-carboxylate ((S)-104) 

 

 

Palladium on carbon (293 mg, 

0.25 mmol, 10 wt. %) was suspended in 

methanol (20.0 mL) and picolinaldehyde 

(103) (870 µL, 9.1 mmol) was added at 0 °C. 

Sodium acetate (1.5 g, 18.3 mmol) was 

added to the reaction mixture. Then, (S)-102 

(1.3 g, 9.1 mmol) was added. The reaction 

mixture was stirred for 1 h and the nitrogen 

atmosphere was completely substituted by 

hydrogen in three turns. The reaction was 

continued for 16 h allowing the mixture to 

warm up to ambient temperature. The reac-

tion mixture was filtrated over CELITE and 

the crude material was subjected to column 

chromatography using methylene chlo-

ride :  methanol (35:1  10:1). The product 

(S)-104 was obtained as a brown oil (1.83 g, 

8.31 mmol, 58%). Rf = 0.45 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.52 – 8.43 (m, 1H, CHar-6), 

7.59 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.39 

(d, J = 7.8 Hz, 1H, CHar-3), 7.09 (dd, J = 6.8, 

5.5 Hz, 1H, CHar-5), 3.99 (d, J = 13.5 Hz, 

1H, NCHH), 3.72 (d, J = 13.5 Hz, 1H, 

NCHH), 3.60 (s, 3H, OCH3), 3.36 – 3.27 (m, 

1H, CH), 3.11 – 2.99 (m, 1H), 2.47 (dd, J = 

16.7, 7.9 Hz, 1H), 2.20 – 2.03 (m, 1H), 1.99 

– 1.85 (m, 2H), 1.84 – 1.68 (m, 1H). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 174.49 

(Ccarbonyl), 158.96 (Car-2), 149.01 (Car-6), 

136.39 (Car-4), 123.35 (Car-3), 122.01 

(Car-5), 65.38 (NCH2), 60.29 (C), 53.50 

(OCH3), 51.66 (C), 29.38 (C), 23.31 (C). 

IR (film): v (cm-1) 2952, 2877, 2814, 1735, 

1591, 1470, 1434, 1362, 1276, 1197, 1169, 

1089, 1041, 996, 929, 893, 836, 757, 698, 

622, 469, 403. 

5.2.2.8 (R)-1-(pyridin-2-ylmethyl)pyrrol-

idine-2-carboxylic acid ((R)-105) 

 

 

(R)-104 (2.40 g, 11.0 mmol) was 

suspended in sodium hydroxide (15.0 mL, 1 

M) at 0 °C and reacted for 18 h. The reaction 

mixture was washed with methylene chlo-

ride (5 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (10.00 mL) and filtrat-

ed via a syringe filter. The residue was dried 

in vacuo to obtain the product (R)-105 as a 

brown oil (2.06 g, 10.0 mmol, 91%). 

Rf = 0.05 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.21 (d, J = 4.8 Hz, 1H, CHar-6), 7.45 (td, J = 

7.7, 1.7 Hz, 1H, CHar-4), 7.13 (d, J = 7.8 Hz, 

1H, CHar-3), 7.01 (dd, J = 7.6, 4.9 Hz, 1H, 

CHar-5), 4.22 (d, J = 13.9 Hz, 1H, NCHH), 

4.09 (d, J = 13.9 Hz, 1H, NCHH), 3.37 – 

3.26 (m, 1H, CH), 2.93–2.77 (m, 1H), 2.15–

1.97 (m, 1H), 1.86–1.66 (m, 2H), 1.65–1.45 

(m, 1H). 13C-NMR (75 MHz, CD3OD): 

δ(ppm) 173.29 (Ccarbonyl), 152.36 (Car-2), 

150.84 (Car-6), 138.88 (Car-4), 125.38 

(Car-3), 125.32 (Car-5), 70.61 (NCH2), 59.78 

(C), 55.99 (C), 29.98 (C), 24.40 (C). IR 

(film): v (cm-1) 3374, 2982, 1620, 1440, 

1390, 1316, 1209, 1157, 1098, 1052, 996, 

928, 831, 76. HRMS calculated for 

C11H14N2O2Na (M + Na+) 229.0947 found 

(M + Na+) 229.0946. 
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5.2.2.9 (S)-1-(pyridin-2-ylmethyl)pyrrol-

idine-2-carboxylic acid ((S)-105) 

 

 

(S)-104 (1.20 g, 5.5 mmol) were 

suspended in sodium hydroxide (7.08 mL, 

1 M) at 0 °C and reacted for 16 h. The reac-

tion mixture was washed with methylene 

chloride (3 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (10.00 mL) and filtrat-

ed via a syringe filter. The residue was dried 

in vacuo to obtain the product (S)-105 as 

brown oil (1.09 mg, 5.4 mmol, quant.). 

Rf = 0.05 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.63 (ddd, J = 4.9, 1.5, 0.9 Hz, 1H, CHar-6), 

7.87 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.52 

(d, J = 7.8 Hz, 1H, CHar-3), 7.42 (ddd, J = 

7.6, 4.9, 0.9 Hz, 1H, CHar-5), 4.59 (d, J = 

13.9 Hz, 1H, NCHH), 4.38 (d, J = 13.9 Hz, 

1H, NCHH), 4.01 (dd, J = 8.9, 6.2 Hz, 1H), 

3.72–3.62 (m, 1H), 3.22–3.11 (m, 1H), 2.53–

2.36 (m, 1H), 2.24–1.91 (m, 3H). 13C-NMR 

(75 MHz, CD3OD): δ(ppm) 173.35 (Ccarbonyl), 

151.96 (Car-2), 151.04 (Car-6), 138.85 (Car-

4), 125.38 (Car-3), 125.17 (Car-5), 70.57 

(NCH2), 59.78 (C), 55.99 (C), 29.98 (C), 

24.40 (C). IR (film): v (cm-1) 3368, 2973, 

1675, 1479, 1435, 1395, 1301, 1215, 1151, 

997, 621, 571, 485, 401. HRMS calculated 

for C11H14N2O2Na (M + Na+) 229.0947 found 

(M + Na+) 229.0946. 

5.2.2.10 (S)-methyl 2-methylpyrrolidine-2-

carboxylate hydrochloride ((S)-112) 

 

 

(S)-2-methylpyrrolidine-2-carboxylic 

acid ((S)-111) (550 mg, 4.26 mmol) was 

suspended in methanol (5.0 mL) and thio-

nylchloride (311 µL, 4.26 mmol) was added 

drop wise at 0 °C. The reaction mixture was 

refluxed for 16 h. The solvent was removed 

under reduced pressure and the residue 

resolved in methanol (15.0 mL) then con-

centrated again under reduced pressure. 

This procedure was repeated three times. 

The product (S)-112 was obtained as white 

solid (757 mg, 4.21 mmol, quant.). Rf = 0.27 

(meth¬ylene chloride : methanol 10:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 10.56 

(s, 1H, NHH), 9.35 (s, 1H, NHH), 3.86 (s, 

3H, OCH3), 3.66–3.53 (m, 2H), 2.46–2.33 

(m, 1H), 2.22–1.95 (m, 3H), 1.86 (s, 3H, 

CH3). IR (film): v (cm-1) 2882, 2682, 2624, 

2511, 2447, 1742, 1586, 1454, 1431, 1374, 

1319, 1293, 1239, 1210, 1173, 1121, 1049, 

978, 893, 863. 
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5.2.2.11 (S)-methyl 2-methyl-1-(pyridin-2-yl-

methyl)pyrrolidine-2-carboxylate 

((S)-113) 

 

 

Palladium on carbon (142 mg, 

0.13 mmol, 10 wt. %) was suspended in 

methanol (10.0 mL) and picolinaldehyde 

(103) (512 µL, 5.37 mmol) was added at 

0 °C. Sodium acetate (0.73 g, 8.96 mmol) 

was added to the reaction mixture. Then, 

(S)-112 (802 mg, 4.48 mmol) was added. 

The reaction mixture was stirred for 1 h and 

the nitrogen atmosphere was completely 

substituted by hydrogen in three turns. The 

reaction was continued for 16 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was sub-

jected to column chromatography using 

methylene chloride :  methanol (35:1  

15:1). The product (S)-113 was obtained as 

a dark green oil (400 mg, 1.71 mmol, 38%). 

Rf = 0.65 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.48 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H, CHar-6), 

7.62 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.45 

(d, J = 7.8 Hz, 1H, CHar-3), 7.11 (ddd, J = 

7.3, 4.9, 1.0 Hz, 1H, CHar-5), 3.94 (d, J = 

14.4 Hz, 1H, NCHH), 3.71 (d, J = 13.4 Hz, 

1H, NCHH), 3.68 (s, 3H, OCH3), 2.95–2.84 

(m, 1H), 2.83–2.71 (m, 1H), 2.30–2.16 (m, 

1H), 1.90–1.74 (m, 3H), 1.38 (s, 3H, CH3). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 175.77 

(Ccarbonyl), 160.40 (Car-2), 148.92 (Car-6), 

136.62 (Car-4), 122.65 (Car-3), 121.89 

(Car-5), 67.98 (NCH2), 55.76 (C), 51.81 

(OCH), 51.49 (C), 37.66 (CH3), 21.77 (C), 

21.59 (C). IR (film): v (cm-1) 2973, 2950, 

2878, 2835, 1722, 1588, 1569, 1459, 1431, 

1372, 1361, 1307, 1256, 1189, 1169, 1120, 

1045, 993, 976, 896, 839, 756. HRMS cal-

culated for C13H19N2O2 (M + H+) 235.1441 

found (M + H+) 235.1442. 

5.2.2.12 (S)-2-methyl-1-(pyridin-2-ylmethyl) 

pyrrolidine-2-carboxylic acid ((S)-

114) 

 

 

(S)-113 (360 mg, 1.5 mmol) were 

suspended in sodium hydroxide (2 mL, 1 M) 

at 0 °C and reacted for 18 h. The reaction 

mixture was washed with methylene chlo-

ride (3 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (5.00 mL) and filtrated 

via a syringe filter. The residue was dried in 

vacuo to obtain the product (S)-114 as a 

brown oil (308 mg, 1.4 mmol, 93%). 

Rf = 0.05 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.66 (ddd, J = 4.9, 1.5, 0.9 Hz, 1H, CHar-6), 

7.89 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.51 

(d, J = 7.8 Hz, 1H, CHar-3), 7.43 (dd, J = 7.4, 

5.0 Hz, 1H, CHar-5), 4.63 (d, J = 14.0 Hz, 

1H, NCHH), 4.29 (d, J = 14.0 Hz, 1H, 

NCHH), 3.70–3.64 (m, 1H), 3.23–3.05 (m, 

1H), 2.52–2.37 (m, 1H), 2.19–2.06 (m, 2H), 

2.03–1.86 (m, 1H), 1.65 (s, 3H, CH3). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 175.70 

(Ccarbonyl), 152.74 (Car-2), 150.77 (Car-6), 

138.94 (Car-4), 125.21 (Car-3), 124.81 

(Car-5), 76.82 (NCH2), 55.58 (C), 54.80 

(C), 37.83 (CH3), 22.69 (C), 18.91 (C). IR 

(film): v (cm-1) 2959, 2926, 2756, 2128, 

1735, 1443, 1365, 1285, 1243, 1216, 1172, 

1074, 1031, 941, 829, 750. HRMS calculat-

ed for C12H17N2O2 (M + H+) 221.1285 found 

(M + H+) 221.1285. 
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5.2.2.13 (2S,4R)-methyl 4-hydroxypyrrol-

idine-2-carboxylate hydrochloride 

((S,R)-116) 

 

 

(2S,4R)-4-hydroxypyrrolidine-2-carb-

oxylic acid ((S,R)-115) (10.00 g, 76.3 mmol) 

was suspended in methanol (88.0 mL) and 

thionylchloride (5.56 mL, 76.3 mmol) was 

added drop wise at 0 °C. The reaction mix-

ture was refluxed for 16 h. The solvent was 

removed under reduced pressure and the 

residue resolved in methanol (15.0 mL) then 

concentrated again under reduced pressure. 

This procedure was repeated three times. 

The product (S,R)-116 was obtained as 

white solid (13.85 g, 76.4 mmol, quant.). 
1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 5.55 

(d, J = 3.0 Hz, 1H CH), 4.49 (dd, J = 10.8, 

7.6 Hz, 1H, CH), 4.42 (bs, 1H, OH), 3.76 (s, 

3H, OCH3), 3.08 (dt, J = 12.1, 1.4 Hz, 1H), 

2.24–2.02 (m, 3H). 13C-NMR (75 MHz, 

CD3OD): δ(ppm) 161.06 (Ccarbonyl), 61.09 

(C), 49.98 (C), 45.53 (C), 44.49 (OCH3), 

29.05 (C). IR (film): v (cm-1) 3320, 2953, 

2857, 2696, 2599, 2566, 2449, 2418, 1737, 

1589, 1436, 1396, 1335, 1276, 1238, 1178, 

1073, 1025, 955, 927, 900, 865, 781, 743. 

HRMS calculated for C6H12NO3 (M + H+) 

146.0812 found (M + H+) 146.0812. 

5.2.2.14 (2S,4R)-methyl 4-hydroxy-1-(pyri-

din-2-ylmethyl)pyrrolidine-2-carb-

oxylate ((S,R)-117) 

 

 

Palladium on carbon (2.43 g, 

2.29 mmol, 10 wt. %) was suspended in 

methanol (150.0 mL) and picolinaldehyde 

(103) (9.45 mL, 99.14 mmol) was added at 

0 °C. Sodium acetate (12.15 g, 152.5 mmol) 

was added to the reaction mixture. Then, 

(S,R)-116 (13.85 g, 76.26 mmol) was dis-

solved in methanol (60 mL) and then added 

to the reaction mixture. The reaction mixture 

was stirred for 1 h and the nitrogen atmos-

phere was completely substituted by hydro-

gen in three turns. The reaction was contin-

ued for 72 h allowing the mixture to warm up 

to ambient temperature. The reaction mix-

ture was filtrated over CELITE and the crude 

material was subjected to column chroma-

tography using methylene chloride :  meth-

anol (35:1  25:1). The product (S,R)-117 

was obtained as a brown oil (7.17 g, 

30.4 mmol, 40%). Rf = 0.41 (methylene chlo-

ride : methanol 10:1). 1H-NMR (300 MHz, 

CD3OD): δ(ppm) 8.11 (ddd, J = 5.0, 1.7, 0.8 

Hz, 1H, CHar-6), 7.31 (td, J = 7.7, 1.8 Hz, 

1H, CHar-4), 6.95 (d, J = 7.8 Hz, 1H, CHar-3), 

6.83 (ddd, J = 7.4, 5.0, 1.0 Hz, 1H, CHar-5), 

4.70 (bs, 1H, OH), 4.03 (dq, J = 7.2, 2.4 Hz, 

1H, CH) 3.81 (d, J = 15.7 Hz, 1H, NCHH), 

3.69 (d, J = 15.7 Hz, 1H, NCHH), 3.60–3.50 

(m, 1H, CH), 3.31 (s, 3H, OCH3) 3.17–3.08 

(m, 1H), 2.50 (ddd, J = 10.6, 2.2, 1.2 Hz, 

1H), 1.86–1.75 (m, 2H). 13C-NMR (75 MHz, 

CDCl3): δ(ppm) 174.57 (Ccarbonyl), 158.43 

(Car-2), 148.19 (Car-6), 137.17 (Car-4), 

123.45 (Car-3), 122.29 (Car-5), 70.87 (NCH2), 

62.83 (C), 61.28 (C), 56.88 (OCH3), 51.82 

(C), 40.17 (C). IR (film): v (cm-1) 3359, 
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2948, 2837, 1733, 1642, 1593, 1472, 1434, 

1355, 1270, 1199, 1086, 1047, 1002, 902, 

838, 757, 624. 

5.2.2.15 (2S,4R)-methyl 4-(tert-butyldimeth-

ylsilyloxy)-1-(pyridin-2-ylmethyl)pyr-

rolidine-2-carboxylate ((S,R)-118) 

 

 

(S,R)-117 (1.9 g, 8.04 mmol) was 

dissolved in dimethylformamide (30 mL) and 

diisopropylethylamine (7 mL, 40.20 mmol) 

was added over a period of 5 min. The reac-

tion mixture was stirred for 10 min at 0 °C 

prior to the addition of tert-butyldimethylsilyl 

triflate (7.7 mL, 8.85 mmol) and stirred for 

16 h. The reaction mixture was allowed to 

warm up to ambient temperature. The reac-

tion mixture was then reacted with ammoni-

um acetate solution (1 M, 40 mL) and the 

organic layer was separated. The aqueous 

layer was then extracted using methylene 

chloride (3 x 50 mL). The solvent was evap-

orated under reduced pressure and the 

crude material was subjected to column 

chromatography using methylene chlo-

ride : methanol (10:1). Rf = 0.70 (methylene 

chloride : methanol 10:1). The product 

(S,R)-118 was obtained as brown oil 

(1.28 g, 3.7 mmol, 46%). 1H-NMR 

(300 MHz, CDCl3): δ(ppm) 8.51 (ddd, J = 

4.9, 1.8, 0.9 Hz, 1H, CHar-6), 7.63 (td, J = 

7.6, 1.8 Hz, 1H, CHar-4), 7.43 (d, J = 7.8 Hz, 

1H, CHar-3), 7.13 (ddd, J = 7.4, 4.9, 1.1 Hz, 

1H, CHar-5), 4.49 – 4.31 (m, 1H, CH), 4.04 

(d, J = 13.7 Hz, 1H, NCHH), 3.80 (d, J = 

13.7 Hz, 1H, NCHH), 3.67 (dd, J = 6.5, 4.7 

Hz, 1H, CH), 3.63 (s, 3H, OCH3), 3.31 (dd, 

J = 9.8, 5.7 Hz, 1H, CHH), 2.47 (dd, J = 

9.8, 4.9 Hz, 1H, CHH), 2.23 – 2.11 (m, 1H, 

CHH), 2.03 (ddd, J = 12.7, 8.3, 4.1 Hz, 1H, 

CHH), 0.84 (s, 9H, SiCq(CH3)3), -0.00 (d, J 

= 5.1 Hz, 6H, Si(CH3)2). 
13C-NMR (75 MHz, 

CD3OD): δ(ppm) 174.25 (Ccarbonyl), 158.77 

(Car-2), 149.08 (Car-6), 136.56 (Car-4), 

123.45 (Car-3), 122.16 (Car-5), 70.76 (NCH2), 

64.55 (C), 62.11 (C), 60.93 (OCH3), 51.91 

(C), 39.67 (C), 25.61 (SiCq(CH3)3), 18.10 

(SiCq(CH3)3), -4.74 (Si(CH3)2). IR (film): v 

(cm-1) 2950, 2892, 2855, 1741, 1591, 1468, 

1435, 1366, 1252, 1198, 1170, 1096, 1036, 

905, 832, 771, 671. 

5.2.2.16 (2S,4R)-4-(tert-butyldimethylsilyl-

oxy)-1-(pyridin-2-ylmethyl)pyrrol-

idine-2-carboxylic acid ((S,R)-119) 

 

 

(S,R)-118 (1.27 g, 3.6 mmol) were 

suspended in sodium hydroxide (4.8 mL, 

1 M) at 0 °C and reacted for 18 h. The reac-

tion mixture was washed with methylene 

chloride (3 x 30 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (5.00 mL) and filtrated 

via a syringe filter. The residue was dried in 

vacuo to obtain the product (S,R)-119 as 

orange highly viscous oil (985 mg, 

2.92 mmol, 81%). Rf = 0.16 (methylene chlo-

ride : methanol 10:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.66 – 8.56 (m, 1H, CHar-6), 

8.50 (bs, 1H, COOH), 7.72 (td, J = 7.7, 1.7 

Hz, 1H, CHar-4), 7.37 (d, J = 7.7 Hz, 1H, 

CHar-3), 7.31 – 7.27 (m, 1H, CHar-5), 4.44 – 

4.42 (m, 1H, CH 4.43 (d, J = 14.4 Hz, 1H, 

NCHH), 4.27 (d, J = 14.5 Hz, 1H, NCHH), 

4.16 – 4.01 (m, 1H, CH), 3.60 (dd, J = 11.4, 

4.4 Hz, 1H, CHH), 2.93 (dd, J = 11.3, 2.0 

Hz, 1H, CHH), 2.32 (dt, J = 8.1, 4.1 Hz, 
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2H, CHH), 0.88 (s, 9H, (SiCq(CH3)3), 0.06 

(d, J = 4.5 Hz, 6H, (Si(CH3)2). 
13C-NMR 

(75 MHz, CDCl3): δ(ppm) 173.72 (Ccarbonyl), 

155.22 (CHar-2), 149.24 (CHar-6), 137.68 

(Car-4), 123.55 (Car-3), 123.49 (Car-5), 71.85 

(NCH2), 67.22 (C), 62.46 (C), 61.43 (C), 

39.39 (C), 25.88 (SiCq(CH3)3), 18.06 

(SiCq(CH3)3), -4.67 (Si(CH3)2). IR (film): v 

(cm-1) 2931, 2890, 2855, 1709, 1627, 1468, 

1437, 1385, 1252, 1214, 1101, 1029, 1000, 

886, 831, 769, 693, 668. 

5.2.2.17 (R)-methyl piperidine-2-carboxylate 

hydrochloride ((R)-121) 

 

 

(R)-piperidine-2-carboxylic acid 

((R)-120) (3.00 g, 23.2 mmol) was sus-

pended in methanol (30.0 mL) and thionyl-

chloride (1.69 mL, 23.2 mmol) was added 

drop wise at 0 °C. The reaction mixture was 

stirred for 16 h and warmed up to ambient 

temperature. The solvent was removed un-

der reduced pressure and the residue re-

solved in methanol (10.0 mL) then con-

centrated again under reduced pressure. 

This procedure was repeated three times. 

The product (R)-121 was obtained as white 

solid (4.16 g, 23.15 mmol, quant.). 1H-NMR 

(300 MHz, CD3OD): δ(ppm) 4.31 (s, 3H, 

OCH3), 3.53 (dd, J = 11.3, 3.5 Hz, 1H, CH), 

2.95–2.83 (m, 1H, CHH), 2.53 (td, J = 12.3, 

3.3 Hz, 1H, CHH), 1.74 (ddd, J = 9.3, 6.1, 

3.8 Hz, 1H, CHH), 1.40–1.31 (m, 1H, 

CHH), 1.26–1.11 (m, 4H, CHH CHH). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 170.30 

(Ccarbonyl), 57.85 (C), 53.71 (OCH3), 45.20 

(C), 27.10 (C), 22.82 (C), 22.71 (C). IR 

(film): v (cm-1) 2919, 2802, 2680, 2564, 

2499, 2411, 1742, 1581, 1448, 1422, 1366, 

1340, 1275, 1211, 1131, 1052, 1038, 984, 

948, 917, 889, 754, 687, 534. HRMS calcu-

lated for C7H14NO2 (M + H+) 144.1019 found 

(M + H+) 144.1020. 

5.2.2.18 (S)-methyl piperidine-2-carboxylate 

hydrochloride ((S)-121) 

 

 

(S)-piperidine-2-carboxylic acid 

((S)-120) (2.00 g, 15.48 mmol) was sus-

pended in methanol (20.0 mL) and thio-

nylchloride (1.13 mL, 15.48 mmol) was add-

ed drop wise at 0 °C. The reaction mixture 

was stirred for 16 h and warmed up to am-

bient temperature. The solvent was re-

moved under reduced pressure and the res-

idue resolved in methanol (10.0 mL) then 

concentrated again under reduced pressure. 

This procedure was repeated three times. 

The product (S)-121 was obtained as white 

solid (2.70 g, 15.07 mmol, 97%). 1H-NMR 

(300 MHz, CD3OD): δ(ppm) 4.09 – 3.98 (m, 

1H, CH), 3.85 (s, 3H, OCH3), 3.42 (d, J = 

11.9 Hz, 1H, CHH), 3.04 (t, J = 11.2 Hz, 

1H, CHH), 2.28 (d, J = 10.8 Hz, 1H), 1.98–

1.81 (m, 2H), 1.80–1.56 (m, 3H). 13C-NMR 

(75 MHz, CD3OD): δ(ppm) 170.24 (Ccarbonyl), 

57.83 (C), 53.72 (OCH3), 45.23 (C), 27.03 

(C), 22.75 (C), 22.68 (C). IR (film): v (cm-1) 

2919, 2802, 2681, 2564, 2499, 2412, 1743, 

1581, 1449, 1422, 1366, 1340, 1275, 1211, 

1132, 1052, 1038, 984, 949, 918. HRMS 

calculated for C7H14NO2 (M + H+) 144.1019 

found (M + H+) 144.1024. 
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5.2.2.19 2-(chloromethyl)pyridine (122) 

 

 

Pyridine-2-ylmethanol (11.3 g; 

103.5 mmol) were dissolved in Et2O (50 mL) 

and cooled to 0 °C under continuous stirring. 

Then, thionylchloride (8.26 mL, 13.5 g; 

113.5 mmol) was added drop wise under 

formation of a pink precipitation. The reac-

tion was continued for 16 h and the reaction 

mixture was allowed to warm up to ambient 

temperature. The solvent was evaporated 

unde reduced pressure and the residue was 

dried in vacuo to obtain the product as pink 

solid (14.79 g, 90 mmol, 87%). Rf = 0.67 

(methylene chloride : methanol 10:1). 
1H-NMR (300 MHz, CDClD3): δ(ppm) 8.74 

(d, J = 5.2 Hz, 1H, CHar-6), 8.40 (t, J = 7.7 

Hz, 1H, CHar-4), 8.05 (d, J = 8.0 Hz, 1H, 

CHar-3), 7.91 – 7.80 (m, 1H, CHar-5), 5.18 (s, 

2H, CH2Cl). 13C-NMR (75 MHz, CDCl3): 

δ(ppm) 152.47 (Car-2), 145.83 (Car-6), 

141.33 (Car-4), 127.01 (Car-3), 126.14 

(Car-5), 39.85 (CH2Cl). IR (film): v (cm-1) 

3094, 3039, 2304, 2056, 1983, 1863, 1609, 

1531, 1462, 1422, 1395, 1314, 1275, 1228, 

1160, 1063, 1035, 995, 957, 904, 820, 772, 

745, 685, 619. HRMS calculated for 

C6H7ClN (M + H+) 128.0262 found (M + H+) 

128.0262. 

. 

5.2.2.20 (R)-methyl 1-(pyridin-2-ylmethyl)pi-

peridine-2-carboxylate ((R)-123) 

 

 

122 (1.31 g, 8.02 mmol) was dis-

solved in DMF (30 mL) and stirred with so-

dium carbonate (0.935 g, 8.8 mmol) and 

sodium iodide (57 mg, 0.38 mmol) at 50 °C 

for 2 h. (R)-121 (2.16 g, 12.02 mmol) was 

dissolved in DMF (15 mL) and added drop 

wise to the reaction mixture. The reaction 

was continued for 36 h. Water (50 mL) was 

added to the reaction mixture and the prod-

uct was extracted with methylene chloride 

(3 x 50 mL). The combined organic layer 

was concentrated under reduced pressure 

and dried in vacuo. The crude material was 

subjected to column chromatography using 

methylene chloride : methanol (100:0  

15:1). After evaporation of eluent solvent 

under reduced pressure, the residue was 

dried in vacuo to obtain the product as yel-

low oil (1.52 g, 6.49 mmol, 81%). Rf = 0.49 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CDClD3): δ(ppm) 8.53 – 

8.45 (m, 1H, CHar-6), 7.61 (td, J = 7.6, 1.8 

Hz, 1H, CHar-4), 7.47 (d, J = 7.8 Hz, 1H, 

CHar-3), 7.11 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H, 

CHar-5), 3.87 (d, J = 14.1 Hz, 1H, NCHH), 

3.69 (s, 3H, OCH3), 3.57 (d, J = 14.1 Hz, 1H, 

NCHH), 3.24 (dd, J = 7.6, 4.4 Hz, 1H, CH), 

3.00 – 2.88 (m, 1H, CHH), 2.31 – 2.18 (m, 

1H, CHH), 1.93 – 1.74 (m, 2H, CHH), 

1.65 – 1.50 (m, 3H), 1.46 – 1.31 (m, 1H). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 174.25 

(Ccarbonyl), 159.15 (Car-2), 149.07 (Car-6), 

136.45 (Car-4), 123.24 (Car-3), 122.01 

(Car-5), 64.44 (NCH2), 62.41 (C), 51.56 

(OCH3), 50.60 (C), 29.60 (C), 25.35 (C), 

22.37 (C). IR (film): v (cm-1) 3008, 2936, 

2855, 1733, 1646, 1589, 1569, 1471, 1432, 

1368, 1340, 1281, 1265, 1191, 1164, 1146, 
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1127, 1106, 1060, 1048, 1009, 993, 969, 

921, 888, 866, 830, 803, 755, 729, 634, 612, 

590. HRMS calculated for C13H19N2O2 

(M + H+) 235.1441 found (M + H+) 235.1448. 

5.2.2.21 (S)-methyl 1-(pyridin-2-ylmethyl)pi-

peridine-2-carboxylate ((S)-123) 

 

 

122 (1.9 g, 12.06 mmol) was dis-

solved in DMF (25 mL) and stirred with so-

dium carbonate (2.6 g, 24.12 mmol) and 

sodium iodide (144 mg, 0.96 mmol) at 50 °C 

for 2 h. (S)-121 (2.6 g, 14.47 mmol) was 

dissolved in DMF (25 mL) and added drop 

wise to the reaction mixture. The reaction 

was continued for 36 h. Water (50 mL) was 

added to the reaction mixture and the prod-

uct was extracted with methylene chloride 

(3 x 50 mL). The combined organic layer 

was concentrated under reduced pressure 

and dried in vacuo. The crude material was 

subjected to column chromatography using 

methylene chloride : methanol (100:0  

15:1). After evaporation of eluent solvent 

under reduced pressure, the residue was 

dried in vacuo to obtain the product as yel-

low oil (2.16 g, 9.25 mmol, 77%). Rf = 0.49 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CDClD3): δ(ppm) 8.45 

(ddd, J = 4.9, 1.7, 0.9 Hz, 1H, CHar-6), 7.58 

(td, J = 7.6, 1.8 Hz, 1H, CHar-4), 7.43 (d, J = 

7.8 Hz, 1H, CHar-3), 7.08 (ddd, J = 7.4, 4.9, 

1.1 Hz, 1H, CHar-5), 3.83 (d, J = 14.1 Hz, 

1H, NCHH), 3.65 (s, 3H, OCH3), 3.54 (d, J = 

14.1 Hz, 1H, NCHH), 3.20 (dd, J = 7.5, 4.4 

Hz, 1H, CH), 2.97 – 2.83 (m, 1H, CHH), 

2.27 – 2.14 (m, 1H, CHH), 1.85 – 1.72 (m, 

2H), 1.60 – 1.45 (m, 3H), 1.41 – 1.25 (m, 

1H). 13C-NMR (75 MHz, CDCl3): δ(ppm) 

174.17 (Ccarbonyl), 159.02 (Car-2), 148.92 

(Car-6), 136.41 (Car-4), 123.17 (Car-3), 

121.94 (Car-5), 64.36 (NCH2), 62.27 (C), 

51.49 (OCH3), 50.50 (C), 29.51 (C), 25.25 

(C), 22.29 (C). IR (film): v (cm-1) 3006, 

2938, 2854, 1734, 1657, 1590, 1436, 1368, 

1271, 1164, 1054, 1008, 925, 891, 830, 798, 

756, 614. HRMS calculated for C13H19N2O2 

(M + H+) 235.1441 found (M + H+) 235.1442. 

5.2.2.22 (R)-1-(pyridin-2-ylmethyl)piperidine-

2-carboxylic acid ((R)-124) 

 

 

(R)-123 (300 g, 1.3 mmol) were sus-

pended in sodium hydroxide (1.7 mL, 1 M) at 

0 °C and reacted for 16 h. The reaction mix-

ture was washed with methylene chloride 

(3 x 10 ml). The combined aqueous layer 

was neutralised to pH 7 with hydrochloric 

acid (1 M). The aqueous layer was concen-

trated and the solvent removed under re-

duced pressure. The residue was suspend-

ed in ethanol (5.00 mL) and filtrated via a 

syringe filter. The residue was dried in vac-

uo to obtain the product (R)-124 as a yellow 

solid (283 mg, 1.28 mmol, quant.). Rf = 0.05 

(methylene chloride : methanol 10:1). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.62 

(ddd, J = 4.9, 1.6, 0.8 Hz, 1H, CHar-6), 7.86 

(td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.57 (d, J = 

7.8 Hz, 1H, CHar-3), 7.41 (ddd, J = 7.6, 4.9, 

0.9 Hz, 1H, CHar-5), 4.63 (d, J = 13.8 Hz, 

1H, NCHH), 4.35 (d, J = 13.8 Hz, 1H, 

NCHH), 3.61 (dd, J = 10.1, 3.8 Hz, 1H, 

CH), 3.52 (dd, J = 12.4, 4.3 Hz, 1H, CHH), 

3.13–2.98 (m, 1H, CHH), 2.31–2.15 (m, 

1H, CHH), 2.07–1.90 (m, 1H, CHH), 

1.88–1.71 (m, 3H), 1.65–1.48 (m, 1H). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 173.73 

(Ccarbonyl), 152.51 (Car-2), 150.65 (Car-6), 

138.82 (Car-4), 126.14 (Car-3), 125.20 

(Car-5), 68.24 (NCH2), 60.11 (C), 52.74 (C), 

28.43 (C), 23.37 (C), 22.62 (C). HRMS 
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calculated for C12H17N2O2 (M + H+) 221.1285 

found (M + H+) 221.1284. 

5.2.2.23 (S)-1-(pyridin-2-ylmethyl)piperidine-

2-carboxylic acid ((S)-124) 

 

 

(S)-123 (300 g, 1.3 mmol) were sus-

pended in sodium hydroxide (1.7 mL, 1 M) at 

0 °C and reacted for 16 h. The reaction mix-

ture was washed with methylene chloride 

(3 x 10 ml). The combined aqueous layer 

was neutralised to pH 7 with hydrochloric 

acid (1 M). The aqueous layer was concen-

trated and the solvent removed under re-

duced pressure. The residue was suspend-

ed in ethanol (5.00 mL) and filtrated via a 

syringe filter. The residue was dried in vac-

uo to obtain the product (S)-124 as a yellow 

solid (283 mg, 1.28 mmol, quant.). Rf = 0.05 

(methylene chloride : methanol 10:1). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.62 

(ddd, J = 4.9, 1.6, 0.8 Hz, 1H, CHar-6), 7.86 

(td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.57 (d, J = 

7.8 Hz, 1H, CHar-3), 7.41 (ddd, J = 7.6, 4.9, 

0.9 Hz, 1H, CHar-5), 4.63 (d, J = 13.8 Hz, 

1H, NCHH), 4.35 (d, J = 13.8 Hz, 1H, 

NCHH), 3.61 (dd, J = 10.1, 3.8 Hz, 1H, 

CH), 3.52 (dd, J = 12.4, 4.3 Hz, 1H, CHH), 

3.13–2.98 (m, 1H, CHH), 2.31–2.15 (m, 

1H, CHH), 2.07–1.90 (m, 1H, CHH), 

1.88–1.71 (m, 3H), 1.65–1.48 (m, 1H). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 173.73 

(Ccarbonyl), 152.51 (Car-2), 150.65 (Car-6), 

138.82 (Car-4), 126.14 (Car-3), 125.20 

(Car-5), 68.24 (NCH2), 60.11 (C), 52.74 (C), 

28.43 (C), 23.37 (C), 22.62 (C). HRMS 

calculated for C12H17N2O2 (M + H+) 221.1285 

found (M + H+) 221.1284. 

5.2.2.24 2,6-bis(bromomethyl)pyridine (142) 

 

 

Phosphoryl bromide (3.6 g, 

12.5 mmol) was melted at 60 °C turning the 

brown crystalline solid into a brown clear 

liquid. 2,6-Pyridinedimethanol (141) 

(100 mg, 0.72 mmol) was added drop wise 

at 70 °C and the reaction mixture turned into 

dark brown. The reaction was continued for 

1.5 h at 70° C. Distilled water (6 mL) was 

added carefully drop wise at 0 °C. The reac-

tion mixture was poured into ice and neutral-

ised using sodium hydroxide (2 M). The 

aqueous layer was extracted with methylene 

chloride (4 x 30 mL), dried over sodium sul-

fate, filtrated and concentrated in vacuo. 

The product 142 was obtained as white 

needles (188 mg, 0.71 mmol, 98%). 

Rf = 0.75 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

7.71 (t, J = 7.8 Hz, 1H, CHar-4), 7.38 (d, J = 

7.7 Hz, 2H, CHar-3 & CHar-5), 4.54 (s, 4H, 

2xCH2Br). 13C-NMR (75.5 MHz, CDCl3): 

δ(ppm) 156.85 (2C, Car-2 & Car-6), 138.34 

(Car-4), 122.96 (2C, (Car-3 & Car-5), 33.42 

(2C, 2xCH2Br). IR (film): ν(cm-1) 2962, 1568, 

1448, 1260, 1204, 1158, 1081, 1020, 954, 

865, 809, 744, 585, 548. HRMS calculated 

for C7H8Br2N (M + H)+ 265.9003, found 

(M + H)+ 265.9008. 
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5.2.2.25 2,5,8-Trithia-{9}(2,6)pyridinophane 

(144) 

 

 

Caesium carbonate (430 mg, 

1.32 mmol) was suspended in dimethyl-

formamide (75 mL) at 60 °C. A homogene-

ous solution of 142 (316 mg, 1.20 mmol) 

and 2,2-Bis(2-mercaptoethyl) sulfide (143) 

(156 µL, 1.20 mmol) dissolved in dimethyl-

formamide (75 mL) were added drop wise 

via a syringe pump over a period of 18 h. 

The reaction was continued for 2 h. The 

solvent was evaporated under reduced 

pressure and the residual yellow oil was 

suspended in water (25 mL) and methylene 

chloride (40 mL). After sonification the crude 

product was extracted with methylene chlo-

ride (4 x 50 mL). The combined organic lay-

er was washed with BRINE (2 x 30 mL), dried 

over sodium sulfate and concentrated under 

reduced pressure. The crude material was 

subjected to column chromatography using 

hexane : ethylacetate (10:1). The product 

144 was obtained a white solid (88 mg, 

0.34 mmol, 28 %). Rf = 0.50 (hexane : ethyl-

acetate 10:1). 1H-NMR (300 MHz, CDCl3): 

δ(ppm) 7.77 (t, J = 7.5 Hz, 1H, CHar-4), 7.39 

(d, J = 7.7 Hz, 2H, CHar-3 & CHar-5), 3.98 (s, 

4H, Car-2CH2 & Car-6CH2), 2.56 (s, 8H, 

4xCH2). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 

157.65 (2C, Car-2 & Car-6), 138.59 (Car-4), 

122.17 (2C, Car-3 & Car-5) 36.35 (2C, Car-

2CH2 & Car-6CH2) 31.14 (2C, Car-2CH2SCH2 & 

Car-6CH2 SCH2), 30.16 (2C, CH2SCH2). IR 

(film): v (cm-1) 2924, 2097, 2039, 1966, 

1580, 1565, 1446, 1424, 1275, 1202, 1153, 

1131, 1078, 1023, 991, 967, 911, 859, 813, 

749. HRMS calculated for C11H15NS3Na 

(M + Na+) 280.0264 found (M + Na+) 

280.0262. 

5.2.2.26 2,11-dithia[3.3](2,6)pyridinophane 

(146) 

 

 

142 (495 mg, 1.86 mmol) and thio-

acetamide (140 mg, 1.86 mmol) were dis-

solved in dimethylformamide (9.5 mL) in 

separated syringes. Lithium carbonate 

(275 mg, 3.72 mmol) was suspended in di-

methylformamide (30 mL) and stirred at 

55 °C. Over a period of 30 min 142 as well 

as thioacetamide were added drop wise 

simultaneously. The reaction was continued 

for 2 h at 55 °C. The solvent was evapo-

rated under reduced pressure and the resi-

due was dissolved in water (50 mL). The 

turbid suspension was neutralised with hy-

drochloric acid (10% aq.). The aqueous lay-

er was extracted using chloroform 

(4 x 50 mL). The combined organic layer 

was dried over sodium sulfate, filtrated and 

concentrated under reduced pressure. The 

crude material was subjected to column 

chromatography using methylene chlo-

ride : methanol (30:1  8:1). The product 

146 was obtained as yellow highly viscous 

oil (102 mg, 0.37 mmol, 20 %). Rf = 0.13 

(hexane : ethylacetate 3:1). 1H-NMR (300 

MHz, (CD3)2SO): δ(ppm) 7.87–7.13 (m, 6H, 

6xCHar), 4.05–3.77 (m, 8H, 4xCH2). HRMS 

calculated for C14H15N2S2 (M + H)+ 

275.0677, found (M + H)+ 275.0670. 
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5.2.2.27 2,2'-(ethane-1,2-diylbis(sulfane-

diyl))diethanethiol (149) 

 

 

2,2'-(ethane-1,2-diylbis(sulfanediyl)) 

diethanol (147) (3.98 g, 21.8 mmol), thio-

urea (148) (3.35 g, 4.40 mmol) were added 

in hydroboric acid (7.50 mL, 132 mmol, 47% 

aq.) and refluxed for 8.5 h. The yellow solu-

tion was cooled to ambient temperature and 

sodium hydroxide (5.28 g, 132 mmol) in wa-

ter (30 mL) was added slowly. A white pre-

cipitate was observed and the reaction mix-

ture was refluxed for 16 h. After cooling to 

ambient temperature, the reaction mixture 

was neutralised using hydrochloric acid. The 

aqueous layer was extracted with methylene 

chloride (3 x 100 mL). The combined organ-

ic layer was dried over sodium sulfate, fil-

trated and dried in vacuo. The product 149 

was obtained as highly viscous pale oil 

(1.96 g, 9.17 mmol, 42 %). 1H-NMR (300 

MHz, CDCl3): δ(ppm) 2.89-2.68 (m, 12H, 

6xCH2), 1.76-1.70 (m, 2H, SH). 

5.2.2.28 1,4,7,10-tetrathiacyclododecane 

(151) 

 

 

Caesium carbonate (1.14 g, 

3.50 mmol) suspended in DMF (100 mL) 

was heated to 50 °C. A homogeneous solu-

tion of 149 (519 mg, 2.42 mmol) and 1,2-di-

bromoethane (150) (208 µL, 2.24 mmol) 

dissolved in DMF (50 mL) was added drop 

wise over a period of 12 h at 50 °C via a 

syringe pump. The reaction was continued 

for an additional 2 h and then cooled to am-

bient temperature over a period of 16 h. The 

solvent was evaporated under reduced 

pressure, water (50 mL) and methylene 

chloride (75 mL) was added to the residue 

and the mixture was stirred for 30 min at 

ambient temperature. Both layers were sep-

arated and the aqueous layer was extracted 

using methylene chloride (2 x 50 mL). The 

combined organic layer was washed with 

BRINE (3 x 50 mL), dried over sodium sul-

fate, filtrated and concentrated under re-

duced pressure. The crude material was 

recrystallised using chloroform. The product 

151 was obtained as white crystals (58 mg, 

0.24 mmol, 10%). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 2.72 (s, 16H, 8xCH2). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 28.82 

(8C). HRMS calculated for C8H16S4Na 

(M + Na+) 263.0033 found (M + Na+) 

263.0027. 

5.2.2.29 (S)-methyl 2-aminopropanoate hy-

drochloride ((S)-162) 

 

 

(S)-2-aminopropanoic acid ((S)-155) 

(5.00 g, 56.1 mmol) was suspended in 

methanol (50.0 mL) and thionylchloride 

(4.09 mL, 56.1 mmol) was added drop wise 

at 0 °C. The reaction mixture was refluxed 

for 16 h. The solvent was removed under 

reduced pressure and the residue resolved 

in methanol (25.0 mL) then concentrated 

again under reduced pressure. This proce-

dure was repeated three times. The product 

(S)-162 was obtained as white solid (7.90 g, 

56.6 mmol, quant.). 1H-NMR (300 MHz, 

MeOD3): δ(ppm) 4.32 (s, 3H, OCH3), 3.59 

(q, J = 7.2 Hz, 1H, CH), 1.02 (d, J = 7.2 Hz, 

3H, CH3). 
13C-NMR (75 MHz, CD3OD): 

δ(ppm) 171.41 (Ccarbonyl), 53.69 (OCH3), 

49.85 (C), 16.18 (C). IR (film): v (cm-1) 

2957, 2895, 2736, 2698, 2605, 1739, 1599, 
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1474, 1383, 1336, 1232, 1212, 1113, 1009, 

976, 902, 840. 

5.2.2.30 (R)-methyl 2-aminopropanoate hy-

drochloride ((R)-162) 

 

 

(R)-2-aminopropanoic acid ((R)-155) 

(1.79 g, 20.1 mmol) was suspended in 

methanol (20.0 mL) and thionylchloride 

(1.47 mL, 20.1 mmol) was added drop wise 

at 0 °C. The reaction mixture was refluxed 

for 16 h. The solvent was removed under 

reduced pressure and the residue resolved 

in methanol (15.0 mL) then concentrated 

again under reduced pressure. This proce-

dure was repeated three times. The product 

(R)-162 was obtained as white solid (2.83 g 

20.2 mmol, quant.). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 4.37–4.15 (m, 1H, CH), 

3.81 (s, 3H, OCH3), 1.73 (d, J = 7.3 Hz, 3H, 

CH). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 

171.40 (Ccarbonyl), 53.70 (OCH3), 49.87 (C), 

16.18 (C). IR (film): v (cm-1) 2956, 2897, 

2816, 2783, 2736, 2695, 2607, 2491, 2003, 

1741, 1601, 1570, 1477, 1435, 1392, 1374, 

1339, 1234, 1214, 1184, 1137, 1114, 1013, 

976, 902. 

5.2.2.31 (S)-methyl 2-amino-3-phenylpro-

panoate hydrochloride ((S)-163) 

 

 

(S)-2-amino-3-phenylpropanoic acid 

((S)-156) (10.00 g, 60.5 mmol) was sus-

pended in methanol (70 mL). SOCl2 (4.8 mL, 

66.6 mmol) was added drop wise at 0 °C 

over a period of 30 min. The reaction mix-

ture was stirred for an additional hour at 

0 °C then refluxed for 28 h. The solvent was 

evaporated under reduced pressure and the 

residue was resolved in methanol (15.0 mL) 

then concentrated again under reduced 

pressure. This procedure was repeated 

three times. The product (S)-163 was ob-

tained as white solid (12.9 g, 59.8 mmol, 

quant.). Rf = 0.67 (methylene chloride : me-

thanol 15:1). 1H-NMR (300 MHz, CD3OD): 

δ(ppm) 7.41-7.25 (m, 5H, 5xCHar), 4.33 (dd, 

1H, J = 6.3, 7.3 Hz, CH), 3.80 (s, 3H, 

OCH3), 3.27 (dd, 1H, J = 6.2, 14.4 Hz, 

CHH), 3.18 (dd, 1H, J = 7.3, 14.4 Hz, 

CHH). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 

170.39 (Ccarbonyl), 135.36 (Car-1), 130.49 (2C, 

Car-3 & Car-5), 130.13 (2C, Car-2 & Car-6), 

128.96 (Car-4), 55.25 (C), 53.58 (OCH3), 

37.34 (C). IR (film): v (cm-1) 3386, 2956, 

2519, 2030, 1743, 1627, 1525, 1502, 1446, 

1387, 1289, 1243, 1151, 1081, 1053, 994, 

944, 910, 852, 811, 750, 699, 590, 475. 

HRMS calculated for C10H14NO2 (M + H+) 

180.1025 found (M + H+) 180.1019. 
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5.2.2.32 (S)-methyl 2-amino-3-(1H-imidazol-

4-yl)propanoate dihydrochloride 

((S)-164) 

 

 

(S)-2-amino-3-(1H-imidazol-4-yl)pro-

panoic acid ((S)-157) (10 g, 64.5 mmol) was 

dissolved in methanol (60.0 mL) and thionyl-

chloride (5.14 mL, 70.9 mmol) was added 

dropwise at 0 °C. The reaction mixture was 

refluxed for 18 h. The solvent was removed 

under reduced pressure and the residue 

resolved in methanol (20.0 mL) then con-

centrated again under reduced pressure. 

This procedure was repeated three times. 

The product (S)-164 was obtained as a 

beige solid (15.4 g, 63.7 mmol, 98.8 %). 

Rf = 0.40 (methylene chloride : methanol 

7:3). 1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 

9.08 (d, J = 1.3 Hz, 1H, CHar-2), 7.52 (d, J = 

1.1 Hz, 1H, CHar-5), 4.48 (t, J = 6.9 Hz, 1H, 

CH), 3.73 (s, 3H, OCH3) 3.31 (m, 2H, 

CH2). 
13C-NMR (75 MHz, (CD3)2SO): 

δ(ppm) 168.5 (Ccarbonyl), 134.0 (Car-2), 126.6 

(Car-4), 118.0 (Car-5), 53.0 (C), 51.0 

(OCH3), 25.0 (C). IR (film): v (cm-1) 3112, 

2971, 2920, 2879, 2772, 2679, 2552, 1757, 

1624, 1599, 1514, 1458, 1433, 1290, 1256, 

1146, 1079, 1065, 987, 832, 817, 718, 621, 

537, 408. 

5.2.2.33 (S)-methyl 2-amino-4-methylpent-

anoate hydrochloride ((S)-165) 

 

 

(S)-2-amino-4-methylpentanoic acid 

((S)-158) (5.00 g, 38.11 mmol) was sus-

pended in methanol (45.0 mL) and thionyl-

chloride (2.78 mL, 38.11 mmol) was added 

drop wise at 0 °C. The reaction mixture was 

refluxed for 18 h. The solvent was removed 

under reduced pressure and the residue 

resolved in methanol (15.0 mL) then con-

centrated again under reduced pressure. 

This procedure was repeated three times. 

The product (S)-165 was obtained as a 

white solid (6.78 g, 37.3 mmol, 98%.). 

Rf = 0.27 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

4.07–4.00 (m, 1H, CH), 3.84 (s, 3H, OCH3), 

1.84–1.72 (m, 2H, CH2), 1.69–1.62 (m, 1H, 

CH), 1.00 (dd, J = 6.2, 3.4 Hz, 6H, 

CH(CH3)2). 
13C-NMR (75 MHz, CD3OD): 

δ(ppm) 171.33 (Ccarbonyl), 53.65 (C, 52.55 

(OCH3), 40.62 (C, 25.56 (C, 22.51 (C, 

22.43 (C’. 

5.2.2.34 (S)-methyl 2-amino-3-methylbutan-

oate hydrochloride ((S)-167) 

 

 

(S)-2-amino-3-methylbutanoic acid 

(S)-160 (1.17 g, 10.0 mmol) was dissolved 

in methanol (15.0 mL) at 0 °C and thionyl-

chloride (726 µL, 10.0 mmol) was added 

drop wise over a period of 15 min. The reac-

tion mixture was stirred for 2 h at ambient 

temperature and then refluxed for 8 h. The 
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solvent was removed under reduced pres-

sure and the residue resolved in methanol 

(50.0 mL) then concentrated again under 

reduced pressure. This procedure was re-

peated three times and then dried in vacu-

uo. The product (S)-167 was obtained as a 

white solid (1.68 g, 10.0 mmol, quant.). 

Rf = 0.44 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

4.91 (m, 3H, NH3Cl), 3.94 (d, J = 4.4 Hz, 1H, 

CH), 3.85 (s, 3H, OCH3), 2.35-2.25 (m, 1H, 

CH), 1.07 (dd, J = 6.8, 2.8 Hz, 6H, 

CH(CH3)2). 
13C-NMR (75 MHz, CD3OD): 

δ(ppm) 170.4 (Ccarbonyl), 59.4 (C, 53.4 

(OCH3), 31.0 (C, 18.4 (C, 18.2 (C’. 

5.2.2.35 (S)-methyl 2-amino-3-(4-hydroxy-

phenyl)propanoate hydrochloride 

((S)-168) 

 

 

(S)-2-amino-3-(4-hydroxyphenyl) 

propanoate ((S)-161) (10.00 g, 55.2 mmol) 

was suspended in methanol (60 mL). SOCl2 

(4.4 mL, 60.7 mmol) was added drop wise at 

0 °C over a period of 30 min. The reaction 

mixture was stirred for an additional hour at 

0 °C then refluxed for 16 h. The solvent was 

evaporated under reduced pressure and the 

residue was resolved in methanol (15.0 mL) 

then concentrated again under reduced 

pressure. This procedure was repeated 

three times. The product (S)-168 was ob-

tained as white solid (12.6 g, 54.7 mmol, 

quant.). Rf = 0.42 (methylene chloride : me-

thanol 15:1). 1H-NMR (300 MHz, CD3OD): 

δ(ppm) 7.08 (d, 2H, J = 8.6 Hz, CHar-2 & 

CHar-6), 6.79 (d, 2H, J = 8.5 Hz, CHar-3 & 

CHar-5), 4.25 (dd, 1H, J = 6.1, 7.1 Hz, CH), 

3.81 (s, 3H, OCH3), 3.17 (dd, 1H, J = 6.0, 

14.5 Hz, CHH), 3.09 (dd, 1H, J = 7.2, 14.5 

Hz, CHH). 
13C-NMR (75 MHz, CD3OD): 

δ(ppm) 170.51 (Ccarbonyl), 158.36 (Car-4), 

131.53 (Car-1), 125.60 (2C, Car-2 & Car-6), 

116.89 (2C, Car-3 & Car-5), 55.42 (C, 53.54 

(OCH3), 36.59 (C. IR (film): v (cm-1) 3209, 

3015, 2954, 1742, 1610, 1513, 1445, 1379, 

1239, 1142, 1113, 1054, 988, 942, 897, 833, 

729, 635, 553, 513. HRMS calculated for 

C10H14NO3 (M + H+) 196.0974 found 

(M + H+) 196.0968. 

5.2.2.36 (S)-methyl 2-(pyridin-2-ylmethyl-

amino)propanoate ((S)-169) 

 

 

Palladium on carbon (1.70 g, 

1.67 mmol, 10 wt. %) was suspended in 

methanol (120.0 mL) and picolinaldehyde 

(103) (6.39 mL, 67.0 mmol) was added at 

0 °C. Sodium acetate (9.15 g, 111.6 mmol) 

was added to the reaction mixture. Then, 

(S)-162 (7.80 g, 55.8 mmol) was dissolved 

in methanol (45 mL) and then added to the 

reaction mixture. The reaction mixture was 

stirred for 1 h and the nitrogen atmosphere 

was completely substituted by hydrogen in 

three turns. The reaction was continued for 

72 h allowing the mixture to warm up to am-

bient temperature. The reaction mixture was 

filtrated over CELITE and the crude material 

was subjected to column chromatography 

using methylene chloride :  methanol (35:1 

 20:1). The product (S)-169 was obtained 

as a brown oil (7.08 g, 36.4 mmol, 65%). 

Rf = 0.51 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.56 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H, CHar-6), 

7.67 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.35 

(d, J = 7.8 Hz, 1H, CHar-3), 7.19 (dd, J = 7.1, 

5.3 Hz, 1H, CHar-5), 4.03 (d, J = 14.2 Hz, 

1H, NCHH), 3.96 (d, J = 14.3 Hz, 1H, 

NCHH), 3.74 (s, 3H, OCH3), 3.63–3.54 (m, 

1H, CH), 1.45 (d, J = 7.0 Hz, 3H, CH3). 
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13C-NMR (75 MHz, CDCl3): δ(ppm) 175.01 

(Ccarbonyl), 158.09 (Car-2), 149.30 (Car-6), 

136.84 (Car-4), 122.54 (Car-3), 122.42 (Car-

5), 56.19 (NCH2), 52.62 (C, 52.14 (OCH3), 

18.49 (C. IR (film): v (cm-1) 2985, 2948, 

1733, 1677, 1591, 1435, 1374, 1202, 1151, 

1038, 992, 915, 729, 616, 530, 471, 404. 

HRMS calculated for C10H15N2O2 (M + H+) 

195.1128 found (M + H+) 195.1128. 

5.2.2.37 (R)-methyl 2-(pyridin-2-ylmethyl-

amino)propanoate ((R)-169) 

 

 

Palladium on carbon (637 mg, 

0.6 mmol, 10 wt. %) was suspended in 

methanol (45.0 mL) and picolinaldehyde 

(103) (2.29 mL, 24.07 mmol) was added at 

0 °C. Sodium acetate (3.29 g, 40.12 mmol) 

was added to the reaction mixture. Then, 

(R)-162 (2.80 g, 20.06 mmol) was added. 

The reaction mixture was stirred for 1 h and 

the nitrogen atmosphere was completely 

substituted by hydrogen in three turns. The 

reaction was continued for 72 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was subject-

ed to column chromatography using meth-

ylene chloride :  methanol (35:1  20:1). 

The product (R)-169 was obtained as a 

brown oil (2.21 g, 11.3 mmol, 57%). 

Rf = 0.51 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.56 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H, CHar-6), 

7.66 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.35 

(d, J = 7.8 Hz, 1H, CHar-3), 7.22–7.16 (m, 

1H, CHar-5), 4.02 (d, J = 14.1 Hz, 1H, 

NCHH), 3.95 (d, J = 14.1 Hz, 1H, NCHH), 

3.74 (s, 3H, OCH3), 3.57 (q, J = 7.0 Hz, 1H, 

CH), 1.45 (d, J = 7.0 Hz, 3H, CH3). 
13C-NMR (75 MHz, CDCl3): δ(ppm) 175.79 

(Ccarbonyl), 159.28 (Car-2), 149.41 (Car-6), 

136.55 (Car-4), 122.26 (Car-3), 122.10 

(Car-5), 56.37 (NCH2), 53.27 (C, 51.92 

(OCH3), 19.03 (C. IR (film): v (cm-1) 2978, 

2951, 1731, 1591, 1570, 1472, 1433, 1373, 

1331, 1197, 1150, 1093, 1068, 1046, 994, 

976, 851, 753, 656, 626, 529, 469, 403. 

5.2.2.38 (S)-methyl 3-phenyl-2-(pyridin-2-yl-

methylamino)propanoate ((S)-170) 

 

 

Palladium on carbon (2.39 g, 

2.26 mmol, 10 wt. %) was suspended in 

methanol (160.0 mL) and picolinaldehyde 

(7.2 mL, 75.28 mmol) was added at 0 °C. 

Sodium acetate (10.2 g, 125.46 mmol) was 

added to the reaction mixture. Then, (S)-163 

(13.53 g, 62.73 mmol) was added. The reac-

tion mixture was stirred for 1 h and the ni-

trogen atmosphere was completely sub-

stituted by hydrogen in three turns. The 

reaction was continued for 22 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was sub-

jected to column chromatography using 

methylene chloride :  methanol (35:1). The 

product (S)-170 was obtained as a brown oil 

(14.58 g, 53.95 mmol, 86%). Rf = 0.39 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.42 

(d, J = 4.8 Hz, 1H, CHar-6), 7.72 (ddd, J = 

9.4, 7.8, 1.7 Hz, 1H, CHar-4), 7.33 (d, J = 8.0 

Hz, 1H, CHar-3), 7.30-7.16 (m, 6H, CHar-5, 

CHar-2’-5’), 3.91 (d, J = 14.5 Hz, 1H, 

NCHH), 3.84 (d, 1H, J = 14.5 Hz, NCHH), 

3.60 (s, 3H, OCH3), 3.54 (t, 1H, J = 7.2 Hz, 

CH), 2.97 (d, 2H, J = 7.3 Hz, CH2), 1.97 (s, 

1H, NH). 13C-NMR (75 MHz, CD3OD): 

δ(ppm) 175.66 (Ccarbonyl), 160.18 (Car-2), 
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149.58 (Car-6), 138.61 (Car-4), 138.51 

(Car-1’), 130.31 (2C, Car-3’ & Car-5’), 129.41 

(2C, Car-2’ & Car-6’), 127.73 (Car-4’), 123.82 

(Car-3), 123.62 (Car-5), 63.59 (NCH2), 53.56 

(C, 52.16 (OCH3), 40.29 (C. IR (film): v 

(cm-1) 3322, 3060, 3026, 2948, 2848, 1732, 

1593, 1435, 1362, 1264, 1200, 1170, 1076, 

996, 753, 700, 621, 528, 490, 405. HRMS 

calculated for C16H19N2O2 (M + H+) 271.1441 

found (M + H+) 271.1441. 

5.2.2.39 (S)-methyl 4-methyl-2-(pyridin-2-yl-

methylamino)pentanoate ((S)-171) 

 

 

Palladium on carbon (1.55 g, 

1.46 mmol, 10 wt. %) was suspended in 

methanol (50.0 mL) and picolinaldehyde 

(103) (5.59 mL, 58.7 mmol) was added at 

0 °C. Sodium acetate (8.02 g, 82.1 mmol) 

was added to the reaction mixture. Then, 

(S)-165 (6.78 g, 37.8 mmol) was added. The 

reaction mixture was stirred for 1 h and the 

nitrogen atmosphere was completely substi-

tuted by hydrogen in three turns. The reac-

tion was continued for 72 h allowing the mix-

ture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was subject-

ed to column chromatography using meth-

ylene chloride :  methanol (50:1  25:1). 

The product (S)-171 was obtained as a 

brown oil (4.88 g, 20.65 mmol, 55%). 

Rf = 0.62 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.54 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H, CHar-6), 

7.65 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.35 

(d, J = 7.8 Hz, 1H, CHar-3), 7.17 (dd, J = 7.0, 

5.4 Hz, 1H, CHar-5), 3.98 (d, J = 14.2 Hz, 

1H, NCHH), 3.85 (d, J = 14.2 Hz, 1H, 

NCHH), 3.72 (s, 3H, OCH3), 3.42 (t, J = 7.2 

Hz, 1H, CH), 1.83–1.71 (m, 1H, CH), 1.58 

(td, J = 7.1, 3.0 Hz, 2H, CH2), 0.95–0.84 

(m, 6H, CH(CH3)2). 
13C-NMR (75 MHz, 

CDCl3): δ(ppm) 176.10 (Ccarbonyl), 159.56 

(Car-2), 149.31 (Car-6), 136.48 (Car-4), 

122.24 (Car-3), 122.05 (Car-5), 59.76 (NCH2), 

53.60 (C, 51.74 (OCH3), 42.82 (C, 25.00 

(C, 22.83 (C, 22.37 (C'. IR (film): v 

(cm-1) 2953, 2869, 1732, 1590, 1570, 1468, 

1433, 1385, 1367, 1330, 1308, 1269, 1230, 

1194, 1149, 1046, 992, 826, 754. 

5.2.2.40 (S)-methyl 3-hydroxy-2-(pyridin-2-

ylmethylamino)propanoate 

((S)-172) 

 

 

Palladium on carbon (258 mg, 

0.23 mmol, 10 wt. %) was suspended in 

methanol (17.0 mL) and picolinaldehyde 

(103) (767 µL, 8.17 mmol) was added at 

0 °C. Sodium acetate (1.32 g, 16.02 mmol) 

was added to the reaction mixture. Then, 

(S)-methyl 2-amino-3-hydroxypropanoate 

hydrochloride ((S)-166) (1.25 g, 8.17 mmol) 

dissolved in methanol (8.5 mL) was added. 

The reaction mixture was stirred for 1 h and 

the nitrogen atmosphere was completely 

substituted by hydrogen in three turns. The 

reaction was continued for 16 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was sub-

jected to column chromatography using 

methylene chloride :  methanol (50:1  

10:1). The product (S)-172 was obtained as 

a yellow oil (1.03 g, 4.8 mmol, 58%). 

Rf = 0.41 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CDCl3): δ(ppm) 

8.57 (ddd, J = 4.9, 1.6, 0.9 Hz, 1H, CHar-6), 

7.68 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.31 

(d, J = 7.8 Hz, 1H, CHar-3), 7.22 (dd, J = 7.0, 

5.4 Hz, 1H, CHar-5), 4.13 (d, J = 14.7 Hz, 
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1H, NCHH), 4.01 (d, J = 14.7 Hz, 1H, 

NCHH), 3.89 (d, J = 4.1 Hz, 1H, CH), 3.80 

(d, J = 6.0 Hz, 1H, CHH), 3.76 (s, 3H, 

OCH3), 3.60 (dd, J = 6.0, 4.0 Hz, 1H, 

CHH). IR (film): v (cm-1) 3315, 2951, 2874, 

1732, 1659, 1593, 1571, 1472, 1434, 1367, 

1335, 1199, 1175, 1149, 1061, 1048, 995, 

836, 756. HRMS calculated for C10H15N2O3 

(M + H+) 211.1083 found (M + H+) 211.1078. 

5.2.2.41 (S)-methyl 3-methyl-2-(pyridin-2-

ylmethylamino)butanoate ((S)-173) 

 

 

Palladium on carbon (200 mg, 

0.19 mmol, 10 wt. %) was suspended in 

methanol (15.0 mL) and picolinaldehyde 

(103) (908 µL, 9.5 mmol) was added at 0 °C. 

Sodium acetate (1.56 g, 19.0 mmol) was 

dissolved in methanol (15.0 mL) and added 

to the reaction mixture. Then, (S)-167 

(1.60 g, 9.5 mmol) presolved in methanol 

(10 mL) was added. The reaction mixture 

was stirred for 30 min and the nitrogen at-

mosphere was completely substituted by 

hydrogen in three turns. The reaction was 

continued for 5 h allowing the mixture to 

warm up to ambient temperature. The reac-

tion mixture was filtrated over CELITE, dried 

over sodium sulfate, filtrated and concen-

trated under reduced pressure. The crude 

material was subjected to column chroma-

tography using methylene chloride :  metha-

nol (35:1). The product (S)-173 was ob-

tained as a yellow oil (510 mg, 2.3 mmol, 

24%). Rf = 0.46 (methylene chloride : me-

thanol 35:1). 1H-NMR (300 MHz, CDCl3): 

δ(ppm) 8.53 (d, J = 4.9 Hz, 1H, CHar-6), 7.64 

(td, J = 7.7 Hz, 1.8 Hz, 1H, CHar-4), 7.38 (d, 

J = 7.8 Hz, 1H, CHar-3), 7.15 (dd, J = 7.4 Hz, 

5.4 Hz, 1H, CHar-5), 3.97 (d, J = 14.2 Hz, 

1H, NCHH), 3.78 (d, J = 14.2 Hz, 1H, 

NCHH), 3.71 (s, 3H, OCH3), 3.10 (dd, J = 

6.1 Hz, 1.3 Hz, 1H, CH), 2.01-1.94 (m, 1H, 

CH), 0.97 (dd, J = 10.4, 6.9 Hz, 6H, 

CH(CH3)2). 
13C-NMR (75 MHz, CDCl3): 

δ(ppm) 175.2 (Ccarbonyl), 159.5 (Car-2), 149.2 

(Car-6), 137.4 (Car-4), 126.6 (Car-3), 122.1 

(Car-5), 67.1 (NCH2), 54.0 (C, 51.6 (OCH3), 

31.7 (C, 19.3 (C, 18.9 (C'. IR (film): v 

(cm-1) 2960, 2876, 1730, 1685, 1591, 1516, 

1465, 1434, 1367, 1238, 1192, 1147, 1044, 

994, 896, 757, 699, 619, 469, 409. HRMS 

calculated for C12H18N2O2Na (M + Na+) 

245.1266 found (M + Na+) 245.1270. 

5.2.2.42 (S)-methyl 3-(4-hydroxyphenyl)-2-

(pyridin-2-ylmethylamino)propa-

noate ((S)-174) 

 

 

Palladium on carbon (2.15 g, 

2.03 mmol, 10 wt. %) was suspended in 

methanol (100.0 mL) and picolinaldehyde 

(103) (6.4 mL, 67.6 mmol) was added at 

0 °C. Sodium acetate (9.23 g, 112.52 mmol) 

was added to the reaction mixture. Then, 

(S)-168 (13.05 g, 56.33 mmol) dissolved in 

methanol (70 mL) was added drop wise. 

The reaction mixture was stirred for 1 h and 

the nitrogen atmosphere was completely 

substituted by hydrogen in three turns. The 

reaction was continued for 16 h allowing the 

mixture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was subject-

ed to column chromatography using meth-

ylene chloride :  methanol (35:1). The prod-

uct (S)-174 was obtained as a beige solid 

(10.66 g, 37.23 mmol, 66%). Rf = 0.35 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.43 

(d, J = 4.2 Hz, 1H, CHar-6), 7.74 (ddd, J = 
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9.2, 7.7, 1.5 Hz, 1H, CHar-4), 7.34 (d, J = 7.9 

Hz, 1H, CHar-3), 7.27 (dd, J = 5.4, 6.7 Hz, 

1H, CHar-5), 6.98 (d, J = 8.5 Hz, 2H, CHar-2’ 

& CHar-6’), 6.69 (d, J = 8.5 Hz, 2H, CHar-3’ & 

CHar-5’), 3.90 (d, J = 14.3 Hz, 1H, NCHH), 

3.75 (d, J = 14.5 Hz, 1H, NCHH), 3.61 (s, 

3H, (OCH3), 3.48 (t, J = 6.9 Hz, 1H, CH), 

2.88 (d, J = 7.9 Hz, 2H, CH2). 
13C-NMR 

(75 MHz, CD3OD): δ(ppm) 175.94 (Ccarbonyl), 

160.27 (Car-2), 157.34 (Car-4’), 149.63 

(Car-6), 138.58 (Car-4), 131.28 (Car-1’), 

129.09 (2C, Car-2’ & Car-6’), 123.94 (Car-3), 

123.67 (Car-5), 116.22 (2C, Car-3’ & Car-5’), 

63.85 (NCH2), 53.64 (C, 52.13 (OCH3), 

39.54 (C. IR (film): v (cm-1) 3319, 3014, 

2947, 2852, 2680, 2597, 1731, 1595, 1513, 

1438, 1368, 1236, 1203, 1170, 1049, 1001, 

826, 759, 632, 551, 526, 491, 405. HRMS 

calculated for C16H19N2O3 (M + H+) 287.1396 

found (M + H+) 287.1390. 

5.2.2.43 (S)-2-(pyridin-2-ylmethylamino) 

propanoic acid ((S)-175) 

 

 

(S)-169 (1.63 g, 8.4 mmol) was sus-

pended in sodium hydroxide solution (1 M, 

16.8 mL) and stirred for 16 h at 0 °C. The 

reaction mixture was neutralised with hydro-

chlorid acid (2 M) and extracted with meth-

ylene chloride (3 x 50 mL). The aqueous 

layer was concentrated and the solvent 

evaporated under reduced pressure. The 

residue was suspended in ethanol (25 mL) 

and filtrated over CELITE. The orange col-

oured filtrate was concentrated and and 

dried in vacuuo to provide the product 

(S)-175 as brown oil (605 mg, 3.36 mmol, 

40%). Rf = 0.85 (methylene chloride : me-

thanol 15:1). 1H-NMR (300 MHz, CD3OD): 

δ(ppm) 8.63-8.59 (m, 1H, CHar-6), 7.89-7.81 

(m, 1H, CHar-4), 7.46 (d, J = 7.9 Hz, 1H, 

CHar-3), 7.39-7.28 (m, 1H, CHar-5) 4.29 (d, J 

= 14.5 Hz, 1H, NCHH), 4.20 (d, J = 14.6 Hz, 

1H, NCHH), 4.01 (d, J = 7.7 Hz, 1H, CH), 

1.49 (d, J = 7.2 Hz, 3H, CH3). HRMS calcu-

lated for C9H13N2O2 (M + H+) 181.0972 

found (M + H+) 181.0973. 

5.2.2.44 (R)-2-(pyridin-2-ylmethylamino) 

propanoic acid ((R)-175) 

 

 

(R)-169 (530 g, 2.73 mmol) were 

suspended in sodium hydroxide (3.40 mL, 

1 M) at 0 °C and reacted for 18 h. The reac-

tion mixture was washed with methylene 

chloride (3 x 10 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (5.00 mL) and filtrated 

via a syringe filter. The residue was dried in 

vacuo to obtain the product (R)-175 as a 

yellow oil (262 mg, 1.09 mmol, 40%). 

Rf = 0.85 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.52 (ddd, J = 4.9, 1.6, 0.8 Hz, 1H, CHar-6), 

7.79 (td, J = 7.7, 1.8 Hz, 1H, CHar-4), 7.45 

(d, J = 7.8 Hz, 1H, CHar-3), 7.30 (ddd, J = 

7.5, 5.0, 1.0 Hz, 1H, CHar-5), 3.96 (d, J = 

13.8 Hz, 1H, NCHH), 3.85 (d, J = 13.9 Hz, 

1H, NCHH), 3.24 (q, J = 6.9 Hz, 1H, CH), 

1.34 (d, J = 7.0 Hz, 3H, CH3). 
13C-NMR 

(75 MHz, CD3OD): δ(ppm) 181.78 (Ccarbonyl), 

159.80 (Car-2), 150.03 (Car-6), 138.51 

(Car-4), 124.04 (Car-3), 123.69 (Car-5), 59.81 

(C), 53.60 (OCH3), 19.31 (C). IR (film): v 

(cm-1) 3307, 3056, 2975, 2931, 2844, 1572, 

1470, 1430, 1397, 1358, 1281, 1147, 1093, 

1053, 995, 826, 754, 675, 623, 540. HRMS 

calculated for C9H13N2O2+ (M + H+) 

181.0972 found (M + H+) 181.0972. 
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5.2.2.45 (S)-3-phenyl-2-(pyridin-2-ylmethyl-

amino)propanoic acid ((S)-176) 

 

 

(S)-170 (3.05 g, 11.28 mmol) was 

suspended in sodium hydroxide (15 mL, 

1 M aq.) and cooled to 0 °C. After 18 h the 

aqueous layer was extracted with methylene 

chloride (3 x 5 mL). The aqueous layer was 

then neutralised using hydrochloric acid 

(1 M aq.). The solvent was evaporated under 

reduced pressure. The residue was sus-

pended in ethanol (10.00 mL) by sonifica-

tion. The suspension was filtrated using a 

syringe filter and the filtrate was concentrat-

ed in vacuo. The product (S)-176 was ob-

tained as brown solid (2.29 g, 8.93 mmol, 

80%). Rf = 0.10 (methylene chloride : me-

thanol 35:1). IR (film): v (cm-1) 3372, 3059, 

2928, 2855, 1587, 1434, 1391, 1267, 1148, 

1104, 1053, 1000, 896, 732, 698, 622, 547, 

499, 404. HRMS calculated for C15H17N2O2 

(M + H+) 257.1285 found (M + H+) 257.1285. 

5.2.2.46 (S)-4-methyl-2-(pyridin-2-ylmethyl-

amino)pentanoic acid ((S)-177) 

 

 

(S)-171 (2.22 g, 9.40 mmol) were 

suspended in sodium hydroxide (12 mL, 

1 M) at 0 °C and reacted for 18 h. The reac-

tion mixture was washed with methylene 

chloride (3 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (10.00 mL) and filtrat-

ed via a syringe filter. The residue was dried 

in vacuo to obtain the product (S)-177 as a 

yellow oil (1.94 g, 8.74 mmol, 93%). 

Rf = 0.08 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.57 – 8.53 (m, 1H, CHar-6), 7.82 (td, J = 

7.7, 1.8 Hz, 1H, CHar-4), 7.47 (d, J = 7.8 Hz, 

1H, CHar-3), 7.34 (dd, J = 7.1, 5.3 Hz, 1H, 

CHar-5), 4.20 (d, J = 14.5 Hz, 1H, NCHH), 

4.07 (d, J = 14.5 Hz, 1H, NCHH), 3.39 (t, J = 

7.1 Hz, 1H, CH), 1.94–1.79 (m, 1H, CH), 

1.75–1.51 (m, 2H, CH2), 0.97 (d, J = 6.5 

Hz, 3H, CH3), 0.93 (d, J = 6.6 Hz, 3H, 

CH3'). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 

177.80 (Ccarbonyl), 156.50 (Car-2), 150.11 

(Car-6), 138.60 (Car-4), 124.26 (Car-3), 

124.08 (Car-5), 63.13 (NCH2), 52.48 (C), 

42.60 (C), 26.15 (C), 23.03 (C), 22.99 

(C'). IR (film): v (cm-1) 2952, 2867, 1733, 

1581, 1467, 1434, 1396, 1207, 1149, 1121, 

1040, 997, 928, 815, 755, 679, 628, 546, 

487. 
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5.2.2.47 (S)-3-methyl-2-(pyridin-2-ylmethyl-

amino)butanoic acid ((S)-178) 

 

 

(S)-173 (460 mg, 2.07 mmol) were 

suspended in sodium hydroxide solution 

(1 M, 4.14 mL, aq.) at 0 °C and stirred at 

ambient temperature for 16 h. The reaction 

mixture was neutralised with hydrochloric 

acid (2 M) and the solvent was evaporated 

under reduced pressure. The pale solid was 

suspended in ethanol (25 mL) and filtrated 

over CELITE. The filtrate was dried in vacuuo 

to provide the product (S)-178 as a yellow 

solid (420 mg, 2.02 mmol, 98%). Rf = 0.85 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.63 

(d, J = 4.6 Hz, 1H, CHar-6), 7.85 (td, J = 7.7, 

1.8 Hz, 1H, CHar-4), 7.47-7.38 (m, 2H, 

CHar-3 & CHar-5), 4.40 (d, J = 15.0 Hz, 1H, 

NCHH), 4.30 (d, J = 15.0 Hz, 1H, NCHH), 

3.43 (d, J = 3.9 Hz, 1H, CH), 2.29 (m, 1H, 

CH), 1.10 (t, 6H, J = 6.9 Hz, CH(CH3)2). IR 

(film): v (cm-1) 3089, 2800, 2257, 1986, 

1921, 1574, 1474, 1434, 1396, 1357, 1283, 

1137, 1093, 1064, 1000, 880, 850, 817, 756, 

679, 625, 545, 478, 437, 414. HRMS calcu-

lated for C11H17N2O2 (M + H+) 209.1285 

found (M + H+) 209.1287. 

5.2.2.48 (R)-methyl 2-amino-2-phenyl-

acetate hydrochloride ((R)-180) 

 

 

(R)-2-amino-2-phenylacetic acid 

((R)-179) (5.00 g, 33.1 mmol) was suspend-

ed in methanol (30.0 mL) and thionylchloride 

(2.40 mL, 33.1 mmol) was added drop wise 

at 0 °C. The reaction mixture was refluxed 

for 18 h. The solvent was removed under 

reduced pressure and the residue resolved 

in methanol (10.0 mL) then concentrated 

again under reduced pressure. This proce-

dure was repeated three times. The product 

(R)-180 was obtained as white solid (6.05 g, 

30 mmol, quant.). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 7.49 (m, 5H, CHar-2-5), 5.19 

(s, 1H, CH), 3.81 (s, 3H, OCH3). 
13C-NMR 

(75 MHz, CDCl3): δ(ppm) 170.1 (Ccarbonyl), 

133.3 (Car-1), 131.2 (2C, Car-2 & Car-6), 

130.6 (2C, Car-3 & Car-5), 129.1 (Car-4), 57.5 

(C), 53.9 (OCH3). IR (film): v (cm-1) 2959, 

2839, 2697, 2625, 1736, 1568, 1501, 1456, 

1432, 1361, 1384, 1239, 1179, 1142, 1054, 

1027, 960, 920, 885, 726, 690, 588, 497. 

HRMS calculated for C9H12N1O2 (M + H+) 

166.0863 found (M + H+) 166.0865. 
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5.2.2.49 (R)-methyl 2-phenyl-2-(pyridin-2-

ylmethylamino)acetate ((R)-181) 

 

 

Palladium on carbon (1.06 g, 

1.00 mmol, 10 wt. %) was suspended in 

methanol (70.0 mL) and picolinaldehyde 

(103) (2.62 mL, 40.2 mmol) was added at 

0 °C. Sodium acetate (2.85 g, 67.0 mmol) 

was dissolved in methanol (30.0 mL ) and 

added to the reaction mixture. Then, (R)-180 

(6.75 g, 33.5 mmol) was added. The reac-

tion mixture was stirred for 30 min and the 

nitrogen atmosphere was completely substi-

tuted by hydrogen in three turns. The reac-

tion was continued for 16 h allowing the mix-

ture to warm up to ambient temperature. 

The reaction mixture was filtrated over 

CELITE and the crude material was subject-

ed to column chromatography using meth-

ylene chloride :  methanol (35:1). The prod-

uct (R)-181 was obtained as a brown oil 

(3.63 g, 14.2 mmol, 42.3%). Rf = 0.10 

(methylene chloride : methanol 35:1). 
1H-NMR (300 MHz, CDCl3): δ(ppm) 8.56 (d, 

J = 5.0 Hz, 1H, CHar-6), 7.68 (m, 1H, 

CHar-4), 7.44-7.34 (m, 7H, CHar-3, CHar-5, 

CHar-2’-6’), 4.63 (s, 1H, CHa), 3.81-3.98 (m, 

2H, NHCH2), 3.72 (s, 3H, OCH3), 2.08 (s, 

1H, NH). 

5.2.2.50 (R)-2-phenyl-2-(pyridin-2-ylmethyl-

amino)acetic acid ((R)-182) 

 

 

(R)-181 (1.00 g, 3.90 mmol) were 

suspended in sodium hydroxide (4.90 mL, 1 

M) at 0 °C and reacted for 18 h. The reaction 

mixture was washed with methylene chlo-

ride (3 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (8.00 mL) and filtrated 

via a syringe filter. The residue was dried in 

vacuo to obtain the product (R)-182 as a 

yellow solid (940 mg, 3.87 mmol, quant.). 
1H-NMR (300 MHz, CD3OD): δ(ppm) 8.55 

(d, J = 4.8 Hz, 1H, CHar-6), 7.83-7.77 (dt, J = 

7.7, 1.8 Hz, 1H, CHar-4), 7.51-7.48 (m, 2H, 

CHar-3 & CHar-5), 7.42-7.32 (m, 5H, 5xCHar), 

4.49 (s, 1H, CH), 4.35-4.01 (m, 2H, NCH2). 
13C-NMR (75 MHz, CD3OD): δ(ppm) 174.7 

(Ccarbonyl), 155.7 (Car-2), 150.2 (Car-6), 138.6 

(Car-3), 137.6 (Car-1’), 129.8 (2C, Car-2’ & 

Car-6’), 129.6 (2C, Car-3’ & Car-5’), 124.3 

(Car-4’), 124.1 (Car-5), 67.7 (NCH2), 51.5 

(C). IR (film): v (cm-1) 3377, 3058, 2836, 

1589, 1569, 1473, 1454, 1434, 1382, 1361, 

1262, 1191, 1150, 997, 746, 696, 611, 508. 

HRMS calculated for C14H15N2O2 (M + H+) 

243.1128 found (M + H+) 243.1131. 
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5.2.2.51 (S)-tert-butyl 4-(2-(tert-butoxycarbo-

nylamino)-3-methoxy-3-oxopropyl)-

1H-imidazole-1-carboxylate hydro-

chloride ((S)-183) 

 

 

(S)-164 (15.4 g, 63.7 mmol) was dis-

solved in methanol (70.0 mL) and di-tert-

butyl dicarbonate (27.8 g, 127 mmol) pre-

solved in methanol (10.0 mL) was added 

drop wise. Then, triethylamine was added 

drop wise under extensive stirring at 0 °C. 

The reaction was proceeded for 16 h and 

warmed up to ambient temperature. The 

entire reaction mixture was poured into wa-

ter (100 mL) and then extracted with meth-

ylene chloride (3 x 100 mL). The combined 

organic layer was dried over sodium sulfate, 

filtrated and concentrated under reduced 

pressure. The crude material was subjected 

to column chromatography using dieth-

yl ether : ethylacetate (3:1  ethylacetate). 

The product (S)-183 was obtained as white 

solid (16.6 g, 45.1 mmol, 70.7%). Due to 

protonation and deprotonation a second 

fraction of the product was obtained as col-

ourless oil (3.45 g, 8.50 mmol, 13.4%). 

Rf = 0.29 (diethylether : hexane 3:1). 
1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 8.12 

(d, J = 1.1 Hz, 1H, NH), 7.31-7.20 (m, 2H, 

CHar-2 & CHar-5), 4.24 (m, 1H, CH), 3.62 (s, 

3H, OCH3), 2.83 (m, 2H, CH2), 1.55 (s, 9H, 

OCq(CH3)3), 1.34 (s, 9H, OCq(CH3)3). 
13C-NMR (75 MHz, (CD3)2SO): δ(ppm) 172.3 

(COOMe), 155.2 (CNHCOOtBu), 146.6 

(NarCOOtBu), 138.9 (Car-2), 136.7 (Car-5), 

114.4 (Car-4), 85.1 (NarCOOCq(CH3)3), 78.3 

(NHCOOCq(CH3)3), 53.0 (C), 51.8 (OCH3), 

29.4 (C), 28.0 (NHCOOCq(CH3)3), 27.3 

(NarCOOCq(CH3)3). IR (film): v (cm-1) 3248, 

3128, 2982, 1739, 1702, 1578, 1527, 1504, 

1484, 1388, 1366, 1334, 1300, 1274, 1255, 

1227, 1155, 1130, 973, 839, 772, 755, 706, 

603, 554. HRMS calculated for 

C17H27N3O6Na (M + Na+) 399.1792 found 

(M + H+) 399.1800. 

5.2.2.52 (S)-methyl 2-(tert-butoxycarbonyl-

amino)-3-(1H-imidazol-4-yl)propa-

noate ((S)-184) 

 

 

(S)-183 (16.6 g, 44.7 mmol) was dis-

solved in methanol (65.0 mL) and potassium 

carbonate (617 mg, 4.47 mmol) was added. 

The reaction mixture was refluxed and the 

end of the reaction was monitored via TLC. 

The entire mixture was cooled to ambient 

temperature and poured into water (80 mL) 

and extracted with ethyl acetate (3 x 80 mL). 

The combined organic layer was dried over 

sodium sulfate, filtrated and concentrated 

under reduced pressure. The product 

(S)-184 was obtained as a white solid 

(10.1 g, 37.5 mmol, 84.1%). Rf = 0.81 

(methylene chloride : methanol 7:3). 
1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 11.8 

(s, 1H, NarH), 7.54 (s, 1H, CHar-2), 7.17 (d, J 

= 7.3 Hz, 1H, CHar-5), 6.80 (s, 1H, 

NHCOOtBu), 4.25-4.18 (m, 1H, CH), 3.58 

(s, 3H, OCH3), 2.84 (m, 2H, CH2), 1.35 (s, 

9H, OCq(CH3)3). IR (film): v (cm-1) 3384, 

3153, 3131, 2985, 2956, 2935, 1736, 1696, 

1561, 1517, 1451, 1420, 1367, 1308, 1255, 

1218, 1155, 1113, 1071, 1057, 1041, 984, 

850, 761, 619, 541, 463, 422. HRMS calcu-

lated for C12H20N3O4 (M + H+) 270.1448 

found (M + H+) 270.1452. 
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5.2.2.53 (S)-methyl 3-(pyridin-2-ylmethyl)ox-

azolidine-4-carboxylate ((S)-185) 

 

 

(S)-172 (1.00 g, 4.75 mmol) was dis-

solved in methylene chloride (45 mL) at 

0 °C. Trifluoroacetic acid (366 µL, 

4.75 mmol, 0.1 N) was added drop wise fol-

lowed by water (45 mL). Under extensive 

stirring formaldehyde (705 µL, 7.12 mmol, 

37% aq.) was added drop wise to the reac-

tion mixture. The reaction was continued for 

16 h at ambient temperature. The solvent 

was evaporated under reduced pressure 

and the crude material subjected to column 

chromatography using methylene chlo-

ride : methanol (35:1). After drying in vacuo 

(S)-185 was obtained as yellow oil (760 mg, 

3.72 mmol, 72%). Rf = 0.65 (methylene chlo-

ride : methanol 10:1). 1H-NMR (300 MHz, 

CDCl3): δ(ppm) 8.54 (ddd, J = 4.9, 1.7, 0.9 

Hz, 1H, CHar-6), 7.71 (td, J = 7.7, 1.8 Hz, 

1H, CHar-4), 7.58 (d, J = 7.8 Hz, 1H, CHar-3), 

7.21 (ddd, J = 7.4, 4.9, 1.2 Hz, 1H, CHar-5), 

4.51 (s, 2H, NCH2), 4.22–4.15 (m, 1H, CH), 

4.05 (s, 2H, NCH2O), 3.93–3.79 (m, 2H, 

CH2), 3.70 (s, 3H, OCH3). 
13C-NMR 

(75 MHz, CDCl3): δ(ppm) 172.44 (Ccarbonyl), 

149.06 (Car-2), 137.02 (Car-6), 123.25 

(Car-3), 122.59 (Car-5), 87.50 (NCH2O), 

67.45 (NCH2), 64.72 (C), 60.54 (C), 52.33 

(OCH3). IR (film): v (cm-1) 2951, 2883, 1734, 

1670, 1593, 1470, 1435, 1360, 1277, 1201, 

1166, 1119, 1047, 1007, 947, 869, 758, 701. 

5.2.2.54 (S)-3-(pyridin-2-ylmethyl)oxazol-

idine-4-carboxylic acid ((S)-186) 

 

 

(S)-185 (760 mg, 3.42 mmol) were 

suspended in sodium hydroxide (4.50 mL, 

1 M) at 0 °C and reacted for 16 h. The reac-

tion mixture was washed with methylene 

chloride (3 x 20 ml). The combined aqueous 

layer was neutralised to pH 7 with hydro-

chloric acid (1 M). The aqueous layer was 

concentrated and the solvent removed un-

der reduced pressure. The residue was 

suspended in ethanol (5.00 mL) and filtrated 

via a syringe filter. The residue was dried in 

vacuo to obtain the product (S)-186 as a 

white solid (705 mg, 3.39 mmol, quant.). 

Rf = 0.05 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, CD3OD): δ(ppm) 

8.44 (d, J = 5.0, 1H, CHar-6), 7.86 – 7.77 (m, 

2H, CHar-4, CHar-3), 7.29 (dd, J = 8.8, 5.0 

Hz, 1H, CHar-5), 4.40 (dd, J = 13.3, 5.2 Hz, 

2H, NCH2O), 4.17 (t, J = 8.0 Hz, 1H, CH), 

4.03 (d, J = 14.7 Hz, 1H; NCHH), 3.91 (d, J 

= 14.5 Hz, 1H, NCHH), 3.78 (dd, J = 7.9, 5.7 

Hz, 1H, CHH), 3.56–3.48 (m, 1H, CHH). 

IR (film): v (cm-1) 3380, 2481, 2077, 1639, 

1590, 1441, 1212, 1116, 1087, 969, 528, 

462. HRMS calculated for C10H13N2O3 

(M + H+) 209,0921 found (M + H+) 209,0922. 
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5.2.2.55 (S)-methyl 3-(4-(tert-butyldimethyl-

silyloxy)phenyl)-2-(pyridin-2-ylme-

thylamino)propanoate ((S)-187) 

 

 

(S)-174 (2.00 g, 6.98 mmol) was dis-

solved in dimethylformamide (60 mL) and 

cool to 0 °C. Diisopropylethylamine (6.0 mL, 

34.90 mmol) was added drop wise over a 

period of 2 h. Then, tert-butyldimethylsilyl tri-

fluoromethanesulfonate (2.1 mL, 7.81 mmol) 

was added drop wise over a period of 1 h. 

The reaction was continued for 24 h and the 

was allowed to warm up to ambient temper-

ature. Ammonium acetate (60 mL, 1 M aq.) 

was added and the reaction mixture was 

extracted with ethylacetate (3 x 60 mL). The 

combined organic layer was washed with 

BRINE, dried over sodium sulfate, filtrated 

and concentrated under reduced pressure. 

The crude material was subjected to column 

chromatography using methylene chlo-

ride : methanol (35:1). Rf = 0.53 (methylene 

chloride : methanol 15:1). The product 

(S)-187 was obtained as yellow oil (2.77 g, 

6.92 mmol, 99%). 1H-NMR (300 MHz, 

CD3OD): δ(ppm) 7.08 (d, J = 4.9 Hz, 1H, 

CHar-6), 6.40-6.29 (m, 1H, CHar-4), 5.80 (d, 

J = 7.9 Hz, 1H, CHar-3), 5.93-5.89 (m, 1H, 

CHar-5), 5.69 (d, J = 8.4 Hz, 2H, CHar-2’ & 

CHar-6’), 5.40 (d, J = 8.4 Hz, 2H, CHar-3’ & 

CHar-5’), 2.56 (d, J = 14.5 Hz, 1H, NCHH), 

2.40 (d, J = 14.5 Hz, 1H, NCHH), 2.25 (s, 

3H, OCH3), 2.15 (dd, J = 10.4, 7.1 Hz, 1H, 

CH), 1.96 (s, 1H, OH), 1.60 (d, J = 18.8 Hz, 

1H, CHH), 1.52 (d, J = 12.6 Hz, 1H, 

CHH), -0.37 (s, 9H, (SiCq(CH3)3), -1.17 (s, 

6H, (Si(CH3)2). 
13C-NMR (75 MHz, CD3OD): 

δ(ppm) 172.18 (Ccarbonyl), 159.01 (Car-2), 

154.39 (Car-4’), 148.45 (Car-6), 137.362 

(Car-4), 130.79 (Car-1’), 130.28 (2C, Car-2’ & 

Car-6’), 123.31 (Car-3), 122.42 (Car-5), 

120.08 (2C, Car-3’ & Car-5’), 68.40 (NCH2), 

60.12 (C), 51.38 (OCH3), 38.48 (C), 25.84 

(SiCq(CH3)3), 18.36 (SiCq(CH3)3), -4.27 

(Si(CH3)2). IR (film): v (cm-1) 3339, 2953, 

2934, 2892, 2858, 1740, 1680, 1600, 1510, 

1469, 1436, 1359, 1258, 1201, 1170, 1106, 

1003, 915, 839, 781, 691, 634, 543, 475, 

401. HRMS calculated for C22H33N2O3Si 

(M + H+) 401.2260 found (M + H+) 437.2255. 
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5.2.3 Synthesis of complexes and relat-

ed intermediates 

5.2.3.1 Synthesis of organoruthenium (II) 

precursor 95 

 

 

A solution of 93 (259 mg, 0.84 mmol) 

and RuCl2(dmso)4 (468 mg, 0.84 mmol) in 

chloroform (24 mL) was refluxed under ni-

trogen for 5 h, then the resulting solution 

was concentrated and precipitated by the 

addition into diethyl ether. The solid was 

collected and washed with diethyl ether 

(3 x 12 mL) and dried in vacuo. The crude 

material was directly carried forward for lig-

and exchange. Therefore, the crude material 

(434.9 mg, 0.78 mmol) was dissolved in 

MeCN (40 mL) with silver triflate (187 mg, 

0.78 mmol) under a nitrogen atmosphere 

and refluxed for 6 h. The resulting suspen-

sion was cooled to ambient temperature and 

filtered through CELITE. The yellow filtrate 

was reduced to a volume of 1 mL and pre-

cipitated by the addition into cold diethyl 

ether. The solid was then again washed with 

diethyl ether (3 x 12 mL). Finally the residual 

brown solid was concentrated to dryness in 

vacuo to provide 95 as amber coloured 

foam (605 mg, 0.73 mmol, 87% over two 

steps). Due to the high moisture sensibility 

of this compound, a direct continuance into 

the complex synthesis is necessary. 

Rf = 0.05 (hexane : ethylacetate 3:1). 
1H-NMR (300 MHz, CD3CN): δ(ppm) 6.01 

(m, 1H, CHCH2), 5.33-5.24 (m, 2H, CHCH2), 

4.58-4.56 (m, 2H, CH2allyl), 3.31-2.72 (m, 

13H, CHN & 6xCH2), 2.51 (s, 3H, NCH3), 

2.50 (s, 3H, CspCH3), 2.40 (s, 6H, 2x 

CspCH3). 
13C-NMR (75.5 MHz, CD3CN): 

(ppm) 134.0, 125.7, 124.2, 120.0, 80.0, 

67.1, 46.9, 46.3, 45.5, 44.3, 41.4, 37.6, 36.6, 

35.2, 34.6, 34.4, 34.0, 33.5, 32.5, 32.3 IR 

(film): ν(cm-1) 3513, 3000, 2936, 2322, 2294, 

1689, 1453, 1409, 1328, 1248, 1150, 1023, 

954, 834, 763, 632, 571, 514, 423. HRMS 

calculated for C19H30F3N4O5S4Ru (M + H)+ 

681.0089, found (M + H)+ 681.0085. 

5.2.3.2 Synthesis of organoruthenium(II) 

complex 96 

 

 

A suspension of the ligand 78 

(25 mg, 56 µmol), potassium carbonate 

(8.5 mg, 61 µmol), and ruthenium precursor 

95 (50.8 mg, 61 µmol) in DMF (3 mL) was 

stirred at 85 °C under microwave irradiation 

for 40 min, followed by adding sodium thio-

cyanate (9 mg, 111 µmol), then the mixture 

was stirred at 85 °C for an additional 40 min. 

The resulting suspension was dried in vacuo 

and the crude material was adsorbed onto 

silica gel and subjected to silica gel chroma-

tography with methylene chloride : methanol 

(35:1) to obtain the metal complex 96 as a 

dark green solid (26 mg, 33 µmol, 59%). 

The quick regio-isomerisation of the mono-

dentate isothiocyanate ligand from the 

N-bound to the S-bound form and vice versa 

leads to a second signal set in the NMR 

spectra. Rf = 0.45 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2CO): δ(ppm) 9.87 (s, 1H, NH), 9.18-

9.06 (m, 1H, CHar-4), 8.90-8.81 (m, 1H, 

CHar-2), 8.44-8.43 (m, 1H, CHar-8), 8.13 (d, 

J = 9.0 Hz, 1H, CHar-11), 7.17-7.10 (m, 1H, 

CHar-10), 6.07-5.92 (m, 1H, CHCH2), 5.38-
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5.21 (m, 2H, CHCH2), 4.56-4.55 (m, 2H, 

CH2allyl) 3.93 (s, 3H, OCH3), 3.69-2.92 (m, 

13H, CHN & 6xCH2), 2.78 (s, 3H, NCH3). IR 

(film): ν(cm-1) 2923, 2098, 1699, 1558, 1468, 

1403, 1327, 1285, 1206, 1141, 1024, 950, 

810, 759, 694, 635, 516. HRMS calculated 

for C31H30FN5O5RuS4Na+ (M + Na)+ 

824.0050, found (M + Na)+ 824.0044. 

Measureable crystals of compound 96 were 

obtained after one week in (CD3)2CO at 

4 °C. 

5.2.3.3 Synthesis of organoruthenium(II) 

complex 87 

 

 

To a solution of the solid product 96 

(21 mg, 26 µmol) in methylene chloride 

(11 mL) was added 1,3-dimethylbarbituric 

acid (61 mg, 39 µmol) and Pd(PPh3)4 

(4.5 mg, 4 µmol) under nitrogen. The result-

ing mixture was stirred at ambient tem-

perature for 14 h, followed by the addition of 

saturated NaHCO3 (1 x 0.5 mL) solution to 

quench the reaction. The resulting sus-

pension was dried in vacuo and the crude 

material was adsorbed onto silica gel and 

subjected to silica gel chromatography with 

methylene chloride : methanol : 2% triethyl-

amine (10:1  5:1) as the eluting solvent to 

obtain the metal complex 87. The purified 

complex 87 was then extracted with satur-

ated NH4Cl (2 x 20 mL), saturated NaHCO3 

(4 x 15 mL) and Brine (2 x 20 mL) to remove 

residual NEt3. The metal complex 87 was 

obtained as a dark green solid (8.7 mg, 

12 µmol, 47%). Rf = 0.38 (methylene chlo-

ride : methanol 2% triethylamine 15:1). 

1H-NMR (300 MHz, (CH3)2SO): δ(ppm) 

11.02 (s, 1H, NH), 8.98 (m, 1H, CHar-4), 

8.80 (dd, J = 9.3, 2.4 Hz, 1H, CHar-2), 8.30 

(d, J = 2.7 Hz, 1H, CHar-8), 8.04 (d, J = 9.0 

Hz, 1H, CHar-11), 7.15 (dd, J = 9.0, 2.7 Hz, 

1H, CHar-10), 3.89 (s, 3H, OCH3), 3.58-3.39 

(m, 13H, CHN & 6xCH2), 2.40 (s, 3H, 

NHCH3). 
13C-NMR (125.8 MHz, (CH3)2SO): 

δ(ppm) 170.7 (2C, Car-5 & Car-7), 170.52 

(Car-3) 156.76 (Car-9), 153.7 (Car-12b), 147.7 

(Car), 146.7 (Car), 141.1 (Car), 134.27 (NCS), 

131.4 (Car), 131.1 (Car), 128.7 (Car), 124.1 

(Car), 120.8 (Car), 115.7 (Car), 114.5 (Car), 

110.5 (Car), 106.1 (Car-8), 69.7 (CHNHCH3), 

55.5 (OCH3), 53.7 (SCH2CHNHCH3), 51.7 

(SCH2CHNHCH3), 48.5 (CHNHCH3), 35.9 

(Caliph), 34.2 (Caliph), 33.3 (Caliph), 31.8 (Caliph). 

IR (film): ν(cm-1) 3452, 3058, 2924, 1747, 

1677, 1615, 1561, 1492, 1439, 1408, 1369, 

1328, 1287, 1225, 1022, 948, 883, 759, 610, 

447. HRMS calculated for 

C27H26FN5O3RuS4Na (M + Na)+ 739.8447, 

found (M + Na)+739.8443. 

5.2.3.4 Synthesis of organorhodium(III) 

complexes -(R)-106 and 

-(R)-107 

 

 

A suspension of 79 (17.6 mg, 

44 µmol) and RhCl3∙3H2O (11.5 mg, 

44 µmol) in an ethanol : water mixture (1:1, 

20 mL) under nitrogen atmosphere in a 

sealed vessel was heated to 90 °C for 3 h. 

During this time the suspension turned from 

pale brown into dark red. The reaction mix-

ture was then cooled down slightly to add 

(R)-105 (9.9 mg, 48 µmol). After addition of 

(R)-105, the reaction was further proceeded 
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at 90 °C for 16 h. The reaction mixture was 

then cooled down to ambient temperature 

and the solvent was removed in vacuo. The 

crude material was purified via column 

chromatography using methylene chlo-

ride : methanol (20:1  10:1). The separat-

ed diastereomers were further purified and 

concentrated via preparative TLC using 

methylene chloride : methanol (10:1). The 

products were obtained as red solids, 

-(R)-107 (4.2 mg, 6.6 µmol, 15%) and 

-(R)-106 (6.1 mg, 9.7 µmol, 22%). 

-(R)-107: Rf = 0.25 (methylene chlo-

ride : methanol 15:1). 1H-NMR (500 MHz, 

(CD3)2SO): δ(ppm) 11.24 (s, 1H, NH), 9.68 

(d, J = 5.7 Hz, 1H, CHar-6’), 9.30 (dd, J = 

8.4, 1.1 Hz, 1H, CHar-4), 8.87 (d, J = 5.1 Hz, 

1H, CHar-2), 8.68 (dd, J = 7.8, 0.5 Hz, 1H, 

CHar-8), 8.48 (td, J = 7.8, 1.5 Hz, 1H, 

CHar-4’), 8.08 (dd, J = 8.4, 5.2 Hz, 1H, 

CHar-3), 8.06 – 8.01 (m, 1H, CHar-5’), 7.99 

(d, J = 7.8 Hz, 1H, CHar-3’), 7.28 – 7.24 (m, 

1H, CHar-10), 7.21 (ddd, J = 8.4, 7.2, 1.4 Hz, 

1H, CHar-9), 5.70 (d, J = 8.2 Hz, 1H, 

CHar-11), 4.60 (d, J = 15.6 Hz, 1H, NCHH), 

4.34 (d, J = 15.7 Hz, 1H, NCHH), 3.81 (dd, J 

= 9.6, 4.3 Hz, 1H, CH), 2.50 (m, 1H, 

CHH), 2.28 – 2.15 (m, 2H, CHH& 

CHH), 2.00 (dt, J = 11.3, 4.8 Hz, 1H, 

CHH), 1.58 (m, J = 11.7, 5.9 Hz, 1H, 

CHH), 1.11 – 1.01 (m, 1H, CHH). 
13C-NMR (126 MHz, (CD3)2SO): δ(ppm) 

182.02 (Ccarbonyl), 170.59 (Car-7), 170.23 

(Car-5), 161.13 (Car-2’), 152.62 (Car-6’), 

152.54 (Car-12b), 148.90 (Car-12a), 148.89 

(Car-11a), 148.74 (Car-2), 142.09 (Car-4’), 

141.17 (Car-7b), 135.24 (Car-4), 131.23 

(Car-7a), 126.61 (Car-9), 126.27 (Car-5’), 

124.75 (Car-8), 123.90 (Car-3), 123.47 

(Car-3’), 121.34 (Car-10), 119.59 (Car-4a), 

115.08 (Car-7c), 114.59 (Car-4b), 111.79 

(Car-11), 72.91 (C), 70.02 (NCH2), 61.27 

(C), 30.43 (C), 24.31 (C). IR (film): ν (cm-1) 

3037, 2075, 1994, 1751, 1703, 1646, 1519, 

1482, 1413, 1337, 1296, 1262, 1225, 1132, 

1017, 930, 884, 856, 743, 704, 636, 493, 

436. HRMS calculated for C28H21ClN5O4Rh 

(M + Na)+ 652.0229, found (M + Na)+ 

652.0220. -(R)-106: Rf = 0.08 (methylene 

chloride : methanol 15:1). 1H-NMR 

(300 MHz, (CD3)2SO): δ(ppm) 11.24 (s, 1H, 

NH), 9.54 (d, J = 5.5 Hz, 1H, CHar-6‘), 9.17 

(d, J = 7.7 Hz, 1H, CHar-4), 8.71 (d, J = 7.8 

Hz, 1H, CHar-8), 8.38 (m, 1H, CHar-4‘), 7.99 

– 7.89 (m, 3H, CHar-2, CHar-5‘ & CHar-11), 

7.82 (d, J = 8.3 Hz, 1H, CHar-3‘), 7.74 (dd, J 

= 8.4, 5.3 Hz, 1H, CHar-3), 7.58 – 7.51 (m, 

1H, CHar-9), 7.41 – 7.33 (m, 1H, CHar-10), 

4.59 (s, 2H, NCH2), 3.79 (dd, J = 9.4, 4.7 

Hz, 1H, CH), 2.50 (m, 1H, CHH), 2.29 – 

2.09 (m, 2H, CHH& CHH), 1.86 (dt, J = 

11.3, 5.9 Hz, 1H, CHH), 1.44 (dt, J = 11.7, 

5.8 Hz, 1H, CHH), 1.10 (dt, J = 12.7, 7.0 

Hz, 1H, CHH). 
13C-NMR (101 MHz, 

(CD3)2SO): δ(ppm) 181.89 (Ccarbonyl), 159.96 

(Car-2’), 151.72 (Car-6’), 151.25 (Car-12b), 

150.17 (Car-2), 149.43 (Car-12a), 149.13 

(Car-11a), 141.85 (Car-7b), 140.53 (Car-4‘), 

134.41 (Car-4), 130.75 (Car-7a), 125.67 

(Car-9), 125.79 (Car-5‘), 123.84 (Car-3), 

123.57 (Car-8), 122.67 (Car-11), 120.87 

(Car-10), 119.14 (Car-4a), 114.73 (Car-3‘), 

114.44 (Car-7c), 113.63 (Car-4b), 73.51 (C), 

69.35 (NCH2), 60.75 (C), 30.74 (C), 24.01 

(C). The 13C-signals of Car-5 and Car-7 are 

missing. IR (film): ν(cm-1) 3045, 2724, 1819, 

1750, 1704, 1644, 1519, 1481, 1413, 1336, 

1297, 1225, 1134, 1014, 932, 824, 786, 743, 

703, 635, 492, 436, 392. HRMS calculated 

for C28H21ClN5O4RhNa (M + Na)+ 652.0229, 

found (M + Na)+ 652.0238. 
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5.2.3.5 Synthesis of organorhodium(III) 

complexes -(S)-106 and -(S)-107 

 

 

A suspension of 79 (17.6 mg, 

44 µmol) and RhCl3∙3H2O (11.5 mg, 

44 µmol) in an ethanol : water mixture (1:1, 

20 mL) under nitrogen atmosphere in a 

sealed vessel was heated to 90 °C for 3 h. 

During this time the suspension turned from 

pale brown into dark red. The reaction mix-

ture was then cooled down slightly to add 

(S)-105 (9.9 mg, 48 µmol). After addition of 

(S)-105, the reaction was further proceeded 

at 90 °C for 16 h. The reaction mixture was 

then cooled down to ambient temperature 

and the solvent was removed in vacuo. The 

crude material was purified via column 

chromatography using methylene chlo-

ride : methanol (20:1  10:1). The separat-

ed diastereomers were further purified and 

concentrated via preparative TLC using 

methylene chloride : methanol (10:1). The 

products were obtained as red solids, 

-(S)-107 (3.9 mg, 6.6 µmol, 14%) and 

-(S)-106 (6.7 mg, 10.6 µmol, 24%). 

-(S)-107: Rf = 0.25 (methylene chlo-

ride : methanol 15:1). 1H-NMR (500 MHz, 

(CD3)2SO): δ(ppm) 11.25 (s, 1H, NH), 9.68 

(d, J = 5.4 Hz, 1H, CHar-6’), 9.30 (d, J = 8.3 

Hz, 1H, CHar-4), 8.87 (d, J = 4.8 Hz, 1H, 

CHar-2), 8.68 (d, J = 7.7 Hz, 1H, CHar-8), 

8.51 – 8.43 (m, 1H, CHar-4’), 8.08 (dd, J = 

8.3, 5.2 Hz, 1H, CHar-3), 8.06 – 8.01 (m, 1H, 

CHar-5’), 7.99 (d, J = 7.7 Hz, 1H, CHar-3’), 

7.26 (t, J = 7.4 Hz, 1H, CHar-10), 7.21 (t, J = 

7.4 Hz, 1H, CHar-9), 5.70 (d, J = 8.2 Hz, 1H, 

CHar-11), 4.60 (d, J = 15.8 Hz, 1H, NCHH), 

4.34 (d, J = 15.8 Hz, 1H, NCHH), 3.81 (dd, J 

= 9.3, 4.0 Hz, 1H, CH), 2.50 (m, 1H, 

CHH), 2.21 (dd, J = 17.3, 10.9 Hz, 2H, 

CHH& CHH), 2.04 – 1.97 (m, 1H, 

CHH), 1.61 – 1.54 (m, 1H, CHH), 1.11 – 

1.01 (m, 1H, CHH). 
13C-NMR (126 MHz, 

(CD3)2SO): δ(ppm) 181.79 (Ccarbonyl), 169.97 

(Car-7), 169.89 (Car-5), 160.83 (Car-2’), 

152.46 (Car-6’), 152.14 (Car-12b), 148.53 

(Car-12a), 148.38 (Car-11a) 148.27 (Car-2), 

141.77 (Car-4’), 140.87 (Car-7a), 134.93 

(Car-4), 130.85 (Car-7a), 126.11 (Car-9), 

125.92 (Car-5’), 124.34 (Car-8), 123.23 

(Car-3), 123.01 (Car-3’), 121.07 (Car-10), 

119.14 (Car-4a), 114.27 (Car-7c), 114.13 

(Car-4b), 111.43 (Car-11), 72.27 (C), 69.75 

(NCH2), 61.02 (C), 30.13 (C), 24.16 (C). 

IR (film): ν (cm-1) 3034, 2159, 2096, 1751, 

1704, 1646, 1519, 1483, 1413, 1337, 1295, 

1262, 1225, 1131, 1015, 930, 828, 784, 744, 

705, 636, 527, 491. HRMS calculated for 

C28H21ClN5O4Rh (M + Na)+ 652.0229, found 

(M + Na)+ 652.0208. -(S)-106: Rf = 0.08 

(methylene chloride : methanol 15:1). 1H-

NMR (300 MHz, (CD3)2SO): δ(ppm) 11.22 

(s, 1H, NH), 9.54 (d, J = 5.1 Hz, 1H, 

CHar-6‘), 9.18 (dd, J = 8.4, 1.0 Hz, 1H, CHar-

4), 8.71 (d, J = 7.9 Hz, 1H CHar-8), 8.38 (td, 

J = 7.7, 1.5 Hz, 1H, CHar-4‘), 8.00 – 7.89 (m, 

3H, CHar-2, CHar-5‘ & CHar-11), 7.82 (d, J = 

8.3 Hz, 1H, CHar-3‘), 7.74 (dd, J = 8.4, 5.3 

Hz, 1H, CHar-3), 7.59 – 7.50 (m, 1H, CHar-9), 

7.41 – 7.33 (m, 1H, CHar-10), 4.58 (s, 2H, 

NCH2), 3.79 (dd, J = 9.4, 4.8 Hz, 1H, CH), 

2.51 – 2.48 (m, 1H, CHH), 2.25 – 2.12 (m, 

2H, CHH& CHH), 1.94 – 1.77 (m, 1H, 

CHH), 1.50 – 1.37 (m, 1H, CHH), 1.17 – 

0.98 (m, 1H, CHH). 
13C-NMR (101 MHz, 

(CD3)2SO): δ(ppm) 182.29 (Ccarbonyl), 160.16 

(Car-2’), 152.22 (Car-6’), 151.65 (Car-12b), 

150.37 (Car-2), 149.86 (Car-12a), 149.83 

(Car-11a) 142.35 (Car-7a), 140.73 (Car-4‘), 

134.81 (Car-4), 131.25 (Car-4b), 126.57 

(Car-9), 126.09 (Car-5‘), 124.26 (Car-3), 

123.90 (Car-8), 123.07 (Car-11), 121.10 

(Car-10), 119.66 (Car-4a), 114.96 (Car-3‘), 

114.89 (Car-7c), 114.01 (Car-7b), 73.52 (C), 

69.25 (NCH2), 61.45 (C), 30.38 (C), 23.83 

(C). The 13C-signals of Car-5 and Car-7 are 
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missing. IR (film): ν (cm-1) 3046, 2723, 1818, 

1752, 1703, 1647, 1518, 1482, 1414, 1337, 

1295, 1224, 1133, 1012, 932, 824, 786, 742, 

701, 637, 492, 436. HRMS calculated for 

C28H21ClN5O4RhNa (M + Na)+ 652.0229, 

found (M + Na)+ 652.0228.

5.2.3.6 Synthesis of organorhodium(III) 

complexes -(S,R)-125 and 

-(S,R)-126 

 

 

A suspension of 79 (30 mg, 75 µmol) 

and RhCl3∙3H2O (19.6 mg, 75 µmol) in an 

ethanol : water mixture (1:1, 10 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (S, R)-119 (27.9 mg, 

83 µmol). After addition of (S, R)-119, the 

reaction was further proceeded at 90 °C for 

16 h. The reaction mixture was then cooled 

down to ambient temperature and the sol-

vent was removed in vacuo. The crude ma-

terial was purified via column chroma-

tography using methylene chloride : meth-

anol (20:1  10:1). The separated diastere-

omers were further purified and concen-

trated via preparative TLC using methylene 

chloride : methanol (15:1). The products 

were obtained as red solids, -(S,R)-125 

(11 mg, 17.3 µmol, 23%) and -(S,R)-126 

(8.2 mg, 12.8 µmol, 17%). -(S,R)-125: 

Rf = 0.14 (methylene chloride : methanol 

15:1). 1H-NMR (500 MHz, (CD3)2SO): 

δ(ppm) 9.55 (d, J = 5.8 Hz, 1H, CHar-6’), 

9.18 (dd, J = 8.4, 1.0 Hz, 1H, CHar-4), 8.71 

(d, J = 8.0 Hz, 1H, CHar-8), 8.36 (td, J = 7.8, 

1.5 Hz, 1H, CHar-4’), 8.10 – 7.87 (m, 3H, 

CHar-11, CHar-5’ & CHar-2), 7.77 (d, J = 8.3 

Hz, 1H, CHar-3’), 7.76 – 7.73 (m, 1H, 

CHar-3), 7.54 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H, 

CHar-9), 7.41 – 7.35 (m, 1H, CHar-10), 4.82 – 

4.74 (m, 2H, NCH2), 4.74 – 4.70 (m, 1H 

CH) 4.01 (t, J = 8.8 Hz, 1H, CH), 3.72 – 

3.62 (m, 1H, CHH), 3.51 (s, 1H, OH) 2.52 

(d, J = 1.9 Hz, 1H, CHH), 2.26 – 2.11 (m, 

1H, CHH), 1.91 – 1.78 (m, 1H, CHH). 
13C-NMR (126 MHz, (CD3)2SO): δ(ppm) 

181.83 (Ccarbonyl), 160.49 (Car-2’), 151.89 

(Car-6’), 151.32 (Car-2), 151.31 (Car-12b), 

150.81 (Car-12a), 146.75 (Car-11a), 142.44 

(Car-7b) 140.95 (Car-4’), 135.27 (Car-4), 

131.17 (Car-7a), 127.10 (Car-9), 126.21 

(Car-5’), 124.81 (Car-3), 124.60 (Car-8), 

124.09 (Car-11), 120.14 (Car-10), 119.70 

(Car-4a), 115.09 (Car-3’), 114.66 (Car-7c), 

114.22 (Car-4b), 73.71 (C), 72.66 (NCH2), 

72.64 (C), 67.41 (C), 39.82 (C). The 
13C-signals of Car-5 and Car-7 are missing. 

IR (film): ν (cm-1) 2925, 2855, 2724, 2252, 

2126, 1750, 1705, 1649, 1498, 1446, 1412, 

1342, 1294, 1231, 1148, 1001, 878, 820, 

755, 707, 635, 530, 490, 432. HRMS calcu-

lated for C28H21ClN5NaO5Rh (M + Na)+ 

668.0178, found (M + Na)+ 668.0178. 

-(S,R)-126: Rf = 0.08 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 9.67 (d, J = 5.7 Hz, 1H, 

CHar-6’), 9.29 (dd, J = 8.4, 1.0 Hz, 1H, 

CHar-4), 8.84 (d, J = 5.1 Hz, 1H, CHar-2), 

8.71 – 8.65 (m, 1H, CHar-8), 8.47 (td, J = 

7.8, 1.4 Hz, 1H, CHar-4’), 8.09 (d, J = 8.4 Hz, 

1H, CHar-3), 8.07 (d, J = 8.4 Hz, 1H, 

CHar-5’), 8.01 (dd, J = 10.3, 4.2 Hz, 1H, 

CHar-3’), 7.32 – 7.11 (m, 2H, CHar-10 & 

CHar-9), 5.74 (d, J = 7.8 Hz, 1H, CHar-11), 

5.23 (s, 1H, CH), 4.84 (d, J = 15.8 Hz, 1H, 

NCHH), 4.44 (d, J = 15.8 Hz, 1H, NCHH), 

4.01 (t, J = 8.5 Hz, 1H, CH), 3.77 (s, 1H, 

OH), 2.51 – 2.48 (m, 1H, CHH), 2.30 – 

2.11 (m, 2H, CHH & CHH), 2.08 – 1.87 

(m, 1H, CHH). IR (film): ν (cm-1) 2973, 

2937, 2250, 1746, 1709, 1666, 1579, 1497, 

1448, 1415, 1337, 1296, 1261, 1227, 1152, 
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1127, 1049, 1005, 878, 821, 763, 733, 707, 

631, 532, 488. HRMS calculated for 

C28H21ClN5NaO5Rh (M + Na)+ 668.0178, 

found (M + Na)+ 668.0178. 

5.2.3.7 Synthesis of organorhodium(III) 

complexes -(R)-127 and 

-(R)-128 

 

 

A suspension of 79 (30 mg, 75 µmol) 

and RhCl3∙3H2O (19.6 mg, 75 µmol) in an 

ethanol : water mixture (1:1, 10 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (R)-124 (18.3 mg, 

83 µmol). After addition of (R)-124, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (20:1  5:1). 

The separated diastereomers were further 

purified and concentrated via preparative 

TLC using methylene chloride : methanol 

(15:1). The products were obtained as red 

solids, -(R)-127 (11.5 mg, 18 µmol, 24%) 

and -(R)-128 (7.7 mg, 12 µmol, 16%). 

-(R)-127: Rf = 0.11 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 11.19 (s, 1H, NH), 9.55 

(d, J = 5.6 Hz, 1H, CHar-6‘), 9.16 (dd, J = 

8.2, 1.2 Hz, 1H, CHar-4), 8.72 (d, J = 7.9 Hz, 

1H, CHar-8), 8.39 (td, J = 7.8, 1.4 Hz, 1H, 

CHar-4‘), 8.06 – 7.91 (m, 3H, CHar-2, CHar-5‘ 

& CHar-11), 7.76 – 7.64 (m, 2H, CHar-3‘ & 

CHar-3), 7.60 – 7.51 (m, 1H, CHar-9), 7.42 – 

7.35 (m, 1H, CHar-10), 4.86 (d, J = 16.4 Hz, 

1H, NCHH), 4.48 (d, J = 16.1 Hz, 1H, 

NCHH), 3.45 – 3.35 (m, 1H, CH), 2.45 – 

2.35 (m, 1H, CHaliph), 2.33 – 2.28 (m, 1H, 

CHaliph), 1.99 – 1.82 (m, 1H, CHaliph), 1.79 – 

1.59 (m, 1H, CHaliph), 1.56 – 1.39 (m, 1H, 

CHaliph), 1.32 – 1.21 (m, 2H, CHaliph), 1.07 – 

0.92 (m, 1H, CHaliph). A second set of signals 

for each proton was observed. IR (film): ν 

(cm-1) 2956, 2920, 2853, 2268, 2209, 2169, 

2133, 2058, 2008, 1754, 1708, 1648, 1444, 

1339, 1229, 1012, 915, 748, 677, 637, 534, 

488, 434. HRMS calculated for 

C29H23ClN5NaO4Rh (M + Na)+ 666.0386, 

found (M + Na)+ 666.0387. -(R)-128: 

Rf = 0.24 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 11.25 (s, 1H, NH), 9.71 (d, J = 4.7 

Hz, 1H, CHar-6’), 9.32 – 9.19 (m, 1H, 

CHar-4), 8.88 (d, J = 5.2 Hz, 1H, CHar-2), 

8.67 (t, J = 7.2 Hz, 1H, CHar-8), 8.54 – 8.33 

(m, 1H, CHar-4’), 8.20 – 8.07 (m, 1H, 

CHar-3), 8.05 (dd, J = 11.4, 6.2 Hz, 1H, 

CHar-5’), 7.96 – 7.84 (m, 1H, CHar-3’), 7.33 – 

7.07 (m, 2H, CHar-9 & CHar-10), 5.41 (d, J = 

8.2 Hz, 1H, CHar-11), 4.92 (d, J = 15.5 Hz, 

1H, NCHH), 4.20 (d, J = 15.7 Hz, 1H, 

NCHH), 3.43 (t, J = 5.5 Hz, 1H, CH), 2.38 – 

2.19 (m, 2H, CHaliph), 2.00 – 1.63 (m, 4H, 

CHaliph), 1.58 – 1.40 (m, 2H, CHaliph). A sec-

ond set of signals for each proton was ob-

served. IR (film): ν(cm-1) 1751, 1705, 1653, 

1521, 1491, 1415, 1339, 1296, 1261, 1225, 

1080, 1016, 821, 792, 745, 707, 636, 527. 

HRMS calculated for C29H23ClN5NaO4Rh 

(M + Na)+ 666.0386, found (M + Na)+ 

666.0386. 
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5.2.3.8 Synthesis of organorhodium(III) 

complexes -(S)-127 and -(S)-128 

 

 

A suspension of 79 (30 mg, 75 µmol) 

and RhCl3∙3H2O (19.6 mg, 75 µmol) in an 

ethanol : water mixture (1:1, 10 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (S)-124 (18.3 mg, 

83 µmol). After addition of (S)-124, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (35:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as red solids, -(S)-127 (10.5 mg, 

15.8 µmol, 21%) and -(S)-128 (7.5 mg, 

11.3 µmol, 15%). -(S)-127: Rf = 0.11 

(methylene chloride : methanol 15:1). 1H-

NMR (300 MHz, (CD3)2SO): δ(ppm) 9.54 (d, 

J = 5.7 Hz, 1H, CHar-6‘), 9.16 (dd, J = 8.2, 

1.2 Hz, 1H, CHar-4), 8.72 (d, J = 7.9 Hz, 1H, 

CHar-8), 8.39 (td, J = 7.7, 1.4 Hz, 1H, 

CHar-4’), 7.97 (d, J = 8.2 Hz, 3H, CHar-2, 

CHar-5‘ & CHar-11), 7.70 (dt, J = 12.4, 4.8 

Hz, 2H, CHar-3‘ & CHar-3), 7.59 – 7.52 (m, 

1H, CHar-9), 7.42 – 7.35 (m, 1H, CHar-10), 

4.86 (d, J = 16.6 Hz, 1H, NCHH), 4.48 (d, J 

= 16.4 Hz, 1H, NCHH), 3.45 – 3.35 (m, 1H, 

CH), 2.44 – 2.32 (m, 1H, CHaliph), 2.33 – 

2.28 (m, 1H, CHaliph), 1.94– 1.80 (m, 1H, 

CHaliph), 1.79 – 1.59 (m, 1H, CHaliph), 1.56 – 

1.39 (m, 1H, CHaliph), 1.33 – 1.20 (m, 2H, 

CHaliph), 1.06 – 0.90 (m, 1H, CHaliph). A sec-

ond set of signals for each proton was ob-

served. IR (film): ν (cm-1) 1750, 1705, 1650, 

1524, 1497, 1413, 1339, 1268, 1228, 1017, 

999, 822, 794, 753, 706, 635, 585, 527, 489, 

438. HRMS calculated for 

C29H23ClN5NaO4Rh (M + Na)+ 666.0386, 

found (M + Na)+ 666.0387. -(S)-128: 

Rf = 0.24 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 11.22 (s, 1H, NH), 9.71 (d, J = 4.8 

Hz, 1H, CHar-6’), 9.29 (ddd, J = 8.4, 4.5, 1.0 

Hz, 1H, CHar-4), 8.88 (d, J = 5.1 Hz, 1H, 

CHar-2), 8.72 – 8.62 (m, 1H, CHar-8), 8.48 

(td, J = 7.8, 1.4 Hz, 1H, CHar-4’), 8.13 (dd, J 

= 8.4, 5.2 Hz, 1H, CHar-3), 8.02 (d, J = 7.7 

Hz, 1H, CHar-3’), 7.91 (dd, J = 13.5, 7.0 Hz, 

1H, CHar-5’), 7.29 – 7.21 (m, 1H, CHar-9), 

7.19 – 7.10 (m, 1H, CHar-10), 5.41 (d, J = 

8.2 Hz, 1H, CHar-11), 4.91 (d, J = 15.7 Hz, 

1H, NCHH), 4.20 (d, J = 15.5 Hz, 1H, 

NCHH), 3.42 (t, J = 5.6 Hz, 1H, CH), 2.38 – 

2.19 (m, 1H, CHaliph) 2.02 – 1.86 (m, 2H, 

CHaliph), 1.86 – 1.63 (m, 1H, CHaliph), 1.58 – 

1.39 (m, 2H, CHaliph), 1.38 – 1.25 (m, 1H, 

CHaliph), 1.07 – 0.89 (m, 1H, CHaliph). A sec-

ond set of signals for each proton was ob-

served. IR (film): ν (cm-1) 1749, 1702, 1657, 

1517, 1489, 1419, 1341, 1293, 1264, 1222, 

1080, 1011, 818, 796, 745, 707, 636, 527. 
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5.2.3.9 Synthesis of organorhodium(III) 

complexes -(R)-129 and 

-(R)-130 

 

 

A suspension of 79 (30 mg, 75 µmol) 

and RhBr3∙xH2O (26 mg, 75 µmol) in an eth-

anol : water mixture (1:1, 20 mL) under ni-

trogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (R)-105 (17 mg, 

83 µmol). After addition of (R)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (100:0  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as red solids, -(R)-129 (8.1 mg, 

12 µmol, 16%) and -(R)-130 (5.0 mg, 7.5 

µmol, 10%). -(R)-129: Rf = 0.16 (methy-

lene chloride : methanol 15:1). 1H-NMR 

(300 MHz, (CD3)2SO): δ(ppm) 9.75 (d, J = 

5.5 Hz, 1H, CHar-6‘), 9.18 (dd, J = 8.4, 2.5 

Hz, 1H, CHar-4), 8.71 (d, J = 7.9 Hz, 1H, 

CHar-8), 8.44 – 8.32 (m, 1H, CHar-4’), 7.98 – 

7.91 (m, 3H, CHar-2, CHar-5‘ & CHar-11), 

7.82 (dd, J = 8.6, 4.2 Hz, 1H, CHar-3‘), 7.74 

(dd, J = 8.3, 5.3 Hz, 1H, CHar-3), 7.59 – 7.48 

(m, 1H, CHar-9), 7.38 (t, J = 7.5 Hz, 1H, 

CHar-10), 4.59 (s, 2H, NCH2), 3.83 – 3.68 

(m, 1H, CH), 2.50 – 2.48 (m, 1H, CHH), 

2.24 – 2.06 (m, 2H, CHH& CHH), 1.90 – 

1.78 (m, 1H, CHH), , 1.51 – 1.35 (m, 1H, 

CHH), 1.12 – 0.98 (m, 1H, CHH). IR (film): 

ν (cm-1) 2923, 2855, 2250, 2127, 1749, 

1705, 1647, 1523, 1496, 1470, 1447, 1416, 

1340, 1294, 1228, 1147, 1020, 1001, 820, 

755, 707, 635, 573. HRMS calculated for 

C28H21BrN5NaO4Rh (M + Na)+ 695.9724, 

found (M + Na)+ 695.9726. -(R)-130: 

Rf = 0.37 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.68 (d, J = 5.6 Hz, 1H, CHar-6’), 

9.29 (dd, J = 8.4, 1.1 Hz, 1H, CHar-4), 8.86 

(d, J = 5.1 Hz, 1H, CHar-2), 8.68 (dd, J = 7.0, 

1.0 Hz, 1H, CHar-8), 8.48 (td, J = 7.8, 1.5 Hz, 

1H, CHar-4’), 8.08 (dd, J = 8.4, 5.2 Hz, 1H, 

CHar-3), 8.03 – 7.95 (m, 2H, CHar-5’ & 

CHar-3’), 7.30 – 7.16 (m, 2H, CHar-9 & 

CHar-10), 5.69 (d, J = 7.9 Hz, 1H, CHar-11), 

4.60 (d, J = 16.0 Hz, 1H, NCHH), 4.33 (d, J 

= 15.4 Hz, 1H, NCHH), 3.81 (dd, J = 9.5, 4.3 

Hz, 1H, CH), 2.50 – 2.48 (m, 1H, CHH) 

2.25 -2.14 (m, 2H, CHH& CHH), 2.07 – 

1.90 (m, 1H, CHH), 1.67 – 1.40 (m, 1H, 

CHH), 1.11 – 1.00 (m, 1H, CHH). IR (film): 

ν(cm-1) 2921, 2852, 2246, 2182, 2129, 1750, 

1703, 1645, 1569, 1520, 1482, 1446, 1409, 

1336, 1288, 1222, 1157, 1129, 1020, 998, 

931, 824, 742, 704, 635. 

5.2.3.10 Synthesis of organorhodium(III) 

complexes -(S)-131 and -(S)-132 

 

 

A suspension of 78 (34 mg, 75 µmol) 

and RhCl3∙3H2O (18.3 mg, 69 µmol) in an 

ethanol : water mixture (1:1, 15 mL) under 

nitrogen atmosphere in a sealed vessel was 
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heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (S)-105 (15.5 mg, 

75 µmol). After addition of (S)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol 

(20:1  10:1). The separated diastereomers 

were further purified and concentrated via 

preparative TLC using methylene chlo-

ride : methanol (10:1). The products were 

obtained as dark purple solids, -(S)-131 

(10.7 mg, 15.9 µmol, 23%) and -(S)-132 

(5.6 mg, 8.3 µmol, 12%). -(S)-131: 

Rf = 0.14 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 11.26 (s, 1H, NH), 9.51 

(d, J = 5.7 Hz, 1H, CHar-6‘), 8.85 (dd, J = 

9.2, 2.3 Hz, 1H, CHar-4), 8.36 (td, J = 7.8, 

1.5 Hz, 1H, CHar-4‘), 8.23 (d, J = 2.6 Hz, 1H, 

CHar-8), 8.10 (td, J = 2.5, 0.8 Hz, 1H, 

CHar-2), 7.95 – 7.87 (m, 2H, CHar-3’ & 

CHar-5’), 7.71 (d, J = 9.0 Hz, 1H, CHar-11), 

7.24 (dd, J = 9.0, 2.7 Hz, 1H, CHar-10), 4.75 

(d, J = 16.0 Hz, 1H, NCHH), 4.55 (d, J = 

16.1 Hz, 1H, NCHH), 3.92 (s, 3H, OCH3), 

3.77 (dd, J = 9.4, 5.1 Hz, 1H, CH), 2.50 – 

2.48 (m, 1H, CHH), 2.28 – 2.10 (m, 2H, 

CHH& CHH), 1.89 – 1.74 (m, 1H, 

CHH), 1.47 (tt, J = 12.1, 6.1 Hz, 1H, 

CHH), 1.17 – 0.95 (m, 1H, CHH). IR (film): 

ν (cm-1) 2919, 1716, 1653, 1563, 1502, 

1465, 1408, 1335, 1258, 1226, 1163, 1096, 

1021, 924, 860, 814, 763, 725, 633, 582, 

519, 478, 443. HRMS calculated for 

C29H22ClFN5NaO5Rh (M + Na)+ 700.0241, 

found (M + Na)+ 700.0264. -(S)-132: 

Rf = 0.27 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 11.31 (s, 1H, NH), 9.66 (d, J = 5.8 

Hz, 1H, CHar-6’), 8.98 (dd, J = 9.1, 2.4 Hz, 

1H, CHar-4), 8.70 (dt, J = 2.3, 1.1 Hz, 1H, 

CHar-8), 8.48 (td, J = 7.8, 1.4 Hz, 1H, 

CHar-4’), 8.21 (d, J = 2.6 Hz, 1H, CHar-2), 

8.05 – 7.95 (m, 2H, CHar-3’ & CHar-5’), 6.92 

(dd, J = 9.0, 2.7 Hz, 1H, CHar-10), 5.59 (d, J 

= 9.0 Hz, 1H, CHar-11), 4.61 (d, J = 15.9 Hz, 

1H, NCHH), 4.32 (d, J = 15.7 Hz, 1H, 

NCHH), 3.83 (s, 3H, OCH3), 3.82 – 3.74 (m, 

1H, CH), 2.50 – 2.48 (m, 1H, CHH), 2.30 

– 2.14 (m, 2H, CHH& CHH), 2.10 – 1.94 

(m, 1H, CHH), 1.69 – 1.58 (m, 1H, CHH), 

1.46 (dd, J = 15.5, 9.0 Hz, 1H, CHH). IR 

(film): ν(cm-1) 2919, 1718, 1650, 1563, 1500, 

1468, 1408, 1337, 1277, 1259, 1228, 1167, 

1098, 1023, 993, 923, 893, 857, 825, 793, 

727, 701, 636, 523, 475, 442. HRMS calcu-

lated for C29H22ClFN5NaO5Rh (M + Na)+ 

700.0241, found (M + Na)+ 700.0263. 

5.2.3.11 Synthesis of organorhodium(III) 

complexes -(R)-131 and 

-(R)-132 

 

 

A suspension of 78 (34 mg, 75 µmol) 

and RhCl3∙3H2O (18.3 mg, 69 µmol) in an 

ethanol : water mixture (1:1, 15 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (R)-105 (15.5 mg, 

75 µmol). After addition of (R)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (15:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-
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ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark purple solids, -(R)-131 

(10.3 mg, 15.2 µmol, 22%) and -(R)-132 

(6.0 mg, 8.9 µmol, 13%). -(R)-131: 

Rf = 0.14 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 11.17 (s, 1H, NH), 9.50 (d, J = 5.7 

Hz, 1H, CHar-6’), 8.85 (dd, J = 9.2, 2.2 Hz, 

1H, CHar-4), 8.35 (td, J = 7.7, 1.4 Hz, 1H, 

CHar-4’), 8.22 (d, J = 2.6 Hz, 1H, CHar-8), 

8.09 (td, J = 2.5, 0.8 Hz, 1H, CHar-2), 7.99 – 

7.84 (m, 2H, CHar-3’ & CHar-5’), 7.70 (d, J = 

8.9 Hz, 1H, CHar-11), 7.23 (dd, J = 9.0, 2.7 

Hz, 1H, CHar-10), 4.74 (d, J = 15.9 Hz, 1H, 

NCHH), 4.54 (d, J = 16.5 Hz, 1H, NCHH), 

3.91 (s, 3H, OCH3), 3.77 (dd, J = 9.2, 4.9 

Hz, 1H, CH), 2.50 – 2.48 (m, 1H, CHH) 

2.28 – 2.10 (m, 2H, CHH& CHH), 1.89 – 

1.74 (m, 1H, CHH), 1.47 (tt, J = 12.1, 6.1 

Hz, 1H, CHH), 1.17 – 0.95 (m, 1H, CHH). 
13C-NMR (75 MHz, (CD3)2SO): δ(ppm) 

182.54 (Ccarbonyl), 170.54 (Car-7), 170.17 

(Car-5), 160.25 (Car-2’), 156.93 (d, J = 249.7 

Hz, Car-3), 154.05 (Car-9), 152.33 (Car-6’), 

151.77 (Car-12b), 144.60 (Car), 141.20 (d, J 

= 33.9 Hz, Car-2), 140.85 (Car), 140.10 (Car), 

132.23 (Car), 126.21 (Car), 124.05 (Car), 

123.43 (Car), 120.77 (d, J = 8.8 Hz, Car-4a), 

119.15 (d, J = 20.0 Hz, Car-4), 116.68 (Car), 

115.65 (Car), 114.70 (Car), 112.77 (Car), 

106.28 (Car), 73.53 (C), 69.48 (NCH2), 

61.53 (C), 55.60 (OCH3), 30.45 (C), 23.87 

(C). IR (film): ν (cm-1) 1751, 1711, 1652, 

1562, 1502, 1467, 1409, 1332, 1284, 1204, 

1162, 1023, 997, 919, 856, 816, 760, 695, 

632, 581, 520, 476, 445, 404. HRMS calcu-

lated for C29H23ClFN5O5Rh (M + H)+ 

678.0421, found (M + H)+ 678.0427. 

-(R)-132: Rf = 0.27 (methylene chlo-

ride : methanol 15:1). 1H-NMR (500 MHz, 

(CD3)2SO): δ(ppm) 9.65 (d, J = 5.7 Hz, 1H, 

CHar-6’), 8.98 (dd, J = 9.1, 2.4 Hz, 1H, 

CHar-4), 8.70 (dd, J = 2.2, 1.8 Hz, 1H, 

CHar-8), 8.47 (td, J = 7.8, 1.5 Hz, 1H, 

CHar-4’), 8.19 (d, J = 2.6 Hz, 1H, CHar-2), 

8.02 (t, J = 6.8 Hz, 1H, CHar-5’), 7.98 (d, J = 

7.9 Hz, 1H, CHar-3’), 6.91 (dd, J = 9.0, 2.7 

Hz, 1H, CHar-10), 5.59 (d, J = 9.0 Hz, 1H, 

CHar-11), 4.62 (d, J = 15.7 Hz, 1H, NCHH), 

4.32 (d, J = 15.6 Hz, 1H, NCHH), 3.82 (s, 

3H, OCH3), 3.82 – 3.77 (m, 1H, CHa), 2.54 

(dt, J = 11.2, 5.7 Hz, 1H, CHH), 2.29 – 

2.18 (m, 2H, CHH& CHH), 2.09 – 2.00 

(m, 1H, CHH), 1.64 (dp, J = 12.5, 6.3 Hz, 

1H, CHH), 1.27 – 1.15 (m, 1H, CHH). 
13C-NMR (126 MHz, (CD3)2SO): δ(ppm) 

182.05 (Ccarbonyl), 170.43 (Car-7), 170.07 

(Car-5), 161.22 (Car-2’), 156.68 (d, J = 250.7 

Hz, Car-3), 153.98 (Car-6’), 152.79 (Car-12b), 

143.60 (Car), 141.41 (Car), 139.84 (Car), 

138.31 (d, J = 35.1 Hz, CHar-2), 132.40 (Car), 

126.45 (Car), 123.84 (Car), 123.71 (Car), 

121.24 (d, J = 8.4 Hz, Car-4a), 119.80 (d, J = 

20.2 Hz, Car-4), 116.43 (Car), 114.87 (Car), 

113.36 (Car), 112.57 (Car), 107.09 (Car), 

72.87 (C), 69.89 (NCH2), 61.14 (OCH3), 

55.65 (C), 30.25 (C), 24.33 (C). IR (film): 

ν(cm-1) 1752, 1714, 1652, 1562, 1499, 1470, 

1408, 1336, 1285, 1207, 1167, 1055, 1025, 

995, 920, 893, 856, 824, 793, 774, 699, 632, 

614, 523. HRMS calculated for 

C29H22ClFN5NaO5Rh (M + Na)+ 700.0241, 

found (M + Na)+ 700.0262. 

5.2.3.12 Synthesis of organorhodium(III) 

complexes -(S)-133 and -(S)-134 

 

 

A suspension of 81 (45 mg, 75 µmol) 

and RhCl3∙3H2O (18.3 mg, 69 µmol) in an 

ethanol : water mixture (1:1, 15 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 
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down slightly to add (S)-105 (15.5 mg, 

75 µmol). After addition of (S)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (35:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark purple solids, -(S)-133 

(7.8 mg, 11.1 µmol, 16%) and -(S)-134 

(4.4 mg, 6.2 µmol, 9%). -(S)-133: Rf = 0.11 

(methylene chloride : methanol 15:1). 
1H-NMR (300 MHz, (CD3)2SO): δ(ppm) 

11.34 (s, 1H, NH), 9.53 (d, J = 5.3 Hz, 1H, 

CHar-6’), 9.43 (s, 1H, CHar-4), 9.33 (d, J = 

0.8 Hz, 1H, CHar-2), 8.39 (td, J = 7.8, 1.4 Hz, 

1H, CHar-4’), 8.17 (d, J = 2.4 Hz, 1H, 

CHar-8), 7.97 – 7.89 (m, 3H, OH, CHar-3’& 

CHar-5‘), 7.69 (d, J = 8.9 Hz, 1H, CHar-11), 

7.14 (dd, J = 8.9, 2.5 Hz, 1H, CHar-10), 4.76 

(d, J = 16.2 Hz, 1H, NCHH), 4.57 (d, J = 

16.2 Hz, 1H, NCHH), 3.79 (dd, J = 9.4, 4.9 

Hz, 1H, CHa), 2.51 – 2.48 (m, 1H, CHH), 

2.25 – 2.11 (m, 2H, CHH& CHH), 1.84 

(dt, J = 17.9, 5.9 Hz, 1H, CHH), 1.48 (ddd, 

J = 17.8, 11.7, 5.9 Hz, 1H, CHH), 1.16 – 

1.00 (m, 1H, CHH). IR (film): ν (cm-1) 3226, 

2923, 1757, 1712, 1613, 1558, 1526, 1496, 

1420, 1332, 1295, 1244, 1178, 1135, 1089, 

1054, 1026, 924, 864, 767, 729, 699, 640, 

531, 505, 446. HRMS calculated for 

C29H20ClF3N5NaO5Rh (M + Na)+ 736.0052, 

found (M + Na)+ 736.0074. -(S)-134: 

Rf = 0.21 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 11.38 (s, 1H, NH), 9.65 (d, J = 5.8 

Hz, 1H, CHar-6’), 9.46 (d, J = 0.9 Hz, 1H, 

CHar-4), 8.81 (d, J = 0.9 Hz, 1H, CHar-4), 

8.48 (td, J = 7.8, 1.4 Hz, 1H, CHar-4’), 8.15 

(d, J = 2.4 Hz, 1H, CHar-8), 8.06 – 7.87 (m, 

3H, OH, CHar-3’ & CHar-5‘), 6.80 (dd, J = 8.9, 

2.5 Hz, 1H, CHar-10), 5.57 (d, J = 8.9 Hz, 

1H, CHar-11), 4.63 (d, J = 15.7 Hz, 1H, 

NCHH), 4.33 (d, J = 15.7 Hz, 1H, NCHH), 

3.83 (dd, J = 9.3, 4.5 Hz, 1H, CH), 2.51 – 

2.48 (m, 1H, CHH), 2.31 – 2.14 (m, 2H, 

CHH& CHH), 2.00 (td, J = 11.0, 5.5 Hz, 

1H, CHH), 1.63 (ddd, J = 18.0, 11.9, 5.9 

Hz, 1H, CHH), 1.14 – 0.97 (m, 1H, CHH). 

IR (film): ν(cm-1) 3267, 2919, 1711, 1660, 

1568, 1501, 1463, 1420, 1391, 1332, 1295, 

1252, 1218, 1127, 1085, 1048, 1020, 933, 

901, 860, 821, 781, 729, 697, 633, 530, 503, 

481, 447, 409. HRMS calculated for 

C29H20ClF3N5NaO5Rh (M + Na)+ 736.0052, 

found (M + Na)+ 736.0076. 

5.2.3.13 Synthesis of organorhodium(III) 

complexes -(R)-133 and 

-(R)-134 

 

 

A suspension of 81 (45 mg, 75 µmol) 

and RhCl3∙3H2O (18.3 mg, 69 µmol) in an 

ethanol : water mixture (1:1, 15 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (R)-105 (15.5 mg, 

75 µmol). After addition of (R)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (20:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark purple solids, -(R)-133 
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(8.6 mg, 12.4 µmol, 18%) and -(R)-134 

(4.9 mg, 6.9 µmol, 10%). -(R)-133: 

Rf = 0.11 (methylene chloride : methanol 

15:1). 1H-NMR (600 MHz, (CD3)2SO): 

δ(ppm) 11.33 (s, 1H, NH), 9.53 (d, J = 5.5 

Hz, 1H, CHar-6’), 9.44 (s, 1H, CHar-4), 9.33 

(d, J = 1.0 Hz, 1H, CHar-2), 8.38 (td, J = 7.8, 

1.5 Hz, 1H, CHar-4’), 8.17 (d, J = 2.2 Hz, 1H, 

CHar-8), 7.99 – 7.92 (m, 3H, OH, CHar-3’ & 

CHar-5‘), 7.91 (s, 1H, OH), 7.68 (d, J = 8.7 

Hz, 1H, CHar-11), 7.14 (dd, J = 8.8, 2.5 Hz, 

1H, CHar-10), 4.76 (d, J = 16.2 Hz, 1H, 

NCHH), 4.57 (d, J = 16.2 Hz, 1H, NCHH), 

3.79 (dd, J = 9.5, 5.0 Hz, 1H, CH), 2.51 – 

2.48 (m, 1H, CHH), 2.20 (td, J = 11.7, 5.9 

Hz, 2H, CHH& CHH), 1.84 (td, J = 11.8, 

5.6 Hz, 1H, CHH), 1.55 – 1.40 (m, 1H, 

CHH), 1.16 – 1.00 (m, 1H, CHH). 
13C-NMR (151 MHz, (CD3)2SO): δ(ppm) 

182.42 (Ccarbonyl), 170.42 (Car-7), 170.00 

(Car-5), 160.32 (Car-2’), 152.18 (Car-9), 

151.86 (Car-6’), 151.07 (Car-12b), 144.20 

(Car), 143.78 (Car), 140.93 (Car), 133.50 (Car), 

132.55 (Car), 132.11 (Car), 126.25 (Car), 

123.85 (Car), 121.75 (Car), 119.25 (Car), 

118.11 (Car), 116.10 (Car), 115.77 (Car), 

112.92 (Car), 111.33 (Car), 108.52 (Car), 

73.41 (C), 69.36 (NCH2), 61.52 (C), 30.31 

(C), 23.78 (C). Due to the signal to noise 

ratio a unambiguous assignment of the CF3 

carbon signals was not possible. IR (film): ν 

(cm-1) 1750, 1709, 1657, 1606, 1502, 1461, 

1421, 1391, 1330, 1295, 1252, 1212, 1171, 

1129, 1084, 1021, 934, 901, 858, 822, 777, 

696, 631, 530, 500, 481. HRMS calculated 

for C29H20ClF3N5NaO5Rh (M + Na)+ 

736.0052, found (M + Na)+ 736.0074. 

-(R)-134: Rf = 0.21 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 9.65 (d, J = 5.4 Hz, 1H, 

CHar-6‘), 9.47 – 9.45 (m, 1H, CHar-4), 8.81 

(d, J = 0.8 Hz, 1H, CHar-2), 8.48 (td, J = 7.8, 

1.3 Hz, 1H, CHar-4‘), 8.15 (d, J = 2.4 Hz, 1H, 

CHar-8), 8.06 – 7.96 (m, 3H, OH CHar-3’ & 

CHar-5‘), 6.81 (dd, J = 8.9, 2.5 Hz, 1H, 

CHar-10), 5.57 (d, J = 8.9 Hz, 1H, CHar-9), 

4.63 (d, J = 15.4 Hz, 1H, NCHH), 4.33 (d, J 

= 15.4 Hz, 1H, NCHH), 3.83 (dd, J = 9.2, 4.5 

Hz, 1H, CH), 2.58 – 2.52 (m, 1H, CHH), 

2.32 – 2.14 (m, 2H, CHH& CHH), 2.00 

(td, J = 11.6, 5.5 Hz, 1H, CHH), 1.64 (tt, J 

= 11.6, 5.8 Hz, 1H, CHH), 1.14 – 0.97 (m, 

1H, CHH). 
13C-NMR (75 MHz, (CD3)2SO): 

δ(ppm) 182.05 (Ccarbonyl), 170.38 (Car-7), 

169.97 (Car-5), 161.19 (Car-2‘), 152.65 

(Car-9), 152.19 (Car-6‘), 151.59 (Car-12b), 

143.51 (Car), 143.31 (Car), 141.43 (Car), 

139.65 (Car), 137.21 (Car), 132.71 (Car), 

126.48 (Car), 124.12 (Car), 123.72 (Car), 

121.18 (Car), 119.65 (Car), 118.06 (Car), 

116.40 (Car), 113.61 (Car), 112.76 (Car), 

109.09 (Car), 72.84 (C), 69.96 (NCH2), 

61.29 (C), 30.25 (C), 24.50 (C). Due to the 

signal to noise ratio a unambiguous assign-

ment of the CF3 carbon signals was not 

possible. IR (film): ν(cm-1) 1757, 1715, 1663, 

1611, 1565, 1497, 1419, 1337, 1293, 1246, 

1134, 1083, 1049, 1022, 994, 914, 858, 822, 

790, 762, 697, 629, 528, 499, 443. HRMS 

calculated for C29H20ClF3N5NaO5Rh 

(M + Na)+ 736.0052, found (M + Na)+ 

736.0072. 

5.2.3.14 Synthesis of organorhodium(III) 

complexes -(S)-135 and -(S)-136 

 

 

A suspension of 82 (42.1 mg, 

75 µmol) and RhCl3∙3H2O (18.3 mg, 

69 µmol) in an ethanol : water mixture (1:1, 

15 mL) under nitrogen atmosphere in a 

sealed vessel was heated to 90 °C for 3 h. 

During this time the suspension turned from 

pale brown into dark red. The reaction mix-

ture was then cooled down slightly to add 

(S)-105 (15.5 mg, 75 µmol). After addition of 
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(S)-105, the reaction was further proceeded 

at 90 °C for 16 h. The reaction mixture was 

then cooled down to ambient temperature 

and the solvent was removed in vacuo. The 

crude material was purified via column 

chromatography using methylene chlo-

ride : methanol (25:1  10:1). The separat-

ed diastereomers were further purified and 

concentrated via preparative TLC using 

methylene chloride : methanol (15:1). The 

products were obtained as dark purple sol-

ids, -(S)-135 (7.9 mg, 11.7 µmol, 17%) and 

-(S)-136 (5.1 mg, 7.6 µmol, 11%). 

-(S)-135: Rf = 0.11 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 11.12 (s, 1H, NH), 9.51 

(dd, J = 5.8, 0.7 Hz, 1H, CHar-6’), 8.49 (d, J 

= 2.3 Hz, 1H, CHar-4), 8.36 (td, J = 7.8, 1.5 

Hz, 1H, CHar-4’), 8.09 (d, J = 2.3 Hz, 1H, 

CHar-8), 7.96 – 7.85 (m, 2H, CHar-3’ & 

CHar-5’), 7.56 (d, J = 8.8 Hz, 1H, CHar-11), 

7.45 (dd, J = 2.3, 0.9 Hz, 1H, CHar-2), 7.01 

(dd, J = 8.8, 2.5 Hz, 1H, CHar-10), 4.70 (d, J 

= 16.3 Hz, 1H, NCHH), 4.55 (d, J = 16.3 Hz, 

1H, NCHH), 3.97 (s, 3H, OCH3), 3.77 (dd, J 

= 9.5, 4.8 Hz, 1H, CH), 2.58 – 2.52 (m, 1H, 

CHH), 2.30 – 2.21 (m, 2H, CHH& 

CHH), 2.01 – 1.92 (m, 1H, CHH), 1.85 

(dd, J = 12.5, 6.4 Hz, 1H, CHH), 1.67 – 

1.59 (m, 1H, CHH). 
13C-NMR (126 MHz, 

(CD3)2SO): δ(ppm) 182.35 (Ccarbonyl), 170.83 

(Car-7), 170.33 (Car-5), 160.30 (Car-2’), 

154.88 (Car-3), 152.96  (Car-9), 151.56 

(Car-6’), 151.47 (Car-12b), 143.67 (Car), 

142.17 (Car), 140.70 (Car), 137.46 (Car), 

131.67 (Car), 129.59 (Car), 126.06 (Car), 

123.81 (Car), 121.68 (Car), 73.50 (C), 69.78 

(NCH2), 61.45 (C), 56.21 (OCH3), 31.28 

(C), 22.09 (C). IR (film): ν (cm-1) 2917, 

2850, 1716, 1608, 1566, 1445, 1406, 1373, 

1341, 1229, 1094, 1019, 931, 871, 800, 723. 

HRMS calculated for C29H23ClN5NaO6Rh 

(M + Na)+ 698.0284, found (M + Na)+ 

698.0286. -(S)-136: Rf = 0.24 (methylene 

chloride : methanol 15:1). 1H-NMR 

(300 MHz, (CD3)2SO): δ(ppm) 11.15 (s, 1H, 

NH), 9.65 (d, J = 5.2 Hz, 1H, CHar-6‘), 9.18 

(s, 1H, OH), 8.60 (d, J = 2.4 Hz, 1H, CHar-4), 

8.46 (td, J = 7.8, 1.5 Hz, 1H, CHar-4‘), 8.34 

(dd, J = 2.4, 0.8 Hz, 1H, CHar-2), 8.08 (d, J = 

2.4 Hz, 1H, CHar-8), 8.04 – 7.92 (m, 2H, 

CHar-3’ & CHar-5’), 6.67 (dd, J = 8.8, 2.5 Hz, 

1H, CHar-10), 5.46 (d, J = 8.8 Hz, 1H, 

CHar-11), 4.70 – 4.52 (m, 2H, NCH2), 4.12 

(s, 3H, OCH3), 3.80 (dd, J = 5.2, 4.1 Hz, 1H, 

CH), 2.51 – 2.48 (m, 1H, CHH), 2.07 – 

1.88 (m, 2H, CHH& CHH), 1.62 (dt, J = 

11.5, 5.8 Hz, 1H, CHH), 1.56 – 1.38 (m, 

1H, CHH), 1.17 – 0.98 (m, 1H, CHH). IR 

(film): ν(cm-1) 2957, 2918, 2850, 1716, 1577, 

1459, 1407, 1372, 1341, 1230, 1093, 1019, 

931, 871, 800, 723, 468. HRMS calculated 

for C29H23ClN5NaO6Rh (M + Na)+ 698.0284, 

found (M + Na)+ 698.0286. 

5.2.3.15 Synthesis of organorhodium(III) 

complexes -(R)-135 and 

-(R)-136 

 

 

A suspension of 82 (42 mg, 75 µmol) 

and RhCl3∙3H2O (18.3 mg, 69 µmol) in an 

ethanol : water mixture (1:1, 15 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

red. The reaction mixture was then cooled 

down slightly to add (R)-105 (15.5 mg, 

75 µmol). After addition of (R)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (20:1  

10:1). The separated diastereomers were 
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further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark purple solids-(R)-135 

(8.8 mg, 13.1 µmol, 19%) and -(R)-136 

(4.2 mg, 6.2 µmol, 9%). -(R)-135: Rf = 0.11 

(methylene chloride : methanol 15:1). 
1H-NMR (600 MHz, (CD3)2SO): δ(ppm) 

11.10 (s, 1H, NH), 9.51 (d, J = 5.5 Hz, 1H, 

CHar-6’), 9.22 (s, 1H, OH), 8.48 (d, J = 2.3 

Hz, 1H, CHar-4), 8.35 (td, J = 7.8, 1.4 Hz, 

1H, CHar-4’), 8.09 (d, J = 2.5 Hz, 1H, CHar-

8), 7.96 – 7.84 (m, 2H, CHar-3’ & CHar-5’), 

7.55 (d, J = 8.8 Hz, 1H, CHar-11), 7.44 (d, J 

= 2.2 Hz, 1H, CHar-2), 7.01 (dd, J = 8.8, 2.5 

Hz, 1H, CHar-10), 4.69 (d, J = 16.1 Hz, 1H, 

NCHH), 4.54 (d, J = 16.2 Hz, 1H, NCHH), 

3.97 (s, 3H, OCH3), 3.77 (dd, J = 9.6, 4.9 

Hz, 1H, CHa), 2.48 – 2.44 (m, 1H, CHH), 

2.25 (dt, J = 11.7, 5.7 Hz, 1H, CHH), 2.21 

– 2.13 (m, 1H, CHH), 1.85 (td, J = 11.6, 

5.4 Hz, 1H, CHH), 1.51 – 1.41 (m, 1H, 

CHH), 1.16 – 1.08 (m, 1H, CHH). IR (film): 

ν (cm-1) 1749, 1707, 1630, 1567, 1496, 

1449, 1419, 1339, 1297, 1260, 1215, 1054, 

1015, 927, 867, 819, 764, 732, 698, 635, 

568, 510, 482, 448, 401. HRMS calculated 

for C29H23ClN5NaO6Rh (M + Na)+ 698.0284, 

found (M + Na)+ 698.0286. -(R)-136: 

Rf = 0.24 (methylene chloride : methanol 

15:1). 1H-NMR (500 MHz, (CD3)2SO): 

δ(ppm) 9.64 (d, J = 5.7 Hz, 1H, CHar-6’), 

9.21 (bs, 1H, OH), 8.59 (d, J = 2.4 Hz, 1H, 

CHar-4), 8.45 (td, J = 7.8, 1.5 Hz, 1H, 

CHar-4’), 8.34 (d, J = 2.4 Hz, 1H, CHar-2), 

8.07 (d, J = 2.5 Hz, 1H, CHar-8), 8.04 – 7.98 

(m, 1H, CHar-5’), 7.96 (d, J = 8.0 Hz, 1H, 

CHar-3’), 6.67 (dd, J = 8.8, 2.5 Hz, 1H, 

CHar-10), 5.45 (d, J = 8.8 Hz, 1H, CHar-11), 

4.59 (d, J = 15.5 Hz, 1H, NCHH), 4.30 (d, J 

= 15.6 Hz, 1H, NCHH), 4.12 (s, 3H, OCH3), 

3.79 (dd, J = 9.4, 4.5 Hz, 1H, CH), 2.54 – 

2.51 (m, 1H, CHH), 2.27 – 2.16 (m, 2H, 

CHH& CHH), 2.05 – 1.95 (m, 1H, 

CHH), 1.67 – 1.58 (m, 1H, CHH), 1.13 (tt, 

J = 13.5, 6.6 Hz, 1H, CHH). IR (film): 

ν(cm-1) 1748, 1705, 1646, 1566, 1492, 1456, 

1414, 1337, 1297, 1263, 1215, 1018, 925, 

864, 818, 763, 701, 666, 634, 518, 484. 

HRMS calculated for C29H23ClN5NaO6Rh 

(M + Na)+ 698.0284, found (M + Na)+ 

698.0285. 

5.2.3.16 Synthesis of organorhodium(III) 

complexes -(S)-137 and -(S)-138 

 

 

A suspension of 83 (34.6 mg, 

75 µmol) and RhCl3∙3H2O (18.3 mg, 

69 µmol) in an ethanol : water mixture (1:1, 

15 mL) under nitrogen atmosphere in a 

sealed vessel was heated to 90 °C for 3 h. 

During this time the suspension turned from 

pale brown into dark red. The reaction mix-

ture was then cooled down slightly to add 

(S)-105 (15.5 mg, 75 µmol). After addition of 

(S)-105, the reaction was further proceeded 

at 90 °C for 16 h. The reaction mixture was 

then cooled down to ambient temperature 

and the solvent was removed in vacuo. The 

crude material was purified via column 

chromatography using methylene chlo-

ride : methanol (25:1  10:1). The separat-

ed diastereomers were further purified and 

concentrated via preparative TLC using 

methylene chloride : methanol (15:1). The 

products were obtained as dark purple sol-

ids, -(S)-137 (11.9 mg, 17.3 µmol, 25%) 

and -(S)-138 (6.6 mg, 9.7 µmol, 14%). 

-(S)-137: Rf = 0.16 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 11.17 (s, 1H, NH), 9.51 

(d, J = 5.7 Hz, 1H, CHar-6’), 8.50 (d, J = 2.3 

Hz, 1H, CHar-4), 8.36 (td, J = 7.8, 1.5 Hz, 

1H, CHar-4’), 8.20 (d, J = 2.6 Hz, 1H, 

CHar-8), 7.97 – 7.84 (m, 2H, CHar-3’ & 
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CHar-5’), 7.66 (d, J = 8.9 Hz, 1H, CHar-11), 

7.48 (dd, J = 2.3, 0.8 Hz, 1H, CHar-2), 7.19 

(dd, J = 8.9, 2.7 Hz, 1H, CHar-10), 4.72 (d, J 

= 16.2 Hz, 1H, NCHH), 4.64 (d, J = 15.7 Hz, 

1H, NCHH), 3.98 (s, 3H, OCH3), 3.91 (s, 3H, 

OCH3), 3.78 (dd, J = 9.5, 4.8 Hz, 1H, CH), 

2.58 – 2.52 (m, 1H, CHH), 2.29 – 2.11 (m, 

2H, CHH& CHH), 1.70 – 1.57 (m, 1H, 

CHH), 1.46 (ddd, J = 20.1, 13.3, 6.6 Hz, 

2H, CHH& CHH). IR (film): ν (cm-1) 3511, 

3432, 3230, 2920, 2852, 1714, 1655, 1567, 

1496, 1462, 1428, 1343, 1264, 1215, 1174, 

1101, 1061, 1020, 925, 859, 820, 776, 728, 

698, 658, 630, 575, 518, 476, 443, 400. 

HRMS calculated for C30H25ClN5NaO6Rh 

(M + Na)+ 712.0441, found (M + Na)+ 

712.0468. -(S)-138: Rf = 0.27 (methylene 

chloride : methanol 15:1). 1H-NMR 

(300 MHz, (CD3)2SO): δ(ppm) 11.21 (s, 1H, 

NH), 9.66 (d, J = 5.7 Hz, 1H, CHar-6’), 8.61 

(d, J = 2.4 Hz, 1H, CHar-4), 8.46 (td, J = 7.8, 

1.5 Hz, 1H, CHar-4’), 8.36 (dd, J = 2.4, 0.8 

Hz, 1H, CHar-2), 8.18 (d, J = 2.6 Hz, 1H, 

CHar-8), 8.04 – 7.93 (m, 2H, CHar-3’ & 

CHar-5’), 6.86 (dd, J = 9.0, 2.7 Hz, 1H, 

CHar-10), 5.55 (d, J = 8.9 Hz, 1H, CHar-11), 

4.60 (d, J = 15.9 Hz, 1H, NCHH), 4.31 (d, J 

= 15.7 Hz, 1H, NCHH), 4.13 (s, 3H, OCH3), 

3.82 (s, 3H, OCH3), 3.79 (d, J = 4.8 Hz, 1H, 

CH), 2.58 – 2.52 (m, 1H, CHH), 2.25 – 

2.14 (m, 2H, CHH& CHH), 2.01 (dt, J = 

18.9, 5.6 Hz, 1H, CHH), 1.71 – 1.57 (m, 

1H, CHH), 1.54 – 1.39 (m, 1H, CHH). IR 

(film): ν(cm-1) 3350, 2971, 1599, 1451, 1388, 

1297, 1270, 1235, 1179, 1155, 1099, 1011, 

971, 911, 861, 831, 780, 739, 701, 655, 595. 

HRMS calculated for C30H25ClN5NaO6Rh 

(M + Na)+ 712.0441, found (M + Na)+ 

712.0466. 

5.2.3.17 Synthesis of organorhodium(III) 

complexes -(R)-137 and 

-(R)-138 

 

 

A suspension of 83 (34.6 mg, 

75 µmol) and RhCl3∙3H2O (18.3 mg, 

69 µmol) in an ethanol : water mixture (1:1, 

15 mL) under nitrogen atmosphere in a 

sealed vessel was heated to 90 °C for 3 h. 

During this time the suspension turned from 

pale brown into dark red. The reaction mix-

ture was then cooled down slightly to add 

(R)-105 (15.5 mg, 75 µmol). After addition of 

(R)-105, the reaction was further proceeded 

at 90 °C for 16 h. The reaction mixture was 

then cooled down to ambient temperature 

and the solvent was removed in vacuo. The 

crude material was purified via column 

chromatography using methylene chlo-

ride : methanol (25:1  10:1). The separat-

ed diastereomers were further purified and 

concentrated via preparative TLC using 

methylene chloride : methanol (15:1). The 

products were obtained as dark purple sol-

ids, -(R)-137 (11.4 mg, 16.6 µmol, 24%) 

and -(R)-138 (6.6 mg, 9.7 µmol, 14%). 

-(R)-137: Rf = 0.16 (methylene chlo-

ride : methanol 15:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 9.51 (d, J = 5.7 Hz, 1H, 

CHar-6’), 8.50 (d, J = 2.3 Hz, 1H, CHar-4), 

8.36 (td, J = 7.8, 1.5 Hz, 1H, CHar-4’), 8.20 

(d, J = 2.6 Hz, 1H, CHar-8), 7.98 – 7.87 (m, 

2H, CHar-3’ & CHar-5’), 7.65 (d, J = 8.9 Hz, 

1H, CHar-11), 7.48 (dd, J = 2.3, 0.8 Hz, 1H, 

CHar-2), 7.19 (dd, J = 9.0, 2.7 Hz, 1H, 

CHar-10), 4.72 (d, J = 16.1 Hz, 1H, NCHH), 

4.55 (d, J = 16.4 Hz, 1H, NCHH), 3.97 (s, 
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3H, OCH3), 3.90 (s, 3H, OCH3), 3.78 (dd, J 

= 9.4, 4.8 Hz, 1H, CH), 2.47 – 2.41 (m, 1H, 

CHH), 2.31 – 2.08 (m, 2H, CHH& 

CHH), 1.92 – 1.78 (m, 1H, CHH), 1.53 – 

1.38 (m, 1H, CHH), 1.18 – 1.02 (m, 1H, 

CHH). 
13C-NMR (75 MHz, (CD3)2SO): 

δ(ppm) 182.43 (Ccarbonyl), 170.88 (Car-7), 

170.34 (Car-5), 160.32 (Car-2’), 155.01 

(Car-3/Car-9), 153.72 (Car-9/Car-3), 153.08 

(Car-6’), 151.63 (Car-12b), 144.57 (Car), 

142.58 (Car), 140.76 (Car), 137.52 (Car), 

132.97 (Car), 131.68 (Car), 126.12 (Car), 

123.96 (Car), 123.50 (Car), 121.74 (Car), 

115.95 (Car), 115.28 (Car), 113.84 (Car), 

112.77 (Car), 112.10 (Car), 106.36 (Car), 

73.53 (C), 65.07 (NCH2) 61.53 (C), 56.27 

(OCH3), 55.58 (OCH3), 30.40 (C), 23.90 

(C). IR (film): ν (cm-1) 1748, 1707, 1652, 

1567, 1499, 1465, 1425, 1340, 1269, 1211, 

1145, 1018, 929, 859, 815, 759, 696, 664, 

631, 515, 474, 446, 400. HRMS calculated 

for C30H25ClN5NaO6Rh (M + Na)+ 712.0441, 

found (M + Na)+ 712.0461. -(R)-138: 

Rf = 0.27 (methylene chloride : methanol 

15:1). 1H-NMR (500 MHz, (CD3)2SO): 

δ(ppm) 9.65 (d, J = 5.8 Hz, 1H, CHar-6’), 

8.61 (d, J = 2.4 Hz, 1H, CHar-4), 8.46 (td, J = 

7.8, 1.5 Hz, 1H, CHar-4‘), 8.37 (dd, J = 2.4, 

0.6 Hz, 1H, CHar-2), 8.18 (d, J = 2.6 Hz, 1H, 

CHar-8), 8.04 – 7.99 (m, 1H, CHar-5‘), 7.97 

(d, J = 7.7 Hz, 1H, CHar-3‘), 6.86 (dd, J = 

8.9, 2.7 Hz, 1H, CHar-10), 5.55 (d, J = 9.0 

Hz, 1H, CHar-11), 4.60 (d, J = 15.7 Hz, 1H, 

NCHH), 4.31 (d, J = 15.7 Hz, 1H, NCHH), 

4.13 (s, 3H, OCH3), 3.81 (s, 3H, OCH3), 3.79 

(d, J = 4.7 Hz, 1H, CH), 2.55 – 2.51 (m, 1H, 

CHH), 2.28 – 2.17 (m, 2H, CHH& 

CHH), 2.00 (td, J = 12.1, 5.6 Hz, 1H, 

CHH), 1.68 – 1.58 (m, 1H, CHH), 1.13 (tt, 

J = 14.7, 7.2 Hz, 1H, CHH). 
13C-NMR (126 

MHz, (CD3)2SO): δ(ppm) 182.01 (Ccarbonyl), 

170.86 (Car-7), 170.31 (Car-5), 161.15 

(Car-2‘), 154.85 (Car-3/Car-9), 153.67 

(Car-9/Car-3), 153.60 (Car-6‘), 152.58 

(Car-12b), 143.56 (Car), 141.25 (Car), 140.28 

(Car), 137.24 (Car), 131.84 (Car), 126.32 (Car), 

123.95 (Car), 123.58 (Car), 122.12 (Car), 

115.71 (Car), 113.90 (Car), 113.36 (Car), 

112.68 (Car), 112.17 (Car), 107.18 (Car), 

72.75 (C), 69.89 (NCH2) 61.09 (C), 56.68 

(OCH3), 55.64 (OCH3), 30.18 (C), 24.38 

(C). IR (film): ν(cm-1) 1818, 1751, 1708, 

1648, 1563, 1492, 1466, 1413, 1332, 1287, 

1263, 1209, 1169, 1059, 1003, 880, 854, 

821, 779, 760, 698, 670, 625, 521, 478. 

HRMS calculated for C30H25ClN5NaO6Rh 

(M + Na)+ 712.0441, found (M + Na)+ 

712.0466. 

5.2.3.18 Synthesis of organorhodium(III) 

complex-(S)-191 

 

 

80 (50.0 mg, 0.13 mmol) was sus-

pended in a mixture of ethanol/water (1:1, 

15 mL) and rhodium(III)-chloride trihydrate 

(34.7 mg, 0.13 mmol) was added. The mix-

ture was reacted at 90 °C for 3 h. Then, lig-

and (S)-178 (30.2 mg, 0.13 mmol) was add-

ed and the reaction was continued at 90 °C 

for 16 h. The solvent was evaporated under 

reduced pressure and the crude material 

was subjected to column chromatography 

using methylene chloride : methanol (20:1) 

followed by preparative TLC using meth-

ylene chloride : methanol (15:1). The prod-

uct -(S)-191 was obtained as red solid 

(6.5 mg, 9.1 µmol, 7%). Rf = 0.45 (methy-

lene chloride : methanol 15:1). 1H-NMR (300 

MHz, (CD3)2SO): δ(ppm) 9.69 (d, J = 5.6 Hz, 

1H, CHar-6’), 9.25 (dd, J = 8.4 Hz, 0.9 Hz, 

1H, CHar-4), 8.78 (d, J = 5.2 Hz, 1H, CHar-2), 

8.68 (d, J = 7.4 Hz, 1H, CHar-8), 8.45 (dd, J 

= 7.8 Hz, 1.3 Hz, 1H, CHar-4’), 8.06 – 7.96 

(m, 3H, 3xCHar), 7.41 – 7.15 (m, 6H, 
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6xCHar), 7.10 – 6.99 (m, 1H, CHar-10), 5.54 

(d, J = 8.1 Hz, 1H, CHar-11), 4.93 (s, 2H, 

CH2benzyl), 4.23-4.07 (m, 3H, NCH2 & CH), 

2.21-2.12 (m, 1H, CH), 0.86 (d, J = 7.0 Hz, 

6H, (CH32). IR (film): ν (cm-1) 3384, 1691, 

1638, 1424, 1388, 1353, 1022, 995, 763, 

698, 631, 552, 429. HRMS calculated for 

C35H29ClN5O4RhNa (M + Na)+ 744.0855, 

found (M + Na)+ 744.0857. 

5.2.3.19 Synthesis of organorhodium(III) 

complex -(S)-194 

 

 

77 (58.4 mg, 0.13 mmol) was sus-

pended in a mixture of ethanol/water (1:1, 

15 mL) and rhodium(III)-chloride trihydrate 

(34.7 mg, 0.13 mmol) was added. The mix-

ture was reacted at 90 °C for 3 h. Then, lig-

and (S)-178 (30.2 mg, 0.13 mmol) was add-

ed and the reaction was continued at 90 °C 

for 16 h. The solvent was evaporated under 

reduced pressure and the crude material 

was subjected to column chromatography 

using methylene chloride : methanol (20:1 

10:1) followed by preparative TLC using 

methylene chloride : methanol (15:1). The 

product -(S)-194 was obtained as purple 

solid (15.9 mg, 23.4 µmol, 18%,). Rf = 0.41 

(methylene chloride : methanol 15:1). 1H-

NMR (300 MHz, (CD3)2SO): δ(ppm) 9.65 (d, 

J = 5.5 Hz, 1H, CHar-6’), 9.30 (s, 1H, OH), 

8.95 (dd, J = 9.1 Hz, 2.3 Hz, 1H, CHar-4), 

8.56 (s, 1H, CHar), 8.45 (ddd, J = 8.8 Hz, 7.7 

Hz, 1.0 Hz, 1H, CHar-4’), 8.13 (d, J = 2.3 Hz, 

CHar-2), 8.03-7.96 (m, 2H, CHar-3‘ & 

CHar-5’), 7.12 (s, 1H, CHar), 6.69 (dd, J = 6.4 

Hz, J = 2.3 Hz, 1H, CHar-10), 5.35 (d, J = 8.8 

Hz, 1H, CHar-11), 4.25-4.09 (m, 3H, NCH2 & 

CH), 3.18 (s, 3H, NCH3), 2.24-2.11 (m, 1H, 

CH), 0.88 (d, J = 7.2 Hz, 3H, CH3), 0.58 (d, 

J = 6.9 Hz, 3H, CH3). IR (film): ν (cm-1) 

3393, 2960, 2874, 1746, 1695, 1653, 1566, 

1464, 1416, 1374, 1331, 1300, 1158, 1029, 

884, 803, 740, 610, 510, 456. HRMS calcu-

lated for C29H24ClFN5O5RhNa (M + Na)+ 

702.0397, found (M + Na)+ 702.0392. 

5.2.3.20 Synthesis of organorhodium(III) 

complexes -(R)-195 and 

-(S)-195 

 

 

77 (60.0 mg, 139 µmol) was sus-

pended in a mixture of ethanol/water (1:1, 

15 mL) and rhodium(III)-chloride trihydrate 

(36.3 mg, 139 µmol) was added. The mix-

ture was reacted at 90 °C for 3 h. Then, lig-

and (R)-182 (37.1 mg, 153 µmol) was added 

and the reaction was continued at 90 °C for 

16 h. The solvent was evaporated under 

reduced pressure and the crude material 

was subjected to column chromatography 

using methylene chloride : methanol (50:1 

 5:1) followed by preparative TLC using 

methylene chloride : methanol (20:1). The 

racemic products -(R)-195 and -(S)-195 

were obtained as purple solid (8.9 mg, 

12.5 µmol, 9%). Rf = 0.85 (methylene chlo-

ride : methanol 10:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 9.72 (d, J = 5.9 Hz, 1H, 

CHar-6’), 9.27 (s, 1H, OH), 8.98-8.49 (dd, J = 

9.0, 2.4 Hz, 1H, CHar), 8.81 (s, 1H, CHar), 

8.47 (m, 1H, CHar), 8.03 (m, 3H, 3xCHar), 

7.78 (m, 1H, CHar), 7.13 (m, 5H, 5xCHar), 
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6.66 (m, 1H, CHar-10), 5.31 (m, 1H, 

CHar-11), 4.45 (m, 2H, NCH2), 4.02-3.96 (m, 

1H, CH), 3.16 (s, 3H, NCH3). 

5.2.3.21 Synthesis of organorhodium(III) 

complexes -196 

 

 

77 (20.0 mg, 44 µmol) was suspend-

ed in a mixture of ethanol/water (1:1, 15 mL) 

and rhodium(III)-chloride trihydrate 

(11.5 mg, 44 µmol) was added. The mixture 

was reacted at 90 °C for 3 h. Then, ligand 

189 (8.6 mg, 48 µmol) was added and the 

reaction was continued at 90 °C for 16 h. 

The solvent was evaporated under reduced 

pressure and the crude material was sub-

jected to column chromatography using 

methylene chloride : methanol (30:1  5:1) 

followed by preparative TLC using meth-

ylene chloride : methanol (20:1). The race-

mic products -(R)-195 and -(S)-195 was 

obtained as dark green solid (4.9 mg, 

7.5 µmol, 17%). Rf = 0.45 (methylene chlo-

ride : methanol 10:1). 1H-NMR (300 MHz, 

(CD3)2SO): δ(ppm) 9.63 (d, J = 5.7 Hz, 1H, 

CHar-6’), 9.31 (s, 1H, OH), 8.94 (dd, J = 9.2, 

2.3 Hz, 1H, CHar-4’), 8.73 (dd, J = 2.2, 1.6 

Hz, 1H, CHar-2), 8.46 (td, J = 7.8, 1.4 Hz, 

1H, CHar-4’), 8.11 (d, J = 2.4 Hz, 1H, 

CHar-8), 8.05 – 7.96 (m, 2H, CHar-3’ & 

CHar-5’), 6.74 (dd, J = 8.8, 2.5 Hz, 1H, 

CHar-10), 5.58 (d, J = 8.8 Hz, 1H, CHar-11), 

4.55 (d, J = 16.0 Hz, 1H, NCHH), 4.25 (d, J 

= 15.9 Hz, 1H, NCHH), 3.97 (d, J = 17.5 Hz, 

1H, CHH), 3.64 (d, J = 17.5 Hz, 1H, 

CHH), 3.16 (s, 3H, NimidCH3), 1.92 (s, 3H, 

NCH3). HRMS calculated for 

C27H20ClFN5NaO5Rh (M + Na)+ 674.0084, 

found (M + Na)+ 674.0077. 

5.2.3.22 Synthesis of organorhodium(III) 

complexes -(R)-197 and 

-(R)-198 

 

 

A suspension of KBr (94.5 mg, 

792 µmol) and RhCl3∙3H2O (23 mg, 

88 µmol) in water (1:1, 8 mL) under nitrogen 

atmosphere in a sealed vessel was heated 

to 90 °C for 45 min. Then, 77 (40 mg, 

88 µmol) dissolved in ethanol (8 mL) was 

added and the reaction mixture was stirred 

for another 3 h at 90 °C. During this time the 

suspension turned from pale brown into dark 

green. The reaction mixture was then cooled 

down slightly to add 189 (17.2 mg, 96 µmol). 

After addition of 189, the reaction was fur-

ther proceeded at 90 °C for 16 h. The reac-

tion mixture was then cooled down to ambi-

ent temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (20:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (10:1). The products were 

obtained as dark green solids, -197 

(11.6 mg, 16.7 µmol, 19%) and -198 

(6.1 mg, 8.8 µmol, 10%). , -197: 

Rf = 0.30 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.70 (dd, J = 5.0, 1.6 Hz, 1H, 

CHar-6’), 9.36 (s, 1H, OH), 8.82 (dt, J = 9.2, 

2.4 Hz, 1H, CHar-4’), 8.39 – 8.29 (m, 1H, 
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CHar-4), 8.23 – 8.16 (m, 2H, CHar-2 & 

CHar-8), 7.95 – 7.87 (m, 2H, CHar-3’ & 

CHar-5’), 7.56 (d, J = 8.9 Hz, 1H, CHar-11), 

7.09 (dd, J = 8.9, 2.6 Hz, 1H, CHar-10), 4.75 

(d, J = 16.2 Hz, 1H, NCHH), 4.52 (d, J = 

16.4 Hz, 1H, NCHH), 3.68 (d, J = 4.1 Hz, 

2H, CH2), 3.16 (s, 3H, NimidCH3), 1.73 (s, 

3H, NCH3). IR (film): ν (cm-1) 2922, 2852, 

2243, 2181, 2126, 2001, 1749, 1696, 1650, 

1564, 1502, 1443, 1411, 1368, 1330, 1296, 

1221, 1153, 1021, 992, 882, 815, 758, 690, 

608, 515, 451. HRMS calculated for 

C27H20BrFN5NaO5Rh (M + Na)+ 719.2753, 

found (M + Na)+ 719.9553. -198: 

Rf = 0.48 (methylene chloride : methanol 

10:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.84 (d, J = 5.8 Hz, 1H, CHar-6’), 

9.31 (s, 1H, CHar), 8.94 (dd, J = 9.2, 2.4 Hz, 

1H, CHar), 8.75 – 8.70 (m, 1H, CHar), 8.45 

(td, J = 7.8, 1.4 Hz, 1H, CHar-4’), 8.11 (d, J = 

2.4 Hz, 1H, CHar), 8.04 – 7.95 (m, 2H, 

CHar-3’ & CHar-5’), 6.74 (dd, J = 8.8, 2.5 Hz, 

1H, CHar-10), 5.57 (d, J = 8.8 Hz, 1H, 

CHar-10), 4.54 (d, J = 16.1 Hz, 1H, NCHH), 

4.23 (d, J = 15.9 Hz, 1H, NCHH), 3.91 (d, J 

= 17.4 Hz, 1H, CHH), 3.59 (d, J = 17.5 Hz, 

1H, CHH), 3.16 (s, 3H, NimidCH3), 1.86 (s, 

3H, NCH3). IR (film): ν(cm-1) 1748, 1655, 

1559, 1526, 1492, 1438, 1406, 1371, 1322, 

1288, 1198, 1145, 1020, 984, 953, 924, 884, 

842, 793, 753, 688, 610, 524, 447. HRMS 

calculated for C27H21BrFN5O5Rh (M + H)+ 

697.2935, found (M + H)+ 697.9729. 

5.2.3.23 Synthesis of organorhodium(III) 

complexes -(R)-199 and 

-(R)-200 

 

 

A suspension of 77 (20 mg, 44 µmol) 

and RhCl3∙3H2O (11.5 mg, 44 µmol) in an 

ethanol : water mixture (1:1, 20 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

green. The reaction mixture was then cooled 

down slightly to add (R)-105 (9.9 mg, 

48 µmol). After addition of (R)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (25:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark green solids, -(R)-199 

(6.3 mg, 9.3 µmol, 21%) and -(R)-200 

(3.8 mg, 5.7 µmol, 13%). -(R)-199: 

Rf = 0.13 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.50 (d, J = 5.6 Hz, 1H, CHar-6’), 

9.36 (s, 1H, OH), 8.81 (dd, J = 9.2, 2.2 Hz, 

1H, CHar-4), 8.35 (td, J = 7.8, 1.5 Hz, 1H, 

CHar-4’), 8.14 (d, J = 2.4 Hz, 1H, CHar-8), 

8.09 – 8.03 (m, 1H, CHar-2), 7.97 – 7.87 (m, 

2H, CHar-3’ & CHar-5’), 7.62 (d, J = 8.8 Hz, 

1H, CHar-11), 7.09 (dd, J = 8.8, 2.5 Hz, 1H, 

CHar-10), 4.75 (d, J = 16.1 Hz, 1H, NCHH), 

4.57 (d, J = 16.1 Hz, 1H, NCHH), 3.77 (dd, J 
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= 9.4, 5.1 Hz, 1H, CH), 3.15 (s, 3H, NCH3), 

2.52 – 2.48 (m, 1H, CHH) 2.18 (dt, J = 

13.4, 6.1 Hz, 2H, CHH& CHH), 1.82 (td, 

J = 11.7, 5.6 Hz, 1H, CHH), 1.55 – 1.40 

(m, 1H, CHH), 1.17 – 1.01 (m, 1H, CHH). 
13C-NMR (75 MHz, (CD3)2SO): δ(ppm) 

182.28 (Ccarbonyl), 169.02 (Car-7), 168.73 

(Car-5), 160.17 (Car-2’), 156.77 (d, J = 252.4 

Hz, Car-3), 152.15 (Car-12b), 151.87 (Car-6’), 

151.62 (Car-9), 143.68 (Car), 140.87 (Car), 

140.66 (Car), 140.41 (Car), 139.68 (Car), 

131.37 (Car), 126.02 (Car), 123.90 (Car), 

123.67 (Car), 120.57 (d, J = 8.1 Hz, Car-4a), 

118.63 (d, J = 21.0 Hz, Car-4), 117.03 (Car), 

115.32 (Car), 114.68 (Car), 111.04 (Car), 

108.64 (Car), 73.42 (C), 69.36 NCH2), 61.33 

(C), 30.34 (C), 23.67 (C), 23.63 (NCH3). 

IR (film): ν (cm-1) 2921, 2852, 1747, 1697, 

1619, 1566, 1502, 1444, 1411, 1373, 1331, 

1272, 1220, 1151, 1065, 987, 958, 882, 805, 

766, 731, 690, 610, 579. HRMS calculated 

for C29H22ClFN5NaO5Rh (M + Na)+ 

700.0241, found (M + Na)+ 700.0257. 

-(R)-200: 1H-NMR (300 MHz, Rf = 0.22 

(methylene chloride : methanol 15:1). 

(CD3)2SO): δ(ppm) 9.65 (d, J = 5.6 Hz, 1H, 

CHar-6’), 9.32 (s, 1H, OH), 8.93 (dd, J = 9.1, 

2.3 Hz, 1H, CHar-4), 8.72 – 8.60 (m, 1H, 

CHar-2), 8.47 (td, J = 7.7, 1.2 Hz, 1H, 

CHar-4’), 8.12 (d, J = 2.4 Hz, 1H, CHar-8), 

8.06 – 7.93 (m, 2H, CHar-3’ & CHar-5’), 6.74 

(dd, J = 8.8, 2.5 Hz, 1H, CHar-10), 5.51 (d, J 

= 8.8 Hz, 1H, CHar-11), 4.63 (d, J = 15.7 Hz, 

1H, NCHH), 4.32 (d, J = 15.6 Hz, 1H, 

NCHH), 3.80 (dd, J = 9.3, 5.0 Hz, 1H, CH), 

3.14 (s, 3H, NCH3), 2.62 – 2.52 (m, 1H, 

CHH), 2.34 – 2.16 (m, 2H, CHH& 

CHH), 2.12 – 1.98 (m, 1H, CHH), 1.65 

(dt, J = 18.6, 6.0 Hz, 1H, CHH), 1.24 – 1.02 

(m, 1H, CHH). 
13C-NMR (75 MHz, 

(CD3)2SO): δ(ppm) 181.83 (Ccarbonyl), 168.94 

(Car-7), 168.65 (Car-5), 161.12 (Car-2’), 

156.54 (d, J = 252.9 Hz, Car-3), 152.72 

(Car-12b), 152.58 (Car-6’), 151.87 (Car-9), 

142.69 (Car), 142.67 (Car), 141.25 (Car), 

139.46 (Car), 137.81 (d, J = 34.5 Hz, Car-2), 

131.56 (Car), 126.29 (Car), 124.06 (Car), 

123.56 (Car), 121.03 (d, J = 8.3 Hz, Car-4a), 

119.31 (d, J = 20.2 Hz, Car-4), 116.92 (Car), 

114.87 (Car), 112.28 (Car), 111.64 (Car-10), 

109.19 (Car-11), 72.76 (C), 69.84 (NCH2), 

61.00 (C), 30.17 (C), 24.20 (C), 23.65 

(NCH3). IR (film): ν(cm-1) 2921, 2850, 1744, 

1694, 1615, 1563, 1502, 1441, 1411, 1370, 

1329, 1270, 1217, 1151, 1062, 985, 958, 

880, 801, 762, 731, 688, 607, 575. HRMS 

calculated for C29H22ClFN5NaO5Rh 

(M + Na)+ 700.0241, found (M + Na)+ 

700.0254. 

5.2.3.24 Synthesis of organorhodium(III) 

complexes -(S)-199 and -(S)-200 

 

 

A suspension of 77 (20 mg, 44 µmol) 

and RhCl3∙3H2O (11.5 mg, 44 µmol) in an 

ethanol : water mixture (1:1, 20 mL) under 

nitrogen atmosphere in a sealed vessel was 

heated to 90 °C for 3 h. During this time the 

suspension turned from pale brown into dark 

green. The reaction mixture was then cooled 

down slightly to add (S)-105 (9.9 mg, 

48 µmol). After addition of (S)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 

The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (25:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (15:1). The products were 

obtained as dark green solids, -(S)-199 

(6.8 mg, 10.1 µmol, 23%) and -(S)-200 

(4.7 mg, 7.0 µmol, 16%). -(S)-199: 
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Rf = 0.13 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.50 (d, J = 5.6 Hz, 1H, CHar-6’), 

9.41 (s, 1H, OH), 8.82 (dd, J = 9.2, 2.1 Hz, 

1H, CHar-4), 8.36 (td, J = 7.8, 1.4 Hz, 1H, 

CHar-4’), 8.14 (d, J = 2.4 Hz, 1H, CHar-8), 

8.10 – 8.05 (m, 1H, CHar-2), 7.98 – 7.88 (m, 

2H, CHar-3’ & CHar-5’), 7.61 (d, J = 8.8 Hz, 

1H, CHar-11), 7.08 (dd, J = 8.8, 2.5 Hz, 1H, 

CHar-10), 4.74 (d, J = 16.0 Hz, 1H, NCHH), 

4.54 (d, J = 16.1 Hz, 1H, NCHH), 3.77 (dd, J 

= 9.5, 5.2 Hz, 1H, CH), 3.16 (s, 3H, NCH3), 

2.45 – 2.38 (m, 1H, CHH), 2.24 – 2.10 (m, 

2H, CHH& CHH), 1.90 – 1.72 (m, 1H, 

CHH), 1.53 – 1.38 (m, 1H, CHH), 1.17 – 

1.01 (m, 1H, CHH). 
13C-NMR (75 MHz, 

(CD3)2SO): δ(ppm) 182.29 (Ccarbony), 169.02 

(Car-7), 168.73 (Car-5), 160.17 (Car-2’), 

156.47 (d, J = 245.5 Hz, Car-3), 152.16 

(Car-12b), 151.87 (Car-6’), 151.62 (Car-9), 

147.32 (Car), 144.37 (Car), 143.68 (Car), 

140.67 (Car), 139.81 (d, J = 19.1 Hz, Car-2), 

132.52 (Car), 131.37 (Car), 126.02, 123.79 

(d, J = 18.0 Hz, Car-4), 119.33 (Car), 118.49 

(Car), 117.04 (Car), 115.32 (Car), 114.67 (Car), 

110.98 (Car), 108.63 (Car), 73.42 (C), 69.35 

(NCH2), 61.33 (C), 30.35 (C), 23.67 (C), 

23.64 (NCH3). IR (film): ν (cm-1) 2920, 2852, 

1747, 1698, 1619, 1567, 1502, 1444, 1412, 

1374, 1332, 1272, 1221, 1152, 1089, 987, 

960, 937, 882, 806, 770, 732, 691, 611, 581. 

HRMS calculated for C29H22ClFN5NaO5Rh 

(M + Na)+ 700.0241, found (M + Na)+ 

700.0225. -(S)-200: Rf = 0.22 (methylene 

chloride : methanol 15:1). 1H-NMR 

(300 MHz, CD3CN): δ(ppm) 9.82 – 9.73 (m, 

1H, CHar-6‘), 8.98 (dd, J = 9.2, 2.4 Hz, 1H, 

CHar-4), 8.69 (td, J = 2.4, 0.9 Hz, 1H, 

CHar-4‘), 8.33 (td, J = 7.8, 1.5 Hz, 1H, 

CHar-2), 8.21 (d, J = 2.6 Hz, 1H, CHar-8), 

7.94 – 7.79 (m, 2H, CHar-3‘ & CHar-5‘), 6.76 

(dd, J = 8.9, 2.6 Hz, 1H, CHar-10), 5.66 – 

5.57 (m, 1H, CHar-11), 4.44 (d, J = 15.5 Hz, 

1H, NCHH), 4.36 (d, J = 15.2 Hz, 1H, 

NCHH), 3.67 (dd, J = 9.4, 5.2 Hz, 1H, CH), 

3.19 (s, 3H, NCH3), 2.52 – 2.41 (m, 1H, 

CHH), 2.40 – 2.31 (m, 2H, CHH& 

CHH), 1.70 – 1.59 (m, 1H, CHH), 1.37 – 

1.29 (m, 2H, CHH& CHH). 
13C-NMR (75 

MHz, (CD3)2SO): δ(ppm) 181.84 (Ccarbonyl), 

168.94 (Car-7), 168.65 (Car-5), 161.12 

(Car-2‘), 156.56 (d, J = 251.0 Hz, Car-3), 

152.72 (Car-12b), 152.58 (Car-6’), 151.88 

(Car-9), 142.70 (Car), 141.26 (Car), 139.46 

(Car), 137.82 (d, J = 34.7 Hz, Car-2), 131.57 

(Car), 126.30 (Car), 124.06 (Car), 123.57 (Car), 

121.03 (d, J = 8.0 Hz, Car-4a), 119.32 (d, J = 

20.3 Hz, Car-4), 116.92 (Car), 114.87 (Car), 

112.29 (Car-10), 111.58 (Car), 109.19 

(Car-11), 72.76 (C), 69.85 (NCH2), 61.00 

(C), 30.17 (C), 24.21 (C), 23.66 (NCH3). 

IR (film): ν(cm-1) 2923, 2851, 1747, 1678, 

1622, 1562, 1492, 1439, 1408, 1369, 1328, 

1291, 1225, 1201, 1154, 1058, 985, 957, 

932, 883, 839, 794, 763, 688, 646, 611, 581, 

520, 448, 397. HRMS calculated for 

C29H22ClFN5NaO5Rh (M + Na)+ 700.0241, 

found (M + Na)+ 700.0254. 

5.2.3.25 Synthesis of organorhodium(III) 

complexes -(S)-201 and -(S)-202 

 

 

A suspension of KBr (94.5 mg, 

792 µmol) and RhCl3∙3H2O (23 mg, 

88 µmol) in water (1:1, 8 mL) under nitrogen 

atmosphere in a sealed vessel was heated 

to 90 °C for 45 min. Then, 77 (40 mg, 

88 µmol) dissolved in ethanol (8 mL) was 

added and the reaction mixture was stirred 

for another 3 h at 90 °C. During this time the 

suspension turned from pale brown into dark 

green. The reaction mixture was then cooled 

down slightly to add (S)-105 (19.8 mg, 

96 µmol). After addition of (S)-105, the reac-

tion was further proceeded at 90 °C for 16 h. 
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The reaction mixture was then cooled down 

to ambient temperature and the solvent was 

removed in vacuo. The crude material was 

purified via column chromatography using 

methylene chloride : methanol (20:1  

10:1). The separated diastereomers were 

further purified and concentrated via prepar-

ative TLC using methylene chlo-

ride : methanol (10:1). The products were 

obtained as dark green solids, -(S)-201 

(12.1 mg, 16.7 µmol, 19%) and -(S)-202 

(7.6 mg, 10.6 µmol, 12%). -(S)-201: 

Rf = 0.11 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.70 (d, J = 6.3 Hz, 1H, CHar-6’), 

9.35 (s, 1H, OH), 8.82 (dd, J = 9.2, 2.2 Hz, 

1H, CHar-4), 8.35 (td, J = 7.8, 1.4 Hz, 1H, 

CHar-4’), 8.14 (d, J = 2.3 Hz, 1H, CHar-8), 

8.11 – 8.04 (m, 1H, CHar-2), 7.98 – 7.86 (m, 

2H, CHar-3’ & CHar-5’), 7.60 (d, J = 8.8 Hz, 

1H, CHar-11), 7.07 (dd, J = 8.8, 2.5 Hz, 1H, 

CHar-10), 4.73 (d, J = 15.8 Hz, 1H, NCHH), 

4.55 (d, J = 16.3 Hz, 1H, NCHH), 3.72 (dd, J 

= 9.4, 5.1 Hz, 1H, CH), 3.16 (s, 3H, NCH3), 

2.45 – 2.39 (m, 1H, CHH), 2.15 (ddd, J = 

17.5, 12.3, 6.3 Hz, 2H, CHH& CHH), 

1.87 – 1.74 (m, 1H, CHH), 1.49 – 1.39 (m, 

1H, CHH), 1.15 – 1.00 (m, 1H, CHH). IR 

(film): ν (cm-1) 2928, 2872, 1748, 1695, 

1651, 1564, 1502, 1442, 1411, 1371, 1330, 

1290, 1203, 1150, 1102, 1053, 1026, 995, 

962, 934, 882, 811, 766, 688, 649, 610, 522, 

484, 453, 404. HRMS calculated for 

C29H22BrFN5NaO5Rh (M + Na)+ 743.9736, 

found (M + Na)+ 743.9722. -(S)-202: 

Rf = 0.30 (methylene chloride : methanol 

15:1). 1H-NMR (300 MHz, (CD3)2SO): 

δ(ppm) 9.86 (d, J = 6.5 Hz, 1H, CHar-6’), 

9.33 (s, 1H, OH), 8.95 (dd, J = 9.2, 2.3 Hz, 

1H, CHar-4), 8.66 (d, J = 2.5 Hz, 1H, CHar-2), 

8.46 (td, J = 7.6, 1.4 Hz, 1H, CHar-4’), 8.13 

(d, J = 2.5 Hz, 1H, CHar-8), 8.06 – 7.93 (m, 

2H, CHar-3’ & CHar-5’), 6.73 (dd, J = 8.9, 2.5 

Hz, 1H, CHar-10), 5.50 (d, J = 8.8 Hz, 1H, 

CHar-11), 4.61 (d, J = 15.4 Hz, 1H, NCHH), 

4.29 (d, J = 14.8 Hz, 1H, NCHH), 3.75 (dd, J 

= 9.1, 4.4 Hz, 1H, CH), 3.17 (s, 3H, NCH3), 

2.60 – 2.56 (m, 1H, CHH), 2.24 – 2.12 (m, 

2H, CHH& CHH), 2.05 – 1.92 (m, 1H, 

CHH), 1.59 (ddd, J = 14.9, 11.0, 4.2 Hz, 

1H, CHH), 1.37 – 1.27 (m, 1H, CHH). 

HRMS calculated for C29H22BrFN5NaO5Rh 

(M + Na)+ 743.9736, found (M + Na)+ 

743.9732.  



 

 

187 Experimental 

5.3 Biological Experiments 

5.3.1 PI3K Kinase-Glo Assay 

 

The PI3K Kinase-Glo Assays for the 

IC50 determinations were performed in the 

MARMORSTEIN group by JIE QIN AND JULIE S. 

BARBER-ROTENBERG, the Wistar Institute, 

3601 Spruce Street, Philadelphia, Pennsyl-

vania 19104, United States. Recombinantly 

expressed human PI3K catalytic domain or 

PI3K respectively, was preincubated with 

various concentrations of inhibitors with a 

final DMSO concentration of 2% in reaction 

buffer (20 mM Tris pH 7.5, 100 mM NaCl, 

10 mM MgCl2) for 1 h at RT. Then, this mix-

ture was added to a solution of 0.1 mg/mL 

D-myo-phosphatidylinositol-4,5-bisphophate 

(PtdIns(4,5)P2, Echelon Bio-sciences) and 

10 µM ATP. 1.4 pmoles PI3K were used for 

each compound. The kinase reaction was 

carried out in a final volume of 50 µL in a 96-

well microtiter plate at 37 °C for 3 h. Then, 

50 µL of Kinase-Glo (Promega) developing 

solution was added into the mixture to gen-

erate a luminescence signal. The signal was 

recorded using the PerkinElmer Wallac 

1420 luminometer using a luminescence 

filter. Data were processed and IC50 values 

were normalised to control samples using 

2% DMSO and no kinase. The sigmoidal 

dose response curve fitting was processed 

using Origin8. 

5.3.2 Cloning, Expression, and Purifica-

tion of S6K1 Constructs 

 

The cloning, expression and purifica-

tion of S6K1 constructs were performed in 

the MARMORSTEIN group by JIE QIN, the 

Wistar Institute, 3601 Spruce Street, Phila-

delphia, Pennsylvania 19104, United States. 

Full length human S6K1 cDNA (1−525) was 

purchased from Epitope (catalogue number 

IHS1380-97652397). S6K1 constructs 

(84−384, 1−421, 1−421 T412E) were sub-

cloned into the pFASTbac HTB vector for 

protein expression. Sf9 cells were transfect-

ed with the recombinant bacmid DNA using 

Cellfectin (Invitrogen). Cells were harvested 

after being incubated for 48 h at 28 °C and 

stored at −80 °C. The 1−421 T412E con-

struct was coexpressed with PDK1 to phos-

phorylate the T412E residue (cloned from 

cDNA purchased from OpenBioSystems). 

Frozen pellets of the S6K1 kinase domain, 

S6K1(84−384) used for crystallography 

were resuspended in sonication buffer 

(50 mM KPi, pH 7.0, 250 mM NaCl, 5% 

glycerol, 1:1000 PMSF) and sonicated at a 

power output of 5.5 for 120 s with 20 s inter-

vals (Misonix Sonicator 3000). Lysates were 

cleared by highspeed centrifugation at 18 

000 rpm for 35 min at 4 °C. Equilibrated 

Talon metal affinity resin (Clontech) was 

added to cleared lysates and incubated at 

4 °C for 1 h with gentle shaking. The res-

in/lysate mixture was loaded into a gravi-

tyflow column, and the resin was extensively 

washed with wash buffer (50 mM KPi, 

pH 7.0, 250 mM NaCl, 5% glycerol). Protein 

was then eluted with elution buffer (50 mM 

KPi, pH 7.0, 250 mM NaCl, 500 mM imidaz-

ole, and 5% glycerol) in a single step. 

Pooled Talon eluent was diluted 3.5-fold in 

dilution buffer (50 mM KPi, pH 7.0, 5% glyc-

erol) and loaded onto an SP anion ex-

change column pre-equilibrated with buffer 

A (50 mM KPi, pH 7.0, 50 mM NaCl, 5% 

glycerol). Protein was eluted with buffer B 

(50 mM KPi, pH 7.0, 500 mM NaCl, 5% glyc-

erol) in a single step. Elution after the Q col-

umn was concentrated and loaded to a Su-

perdex s200 column equilibrated with 50 mM 

Na citrate, pH 6.5, 300 mM NaCl, 1 mM DTT, 

5% glycerol. The eluent was collected and 

concentrated to 3 mg/mL before protein 

wasflash frozen in dry ice and stored at 

−80 °C. Purification of the 1−421 T412E 

construct was completed as above, with 

gelfiltration on the Superdex s200 column 

using a buffer containing 25 mM Tris, 

pH 7.5, 200 mM NaCl, 1 mM EDTA, and 5% 

glycerol. 
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5.3.3 Cloning, Expression, and Purifica-

tion of S6K2 Construct 

 

The cloning, expression and purifica-

tion of S6K2 constructs were performed in 

the MARMORSTEIN group by JULIE S. BAR-

BER-ROTENBERG, the Wistar Institute, 3601 

Spruce Street, Philadelphia, Pennsylvania 

19104, United States. Full-length human 

S6K2 cDNA was purchased from GE 

Healthcare Dharmacon (RPS6KB2, clone 

identification number 2959036). The S6K2 

1−423 construct, equivalent to S6K1 1−421, 

was subcloned into the pFASTbac HTB vec-

tor for protein expression. Sf9 cells were 

transfected and grown as described above. 

The construct was coexpressed with PDK1, 

similar to the S6K1 construct. Frozen pellets 

were purified identically to the S6K1 1−423 

T412E pellets. 

5.3.4 Radioactive Kinase Assay target-

ing S6K1 and S6K2 constructs 

 

The radioactive kinase assay target-

ing S6K1 and S6K2 constructs were per-

formed in the MARMORSTEIN group by JULIE 

S. BARBER-ROTENBERG, the Wistar Institute, 

3601 Spruce Street, Philadelphia, Pennsyl-

vania 19104, United States. Each reaction 

mixture contained 5 μL of 5×reaction buffer 

(100 mM MOPS, pH 7.0, 150 mM MgCl2), 

2 μL of inhibitor in 50% DMSO, 3.6 μL of 

S6K1 substrate peptide (RRRLSSLRA), 

1 μL of BSA (20 mg/mL), 3.2 μL of S6K1 

(concentration as described in results), and 

5 μL of ATP/ATP* mix (concentration as 

described in results) in a total reaction vol-

ume of 25 μL. Reaction mixtures were incu-

bated for 1 h at ambient temperature before 

being transferred to Whatman paper and 

washed with 0.75% phosphoric acid. Data 

were collected using a scintillation counter. 

All experiments were performed in triplicate. 

IC50 values were determined using sigmoidal 

dose response with a variable curve in 

Origin 8. 

5.3.5 Cell Culture and Western Blotting 

 

Cell culture and Western blotting 

were performed in the MARMORSTEIN group 

by PATRICIA REYES-URIBE, the Wistar Insti-

tute, 3601 Spruce Street, Philadelphia, 

Pennsylvania 19104, United States. Human 

cell lines were cultured in RPMI (10-040-

CM; Cellgro) supplemented with 5% fetal 

bovine serum and harvested at 70% conflu-

ence. For immunoblotting, cells were treated 

for the specified times with the indicated 

drugs, washed with cold phosphate buffered 

saline (PBS) containing 100 mM Na3VO4, 

and lysed using TNE buffer (150 mM NaCl, 

1% (v/v) NP-40, 2 mM EDTA, 50 mM Tris-

HCl, pH 8.0) supplemented with protease 

inhibitors (11697498001; Roche). Proteins 

were separated by SDS−PAGE and trans-

ferred to nitrocellulose membranes 

(9004700; BioRad). After blocking for 1 h in 

5% (wt/vol) dry milk/Tris-buffered saline 

(TBS)/0.1% (v/v) Tween-20, membranes 

were incubated overnight at 4 °C with prima-

ry antibodies followed by incubation with 

Alexa Fluor-labeled secondary antibodies 

(IRDye 680LT goat-antimouse or IRDye 

800CW goat-anti-rabbit antibodies (LI-COR 

Biosciences) for 1 h. -Actin (A5441) and 

vinculin (V9131) antibodies were obtained 

from Sigma. p-AKT (4056, 4060), S6 (2317), 

p-S6 (4858, 5364), S6K1 (2708), p-S6K1 

(9234), p-eEF2k (3691), peIF4B (3591), and 

cleaved PARP (5625) were obtained from 

Cell Signaling Technologies. Fluorescent 

images were acquired and by LI-COR Od-

yssey Imaging System. 
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5.3.6 Yeast Cell Culture and Lysis 

 

Yeast cell culture and lysis were per-

formed in the DANG group by HAIYING LIU, 

Huffington Center on Aging, Baylor College 

of Medicine, Houston, Texas 77030, United 

States. Overnight cultures of wild-type yeast 

cells (BY4742) were diluted in synthetic 

complete (SC) medium and regrown at 

30 °C to early log phase (OD600 of 0.2). 87 

was added to an aliquot of culture to the 

final concentration of 1, 10, 100, and 

1000 nM. The treated cultures were further 

grown at 30 °C for 4 h before harvesting. A 

culture of sch9 cells (KS68) was grown 

and harvested in parallel as a control. Yeast 

cell pellets were lysed by spinning down 

cultures at ∼3000 rpm for 3 min at 4 °C, 

washing with ice-cold water, and broken in 

lysis buffer as previously described.[432] 

Whole cell extracts were separated on a 

4−12% Bolt gel with MOPS running buffer 

(Life Technologies), followed by transfer to a 

PVDF membrane in a Mini Trans-Blot cell 

(Bio-Rad) at 20 V overnight. The blot was 

blocked with 3% BSA at room temperature 

for 2 h and then at 4 °C for 4 h, followed by 

incubation with primary antibodies, Phos-

pho-S6 (Cell Signaling, catalog no. 2211, 

1:1000 dilution), and GAPDH (Thermo, cata-

log no. MA5-15738, 1:1000 dilution) at 4 °C 

overnight. Incubation with secondary anti-

bodies (anti-rabbit-DyLight-680 and anti-

mouse-DyLight-800, Pierce, 1:10000 dilu-

tion) was carried out at room temperature 

for 1 h before imaging with Li-Cor Odyssey. 

5.3.7 Radioactive Kinase Assay target-

ing PIM-1, Aurora A, and FLT 3 

 

Various concentrations of the rhodi-

um(III) complexes were incubated at ambi-

ent temperature in 20 mM 3-(N-morpho-

lino)propanesulfonic acid/ sodium hydroxide, 

1 mM ethylenediaminetetraacetic acid 

(EDTA), 0.01% Brij 35, 5% 2-mercapto-

ethanol, 1 mg/mL bovine serum albumin 

(BSA), and 10% DMSO (resulting from the 

inhibitor stock solution) at pH 7.0 in the 

presence of a kinase substrate for an incu-

bation time of T1. The reaction was then 

initiated by adding ATP in a final concentra-

tion of 10 μM and approximately 0.1 μCi/μL 

of [-33P]-ATP. Reactions were performed in 

a total volume of 25 μL. After an incubation 

time of T2, the reaction was terminated by 

spotting 17.5 μL of the reaction mixture on a 

circular P81 phosphocellulose paper (2.1 cm 

diameter, Whatman), followed by washing 

three times with 0.75% phosphoric acid and 

once with acetone. The dried P81 papers 

were transferred to scintillation vials and 

added with 5 mL of scintillation cocktail 

(purchased from Roth). The counts per mi-

nute (CPM) were measured using a Beck-

mann Coulter LS6500 multipurpose scintilla-

tion counter and corrected by the 

background CPM. The IC50 values were 

determined in dublicat for each single con-

centration and compound. The experiments 

were repeated independently under the 

same conditions to verify the results. Non-

linear regression and data evaluation were 

performed using OriginPro 8G (OriginLab). 

Modifications for the corresponding kinase 

targets: The amount of PIM-1 used was 

0.1 ng/μL, the concentration of the kinase 

substrate S6 was 50 μM (purchased from 

MoBiTec), and the incubation times 

wereT1 = 30 min and T2 = 30 min. The 

amount of Aurora A used was 0.13 ng/μL, 

the concentration of the kinase substrate 

Kemptide was 250 μM (purchased from 

Promega), and the incubation times were 

T1 = 45 min and T2 = 45 min. The amount of 

FLT-3 used was 1 ng/mL, the concentration 

of Abltide was 100 μM (purchased from 

Merck Millipore), and incubation times were 

T1 = 90 min and T2 = 90 min. All kinases 

were purchased from Merck Millipore.  
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5.4 Kinase Profiling 

5.4.1 Kinase Profiling of Complexes 85, 

and 86 

 

The compounds 85 and 86 were pro-

filed by the Millipore (KinaseProfilerTM) 

against a panel of 263 kinases. Shown are 

the remaining kinase activities at a concen-

tration of 100 nM of 85 or 86. The presence 

of ATP is 10 µM. 

Table 4: Kinome Profiling 85 and 86. 

  
85 (0.1 µM) 86 (0.1 µM) 

Abl(h) 96 101 

Abl(m) 96 103 

Abl (H396P) (h) 96 99 

Abl (M351T)(h) 95 106 

Abl (Q252H) (h) 90 95 

Abl(T315I)(h) 103 107 

Abl(Y253F)(h) 118 120 

ACK1(h) 53 96 

ALK(h) 30 60 

ALK4(h) 122 123 

Arg(h) 93 93 

AMPK(r) 49 93 

Arg(m) 90 113 

ARK5(h) 31 88 

ASK1(h) 114 104 

Aurora-A(h) 44 117 

Axl(h) 63 100 

Blk(m) 8 113 

Bmx(h) 107 124 

BRK(h) 110 114 

BrSK1(h) 51 92 

BrSK2(h) 32 80 

BTK(h) 78 99 

BTK(R28H)(h) 111 112 

CaMKI(h) 79 108 

CaMKIIβ(h) 28 63 

CaMKIIγ(h) 5 29 

CaMKIδ(h) 21 49 

CaMKIIδ(h) 5 23 

CaMKIV(h) 11 59 

CDK1/cyclinB(h) 97 120 

CDK2/cyclinA(h) 82 115 

CDK2/cyclinE(h) 83 103 

CDK3/cyclinE(h) 116 119 

CDK5/p25(h) 69 106 

CDK5/p35(h) 58 98 

CDK7/cyclinH/MAT1(h) 25 114 

CDK9/cyclin T1(h) 75 108 

CHK1(h) 65 97 

CHK2(h) 34 89 

CHK2(I157T)(h) 37 87 

CHK2(R145W)(h) 33 88 

CK1γ1(h) 3 66 

CK1γ2(h) -3 44 

CK1γ3(h) -2 28 

CK1δ(h) 2 24 

CK1(y) 3 14 

CK2(h) 112 113 

CK2α2(h) 113 107 

CLK2(h) 1 2 

CLK3(h) 90 105 

cKit(h) 113 121 

cKit(D816V)(h) 91 103 

cKit(D816H)(h) 5 54 

cKit(V560G)(h) 13 64 

cKit(V654A)(h) 20 73 

CSK(h) 108 102 

c-RAF(h) 100 111 

cSRC(h) 40 80 
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DAPK1(h) 2 21 

DAPK2(h) 2 8 

DCAMKL2(h) 72 97 

DDR2(h) 92 92 

DMPK(h) 112 110 

DRAK1(h) 59 94 

DYRK2(h) 110 114 

eEF-2K(h) 105 107 

EGFR(h) 114 121 

EGFR(L858R)(h) 61 88 

EGFR(L861Q)(h) 108 111 

EGFR(T790M)(h) 83 111 

EGFR(T790M,L858R)(
h) 

31 85 

EphA1(h) 107 107 

EphA2(h) 99 97 

EphA3(h) 110 115 

EphA4(h) 113 107 

EphA5(h) 126 124 

EphA7(h) 109 113 

EphA8(h) 136 134 

EphB2(h) 117 116 

EphB1(h) 117 146 

EphB3(h) 117 109 

EphB4(h) 111 113 

ErbB4(h) 109 111 

FAK(h) 100 98 

Fer(h) 56 101 

Fes(h) 69 97 

FGFR1(h) 74 132 

FGFR1(V561M)(h) 16 83 

FGFR2(h) 81 118 

FGFR2(N549H)(h) 55 102 

FGFR3(h) 95 100 

FGFR4(h) 86 98 

Fgr(h) 49 81 

FLT1(h) 17 64 

FLT3(D835Y)(h) -3 5 

FLT3(h) 5 32 

FLT4(h) 42 55 

Fms(h) 27 68 

Fyn(h) 35 77 

GCK(h) 108 109 

GRK5(h) 55 65 

GRK6(h) 42 53 

GRK7(h) 39 46 

GSK3α(h) 20 58 

GSK3β(h) 56 90 

Haspin(h) 71 79 

Hck(h) 15 50 

HIPK1(h) 35 85 

HIPK2(h) 39 70 

HIPK3(h) 63 91 

IGF-1R(h) 82 92 

IGF-1R(h), activated 43 54 

IKKα(h) 111 119 

IKKβ(h) 83 97 

IR(h) 96 104 

IR(h), activated 27 60 

IRR(h) 29 54 

IRAK1(h) 40 97 

IRAK4(h) 94 108 

Itk(h) 66 96 

JAK2(h) 71 108 

JAK3(h) 61 103 

JNK1α1(h) 103 106 

JNK2α2(h) 93 98 

JNK3(h) 95 86 

KDR(h) 27 78 

Lck(h) 35 105 

LIMK1(h) 86 103 
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LKB1(h) 106 106 

LOK(h) 86 93 

Lyn(h) 7 86 

Lyn(m) 7 72 

MAPK1(h) 2 47 

MAPK2(h) 7 89 

MAPK2(m) 5 95 

MAPKAP-K2(h) 112 115 

MAPKAP-K3(h) 117 105 

MEK1(h) 108 103 

MARK1(h) 16 78 

MELK(h) 1 4 

Mer(h) 4 19 

Met(h) 91 132 

MINK(h) 51 77 

MKK4(m) 55 103 

MKK6(h) 100 115 

MKK7β(h) 38 63 

MLCK(h) 0 2 

MLK1(h) 74 86 

Mnk2(h) 83 95 

MRCKα(h) 110 108 

MRCKβ(h) 96 105 

MSK1(h) 17 15 

MSK2(h) 4 22 

MSSK1(h) 68 57 

MST1(h) 12 78 

MST2(h) 6 50 

MST3(h) 16 43 

mTOR(h) 105 99 

mTOR/FKBP12(h) 121 108 

MuSK(h) 113 108 

NEK2(h) 80 105 

NEK3(h) 95 97 

NEK6(h) 57 94 

NEK7(h) 64 83 

NEK11(h) 94 101 

NLK(h) 85 104 

p70S6K(h) 7 54 

PAK2(h) 42 91 

PAK3(h) 29 98 

PAK4(h) 71 104 

PAK5(h) 31 96 

PAK6(h) 62 96 

PAR-1Bα(h) 7 54 

PASK(h) 68 102 

PDGFRα(h) 113 127 

PDGFRα(D842V)(h) 7 63 

PDGFRα(V561D)(h) 8 65 

PDGFRβ(h) 111 107 

PDK1(h) 8 24 

PhKγ2(h) 93 95 

PIM-1(h) 1 31 

PIM-2(h) 3 24 

PIM-3(h) 14 30 

PKA(h) 13 72 

PKBα(h) 10 76 

PKBβ(h) 57 90 

PKBγ(h) 6 49 

PKCα(h) 94 113 

PKCβI(h) 56 99 

PKCβII(h) 76 82 

PKCγ(h) 90 99 

PKCδ(h) 73 88 

PKCε(h) 62 90 

PKCη(h) 84 106 

PKCι(h) 87 88 

PKCμ(h) 76 100 

PKCθ(h) 16 42 

PKCζ(h) 88 96 
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PKD2(h) 81 103 

PKG1α(h) 10 25 

PKG1β(h) 8 24 

Plk1(h) 97 103 

Plk3(h) 102 113 

PRAK(h) 66 86 

PRK2(h) 33 76 

PrKX(h) 36 66 

PTK5(h) 29 73 

Pyk2(h) 40 62 

Ret(h) 9 45 

Ret (V804L)(h) 11 38 

Ret(V804M)(h) 5 28 

RIPK2(h) 87 87 

ROCK-I(h) 98 113 

ROCK-II(h) 91 99 

ROCK-II(r) 80 107 

Ron(h) 92 108 

Ros(h) 112 102 

Rse(h) 15 61 

Rsk1(h) 5 26 

Rsk1(r) 5 25 

Rsk2(h) 6 21 

Rsk3(h) 5 31 

Rsk4(h) 3 22 

SAPK2a(h) 111 111 

SAPK2a(T106M)(h) 101 106 

SAPK2b(h) 98 106 

SAPK3(h) 102 109 

SAPK4(h) 78 91 

SGK(h) 51 82 

SGK2(h) 27 53 

SGK3(h) 74 92 

SIK(h) 19 69 

Snk(h) 93 96 

Src(1-530)(h) 31 79 

Src(T341M)(h) 35 94 

SRPK1(h) 38 35 

SRPK2(h) 39 30 

STK33(h) 67 100 

Syk(h) 120 114 

TAK1(h) 104 107 

TAO1(h) 96 105 

TAO2(h) 93 103 

TAO3(h) 89 100 

TBK1(h) 40 90 

Tec(h) activated 66 102 

Tie2(h) 78 86 

Tie2(R849W)(h) 93 98 

Tie2(Y897S)(h) 100 108 

TLK2(h) 110 108 

TrkA(h) 17 104 

TrkB(h) 68 75 

TSSK1(h) 11 50 

TSSK2(h) 61 100 

Txk(h) 106 99 

ULK2(h) 102 106 

ULK3(h) 83 109 

WNK2(h) 76 90 

WNK3(h) 95 99 

VRK2(h) 63 77 

Yes(h) 26 81 

ZAP-70(h) 134 123 

ZIPK(h) 1 18 
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5.4.2 Kinase Profiling of Complexes 87, 

-(R)-106, -(S)-106, -(R)-107, 

and -(S)-107 

 

The compounds 87, -(R)-106, 

-(S)-106, -(R)-107, and -(S)-107 were 

profiled by the KINOMEscan, DiscoveRx 

profiling of Lead Hunter Discovery against a 

panel of 456. Shown are the remaining ki-

nase activities at a concentration of 100 nM 

in case of 87 and 1 µM in the cases of 

-(R)-106, -(S)-106, -(R)-107, and 

-(S)-107 in the absence of ATP. 

 

Table 5: Kinase Profiling of Complexes 87, -(R)-106, -(S)-106, -(R)-107, and -(S)-107. 

 

87 

(100 nM) 
-(S)-106 

(1 µM) 

-(S)-107 

(1 µM) 

-(R)-106 

(1 µM) 

-(R)-107 

(1 µM) 

AAK1 100 71 89 100 82 

ABL1(E255K)-
phosphorylated 

77 97 100 90 91 

ABL1(F317I)-
nonphosphorylated 

92 89 91 87 66 

ABL1(F317I)-
phosphorylated 

73 97 100 100 100 

ABL1(F317L)-
nonphosphorylated 

100 92 97 87 78 

ABL1(F317L)-
phosphorylated 

100 100 97 100 100 

ABL1(H396P)-
nonphosphorylated 

88 92 100 94 70 

ABL1(H396P)-
phosphorylated 

98 96 100 97 100 

ABL1(M351T)-
phosphorylated 

100 98 100 94 99 

ABL1(Q252H)-
nonphosphorylated 

90 100 99 82 70 

ABL1(Q252H)-
phosphorylated 

94 96 99 100 93 

ABL1(T315I)-
nonphosphorylated 

97 100 100 100 89 

ABL1(T315I)-
phosphorylated 

100 100 81 100 95 

ABL1(Y253F)-
phosphorylated 

93 100 100 100 100 

ABL1-nonphosphorylated 97 85 88 91 71 

ABL1-phosphorylated 100 89 97 94 91 

ABL2 97 100 97 100 97 

ACVR1 100 88 92 98 100 

ACVR1B 92 85 86 97 99 

ACVR2A 100 99 100 100 98 

ACVR2B 100 100 100 96 94 

ACVRL1 99 100 100 97 100 

ADCK3 88 78 87 91 92 

ADCK4 96 100 86 68 100 

AKT1 99 98 82 99 96 
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AKT2 100 100 100 90 94 

AKT3 100 87 73 96 98 

ALK 95 100 90 100 85 

ALK(C1156Y) 83 100 100 100 100 

ALK(L1196M) 86 94 89 94 88 

AMPK-alpha1 100 68 85 85 87 

AMPK-alpha2 88 83 90 98 86 

ANKK1 92 96 92 100 100 

ARK5 85 69 72 76 92 

ASK1 100 81 83 93 93 

ASK2 88 86 95 93 90 

AURKA 84 2.4 92 94 91 

AURKB 87 29 82 91 80 

AURKC 93 22 89 96 89 

AXL 95 79 68 86 84 

BIKE 100 86 85 90 91 

BLK 90 73 69 94 95 

BMPR1A 90 96 97 88 89 

BMPR1B 100 75 82 90 85 

BMPR2 100 100 100 100 98 

BMX 84 95 97 100 96 

BRAF 100 96 96 100 98 

BRAF(V600E) 95 93 98 94 97 

BRK 100 88 88 96 76 

BRSK1 100 94 94 100 100 

BRSK2 62 90 92 100 97 

BTK 98 91 97 96 93 

BUB1 88 87 96 100 93 

CAMK1 93 93 71 89 89 

CAMK1D 31 58 40 100 95 

CAMK1G 96 68 92 100 98 

CAMK2A 44 1.9 52 89 52 

CAMK2B 71 3.2 72 77 68 

CAMK2D 87 4.4 72 100 90 

CAMK2G 84 5 72 100 79 
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CAMK4 15 100 81 100 89 

CAMKK1 100 76 93 98 89 

CAMKK2 99 79 94 100 85 

CASK 94 88 97 100 84 

CDC2L1 95 100 97 100 94 

CDC2L2 96 98 91 97 94 

CDC2L5 95 80 96 84 78 

CDK11 74 100 100 100 88 

CDK2 97 86 90 99 94 

CDK3 95 83 100 100 91 

CDK4-cyclinD1 95 86 96 100 98 

CDK4-cyclinD3 100 100 100 100 100 

CDK5 88 96 98 100 95 

CDK7 96 51 80 100 95 

CDK8 73 98 100 98 100 

CDK9 90 90 87 100 98 

CDKL1 100 78 98 98 81 

CDKL2 92 82 100 100 100 

CDKL3 82 100 100 98 90 

CDKL5 98 100 100 100 100 

CHEK1 71 85 100 100 99 

CHEK2 91 71 100 100 95 

CIT 92 100 90 100 91 

CLK1 94 100 100 100 88 

CLK2 1.8 23 54 76 18 

CLK3 100 87 100 95 84 

CLK4 50 74 82 95 68 

CSF1R 55 90 78 100 94 

CSF1R-autoinhibited 99 50 51 60 52 

CSK 100 100 96 100 95 

CSNK1A1 90 93 100 92 81 

CSNK1A1L 89 100 85 96 100 

CSNK1D 72 87 90 100 90 

CSNK1E 100 97 100 95 93 

CSNK1G1 100 82 82 99 94 



 

 

197 Experimental 

CSNK1G2 95 98 77 100 100 

CSNK1G3 100 100 100 97 80 

CSNK2A1 97 87 83 79 47 

CSNK2A2 78 82 48 69 27 

CTK 91 87 73 95 98 

DAPK1 3.1 76 16 93 68 

DAPK2 5.8 65 33 76 54 

DAPK3 5.7 73 25 74 61 

DCAMKL1 52 74 76 60 60 

DCAMKL2 100 100 93 99 97 

DCAMKL3 48 60 80 100 88 

DDR1 99 91 94 81 90 

DDR2 100 97 100 68 58 

DLK 92 71 75 86 93 

DMPK 99 61 72 96 89 

DMPK2 93 88 98 97 92 

DRAK1 49 99 100 100 99 

DRAK2 69 99 100 100 98 

DYRK1A 85 73 94 100 33 

DYRK1B 41 78 91 88 21 

DYRK2 100 78 89 89 74 

EGFR 100 100 100 95 100 

EGFR(E746-A750del) 61 93 94 86 81 

EGFR(G719C) 100 76 97 100 97 

EGFR(G719S) 100 93 99 94 93 

EGFR(L747-E749del, 
A750P) 

92 86 91 100 87 

EGFR(L747-S752del, 
P753S) 

82 100 91 95 80 

EGFR(L747-T751del,Sins) 97 97 75 89 88 

EGFR(L858R) 98 89 90 98 92 

EGFR(L858R,T790M) 100 77 86 97 96 

EGFR(L861Q) 84 100 100 100 100 

EGFR(S752-I759del) 98 77 100 86 93 

EGFR(T790M) 100 66 85 96 88 

EIF2AK1 82 66 80 100 90 

EPHA1 100 83 100 96 80 
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EPHA2 92 86 93 100 89 

EPHA3 58 81 86 87 89 

EPHA4 96 87 100 100 94 

EPHA5 86 97 97 100 91 

EPHA6 94 83 86 96 90 

EPHA7 99 89 96 98 88 

EPHA8 100 100 99 100 92 

EPHB1 100 84 100 100 89 

EPHB2 100 95 100 100 100 

EPHB3 90 82 94 100 89 

EPHB4 90 88 99 97 96 

EPHB6 93 92 94 99 93 

ERBB2 100 98 100 86 89 

ERBB3 100 100 100 97 100 

ERBB4 100 96 98 100 98 

ERK1 100 99 90 100 100 

ERK2 91 98 100 100 92 

ERK3 91 89 98 91 98 

ERK4 86 85 96 82 93 

ERK5 45 25 93 100 90 

ERK8 100 26 69 88 27 

ERN1 100 79 98 89 84 

FAK 90 100 93 100 97 

FER 100 90 86 88 89 

FES 95 86 97 95 88 

FGFR1 71 88 88 94 92 

FGFR2 82 89 80 96 94 

FGFR3 92 80 89 98 95 

FGFR3(G697C) 100 81 81 95 67 

FGFR4 100 82 94 100 88 

FGR 90 85 91 100 83 

FLT1 100 88 100 100 95 

FLT3 31 71 4.9 67 50 

FLT3(D835H) 30 44 41 95 49 

FLT3(D835Y) 12 17 4.4 69 22 
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FLT3(ITD) 35 53 12 80 57 

FLT3(K663Q) 34 81 7.8 71 53 

FLT3(N841I) 23 20 2.8 43 28 

FLT3(R834Q) 44 77 26 70 75 

FLT3-autoinhibited 100 83 78 96 72 

FLT4 100 91 58 97 82 

FRK 100 91 94 100 87 

FYN 100 78 79 90 86 

GAK 14 97 95 93 100 

GCN2(Kin.Dom.2,S808G) 91 100 88 90 100 

GRK1 4.4 15 41 71 22 

GRK4 100 84 100 100 98 

GRK7 8.4 15 56 53 14 

GSK3A 88 4.1 41 45 11 

GSK3B 99 83 99 99 94 

HASPIN 81 51 46 55 42 

HCK 85 100 97 87 90 

HIPK1 89 56 78 86 15 

HIPK2 78 22 45 87 3.3 

HIPK3 95 36 57 56 2.4 

HIPK4 73 84 100 100 78 

HPK1 94 83 81 100 85 

HUNK 85 63 93 99 86 

ICK 71 65 100 100 90 

IGF1R 100 96 79 97 100 

IKK-alpha 99 91 96 94 82 

IKK-beta 80 100 100 100 96 

IKK-epsilon 100 100 100 100 88 

INSR 99 57 75 78 70 

INSRR 100 88 95 100 90 

IRAK1 87 83 100 100 91 

IRAK3 71 17 73 93 81 

IRAK4 85 62 69 69 73 

ITK 100 100 100 100 100 

JAK1(JH1domain-catalytic) 94 80 83 77 98 
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JAK1(JH2domain-
pseudokinase) 

98 91 80 91 82 

JAK2(JH1domain-catalytic) 88 100 86 100 100 

JAK3(JH1domain-catalytic) 70 45 37 53 63 

JNK1 100 94 100 90 98 

JNK2 96 79 78 95 97 

JNK3 100 86 94 87 96 

KIT 62 77 55 100 88 

KIT(A829P) 30 81 35 78 93 

KIT(D816H) 40 79 60 90 91 

KIT(D816V) 14 68 22 100 78 

KIT(L576P) 56 89 52 78 80 

KIT(V559D) 53 77 41 89 81 

KIT(V559D,T670I) 86 88 74 100 93 

KIT(V559D,V654A) 75 100 96 100 94 

KIT-autoinhibited 95 83 92 82 73 

LATS1 89 82 72 90 88 

LATS2 90 85 61 100 93 

LCK 98 92 86 100 90 

LIMK1 100 98 92 100 100 

LIMK2 92 83 91 98 96 

LKB1 100 92 82 88 72 

LOK 100 94 100 90 90 

LRRK2 85 91 96 94 99 

LRRK2(G2019S) 80 70 60 94 78 

LTK 100 100 100 98 95 

LYN 96 97 93 100 100 

LZK 98 80 81 87 81 

MAK 51 93 79 72 96 

MAP3K1 99 96 92 96 96 

MAP3K15 98 60 81 100 91 

MAP3K2 100 94 99 100 92 

MAP3K3 96 100 100 100 94 

MAP3K4 100 75 84 94 72 

MAP4K2 89 93 86 95 80 

MAP4K3 100 92 93 92 94 
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MAP4K4 97 100 100 100 93 

MAP4K5 100 99 100 100 92 

MAPKAPK2 90 92 100 100 98 

MAPKAPK5 100 90 95 85 90 

MARK1 62 56 68 86 77 

MARK2 38 39 51 94 82 

MARK3 61 12 62 92 99 

MARK4 71 61 79 82 89 

MAST1 77 20 100 96 96 

MEK1 100 93 100 96 96 

MEK2 100 80 82 85 84 

MEK3 87 83 29 92 80 

MEK4 100 100 64 95 100 

MEK5 78 82 93 99 75 

MEK6 100 83 53 100 98 

MELK 29 59 53 95 77 

MERTK 100 100 100 91 100 

MET 100 89 88 100 82 

MET(M1250T) 82 100 95 96 75 

MET(Y1235D) 100 100 100 100 75 

MINK 79 87 91 100 100 

MKK7 100 98 98 90 99 

MKNK1 77 82 80 94 96 

MKNK2 89 94 100 99 100 

MLCK 100 97 100 93 84 

MLK1 99 100 90 96 100 

MLK2 80 76 90 94 89 

MLK3 98 99 100 100 96 

MRCKA 99 100 100 94 98 

MRCKB 100 94 95 100 92 

MST1 100 96 80 70 85 

MST1R 96 80 83 78 100 

MST2 95 73 68 89 69 

MST3 74 75 98 96 94 

MST4 96 70 87 85 72 
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MTOR 98 72 90 77 100 

MUSK 88 92 100 99 94 

MYLK 0.8 34 33 52 30 

MYLK2 85 92 99 99 94 

MYLK4 97 94 89 100 81 

MYO3A 92 69 86 89 87 

MYO3B 70 84 93 86 90 

NDR1 100 90 78 100 100 

NDR2 100 74 93 100 76 

NEK1 100 79 86 93 94 

NEK10 100 71 71 64 73 

NEK11 98 93 100 98 96 

NEK2 100 97 95 89 97 

NEK3 79 80 77 90 64 

NEK4 100 93 100 100 93 

NEK5 81 100 100 100 100 

NEK6 88 87 100 100 92 

NEK7 86 85 87 92 100 

NEK9 87 86 87 96 97 

NIK 100 80 100 90 90 

NIM1 90 100 100 100 100 

NLK 82 78 72 91 87 

OSR1 56 94 88 99 100 

p38-alpha 98 87 89 97 71 

p38-beta 83 95 97 99 97 

p38-delta 49 68 78 70 100 

p38-gamma 94 84 94 96 55 

PAK1 100 81 83 86 86 

PAK2 100 61 58 71 48 

PAK3 100 91 93 96 79 

PAK4 100 90 87 98 86 

PAK6 94 90 90 90 92 

PAK7 80 81 98 88 86 

PCTK1 100 75 89 96 100 

PCTK2 100 85 80 98 97 
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PCTK3 93 76 90 98 94 

PDGFRA 57 77 72 75 87 

PDGFRB 15 85 5.4 100 76 

PDPK1 58 52 57 85 77 

PFCDPK1(P.falciparum) 100 96 100 95 100 

PFPK5(P.falciparum) 99 100 97 96 100 

PFTAIRE2 89 82 88 100 100 

PFTK1 95 45 76 81 84 

PHKG1 56 86 97 100 92 

PHKG2 56 61 87 87 70 

PIK3C2B 100 90 96 96 100 

PIK3C2G 79 100 100 100 100 

PIK3CA 100 100 92 100 97 

PIK3CA(C420R) 89 100 100 92 91 

PIK3CA(E542K) 97 87 100 100 79 

PIK3CA(E545A) 82 79 83 84 77 

PIK3CA(E545K) 100 96 100 98 84 

PIK3CA(H1047L) 95 100 100 97 95 

PIK3CA(H1047Y) 100 82 74 90 94 

PIK3CA(I800L) 100 86 90 88 84 

PIK3CA(M1043I) 77 100 100 94 100 

PIK3CA(Q546K) 97 89 100 89 93 

PIK3CB 77 92 95 94 82 

PIK3CD 88 94 100 91 100 

PIK3CG 100 94 93 100 98 

PIK4CB 79 89 100 100 100 

PIM-1 0.4 13 10 60 1.8 

PIM-2 19 78 84 98 50 

PIM-3 5.6 27 20 68 1.8 

PIP5K1A 43 71 71 100 77 

PIP5K1C 97 100 40 87 71 

PIP5K2B 95 86 100 90 98 

PIP5K2C 95 100 100 100 100 

PKAC-alpha 98 78 61 91 75 

PKAC-beta 86 64 80 84 68 
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PKMYT1 92 94 99 94 80 

PKN1 88 32 57 100 89 

PKN2 94 25 37 95 83 

PKNB(M.tuberculosis) 99 93 100 99 95 

PLK1 96 99 100 100 94 

PLK2 67 84 86 99 89 

PLK3 58 90 100 98 94 

PLK4 53 71 82 92 87 

PRKCD 53 2.2 11 84 39 

PRKCE 68 6.6 38 88 25 

PRKCH 82 25 58 100 73 

PRKCI 100 45 48 82 73 

PRKCQ 77 32 73 100 95 

PRKD1 100 100 100 100 97 

PRKD2 100 70 81 81 97 

PRKD3 81 85 100 97 98 

PRKG1 63 79 100 88 73 

PRKG2 26 7.3 54 76 2.4 

PRKR 68 100 99 100 100 

PRKX 87 94 100 79 100 

PRP4 100 94 72 95 65 

PYK2 98 87 93 100 97 

QSK 85 92 92 93 93 

RAF1 100 100 100 97 76 

RET 90 100 93 100 89 

RET(M918T) 100 85 93 100 90 

RET(V804L) 100 90 89 95 84 

RET(V804M) 82 99 97 98 95 

RIOK1 100 84 83 100 83 

RIOK2 100 92 100 94 75 

RIOK3 96 85 72 100 86 

RIPK1 96 84 91 84 93 

RIPK2 100 78 85 81 87 

RIPK4 82 93 95 89 79 

RIPK5 74 87 94 98 95 
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ROCK1 100 81 93 89 92 

ROCK2 88 75 91 95 94 

ROS1 100 86 95 98 92 

RPS6KA4(Kin.Dom.1-N-
terminal) 

77 53 83 94 100 

RPS6KA4(Kin.Dom.2-C-
terminal) 

7.2 89 88 89 94 

RPS6KA5(Kin.Dom.1-N-
terminal) 

46 80 78 97 88 

RPS6KA5(Kin.Dom.2-C-
terminal) 

35 92 100 88 93 

RSK1(Kin.Dom.1-N-
terminal) 

80 49 88 94 84 

RSK1(Kin.Dom.2-C-
terminal) 

77 76 85 90 83 

RSK2(Kin.Dom.1-N-

terminal) 
33 4 76 84 75 

RSK2(Kin.Dom.2-C-
terminal) 

100 72 94 87 85 

RSK3(Kin.Dom.1-N-
terminal) 

84 41 93 100 100 

RSK3(Kin.Dom.2-C-

terminal) 
69 93 100 100 94 

RSK4(Kin.Dom.1-N-
terminal) 

20 47 96 100 89 

RSK4(Kin.Dom.2-C-
terminal) 

58 65 91 80 90 

S6K1 71 15 51 100 84 

SBK1 92 67 88 70 71 

SGK 77 66 100 100 94 

SgK110 94 87 97 96 90 

SGK2 86 88 100 99 95 

SGK3 80 95 100 100 100 

SIK 83 91 98 100 93 

SIK2 100 94 89 97 94 

SLK 97 100 90 100 86 

SNARK 80 33 43 100 98 

SNRK 96 77 93 86 95 

SRC 98 98 82 92 100 

SRMS 94 100 100 100 85 

SRPK1 100 90 86 100 97 

SRPK2 82 100 95 93 100 

SRPK3 93 71 77 100 90 

STK16 84 86 49 87 61 

STK33 74 66 90 97 76 

STK35 100 98 100 97 94 

STK36 100 95 100 98 94 



 
206 Experimental 

STK39 98 87 97 100 98 

SYK 94 98 91 100 100 

TAK1 99 98 99 100 89 

TAOK1 84 99 100 92 73 

TAOK2 100 81 76 91 61 

TAOK3 88 100 100 100 99 

TBK1 96 91 100 100 96 

TEC 93 100 100 100 90 

TESK1 100 83 87 95 78 

TGFBR1 100 100 97 87 80 

TGFBR2 99 96 100 100 89 

TIE1 100 79 100 98 93 

TIE2 88 85 100 98 92 

TLK1 88 88 98 93 95 

TLK2 95 84 94 90 93 

TNIK 47 82 77 100 96 

TNK1 100 86 77 100 100 

TNK2 100 92 89 99 98 

TNNI3K 100 88 98 92 81 

TRKA 100 73 77 82 52 

TRKB 100 80 87 97 65 

TRKC 99 77 81 89 62 

TRPM6 100 82 92 83 96 

TSSK1B 100 68 56 88 70 

TTK 49 90 43 97 82 

TXK 100 82 85 92 88 

TYK2(JH1domain-catalytic) 100 100 100 100 97 

TYK2(JH2domain-
pseudokinase) 

87 100 100 100 79 

TYRO3 94 88 79 100 98 

ULK1 71 87 82 96 93 

ULK2 96 98 100 100 100 

ULK3 88 83 98 100 95 

VEGFR2 96 92 62 100 84 

VRK2 97 72 100 98 92 

WEE1 100 99 100 96 91 
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WEE2 91 100 97 100 100 

WNK1 100 92 100 98 87 

WNK3 100 85 99 95 92 

YANK1 88 70 91 72 89 

YANK2 89 100 100 100 84 

YANK3 100 100 100 100 92 

YES 100 98 94 100 96 

YSK1 98 82 93 91 94 

YSK4 41 91 96 90 75 

ZAK 100 89 94 97 87 

ZAP70 100 80 80 86 90 
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5.5 Computational Procedures 

5.5.1 The Hot Spot Analysis 

 

The hot spot analysis to disclose fa-

vourable interactions of PI3K, using 

HOTSPOTSX developed in the KLEBE 

group by GERD NEUDERT, was applied 

analogously to published procedures, as 

in the case study of endothiapepsin.[407] 

Beside HOTSPOTSX, GERD NEUDERT kind-

ly provided the program FCONV for the 

calculation procedures to prepare protein 

and ligand molecule data.[402] 

5.5.1.1 FCONV 

 

As main application, FCONV can be 

used to handle molecule data and data 

parsing problems. The working principle is 

to define internal atom types to source 

data, i.e.: protein crystal structure data in 

.pdb format or molecule data in .mol2 for-

mat.[402] These internal annotation prin-

ciple consideres the chemical interactions, 

the hybridisation state, and the bonding 

type for each atom in a molecule. In total, 

157 atom types were defined and classi-

fied into five different generic physico-

chemical properties: H-bond donor, 

H-bond acceptor, doneptor (groups acting 

both as H-bond donor and H-bond accep-

tor), aromatic, and hydrophobic. Atoms 

which can not be assigned to any one of 

the five groups were assigned to the 

group X, see Figure 97. 12 atoms were 

assigned to the donor group, 29 atoms to 

the acceptor group, 15 atoms to the 

doneptor group, 9 atoms to the aromatic 

group, 18 atoms to the hydrophobic group, 

and 75 atoms to the X group. 

Every atom in the crystal structure of 

PI3K (pdb: 3CST) was assigned accor-

ding to the internal annotation; the coor-

dinates of the metal based kinase inhibitor 

were removed from the data set, and 

saved in a separate file, to provide the 

space in the binding site open for the hot 

spot calculation. 

 

 

Figure 97: Representative atoms (highlighted in 

red) assigned according to the internal annotation of 
FCONV. The annotation includes element symbol, 
chemical environment, hybridisation state, bonding 
state and interaction group. 

5.5.1.2 HOTSPOTSX 

 

HOTSPOTSX developed in the 

KLEBE group by GERD NEUDERT is based 

on different knowledge based potentials to 

predict interaction fields for different pre-

defined atom types in the binding pocket. 

The structural data, covering distances, 

angles, charge, hybridisation state, bond-

ing state and corresponding interaction 

partner were evaluated of entries in the 

Cambridge Structural Database (CSD), as 

first potential set, and of entries in the Pro-

tein Data Bank (PDB), as second potential 

set.[433,434] The atoms of these entries were 

assigned correspondding to the FCONV 

internal atom types. Then a inverse deter-

mination of coordinates for the structure of 

PI3K (pdb:3CST) of interaction partners 

were calculated by HOTSPOTSX resulting 

in specified contour maps. Areas with 

highly favorable interaction values were 

defined as hotspots (threshold ≥ 75% 

above the minimal contour map level). 
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5.6 Crystallographic Data 

5.6.1 Crystallographic Data of 96 

 

Single crystals of compound 96, 

C40D18FH30N5O8RuS4, were crystallised 

from acetone-d6 after 1 week at 4 °C. A 

suitable crystal was selected and mounted 

on a cryo-loop using inert oil on a 'STOE 

IPDS2 Image Plate' diffractometer. The 

crystal was kept at 100.15 K during data 

collection. Using Olex2,[435] the structure 

was solved with the SIR2011[436] structure 

solution program using Direct Methods 

and refined with the XLMP[437] refinement 

package using Least Squares minimi-

sation. The structure was solved by DR. 

KLAUS HARMS. 

 

Table 6: Crystal data and structure refinement for 96. 

 
Identification code    96 

Empirical formula     C40D18FH30N5O8RuS4 
Formula weight     993.25 
Temperature/K     100.15 
Crystal system     triclinic 
Space group     P-1 
a/Å      9.2703(4) 
b/Å      15.9175(6) 
c/Å      17.0090(7) 

/°      116.428(3) 

/°      90.389(3) 

/°      102.792(3) 
Volume/Å

3
     2175.77(16) 

Z      2 
ρcalcmg/mm

3
     1.516 

m/mm‑1      0.613 

F(000)      1008 
Crystal size/mm

3
     0.14 × 0.11 × 0.1 

2Θ range for data collection   2.946 to 50.996° 
Index ranges     -11 ≤ h ≤ 10, -16 ≤ k ≤ 19, -20 ≤ l ≤ 20 
Reflections collected    15490 
Independent reflections    8010[R(int) = 0.0306] 
Data/restraints/parameters    8010/6/565 
Goodness-of-fit on F

2
    0.938 

Final R indexes [I>=2σ (I)]    R1 = 0.0304, wR2 = 0.0698 
Final R indexes [all data]    R1 = 0.0430, wR2 = 0.0729 
Largest diff. peak/hole / e Å

-3
   0.65/-0.81 
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5.6.2 Crystallographic Data of (R)-106 

and -(S)-106 

 

The crystal structures were depicted us-

ing ORTEP drawing with 50% probability of 

thermal ellipsoid and determined of single 

crystals of -(R)-106 and -(S)-106.[438] The 

crystals were obtained after dissolution in 

methylene chloride/methanol mixture of 

(15:1) and slow evaporation of the solvent at 

4 °C for several days. Both compounds 

crystallised as orthorhombic red plates with 

an additional methylene chloride molecule. 

Crystals were measured on a 'Bruker D8 

QUEST area detector ' diffractometer. The 

temperature was kept at 100.15 K during 

data collection using a wavelength of 

0.71073 Å. In both cases the data collection 

software BRUKER APEX II was applied and 

the cell refinement and data reduction soft-

ware SAINT (Bruker AXS Inc.) was used.[439] 

Data were corrected for absorption using the 

program SADABS (Bruker AXS Inc.).[439] 

Non hydrogen atoms have been refined ani-

sotropically. Hydrogen atoms were placed 

on idealised positions and refined using the 

‘riding model’. The programs applied for 

solution and refinement were SHELXS-97 

(Sheldrick, 2008) and SHELXL-2013 (Shel-

drick, 2013).[439,440] The absolute structure of 

-(R)-106 and -(S)-106 were determined. 

The structures were solved by DR. KLAUS 

HARMS. 

 

 

 

Table 7: Crystal data and structure refinement for -(R)-106. 

Crystal data 

 
Identification code  -(R)-106 

Habitus, colour  plate, red 

Crystal size 0.51 x 0.22 x 0.01 mm3 
Crystal system  Orthorhombic 
Space group  P 21 21 21 Z = 4 

Unit cell dimensions a = 8.6511(6) Å = 90°. 

 b = 13.3092(9) Å = 90°. 

 c = 23.6366(14) Å  = 90°. 

Volume 2721.5(3) Å3 
Cell determination  3995 peaks with Theta 2.3 to 27.2°. 
Empirical formula  C29 H23 Cl3 N5 O4 Rh 
Formula weight  714.78 

Density (calculated) 1.745 Mg/m3 

Absorption coefficient 0.970 mm-1 
F(000) 1440 
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Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.918 to 25.498°. 
Index ranges -10<=h<=10, -14<=k<=16, -28<=l<=28 
Data collection software  BRUKER APEX II 
Cell refinement software  SAINT V8.30C (Bruker AXS Inc., 2013) 
Data reduction software  SAINT V8.30C (Bruker AXS Inc., 2013) 
 
Solution and refinement: 
 
Reflections collected 11484 
Independent reflections 5061 [R(int) = 0.0543] 
Completeness to theta = 25.242° 99.8 %  
Observed reflections  4306[II > 2(I)]  
Reflections used for refinement  5061 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.99 and 0.81 
Flack parameter (absolute struct.)   -0.07(2) 

Largest diff. peak and hole 0.514 and -0.488 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  SHELXS-97 (Sheldrick, 2008) 
 SHELXL-2013 (Sheldrick, 2013) 
 DIAMOND (Crystal Impact) 
Data / restraints / parameters 5061 / 0 / 369 

Goodness-of-fit on F2 1.010 
R index (all data) wR2 = 0.0689 
R index conventional  [I>2sigma(I)] R1 = 0.0359 
 

 

Table 8 Crystal data and structure refinement for -(S)-106. 

Crystal data 
 
Identification code  -(S)-106 

Habitus, colour  plate, red 

Crystal size 0.26 x 0.12 x 0.02 mm3 
Crystal system  Orthorhombic 
Space group  P 21 21 21 Z = 4 

Unit cell dimensions a = 8.6398(10) Å = 90°. 

 b = 13.3545(14) Å = 90°. 

 c = 23.619(3) Å  = 90°. 

Volume 2725.2(5) Å3 
Cell determination  9855 peaks with Theta 2.5 to 27.5°. 
Empirical formula  C29 H23 Cl3 N5 O4 Rh 
Formula weight  714.78 

Density (calculated) 1.742 Mg/m3 

Absorption coefficient 0.969 mm-1 
F(000) 1440 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.302 to 27.574°. 
Index ranges -11<=h<=10, -17<=k<=16, -29<=l<=30 
Data collection software  BRUKER APEX II 
Cell refinement software  SAINT V8.27B (Bruker AXS Inc., 2012) 
Data reduction software  SAINT V8.27B (Bruker AXS Inc., 2012) 
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Solution and refinement: 
 
Reflections collected 26345 
Independent reflections 6038 [R(int) = 0.0419] 
Completeness to theta = 25.242° 98.6 %  
Observed reflections  5497[II > 2(I)]  
Reflections used for refinement  6038 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.98 and 0.89 
Flack parameter (absolute struct.)   -0.01(3) 

Largest diff. peak and hole 0.467 and -0.731 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. Ref. 
Programs used  XS (Sheldrick, 2008) 
 SHELXL-2013 (Sheldrick, 2013) 
 DIAMOND  
Data / restraints / parameters 6038 / 0 / 379 

Goodness-of-fit on F2 1.035 
R index (all data) wR2 = 0.0579 
R index conventional  [I>2sigma(I)] R1 = 0.0286 
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5.6.3 Crystallographic Data of 

(S,R)-125 

 

The crystal structure was depicted us-

ing ORTEP drawing with 50% probability of 

thermal ellipsoid and determined of single 

crystals of -(S,R)-125.[438] The crystals 

were obtained after dissolution in methylene 

chloride/methanol mixture of (15:1) and slow 

evaporation of the solvent at 4 °C for several 

days. The compound crystallised as ortho-

rhombic orange plates. Crystals were 

measured on a 'Bruker D8 QUEST area 

detector ' diffractometer. The temperature 

was kept at 100 K during data collection 

using a wavelength of 0.71073 Å. The data 

collection software BRUKER APEX II was 

applied and the cell refinement and data 

reduction software SAINT (Bruker AXS Inc.) 

was used.[439] Data were corrected for ab-

sorption using the program SADABS 

(Bruker AXS Inc.).[439] Non hydrogen atoms 

have been refined anisotropically. Hydrogen 

atoms were placed on idealised positions 

and refined using the ‘riding model’. The 

programs applied for solution and refine-

ment were SHELXS-97 (Sheldrick, 2008) 

and SHELXL-2014 (Sheldrick, 2014).[439,440] 

The absolute structure of -(S,R)-125 was 

determined. The structure was solved by 

DR. KLAUS HARMS. 

 

 

 

Table 9: Crystal data and structure refinement for -(S,R)-125. 

Crystal data 
 

Identification code  -(S,R)-125 

Habitus, colour  plate, orange 

Crystal size 0.30 x 0.23 x 0.05 mm3 
Crystal system  Orthorhombic 
Space group  P 21 21 21 Z = 4 

Unit cell dimensions a = 9.0050(4) Å = 90°. 

 b = 12.9421(5) Å = 90°. 

 c = 24.3372(11) Å = 90°. 

Volume 2836.3(2) Å3 
Cell determination  9982 peaks with Theta 2.3 to 27.4°. 
Empirical formula  C29H23Cl3N5O5Rh 
Formula weight  730.78 

Density (calculated) 1.711 Mg/m3 

Absorption coefficient 0.935 mm-1 
F(000) 1472 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
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Theta range for data collection 2.297 to 27.508°. 
Index ranges -9<=h<=11, -16<=k<=16, -31<=l<=31 
Data collection software  BRUKER APEX2 
Cell refinement software  SAINT V8.34A (Bruker AXS Inc., 2013) 
Data reduction software  SAINT V8.34A (Bruker AXS Inc., 2013) 
 
Solution and refinement: 
 
Reflections collected 35650 
Independent reflections 6529 [R(int) = 0.0763] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  5781[II > 2(I)]  
Reflections used for refinement  6529 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.95 and 0.88 
Flack parameter (absolute struct.)   -0.030(15) 

Largest diff. peak and hole 0.560 and -0.443 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH calc, restr., NH, OH located, ref. 
Programs used  SHELXS-97 (Sheldrick, 2008) 
 SHELXL-2014 (Sheldrick, 2014) 
 DIAMOND (Crystal Impact) 
Data / restraints / parameters 6529 / 0 / 396 

Goodness-of-fit on F2 1.044 
R index (all data) wR2 = 0.0643 
R index conventional  [I>2sigma(I)] R1 = 0.0320 
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5.6.4 Crystallographic Data of 

(R)-127 

 

The crystal structure was depicted us-

ing ORTEP drawing with 50% probability 

of thermal ellipsoid and determined of 

single crystals of -(R)-127.[438] The crys-

tals were obtained after dissolution in 

methylene chloride/methanol mixture of 

(15:1) and slow evaporation of the solvent 

at 4 °C for several days. The compound 

crystallised as orthorhombic red plates. 

Crystals were measured on a 'Bruker D8 

QUEST area detector ' diffractometer. The 

temperature was kept at 100 K during 

data collection using a wavelength of 

0.71073 Å. The data collection software 

BRUKER APEX II was applied and the 

cell refinement and data reduction soft-

ware SAINT (Bruker AXS Inc.) was 

used.[439] Data were corrected for absorp-

tion using the program SADABS (Bruker 

AXS Inc.).[439] Non hydrogen atoms have 

been refined anisotropically. Hydrogen 

atoms were placed on idealised positions 

and refined using the ‘riding model’. The 

programs applied for solution and refine-

ment were SHELXS-97 (Sheldrick, 2008) 

and SHELXL-2013 (Sheldrick, 

2013).[439,440] The absolute structure of 

-(R)-127 was determined. The structure 

was solved by DR. KLAUS HARMS. 

 

 

Table 10: Crystal data and structure refinement for -(R)-127. 

Crystal data 
 

Identification code  -(R)-127 

Habitus, colour  plate, red 

Crystal size 0.610 x 0.220 x 0.080 mm3 
Crystal system  Orthorhombic 
Space group  P 21 21 21 Z = 4 

Unit cell dimensions a = 9.3547(5) Å = 90°. 

 b = 13.4551(7) Å = 90°. 

 c = 22.6839(12) Å  = 90°. 

Volume 2855.2(3) Å3 
Cell determination  9156 peaks with Theta 2.3 to 27.5°. 
Empirical formula  C30H25Cl3N5O4Rh 
Formula weight  728.81 

Density (calculated) 1.695 Mg/m3 

Absorption coefficient 0.926 mm-1 
F(000) 1472 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
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Theta range for data collection 2.349 to 27.550°. 
Index ranges -12<=h<=12, -16<=k<=17, -29<=l<=29 
Data collection software  BRUKER APEX2 
Cell refinement software  SAINT V8.34A (Bruker AXS Inc., 2013) 
Data reduction software  SAINT V8.34A (Bruker AXS Inc., 2013) 
 
Solution and refinement: 
 
Reflections collected 38460 
Independent reflections 6573 [R(int) = 0.0481] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  6163[II > 2(I)]  
Reflections used for refinement  6573 
Absorption correction Numerical 
Max. and min. transmission 0.93 and 0.69 
Flack parameter (absolute struct.)   -0.039(10) 

Largest diff. peak and hole 0.429 and -0.343 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH calc., constr., NH located, isotr. Ref. 
Programs used  SHELXS-97 (Sheldrick, 2008) 
 SHELXL-2013 (Sheldrick, 2013) 
 DIAMOND (Crystal Impact) 
Data / restraints / parameters 6573 / 4 / 410 

Goodness-of-fit on F2 1.052 
R index (all data) wR2 = 0.0514 
R index conventional  [I>2sigma(I)] R1 = 0.0238 
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5.6.5 Crystallographic Data of (S)-191 

 

The crystal structure was depicted us-

ing ORTEP drawing with 50% probability of 

thermal ellipsoid and determined of a single 

crystal of -(S)-191.[438] The crystals were 

obtained after dissolution in methylene chlo-

ride and slow evaporation of the solvent at 

4 °C for several days. The compound crys-

tallised as trigonal red blocks. Crystals were 

measured on a 'Bruker D8 QUEST area 

detector ' diffractometer. The temperature 

was kept at 100 K during data collection 

using a wavelength of 0.71073 Å. The data 

collection software BRUKER APEX II was 

applied and the cell refinement and data 

reduction software SAINT (Bruker AXS Inc.) 

was used.[439] Data were corrected for ab-

sorption using the program SADABS 

(Bruker AXS Inc.).[439] Non hydrogen atoms 

have been refined anisotropically. Hydrogen 

atoms were placed on idealised positions 

and refined using the ‘riding model’. The 

programs applied for solution and refine-

ment were SHELXS-97 (Sheldrick, 2008) 

and SHELXL-2013 (Sheldrick, 2013).[439,440] 

The absolute structure of -(S)-191 was 

determined. The structure was solved by 

DR. KLAUS HARMS. 

 

 

 

Table 11: Crystal data and structure refinement for -(S)-191. 

Crystal data 
 

Identification code  -(S)-191 

Habitus, colour  block, red 

Crystal size 0.19 x 0.14 x 0.11 mm3 
Crystal system  Trigonal 
Space group  R 3 :H Z = 3 

Unit cell dimensions a = 24.8187(7) Å = 90°. 

 b = 24.8187(7) Å = 90°. 

 c = 16.1592(5) Å = 120°. 

Volume 8620.0(6) Å3 
Cell determination  9835 peaks with Theta 2.7 to 27.5°. 
Empirical formula  C112H100Cl18N15O12Rh3 
Formula weight  2794.89 

Density (calculated) 1.615 Mg/m3 

Absorption coefficient 0.912 mm-1 
F(000) 4242 
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Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.693 to 25.500°. 
Index ranges -30<=h<=30, -30<=k<=30, -19<=l<=19 
Data collection software  BRUKER APEX II 
Cell refinement software  SAINT V8.32B (Bruker AXS Inc., 2013) 
Data reduction software  SAINT V8.32B (Bruker AXS Inc., 2013) 
 
Solution and refinement: 
 
Reflections collected 54939 
Independent reflections 7150 [R(int) = 0.0409] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  6897[II > 2(I)]  
Reflections used for refinement  7150 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.91 and 0.74 
Flack parameter (absolute struct.)   -0.014(7) 

Largest diff. peak and hole 0.610 and -0.993 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH riding, NH located, isotr. ref. 
Programs used  SHELXS-97 (Sheldrick, 2008) 
 SHELXL-2013 (Sheldrick, 2013) 
 DIAMOND (Crystal Impact) 
Data / restraints / parameters 7150 / 1 / 495 

Goodness-of-fit on F2 1.084 
R index (all data) wR2 = 0.0817 
R index conventional  [I>2sigma(I)] R1 = 0.0303 
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5.6.6 Crystallographic Data of (S)-195 

 

The crystal structure was depicted us-

ing ORTEP drawing with 50% probability of 

thermal ellipsoid and determined of a single 

crystal of -(S)-195.[438] The crystals were 

obtained after dissolution in methylene chlo-

ride/methanol (15:1) and slow evaporation 

of the solvent at 4 °C for several days. The 

compound crystallised as triclinic dark red 

plates. Crystals were measured on a 'Bruker 

D8 QUEST area detector ' diffractometer. 

The temperature was kept at 100 K during 

data collection using a wavelength of 

0.71073 Å. The data collection software 

BRUKER APEX II was applied and the cell 

refinement and data reduction software 

SAINT (Bruker AXS Inc.) was used.[439] Data 

were corrected for absorption using the pro-

gram SADABS (Bruker AXS Inc.).[439] Non 

hydrogen atoms have been refined aniso-

tropically. Hydrogen atoms were placed on 

idealised positions and refined using the 

‘riding model’. The programs applied for 

solution and refinement were SHELXS-97 

(Sheldrick, 2008) and SHELXL-2013 (Shel-

drick, 2013).[439,440] The absolute structure of 

-(S)-195 was determined. The structure 

was solved by DR. KLAUS HARMS. 

 

 

 

Table 12: Crystal data and structure refinement for -(S)-195. 

Crystal data 
 

Identification code  -(S)-195 

Habitus, colour  plate, dark red 

Crystal size 0.14 x 0.08 x 0.05 mm3 
Crystal system  Triclinic 
Space group  P -1 Z = 2 

Unit cell dimensions a = 8.9766(4) Å = 82.9579(15)°. 

 b = 13.1877(5) Å = 72.1925(14)°. 

 c = 13.4671(5) Å = 81.2475(14)°. 

Volume 1495.28(10) Å3 
Cell determination  120 peaks with Theta 3.7 to 24.1°. 
Empirical formula  C32H29ClFN5O8.5Rh 
Formula weight  776.96 

Density (calculated) 1.726 Mg/m3 

Absorption coefficient 0.733 mm-1 
F(000) 790 
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Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.462 to 27.165°. 
Index ranges -11<=h<=11, -16<=k<=16, -17<=l<=17 
Data collection software  Bruker Instrument Service v3.0.31 
Cell refinement software  APEX2 v2013.10-0 (Bruker AXS) 
Data reduction software  SAINT V8.34A (Bruker AXS Inc., 2013) 
 
Solution and refinement: 
 
Reflections collected 41431 
Independent reflections 6635 [R(int) = 0.0515] 
Completeness to theta = 25.242° 99.8 %  
Observed reflections  5809[II > 2(I)]  
Reflections used for refinement  6635 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7455 and 0.7184 

Largest diff. peak and hole 0.424 and -0.560 e.Å-3 
Solution  Direct methods 

Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH calc., constr. Ref., NH, OH located, isotr. ref. 
Programs used  SHELXS-97 (Sheldrick, 2008) 
 SHELXL-2013 (Sheldrick, 2013) 
 DIAMOND (Crystal Impact) 
Data / restraints / parameters 6635 / 0 / 472 

Goodness-of-fit on F2 1.053 
R index (all data) wR2 = 0.0596 
R index conventional  [I>2sigma(I)] R1 = 0.0268 
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5.6.7 Crystallisation and Structure De-

termination of S6K1 

 

The crystallisation and structure de-

termination of S6K1 in complex with 

85/staurosporine and in complex with 87 

were performed in the MARMORSTEIN group 

by JOHN DOSMIC, the Wistar Institute, 3601 

Spruce Street, Philadelphia, Pennsylvania 

19104, United States. The S6K1 kinase do-

main crystals were obtained using room 

temperature hanging drop vapor diffusion by 

mixing equal volumes of protein (15 mg/mL) 

preincubated with 1 mM staurosporine with 

20−25% (w/v) PEG335, 0.1 M Bis-Tris 

(pH 5.5−5.7), and 0.2 M LiSO4. Following the 

growth of crystals, crystal soaking was car-

ried out by incubation with a final inhibitor 

concentration of 1 mM in cryoprotectant con-

taining the well solution and 15% (w/v) glyc-

erol for 4 h to overnight and flash frozen in 

liquid nitrogen. Diffraction images were col-

lected at APS beamline 23ID with a 5 μm 

microbeam. The structures were determined 

by molecular replacement using thereported 

S6K1/staurosporine complex (PDB acces-

sion code 3A60) as a search model with the 

staurosporine removed from the coordinate 

file and refined with CNS and Coot. The 

inhibitors were modeled last into the refined 

structures. Simulated annealing omit maps 

were employed to unambiguously confirm 

the modeled inhibitors. For the 85-soaked 

crystals, this revealed that one protein mol-

ecule in the asymmetric unit was bound to 

staurosporine while the other protein mole-

cule was bound to 85. For the 87-soaked 

crystals, the asymmetric unit contained a 

single, domain-swapped monomer and only 

the 87 inhibitor was modelled in the binding 

site. The structures were refined to conver-

gence with a final Rwork = 19.15% and Rfree = 

22.21% for the S6K1/85 structure and a final 

Rwork = 20.63% and Rfree = 23.01% for the 

S6K1/87 structure with excellent geometry, 

see Table 13. 
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Table 13: Data and refinement statistics of S6K1 in complex with  85/Staurosporine or 87 

  S6K1-85/Staurosporine S6K1-87 

Resolution range (Å) 49.03-2.527 (2.618-2.527) 29.91-2.794 (2.893-2.794) 

Space group P 1 21 1 C 2 2 21 

Unit cell (a, b, c, α, β, γ) 78.515, 62.882, 86.718, 90, 94.02, 90 62.13, 126.371, 110.571, 90, 90, 90 

Total reflections 110916 47648 

Unique reflections 28440 (2745) 10829 (1028) 

Multiplicity 3.9 (3.3) 4.4 (4.2) 

Completeness (%) 99.71 (97.10) 97.06 (90.33) 

Mean I/(I) 21.3 (4.1) 15.0 (2.0) 

Wilson B-factor 43.06 51.11 

Rmeas (%) 7.9 (40.7) 8.9 (67.8) 

Rwork (%) 19.15 (23.61) 20.63 (29.64) 

Rfree (%) 22.21 (26.70) 23.01 (32.07) 

No. of non-H atoms 4240 2114 

     Protein 4048 2040 

     Ligands 110 47 

     Solvent 82 27 

RMS (bonds/angles) 0.015/1.25 0.012/1.03 

Ramachandran (%fa-

voured/outliers) 95.0/0 95.0/0 

Average B-factor 40.7 55.0 

     Protein 40.6 55.0 

     Ligands 43.8 65.0 

     Solvent 37.3 38.8 



 

 

223 Appendix 

6 Appendix 

6.1 Kinase Classification 

6.1.1 AGC Kinases 

 

This group of kinases is named after 

the protein Kinase A, G, and C families 

(PKA, PKG, PKC). The AGC group of ki-

nases covers 60 members containing many 

core intracellular signalling kinases which 

are modulated by cyclic nucleotides, phos-

pholipids and calcium.[1,23] Moreover, the 

group consists of 16 families, whereas eight 

are likely to have been in early eukaryotes, 

and another two (RSK, PKC) in the fun-

gal/metazoan lineage. Six of the families 

(PKG, PKN, DMPK, YANK, RSKR, RSKL) 

have only been found in metazoans. De-

tailed reviews on AGC structure and func-

tion are provided in literature.[23,441,442]. 

6.1.2 CMGC Kinases 

 

CMGC is an acronym based on the 

initials of key members like cyclin dependent 

kinase (CDK), mitogen activated protein 

kinase (MAPK), glycogen synthase kinase 

(GSK), and CDK-like kinases (CDKL). Most 

of the kinase families belonging to this group 

are related to growth and stress-response 

and cellular effects mediated by the corre-

sponding factors and hormones. Detailed 

reviews on CMGC members are provided in 

literature.[50,443–448] 

6.1.3 CK1 group 

 

The Casein Kinase 1 (CK1) is a 

small group of kinases with high sequence 

similarity between each other. Nevertheless, 

they are very distinct from other kinase 

groups. Several conserved motifs are modi-

fied in CK1s, i.e.: the APE motif is substitut-

ed by the SIN motif. Beside CK1 the other 

members of this group are Vaccinia Related 

Kinase (VRK), Tau-Tubulin Kinase (TTBK), 

and TTBK-like kinases (TTBKL), whereas 

the last ones were found only in nematodes. 

They play a role in membrane trafficking, 

circadian rhythm, cell cycle progression, 

chromosome segregation, spermatogenesis, 

apoptosis, cellular differentiation, and amy-

loidogenesis. Detailed reviews on CK1 

group members are provided in 

literature.[449–452] 

6.1.4 STE group 

 

Three families of this group are the 

main members activating each other and 

finally regulating the MAP kinase family. For 

instance, Ste20 members (MAPKKKK) act 

on Ste11 (MAPKKK), thus phosphorylating 

the Ste7 (MAPKK) which by themselves 

directly phosphorylate MAPKs. The abbrevi-

ations are deviated from the canonical pher-

omone-responsive MAPK cascade in yeast 

and were named subsequently according to 

the phosphorylated target. Distinct sets of 

Ste7 and Ste11 kinases are linked with spe-

cific classes of MAPK (Erk, Jnk, p38 and 

others) but some cross-talk is also ob-

served. Detailed reviews on STE kinases 

are provided in literature.[453–455] 

6.1.5 CAM Kinases 

 

CAM is an acronym for the 

Ca2+/calmodulin-dependent protein kinase 

class of enzymes. They are activated by 

increased concentrations of intracellular 

calcium ions and phosphorylate serine or 

threonine residues in substrate proteins. 

The CAMK´s are divided into four families 

(CAMK I-IV) and play a versatile role cover-

ing inflammatory effects, cell contraction, 

cell motility or cell plasticity. Detailed re-

views on CAMK members are provided in 

literature.[456–459] 
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6.1.6 TK group 

 

Despite the other groups introduced 

so far, this group phosphorylates almost 

exclusively tyrosine residues. Moreover, this 

group of kinases appears to be the youngest 

group from the evolutionary point of view, 

regarding their absence in plants and unicel-

lular organisms like dictyostelium and yeast. 

The most important function of tyrosine ki-

nases is particularly the transduction of ex-

tracellular signals into the cell: more than 

50% of the tyrosine kinases (TK) are cell 

surface receptor tyrosine kinases (RTKs). 

Moreover, many of the residual kinases act 

close to the cell membrane. Due to their 

importance, the TKs are the most studied 

group covering the largest number of distinct 

families of any group. Subsequently, each 

family is further divided into a receptor or 

cytoplasmic tyrosine kinase subfamily. Tyro-

sine Kinases are related to many physiolog-

ical effects covering proliferation, differentia-

tion, and cell survival. Detailed reviews on 

TKs are provided in literature.[53,460–462] 

6.1.7 TKL group 

 

The tyrosine kinase like (TKL) group 

consists of 7 subfamilies with relatively small 

similarity to each other. The group members 

generally phosphorylate serine/threonine 

residues. Moreover, all of them are similar to 

members of the TK group, although, in gen-

eral, they do not possess the tyrosine kinase 

specific motifs. The TKL group is present in 

almost all eukaryotes but is conspicuously 

absent from the yeast kinome. However, the 

high sequence similarity between TKLs and 

TKs suggests that the latter ones may have 

evolved from the more ancient TKL kinases. 

TKLs are among others involved in mediat-

ing necrosis signalling pathways, cell cycle 

progression, and metabolic stress signaling. 

Detailed reviews on members of TKLs are 

provided in literature.[463–466] 

6.1.8 RGC group 

 

Receptor Guanylate Cyclases (RGC) 

have an unusual structure among other re-

ceptor kinases possessing a single-pass 

transmembrane chain with an active 

guanylate cyclase domain and a catalytically 

inactive kinase domain on the intracellular 

side. The guanylate cyclase domain is re-

sponsible for the formation of the second 

messenger cyclic guanosine triphosphate 

(cGMP), whereas the kinase domain may 

have an allosterically mediated regulatory 

role via ATP binding. Moreover, also soluble 

cellular isoforms (CGC) are expressed and 

both together are present in nearly all cell 

types. GCs play physiological roles in differ-

ent processes like vascular smooth muscle 

motility, intestinal fluid and electrolyte ho-

meostasis, and retinal phototransduction. 

Detailed reviews on RGC and CGCs are 

provided in literature.[467–469] 

6.1.9 PKL group 

 

Several diverse kinase families be-

long to the protein kinases like (PKL) group 

having the PKL fold and catalytic mecha-

nism, but do not possess all structural re-

finements of the PKs. Many of these were 

previously classified as pseudokinases. The 

main subfamilies are ABC1 domain contain-

ing kinases (ADCK), alpha kinases, phos-

phatidyl inositol 3 kinase-related kinases 

(PIKK), phosphatidyl inositol kinases (PIK), 

golgi associated kinases (GASK), aminogly-

coside phosphotransferase domain contain-

ing 1 (AGPHD1), phosphatidyl inositol 

phosphate kinases (PIPK). The PKL mem-

bers play important roles in ribosome bio-

genesis, cell cycle progression, metabolism, 

phagocytosis, and other effects. Detailed 

reviews on members of the PKL group are 

provided in literature.[470–473] 
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6.1.10 Pseudokinases 

 

48 Pseudokinases were identified in 

the human phylogenetic kinome and they 

are defined by the lack of conservation of at 

least one of the catalytic site residues in the 

kinase core.[1,4] Their function has been ob-

scure but recent findings recognise them as 

participating proteins in signal transduction 

and cell-matrix adhesion.[5] The changed 

motifs in the pseudokinases include the gly-

cine-rich loop, the VAIK motif (3 lysine), 

HRD motif (catalytic aspartate), and DFG 

motif or combinations of them.[4,474] For ex-

ample, the giant protein titin contains a ki-

nase domain with an EFG motif instead of 

DFG.[475] Nevertheless, the altered structure 

and the increased space allow glutamate to 

perform the catalytic reaction. Detailed re-

views on Pseudokinases are provided in 

literature.[4,5,476] 
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6.2 Sructural Overview of Synthe-

sised Compounds 

6.2.1 Compounds of Chapter 3.1 

 

 

Figure 98: Synthesised compounds presented in Chapter 3.1. 
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6.2.2 Compounds of Chapter 3.2 

6.2.3 Compounds of Chapter 3.3 

 

 

 

 

 

 

Figure 99: Synthesised compounds presented in Chapter 3.2. 

 

Figure 100: Synthesised compounds presented in Chapter 3.3 (I). 
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Figure 101: Synthesised compounds presented in Chapter 3.3 (II). 
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6.2.4 Compounds of Chapter 3.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 102: Synthesised compounds presented in Chapter 3.4 (I). 
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Figure 103: Synthesised compounds presented in Chapter 3.4 (II). 
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6.3 List of abbreviations 

 

Å   angström 

ABL   abelson murine leukemia viral oncogene 

AcOH   acetic acid 

ADME   absorption, distribution, metabolism and excretion 

ADP   adenosine diphosphate 

AGC kinases  named after protein kinase A, G, and C 

AKT   protein kinase B 

AML   acute myeloic leukemia 

APE-motif  conserved Ala Pro Glu motif 

ATP   adenosine triphosphate 

aq.   aqueous 

BAD   BCL-2-associated death promoter 

BCL-2   b-cell lymphoma 2 

BCR-ABL breakpoint cluster region - abelson murine leukemia viral oncogene homo-

logue 1 fusion protein 

BRAF = B-Raf  rapidyl accelerated fibrosarcoma protein isoform B 

BTK   Bruton´s tyrosine kinase 

CAMK kinases acronym for Ca2+/Calmodulin-dependent protein kinases 

cAMP   cyclic adenosine monophosphate 

CCDC   cambridge crystallographic data center 

CD   circular dichroism 

CDCl3   deuterised chloroform 

CDC25A  cell devision cycle 25 homolgue A 

CDC25C  cell devision cycle 25 homolgue C 

CDK2   cyclin-dependent protein kinase 2 

CDK5   cyclin dependent kinase 5 

CDKN1B  cyclin-dependent kinase inhibitor 1B 

CHARMM  chemistry at harvard molecular mechanics 

CIP   Cahn-Ingold-Prelog 

CK1   casein kinase 1 group 

CLL   chronic lymphocytic leukemia 

CMGC kinases acronym based on key members CDK, MAPK, GSK,CDK 

CML   chronic myleoid leukemia 

H,H-COSY  proton-proton correlation spectroscopy 

CPM   counts per minute 

d   dublett 

   chemical shift 

DAIM   decomposition and identification of molecules 

DFG-motif  conserved Asp-Phe-Gly motif 

DIPA   diisopropylamine 

DIPEA   diisopropylethylamine 

DMAP   4-dimethylaminopyridine 

DME   dimethoxyethane 

DMF   dimethylformamide 

DMPU   1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 
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DMSO   dimethylsulfoxide 

DMSO-d6  deuterised dimethylsulfoxide 

EGFR   epidermal growth factor receptor 

eIF4B   eucaryotic translation initiation factor 4B 

eIF4EBP1  eucaryotic translation initiation factor 4E-binding protein 1 

ERK   extracellular-signaling-regulated kinase 

EtOH   ethanol 

eq.   equivalent 

FDA   Food and Drug Administration 

FLT-3   FMS-like tyrosine kinase 3 

GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GCK   glucokinase 

GHI-domain  G, H and, I helices 

GIST   gastrointestinal stomal tumor 

GSK-3  glycogen synthase kinase 3 beta 

HCl   hydrochloric acid 

HER   human epidermal growth factor receptor 

HMBC   heteronuclear multiple bond correlation 

HPLC   high performance liquid chromatography 

HRD-motif  conserved His-Arg-Asp motif 

HR-MS  high resolution mass spectrometry 

HSQC   heteronuclear single quantum coherence 

HTS   high-thoughput screening 

Hz   hertz 

IC50   half maximal inhibitory constant 

IL   interleukin 

JAK   janus kinase 

K   Kelvin 

k   kilo 

KD   dissocioation constant 

L   liter 

   wavelenght 

µ   mikro 

m   milli 

M   molarity 

m   multiplett 

MAP3K5  mitogen-activated protein kinase kinase kinase 5 

MAPKs  mitogen-activated protein kinases 

MeCN   acetonitrile 

MEK1   mitogen-activated protein kinase kinase 

MEK2   mitogen-activated protein kinase kinase 2 

MeOH   methanol 

min   minute 

mL   milli liter 

MPEOE  modified partial equalization of orbital electronegativity 

mTOR   mammalian target of rapamycin 

mTORC1  mammalian target of rapamycin complex 1 

mTORC2  mammalian target of rapamycin complex 2 

NH   number of hits 
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NMR   nuclear magnetic resonance 

ORTEP  oak ridge thermal ellipsoid plot program 

pAKT   phosphorylated protein kinase B 

PARP   poly (ADP-ribose) polymerase 

PDB   protein data bank 

PDGFR  platelet-derived growth factor receptors 

PDK1   pyruvate dehydrogenase lipoamide kinase isozyme 1 

PH   pleckstrin homology 

PhK   phosphorylase kinase 

PHLPP  PH domain and leucine rich repeat protein phosphatases 

PI3K   phosphatidylinositide-3-kinase 

PIM-1 proviral insertion in murine, proto-oncogene serine/threonine-protein ki-

nase isoform 1 

PIP3   phosphatidylinositol-3,4,5-trisphosphate  

PKA   protein kinase A 

POC   percent of control 

ppm   part per million 

PTEN   phosphate and tensine homologue 

q   quartett 

Quant.   quantitative 

RCC   renal cell carcinoma 

RGC kinases  receptor guanylate cyclase group 

r.m.s.d.  rout mean square deviation 

RSK   ribosomal S6 kinases 

RTK   receptor tyrosine kinases 

RUNX1  runt-related transcription factor 1 

RUNX3  runt-related transcription factor 3 

s   singulett 

S6K   S6 kinases 

SAR   structure-activity relationship 

SS   selectivity score 

SST   selectivity score types 

STE   homologues of yeast Sterile 7, Sterile 11, and Sterile 20 

t   triplett 

TBAF   tetra-n-butylammoniumfluoride 

TBSOTf  tert-butyldimethylsilyl trifluoromethanesulfonate 

TEC   terminal edge convention 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 

TK   tyrosine kinases 

TKL   tyrosine-like kinases 

TLC   thin layer chromatography 

TPX2   targeting protein for Xklp2 

UV   ultra violet 

VdW   VAN-DER-WAALS 
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