Publikationsserver der Universitätsbibliothek Marburg

Titel:The olfactory pathway of the red flour beetle Tribolium castaneum and its comparison to other Coleoptera
Autor:Kollmann, Martin
Weitere Beteiligte: Schachtner, Joachim (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0654
DOI: https://doi.org/10.17192/z2016.0654
URN: urn:nbn:de:hebis:04-z2016-06547
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Die Riechbahn des Rotbraunen Reismehlkäfers Tribolium castaneumund ein Vergleich zu anderen Käfern
Publikationsdatum:2016-09-19
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
Olfactory, Olfaktorik, Reismehlkäfer, Insektenneuroanatomie, Tribolium, Insects

Summary:
Insects are the most successful animals on earth. They have a great impact on almost all terrestrial ecosystems, affecting mankind by beneficial and harmful ways like facilitating vast amounts of human food production via pollination or by being a devastating pest to agricultural products and food stocks as well as spreading diseases. Among insects, Coleoptera are the most divers and species richest order, containing vast quantities of pest species. The majority of insects depends heavily on their olfactory system to master most tasks they encounter during their lifespan, like finding food sources, hosts, native populations, and mates, or to avoid predators. Despite the diversity and species richness of beetles, as well as their impact as pest, not much is known about the olfactory system of these animals. To investigate the olfactory system of Coleoptera, we analyzed 1) the olfactory pathway of one model organism in highly detail and 2) we examined particular brain regions of the olfactory system of many beetles and insects and compared them with each other. 1: For the highly detailed analysis of the olfactory pathway of one species we worked with the red flour beetle Tribolium castaneum, an already established model organism in some fields of biology like in development and evolution. Experiments requiring genetic methods had been performed in cooperation with the Georg-August-Universität Göttingen. Based on immunohistochemical stainings we created 3D-reconstructions of adult and larval brains, helping us to identifying the most prominent brain structures, as a starting point for following projects. On this basis, we decrypted the olfactory pathway of the adult T. castaneum. This includes A) morphological data of the antenna with its olfactory sensilla and neuroanatomical data of the brain structures involved in olfaction, as well as B) molecular data from antennal structures involved in olfaction (like olfactory respectively gustatory receptors or olfactory binding proteins). Furthermore, we identified neuropeptide families within the primary and one higher integration center for olfaction - namely the antennal lobe (AL) and mushroom body (MB) - of T castaneum. Additionally, we investigated one neuropeptide family and its respective receptor within the brain of T. castaneum in detail. We compared this neuropeptide family and its receptor with two structurally similar and closely related neuropeptide families and their receptors. 2: The second focus of this thesis was the investigation of single features of the olfactory pathway and their comparison between different coleopteran-, respectively insect species. In one project we studied the distribution of eight neuropeptide families within the MB of 24 different insect species and compared them with each other, looking for potential evolutionary correlations. Furthermore, we analyzed the AL of 63 different Coleoptera and found an unusual architecture of the AL in some species. In a related project we investigated such an unusual architectured AL of one species (the small hive beetle Aethina tumida) highly detailed. In this thesis, the brain architecture and especially the olfactory system of Coleoptera had been investigated for the first time in high detail. We revealed new insights regarding the olfactory (respectively chemoreceptive) pathway of these animals. The findings will help to establish T. castaneum as the fist coleopteran model organism for insect neuroscience and in particular for insect olfaction. The single projects of this thesis will be described in-depth in the following eight chapters.

Bibliographie / References

  1. Hansson, B.S. & Wicher, D. (2013) Insect Odorant Response Sensitivity Is Tuned by Metabotropically Autoregulated Olfactory Receptors. PLoS ONE 8:e58889. doi: 10.1371/journal.pone.0058889 Ghaninia M., Hansson BS., Ignell R. (2007) The antennal lobe of the African malaria mosquito, Anopheles gambiae - innervation and threedimensional reconstruction. Arthropod Structure and Development, 36:23-39.
  2. Ha T.S., Smith D.P. (2009) Odorant and pheromone receptors in insects. Frontiers in cellulare neuroscience. doi: 10.3389/neuro.03.010.2009.
  3. Hunt T., Bergsten J., Levkanicova Z., Papadopoulou A., John OS., Wild R., Hammond P.M., Ahrens D., Balke M., Caterino M.S., Gómez-Zurita J., Ribera I., Barraclough T.G., Bocakova M., Bocak L., Vogler, A.P. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913-1916.
  4. (2011) Aethina tumida (Coleoptera: Nitidulidae) attraction to volatiles produced by Apis mellifera (Hymenoptera: Apidae) and Bombus impatiens (Hymenoptera: pidae) colonies. Apidologie. 3:326- 336.
  5. (2010) A phylogenomic approach to resolve the arthropod tree of life. Molecular Biology and Evolution. 27:2451-2464.
  6. Jortner R.A., Farivar S.S., Laurent G. (2007) A simple connectivity scheme for sparse coding in an olfactory system. Journal of Neuroscience.
  7. Vosshall L.B. (2014) A systematic nomenclature for the insect brain. Neuron. 81:755-765.
  8. Kim H.S., Murphy T., Xia J., Caragea D., Park Y., Beeman R.W., Lorenzen M.D., Butcher S., Manak J.R., Brown S.J. (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Research. 38:D437-442.
  9. Halcroft M., Spooner-Hart R., Neumann P. (2011) Behavioural defence strategies of the stingless bee, Austroplebeia australis, against the small hive beetle, Aethina tumida. Insectes Sociaux. 58: 245- 253.
  10. (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell. 128:1187-1203.
  11. Mutinelli F., Montarsi F., Federico G., Granato A., Ponti A.M., Grandinetti G., Ferrè N., Franco S., Duquesne V., Rivière M-P., Thiéry R., Henrikx P., Ribière-Chabert M., Chauzat M-P. (2014) Detection of Aethina tumida Murray (Coleoptera: Nitidulidae.) in Italy: outbreaks and early reaction measures. Journal of Apicultural Research. 53: 569- 575.
  12. Husch A., Paehler M., Fusca D., Paeger L., Kloppenburg P. (2009) Distinct electrophysiological properties in subtypes of nonspiking olfactory local interneurons correlate with their cell type-specific Ca2+ current profiles. Journal of Neurophysiology.
  13. (2014) Evolution of insect olfactory receptors.
  14. Grimaldi D., Engel M.S. (2005) Evolution of the Insects. Cambridge University Press, Cambridge.
  15. Ito K., Shinomiya K., Ito M., Armstrong J.D., Boyan G., Hartenstein V., Harzsch S., Heisenberg M., Homberg U., Jenett A., Keshishian H., Restifo L.L., Rossler W., Simpson J.H., Strausfeld N.J., Strauss R., Jefferis G.S.X.E. (2005) Insect Olfaction: A Map of Smell in the Brain. Current Biolegy. 15:668-670.
  16. Myers J.H., Hosking G. (2002) Eradication. In: Hallman G.J., Schwalbe C.P. (Ed). Invasive Arthropods in Agriculture: Problems and Solutions.
  17. (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology. 7:29.
  18. (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. The Journal of Neuroscience. 16:3154-165.
  19. (2006) Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Diversity and Distributions. 12:71-79.
  20. Kloppenburg P., Hildebrand J.G. (1995) Neuromodulation by 5-hydroxytryptamine in the antennal lobe of the sphinx moth Manduca sexta.
  21. (2005) Neuronal architecture of the mosquito deutocerebrum. Journal of Comparative Neurology. 493: 207-240.
  22. Kollmann M., Rupenthal A.L., Neumann P., Huetteroth W., Schachtner J. (2016). Novel antennal lobe substructures revealed in the small hive beetle Aethina tumida. Cell and tissue research. 363:679-692.
  23. Kaupp U.B. (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience.
  24. Galizia C.G., Rössler W. (2010) Parallel Olfactory Systems in Insects: Anatomy and Function. Annual Review of Entomology. 55:399-420.
  25. Iperti G. (1965) Perspective d'utilisation rationnelle des coccinelles aphidiphages dans la protection des cultures. 90e Congrès national des sociétés savantes. Nice 2:544-555.
  26. Safranyik L., Carroll A.L., Regniere J., Langor D.W., Riel W.G., Shore T.L., Peter B., Cooke B.J., Nealis V.G., Taylor S.W. (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist. 142:415-442.
  27. Ignell R., Root C.M., Birse R.T., Wang J.W., Nässel D.R., Winther Å.M. (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proceedings of the National Academy of Sciences of the United States of America.
  28. Menzel R. (2001) Searching for the memory trace in a mini-brain, the honeybee. Learning and Memory. 8:53-62.
  29. Gatellier L., Nagao T., Kanzaki R. (2004) Serotonin modifies the sensitivity of the male silkmoth to pheromone. Journal of Experimental Biology.
  30. Greco M.K., Hoffmann D., Dollin A., Duncan M., Spooner-Hart R., Neumann P. (2010) The alternative Pharaoh approach: stingless bees mummify beetle parasites alive.
  31. Ignell R., Anton S., Hansson S.B. (2001) The Antennal Lobe of Orthoptera - Anatomy and Evolution. Brain, Behavior and Evolution. 57:1-17.
  32. Müller J., Bussler H., Gossner M., Rettelbach T., Duelli P. (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation.
  33. Halter D.A., Urban J., Rickert C., Ner S.S., Ito K., Travers A.A., Technau G.M. (1995). The homeobox Hungerford T.G. (1990) Diseases of Livestock.
  34. i5K Konsortium (2013) The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. Journal of Heredity. 104:595-600.
  35. (eingereicht in Plos Biology, 2016.05.19) Variations Koniszewski N.D.B., Kollmann M., Bigham M., Farnworth M., He B., Büscher M., Hütteroth W., Binzer M., Schachtner J., Bucher G. (2016). The insect central complex as model for heterochronic brain development-background, concepts, and tools. Development genes and evolution. 226:209- 219.
  36. Ignell R., Anton S., Hansson B.S. (2000) The maxillary palp sensory pathway of Orthoptera.
  37. Müller U. (1997) The nitric oxide system in insects.
  38. Glenner H., Thomsen P.F., Hebsgaard M.B., Sørensen M.V., Willerslev E. (2006) The Origin of Insects. Science. 314:1883-1884.
  39. Johansson B.G., Jones T.M. (2007) The role of chemical communication in mate choice. Biological Reviews. 82:265-289.
  40. Misof B., Niehuis O., Bischoff I., Rickert A., Erpenbeck D., Staniczek A. (2007) Towards an 18S phylogeny of hexapods: accounting for groupspecific character covariance in optimized mixed nucleotide/doublet models. Zoology. 110:409-429.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten