Publikationsserver der Universitätsbibliothek Marburg

Titel:Neue Einblicke in den Reaktionsmechanismus der Benzylsuccinat-Synthase
Autor:Seyhan, Deniz
Weitere Beteiligte: Heider, Johann (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0848
URN: urn:nbn:de:hebis:04-z2016-08481
DOI: https://doi.org/10.17192/z2016.0848
DDC: Biowissenschaften, Biologie
Titel (trans.):New insights into the reaction mechanism of the benzylsuccinate synthase
Publikationsdatum:2016-11-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Toluol, benzylsuccinate synthase, reaction mechanism, Thauera aromatica, Anaerober Stoffwechsel, Abbau, initiation, Benzylsuccinat-Synthase, toluene degradation, Elektronenspinresonanzspektroskopie, BSS, Biochemie

Zusammenfassung:
Zusammen mit der Pyruvat-Formiat-Lyase, der anaeroben Ribonukleotid-Reduktase, der Co-Enzym B12-unabhängigen Diol-Dehydratase, der Cholintrimethylamin-Lyase und der 4-Hydroxyphenylacetat-Decarboxylase gehört die (R)-Benzylsuccinat-Synthase zur Familie der Glycylradikalenzyme. Die (R)-Benzylsuccinat-Synthase (BSS) katalysiert die Initiierung des anaeroben Abbaus von Toluol mit einer Addition der Methylgruppe des Toluols an die Doppelbindung von Fumarat unter Bildung von (R)-Benzylsuccinat als Produkt der Reaktion. Sie besteht aus drei Untereinheiten mit 98, 8,5 und 6,5 kDa, die ein Heterohexamer α2β2γ2 mit einer Gesamtmasse von 220 kDa bilden. Die großen α-Untereinheiten enthalten jeweils einen essentiellen Glycin- und Cysteinrest, die in allen Glycylradikal-Enzymen konserviert sind. Das aktive Zentrum des Enzyms befindet sich in der großen α-Untereinheit, wobei die beiden kleinen Untereinheiten jeweils ein Fe4S4-Cluster unbekannter Funktion beinhalten. Die β-Untereinheit könnte aufgrund ihrer Lage in der kürzlich aufgeklärten Struktur den Zugang des Substrats an das katalytische Zentrum der α-Untereinheit regulieren. An ihrem konservierten Glycinrest am C-Terminus der großen Untereinheit wird sie posttranslational durch das SAM-abhängige aktivierende Enzym BssD aktiviert, wobei ein freies Radikal an einem konservierten Glycin-Rest eingeführt wird und ein Glycylradikal entsteht. Die Strukturgene bssC, A und B sind mit dem Gen für das aktivierende Enzym bssD und weiteren Genen unbekannter Funktion in einem Toluol-induzierbaren Operon organisiert. Neben Toluol werden andere methylierte Kohlenwasserstoffe wie n-Alkane, Cycloalkane, p-Cresol, 2-Methylnaphthalin, p-Cymol (in Thauera sp. pCyN2) und Ethylbenzol durch die Anlagerung von Fumarat für den weiteren Abbauweg zu Acyl-CoA-Thioestern aktiviert. Die katalysierenden Enzyme werden als Fumarat-addierende Enzyme (FAEs) zusammengefasst. Als katalytischer Mechanismus der Benzylsuccinat-Synthase-Reaktion wurde die Bildung eines enzymgebundenen Substratradikals aus Toluol vorgeschlagen, das anschließend mit Fumarat zu einem Produktradikal reagiert. Durch die Re-Abstrahierung eines Wasserstoffatoms vom katalytischen Cysteinrest Cys493 entsteht im nächsten Schritt das Produktradikal. In diesem Projekt sollten weitere Informationen über den Reaktionsmechanismus der BSS mittels biochemischer und spektroskopischer Analysen erhalten werden. Bereits in der Vergangenheit wurden durch EPR-Analysen organische Radikale als Reaktionsintermediate identifiziert, die aus verschiedenen Substratanaloga hervorgegangen sind. In dieser Arbeit wurden die EPR-spektroskopischen Analysen mit Benzylalkohol als potenten Inhibitor der BSS, die von Markus Hilberg begonnen wurden, fortgesetzt. Dabei wurden Fragen, die in der Abhandlung von Hilberg (2013) noch offen geblieben sind, beantwortet. Die eindeutige Identifizierung der neuen organischen Radikalspezies, die für die Aufklärung des Mechanismus der BSS dienlich ist, steht noch aus. Weiterhin ist es zum ersten Mal gelungen, in vivo aktivierte BSS heterolog bei Inkubation mit Benzoat als Substrat überzuproduzieren und BSS-Aktivität im Rohextrakt nachzuweisen. Es sollte die Rolle wichtiger Aminosäuren, die das katalytische Zentrum der BSS bilden, in Bezug auf die Substratspezifität, die Enantiospezifität und den generellen Katalysemechanismus des Enzyms aufgeklärt werden. Es wurden mehrere Aminosäuren in der Nähe des katalytischen Zentrums der α-Untereinheit der BSS mutiert, um das entsprechende Enzym in Aromatoleum aromaticum Stamm EbN1 SR7 überzuproduzieren. Mit den erhaltenen Enzymaktivitäten der Extrakte sollten die Enzymaktivitäten und die Nutzung verschiedener Substrate jeweils im Vergleich zum Wildtyp-Enzym analysiert werden. Um gänzlich auszuschließen, dass eine gemessene Aktivität auf das Wildtypenzym zurückzuführen ist und um die Rolle der unbekannten Gene bssEFGH aufzuklären, wurde das bss-Operon vollständig (bssDCABEFGH) und partiell (bssEFGH) erfolgreich deletiert. Durch Verwendung von chiralem radioaktiv markiertem (R)-und (S)-Toluol mit je einem der drei verschiedenen Wasserstoffisotope an der Methylgruppe ist es in dieser Arbeit gelungen, die Stereospezifität der Benzylsuccinat-Synthase aufzuklären. Bei einer Reaktion dieser Substrate mit Fumarat kommt es an der Methylgruppe des Toluols zu einer Inversion der Konfiguration.

Bibliographie / References

  1. Zedelius, J., Rabus, R., Grundmann, O., Werner, I., Brodkorb, D., Schreiber, F., Ehrenreich, P., Behrends, A., Wilkes, H., Kube, M., Reinhardt, R. & Widdel, F., (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ. Microbiol. Rep. 3: 125-135.
  2. Hilberg, M., (2012) Anaerober Toluol-Stoffwechsel in Thauera aromatica: Biochemische und spektroskopische Untersuchungen zur Reaktion der (R)-Benzylsuccinat Synthase. Dissertation, Philipps-Universität Marburg.
  3. Strijkstra, A., Trautwein, K., Jarling, R., Wöhlbrand, L., Dörries, M., Reinhardt, R., Drozdowska, M., Golding, B.T., Wilkes, H. & Rabus, R., (2014) Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate. Appl. Environ. Microbiol. 80: 7592-7603.
  4. Callaghan, A.V., Wawrik, B., Ní Chadhain, S.M.M., Young, L.Y. & Zylstra, G.J., (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem. Biophys. Res. Commun. 366: 142-148.
  5. Jaekel, U., Zedelius, J., Wilkes, H. & Musat, F., (2015) Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Frontiers in Microbiology 6.
  6. Rabus, R. & Widdel, F., (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163: 96-103.
  7. Champion, K.M., Zengler, K. & Rabus, R., (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J. Mol. Microbiol. Biotechnol. 1: 157-164.
  8. Kniemeyer, O., Fischer, T. & Wilkes, H., (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl. Environ. Microbiol.
  9. Müller, J.A., Galushko, A.S., Kappler, A. & Schink, B., (1999) Anaerobic degradation of mcresol by Desulfobacterium cetonicum is initiated by formation of 3- hydroxybenzylsuccinate. Arch. Microbiol. 172: 287-294.
  10. Musat, F., Galushko, A., Jacob, J., Widdel, F., Kube, M., Reinhardt, R., Wilkes, H., Schink, B. & Rabus, R., (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ. Microbiol. 11: 209-219.
  11. Galushko, A.S., Minz, D., Schink, B. & Widdel, F., (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ. Microbiol. 5: 415-420.
  12. Jaekel, U., Musat, N., Adam, B., Kuypers, M., Grundmann, O. & Musat, F., (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 7: 885-895.
  13. Evans, P.J., Mang, D.T., Kim, K.S. & Young, L.Y., (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139-1145.
  14. Rabus, R., Wilkes, H., Behrends, A., Armstroff, A., Fischer, T., Pierik, A.J. & Widdel, F., (2001) Anaerobic Initial Reaction of n-Alkanes in a Denitrifying Bacterium: Evidence for (1- Methylpentyl)succinate as Initial Product and for Involvement of an Organic Radical in n-Hexane Metabolism. J. Bacteriol. 183: 17071715.
  15. Harms, G., Zengler, K., Rabus, R., Aeckersberg, F., Minz, D., Rosselló-Mora, R. & Widdel, F., (1999b) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65: 999-1004.
  16. Kniemeyer, O., Musat, F., Sievert, S.M., Knittel, K., Wilkes, H., Blumenberg, M., Michaelis, W., Classen, A., Bolm, C., Joye, S.B. & Widdel, F., (2007) Anaerobic oxidation of shortchain hydrocarbons by marine sulphate-reducing bacteria. Nature 449: 898-901.
  17. Harms, G., Rabus, R. & Widdel, F., (1999a) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch. Microbiol. 172: 303-312.
  18. Lovley, D.R. & Lonergan, D.J., (1990) Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl. Environ. Microbiol. 56: 1858- 1864.
  19. Leutwein, C. & Heider, J., (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and beta-oxidation of the first intermediate, (R)-(+)- benzylsuccinate. Microbiology 145 ( Pt 11): 3265-3271.
  20. Leuthner, B. & Heider, J., (2000) Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. J. Bacteriol. 182: 272-277.
  21. Beller, H.R. & Spormann, A.M., (1998) Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180: 5454-5457.
  22. Knappe, J. & Sawers, G., (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 6: 383-398.
  23. Birnboim, H.C. & Doly, J., (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.
  24. Bradford, M.M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  25. Lovern, M.R., Cole, C.E. & Schlosser, P.M., (2001) A review of quantitative studies of benzene metabolism. Crit. Rev. Toxicol. 31: 285-311.
  26. Friedrich, T., Dekovic, D.K. & Burschel, S., (2016) Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). Biochim. Biophys. Acta 1857: 214-223.
  27. Krieger, C.J., Roseboom, W., Albracht, S.P. & Spormann, A.M., (2001) A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J. Biol. Chem. 276: 12924-12927.
  28. Weelink, S.A., van Doesburg, W., Saia, F.T., Rijpstra, W.I., Roling, W.F., Smidt, H. & Stams, A.J., (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol. Ecol. 70: 575-585.
  29. Leuthner, B. & Heider, J., (1998) A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica. FEMS Microbiol. Lett. 166: 35-41.
  30. Boll, M., Albracht, S.S. & Fuchs, G., (1997) Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur. J. Biochem. 244: 840-851.
  31. Schachter, D. & Taggart, J.V., (1953) Benzoyl coenzyme A and hippurate synthesis. J. Biol. Chem. 203: 925-934.
  32. Leuthner, B., Leutwein, C., Schulz, H., Hörth, P., Haehnel, W., Schiltz, E., Schägger, H. & Heider, J., (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28: 615-628.
  33. Feil, C., (2006) Biochemie des anaeroben Toluol-Stoffwechsels von Thauera aromatica. Dissertation, Technische Hochschule Darmstadt.
  34. Lippert, M.-L., (2009) Biochemie von Enzymen des anaeroben Stoffwechsels von Toluol in Thauera aromatica. Dissertation, Technische Universität Darmstadt.
  35. Himo, F., (2002) Catalytic Mechanism of Benzylsuccinate Synthase, a Theoretical Study. J. Phys. Chem. B 106: 76887692.
  36. Himo, F., (2005) C-C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim. Biophys. Acta 1707: 24-33.
  37. Craciun, S., Marks, J.A. & Balskus, E.P., (2014) Characterization of choline trimethylaminelyase expands the chemistry of glycyl radical enzymes. ACS Chem. Biol. 9: 1408-1413.
  38. Juárez, J.F., Zamarro, M.T.T., Eberlein, C., Boll, M., Carmona, M. & Díaz, E., (2013) Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ. Microbiol. 15: 148-166.
  39. Cone, J.E., Del Rio, R.M., Davis, J.N. & Stadtman, T.C., (1976) Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA 73: 2659- 2663.
  40. Laemmli, U.K., (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  41. Heider, J., Baron, C. & Böck, A., (1992) Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759-3766.
  42. Selesi, D., Jehmlich, N., Bergen, M.v., Schmidt, F., Rattei, T., Tischler, P., Lueders, T. & Meckenstock, R.U., (2009) Combined Genomic and Proteomic Approaches Identify Gene Clusters Involved in Anaerobic 2-Methylnaphthalene Degradation in the SulfateReducing Enrichment Culture N47. J. Bacteriol. 192: 295306.
  43. Callaghan, A.V., Gieg, L.M., Kropp, K.G., Suflita, J.M. & Young, L.Y., (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl. Environ. Microbiol. 72: 4274-4282.
  44. Wöhlbrand, L., Jacob, J.H., Kube, M., Mussmann, M., Jarling, R., Beck, A., Amann, R., Wilkes, H., Reinhardt, R. & Rabus, R., (2013) Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compounddegrading, sulfate-reducing bacterium. Environ. Microbiol. 15: 1334-1355.
  45. Pester, M., Brambilla, E., Alazard, D., Rattei, T., Weinmaier, T., Han, J., Lucas, S., Lapidus, A., Cheng, J.-F.F., Goodwin, L., Pitluck, S., Peters, L., Ovchinnikova, G., Teshima, H., Detter, J.C., Han, C.S., Tapia, R., Land, M.L., Hauser, L., Kyrpides, N.C., Ivanova, N.N., Pagani, I., Huntmann, M., Wei, C.-L.L., Davenport, K.W., Daligault, H., Chain, P.S., Chen, A., Mavromatis, K., Markowitz, V., Szeto, E., Mikhailova, N., Pati, A., Wagner, M., Woyke, T., Ollivier, B., Klenk, H.-P.P., Spring, S. & Loy, A., (2012) Complete genome sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T. J. Bacteriol. 194: 6300-6301.
  46. Rabus, R., Nordhaus, R., Ludwig, W. & Widdel, F., (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444-1451.
  47. Toyama, H., Anthony, C. & Lidstrom, M.E., (1998) Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol. Lett. 166: 1-7.
  48. Peters, F., Shinoda, Y., McInerney, M.J. & Boll, M., (2007) Cyclohexa-1,5-diene-1-carbonylcoenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J. Bacteriol. 189: 1055-1060.
  49. Morasch, B., Schink, B., Tebbe, C.C. & Meckenstock, R.U., (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch. Microbiol. 181: 407-417.
  50. Wöhlbrand, L. & Rabus, R., (2009) Development of a Genetic System for the Denitrifying Bacterium 'Aromatoleum aromaticum' Strain EbN1. J. Mol. Microbiol. Biotechnol. 17: 41-52.
  51. Kleindienst, S., Herbst, F.A., Stagars, M., von Netzer, F., Von Bergen, M., Seifert, J., Peplies, J., Amann, R., Musat, F., Lueders, T. & Knittel, K., (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8: 2029-2044.
  52. Callaghan, A.V., Davidova, I.A., Savage-Ashlock, K., Parisi, V.A., Gieg, L.M., Suflita, J.M., Kukor, J.J. & Wawrik, B., (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ. Sci. Technol. 44: 7287-7294.
  53. Sanger, F., Nicklen, S. & Coulson, A.R., (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
  54. Towbin, H., Staehelin, T. & Gordon, J., (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354.
  55. Klinman, J.P., (1991) Enzyme mechanism from isotope effects. CRC Press, Boca Raton.
  56. Callaghan, A.V., (2013a) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Frontiers in Microbiology 4: 89.
  57. Lenz, H. & Eggerer, H., (1976) Enzymic generation of chiral acetates. A quantitative evaluation of their configurational assay. Eur. J. Biochem. 65: 237-246.
  58. Biegert, T., Fuchs, G. & Heider, J., (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238: 661-668.
  59. Iyer, L.M., Leipe, D.D., Koonin, E.V. & Aravind, L., (2004) Evolutionary history and higher order classification of AAA+ ATPases. J. Struc. Biol. 146: 11-31.
  60. Snider, J., Gutsche, I., Lin, M., Baby, S., Cox, B., Butland, G., Greenblatt, J., Emili, A. & Houry, W.A., (2006) Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase. J. Biol. Chem. 281: 1532-1546.
  61. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A. & Böck, A., (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331: 723-725.
  62. Grundmann, O., Behrends, A., Rabus, R., Amann, J., Halder, T., Heider, J. & Widdel, F., (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium strain HxN1. Environ. Microbiol. 10: 376-385.
  63. Kube, M., Heider, J., Amann, J., Hufnagel, P., Kühner, S., Beck, A., Reinhardt, R. & Rabus, R., (2004) Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch. Microbiol. 181: 182-194.
  64. Butler, J.E., He, Q., Nevin, K.P., He, Z., Zhou, J. & Lovley, D.R., (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8: 180.
  65. Heider, J. & Rabus, R., (2008) Genomic insights in the anaerobic biodegradation of organic pollutants.
  66. Heider, J. & Fuchs, G., (2005) Genus Thauera. Bergey's Manual of Systematic Bacteriology, Springer Verlag Berlin Vol. 2: 907-913.
  67. Eklund, H. & Fontecave, M., (1999) Glycyl radical enzymes: a conservative structural basis for radicals. Structure 7: 62.
  68. Dower, W.J., Miller, J.F. & Ragsdale, C.W., (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127-6145.
  69. Inoue, H., Nojima, H. & Okayama, H., (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.
  70. Coschigano, P.W., Wehrman, T.S. & Young, L.Y., (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of a glycine free radical. Appl. Environ. Microbiol. 64: 1650-1656.
  71. Coschigano, P.W. & Young, L.Y., (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl. Environ. Microbiol. 63: 652-660.
  72. Forchhammer, K., Leinfelder, W. & Böck, A., (1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342: 453-456.
  73. Hilberg, M., Pierik, A.J., Eckhard, B., Lippert, M.L. & Heider, J., (2011) Identification of FeS clusters in the glycyl-radical enzyme benzylsuccinate synthase via EPR and Mössbauer spectroscopy. J. Biol. Inorg. Chem. 17: 49-56.
  74. Fowler, S.J., Gutierrez-Zamora, M.-L.L., Manefield, M. & Gieg, L.M., (2014) Identification of toluene degraders in a methanogenic enrichment culture. FEMS Microbiol. Ecol. 89: 625-636.
  75. Vogel, T.M. & Grbic-Galic, D., (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200-202.
  76. Krieger, C.J., Beller, H.R., Reinhard, M. & Spormann, A.M., (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403-6410.
  77. Seyfried, B., Glod, G., Schocher, R., Tschech, A. & Zeyer, J., (1994) Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria. Appl. Environ. Microbiol. 60: 4047-4052.
  78. O'Brien, J.R., Raynaud, C., Croux, C., Girbal, L., Soucaille, P. & Lanzilotta, W.N., (2004) Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 43: 4635-4645.
  79. Bharadwaj, V.S., Dean, A.M. & Maupin, C.M., (2013) Insights into the glycyl radical enzyme active site of benzylsuccinate synthase: a computational study. J. Am. Chem. Soc. 135: 12279-12288.
  80. Jungst, A. & Zumft, W.G., (1992) Interdependence of respiratory NO reduction and nitrite reduction revealed by mutagenesis of nirQ, a novel gene in the denitrification gene cluster of Pseudomonas stutzeri. FEBS Lett. 314: 308-314.
  81. Fodje, M.N., Hansson, A., Hansson, M., Olsen, J.G., Gough, S., Willows, R.D. & Al-Karadaghi, S., (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J. Mol. Biol. 311: 111-122.
  82. Dolfing, J., Zeyer, J. & Binder-Eicher, P., (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154: 336- 341.
  83. Beller, H.R., Spormann, A.M., Sharma, P.K., Cole, J.R. & Reinhard, M., (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188-1196.
  84. Van Spanning, R.J., Wansell, C.W., De Boer, T., Hazelaar, M.J., Anazawa, H., Harms, N., Oltmann, L.F. & Stouthamer, A.H., (1991) Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. J. Bacteriol. 173: 6948- 6961.
  85. Boll, M., (2005) Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. Biochim. Biophys. Acta 1707: 34-50.
  86. Dehio, C. & Meyer, M., (1997) Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli. J. Bacteriol. 179: 538-540.
  87. Li, L. & Marsh, E.N., (2006) Mechanism of benzylsuccinate synthase probed by substrate and isotope exchange. J. Am. Chem. Soc. 128: 16056-16057.
  88. Qiao, C. & Marsh, E.N., (2005) Mechanism of benzylsuccinate synthase: stereochemistry of toluene addition to fumarate and maleate. J. Am. Chem. Soc. 127: 8608-8609.
  89. Evans, P.J., Ling, W., Goldschmidt, B., Ritter, E.R. & Young, L.Y., (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58: 496-501.
  90. Callaghan, A.V., (2013b) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr. Opin. Biotechnol. 24: 506-515.
  91. Bozinovski, D., Taubert, M., Kleinsteuber, S., Richnow, H.-H.H., von Bergen, M., Vogt, C. & Seifert, J., (2014) Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Syst. Appl. Microbiol. 37: 488-501.
  92. Craciun, S. & Balskus, E.P., (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA 109: 21307-21312.
  93. Fuchs, G., Boll, M. & Heider, J., (2011) Microbial degradation of aromatic compounds - from one strategy to four. Nature Reviews. Microbiology 9: 803-816.
  94. Szaleniec, M. & Heider, J., (2016) Modeling of the Reaction Mechanism of Enzymatic Radical C-C Coupling by Benzylsuccinate Synthase. Int. J. Mol. Sci. 17.
  95. Raynaud, C., Sarçabal, P., Meynial-Salles, I., Croux, C. & Soucaille, P., (2003) Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc. Natl. Acad. Sci. USA 100: 5010-5015.
  96. Sambrook, J., Fritsch, E.F. & Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.
  97. Leuthner, B., (1999) Molekularbiologische und biochemische Untersuchungen zum anaeroben Metabolismus von Toluol in dem denitrifizierenden Bakterium Thauera aromatica. Albert-Ludwigs-Universität Freiburg im Breisgau.
  98. Selmer, T., Pierik, A.J. & Heider, J., (2005) New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria. Biol. Chem. 386: 981-988.
  99. Wilbrand, J., (1863) Notiz über Trinitrotoluol. Justus Liebigs Annalen der Chemie 128: 178-179.
  100. Hermuth, K., Leuthner, B. & Heider, J., (2002) Operon structure and expression of the genes for benzylsuccinate synthase in Thauera aromatica strain K172. Arch. Microbiol. 177: 132-138.
  101. Zengler, K., Heider, J., Rosselló-Mora, R. & Widdel, F., (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172: 204-212.
  102. Selmer, T. & Andrei, P.I., (2001) p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268: 1363-1372.
  103. Frickey, T. & Lupas, A.N., (2004) Phylogenetic analysis of AAA proteins. J. Struc. Biol. 146: 2- 10.
  104. Mechichi, T., Stackebrandt, E., Gad'on, N. & Fuchs, G., (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch. Microbiol. 178: 26-35.
  105. Woodcock, D.M., Crowther, P.J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S.S., Michael, M.Z. & Graham, M.W., (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17: 3469-3478.
  106. Buckel, W. & Golding, B.T., (2006) Radical Enzymes in Anaerobes. Microbiology 60: 27-49.
  107. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E., (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29: 1097-1106.
  108. Murray, M.G. & Thompson, W.F., (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.
  109. Leutwein, C. & Heider, J., (2002) (R)-Benzylsuccinyl-CoA dehydrogenase of Thauera aromatica, an enzyme of the anaerobic toluene catabolic pathway. Arch. Microbiol. 178: 517-524.
  110. Berry, M.J., Banu, L., Chen, Y.Y., Mandel, S.J., Kieffer, J.D., Harney, J.W. & Larsen, P.R., (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature 353: 273-276.
  111. Stadtman, T.C., (1996) Selenocysteine. Annu. Rev. Biochem. 65: 83-100.
  112. Johansson, L., Gafvelin, G. & Arner, E.S., (2005) Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta 1726: 1-13.
  113. Hüttenhofer, A. & Böck, A., (1998) Selenocysteine inserting RNA elements modulate GTP hydrolysis of elongation factor SelB. Biochemistry 37: 885-890.
  114. Trautwein, K., Kuhner, S., Wohlbrand, L., Halder, T., Kuchta, K., Steinbuchel, A. & Rabus, R., (2008) Solvent stress response of the denitrifying bacterium "Aromatoleum aromaticum" strain EbN1. Appl. Environ. Microbiol. 74: 2267-2274.
  115. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. & Erlich, H., (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In: Cold Spring Harb Symp Quant Biol. pp. 263-273.
  116. Jarling, R., Sadeghi, M., Drozdowska, M., Lahme, S., Buckel, W., Rabus, R., Widdel, F., Golding, B.T. & Wilkes, H., (2012) Stereochemical investigations reveal the mechanism of the bacterial activation of n-alkanes without oxygen. Angew. Chem. 51: 1334-1338.
  117. Heider, J., Szaleniec, M., Martins, B.M., Seyhan, D., Buckel, W. & Golding, B.T., (2016) Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes. J. Mol. Microbiol. Biotechnol. 26: 29-44.
  118. Funk, M.A., Judd, E.T., Marsh, E.N., Elliott, S.J. & Drennan, C.L., (2014) Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proc. Natl. Acad. Sci. USA 111: 10161-10166.
  119. Bertani, G., (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293-300.
  120. Funk, M.A., Marsh, E.N. & Drennan, C.L., (2015) Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation. J. Biol. Chem. 290: 22398-22408.
  121. Kühner, S., Wöhlbrand, L., Fritz, I., Wruck, W., Hultschig, C., Hufnagel, P., Kube, M., Reinhardt, R. & Rabus, R., (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J. Bacteriol. 187: 1493-1503.
  122. Beller, H.R. & Spormann, A.M., (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol. Lett. 178: 147-153.
  123. Verfürth, K., Pierik, A.J., Leutwein, C., Zorn, S. & Heider, J., (2004) Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Arch. Microbiol. 181: 155-162.
  124. Li, L., Patterson, D.P., Fox, C.C., Lin, B., Coschigano, P.W. & Marsh, E.N., (2009) Subunit structure of benzylsuccinate synthase. Biochemistry 48: 1284-1292.
  125. Leutwein, C. & Heider, J., (2001) Succinyl-CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J. Bacteriol. 183: 4288-4295.
  126. Jacob, C., Giles, G.I., Giles, N.M. & Sies, H., (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. 42: 4742-4758.
  127. Musat, F., (2015) The anaerobic degradation of gaseous, nonmethane alkanes - From in situ processes to microorganisms. Computational and Structural Biotechnology Journal 13: 222-228.
  128. Pelzmann, A., Ferner, M., Gnida, M., Meyer-Klaucke, W., Maisel, T. & Meyer, O., (2009) The CoxD protein of Oligotropha carboxidovorans is a predicted AAA+ ATPase chaperone involved in the biogenesis of the CO dehydrogenase [CuSMoO2] cluster. J. Biol. Chem. 284: 9578-9586.
  129. Reichard, P., (1997) The evolution of ribonucleotide reduction. Trends Biochem. Sci. 22: 81- 85.
  130. Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F. & Reinhardt, R., (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbiol. 183: 27-36.
  131. Cupples, A.M., (2011) The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J. Microbiol. Methods 85: 83-91.
  132. Cohr, K.H. & Stokholm, J., (1979) Toluene. A toxicologic review. Scand. J. Work Environ. Health 5: 71-90.
  133. Frazer, A.C., Coschigano, P.W. & Young, L.Y., (1995) Toluene metabolism under anaerobic conditions: a review. Anaerobe 1: 293-303.
  134. Camilli, R., Reddy, C.M., Yoerger, D.R., Van Mooy, B.A., Jakuba, M.V., Kinsey, J.C., McIntyre, C.P., Sylva, S.P. & Maloney, J.V., (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330: 201-204.
  135. Coschigano, P.W., (2000) Transcriptional analysis of the tutE tutFDGH gene cluster from Thauera aromatica strain T1. Appl. Environ. Microbiol. 66: 1147-1151.
  136. Hogg, J., (2008) Untersuchungen zu den an der initialen Reaktion des anaeroben Tolouolabbaus beteiligten Proteine aus Thauera aromatica und der Glycerindehydratase aus Rhodospirillum rubrum. Dissertation, Albert-LudwigsUniversität Freiburg im Breisgau.
  137. Verfürth, K., (2005) Untersuchungen zur Reaktion der Benzylsuccinat Synthase, des ersten Enzyms des anaeroben Toluol-Stoffwechsels. Dissertation, Albert-Ludwigs-Universität Freiburg.
  138. Studier, F.W. & Moffatt, B.A., (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113-130.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten