Publikationsserver der Universitätsbibliothek Marburg

Titel:Genetik und Biochemie des Katabolismus von 5-Hydroxyectoin und Ectoin in dem marinen Bakterium Ruegeria pomeroyi DSS-3
Autor:Schulz, Annina
Weitere Beteiligte: Bremer, Erhard (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0475
URN: urn:nbn:de:hebis:04-z2016-04759
DOI: https://doi.org/10.17192/z2016.0475
DDC: Biowissenschaften, Biologie
Titel (trans.):Genetics and biochemistry of the catabolism of 5-hydroxyectoine and ectoine in the marine bacterium Ruegeria pomeroyi DSS-3
Publikationsdatum:2017-02-03
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
ectoines, Bakterien, Biochemie, kompatible Solute, Genetik, Katabolismus, compatible solutes, Ectoine

Zusammenfassung:
Im Rahmen dieser Arbeit wurde der Katabolismus von Ectoinen durch das marine Bakterium Ruegeria pomeroyi DSS-3 untersucht. Basierend auf der Hypothese eines katabolen Mechanismus für die Umwandlung von 5-Hydroxyectoin zu Ectoin und dem anschließenden Abbau zu L-Aspartat wurden die physiologischen, genetischen und biochemischen Voraussetzungen des Katabolismus analysiert. Eine chromosomale Deletion des enuR-uehABC-usp-eutABCDE-ssd-atf-Operons verhinderte das Wachstum von R. pomeroyi DSS-3 auf sowohl Ectoin als auch 5-Hydroxyectoin als Kohlenstoff- und Stickstoffquelle. Bioinformatische Analysen zeigten, dass diese Fähigkeit ausschließlich auf das Phylum der Proteobacteria beschränkt ist und einer hohen genetischen Diversität unterliegt. Durch 'Northern Dot Blot'-Analysen und Reportergenfusionen wurde gezeigt, dass die Transkription des Genclusters sowohl von einem konstitutiven als auch von einem substratinduzierbaren Promotor erfolgt. Der MocR-Typ Transkriptionsregulator EnuR ist sowohl Repressor als auch Aktivator des vorliegenden Genclusters und ist neben seiner prosthetischen Gruppe Pyridoxal-5'-Phosphat auch von zwei Stoffwechselintermediaten als interne Induktoren abhängig. In dem katabolen Ectoin-Operon wird zusätzlich für den Transkriptionsfaktor, der 'feast-and-famine'-Familie, AsnC kodiert, welcher neben EnuR für die Aktivierung des Promotors verantwortlich ist. Für die Aufnahme und den Katabolismus von alternativen Stickstoffquellen ist in vielen bakteriellen Organismen, so auch in R. pomeroyi DSS-3, unter anderem auch das NtrXY-Zweikomponentensystem zuständig. Basierend auf biochemischen und genetischen Untersuchungen, wird ein Modell für die transkriptionelle Kontrolle des katabolen Ectoin- Genclusters beschrieben, welches von den zwei Transkriptionsregulatoren EnuR und AsnC und dem Zweikomponentensystem der generellen Stickstoffkontrolle NtrXY abhängt.

Bibliographie / References

  1. Galinski EA, Pfeiffer HP, Trüper HG. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem FEBS. 1985: 149(1):135-9.
  2. Kuhlmann SI, Terwisscha van Scheltinga AC, Bienert R, Kunte H-J, Ziegler C. 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata. Biochemistry (Mosc). 2008: 47(36): 9475-85.
  3. Wilkinson JB, Holland B, Kuchler K, Cole SP, Higgins C. ABC Proteins: From Bacteria to Man. In: ABC Proteins. London: Academic Press; 2003
  4. Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 2006: 580(4): 1023-35.
  5. Fath MJ, Kolter R. ABC transporters: bacterial exporters. Microbiol Rev. 1993: 57(4): 995- 1017.
  6. Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992: 8: 67-113.
  7. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, et al. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol. 2011: 13(8): 1973-94.
  8. Fisch F, Fleites CM, Delenne M, Baudendistel N, Hauer B, Turkenburg JP, et al. A covalent succinylcysteine-like intermediate in the enzyme-catalyzed transformation of maleate to fumarate by maleate isomerase. J Am Chem Soc. 2010: 132(33): 11455-7.
  9. Percudani R, Peracchi A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003: 4(9): 850-4.
  10. Yoshimura T, Esak N. Amino acid racemases: functions and mechanisms. J Biosci Bioeng. 2003: 96(2): 103-9.
  11. Street TO, Bolen DW, Rose GD. A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A. 2006: 103(38): 3997-4002.
  12. Ollivier B, Caumette P, Garcia JL, Mah RA. Anaerobic bacteria from hypersaline environments. Microbiol Rev. 1994: 58(1): 27-38.
  13. Schröder I, Vadas A, Johnson E, Lim S, Monbouquette HG. A Novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and μ-crystallin. J Bacteriol. 2004: 186(22): 7680-9.
  14. da Costa MS, Santos H, Galinski EA. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol. 1998: 61: 117-53.
  15. Rivers AR, Smith CB, Moran MA. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3. Stand Genomic Sci. 2014: 9(11): 1-9.
  16. Kölling R, Lother H. AsnC: an autogenously regulated activator of asparagine synthetase A transcription in Escherichia coli. J Bacteriol. 1985: 164(1): 310-5.
  17. Stöveken N, Pittelkow M, Sinner T, Jensen RA, Heider J, Bremer E. A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol. 2011: 193(17): 4456-68.
  18. Berntsson RP-A, Smits SHJ, Schmitt L, Slotboom D-J, Poolman B. A structural classification of substrate-binding proteins. FEBS Lett. 2010: 584(12): 2606-17.
  19. Quiocho FA, Ledvina PS. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol. 1996: 20(1): 17-25.
  20. Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013: 7(1): 210-20.
  21. Padan E. Bacterial Membrane Transport: Superfamilies of Transport Proteins. In: eLS John Wiley & Sons, Ltd; 2001
  22. Gottschalk G. Bacterial Metabolism. Springer Science & Business Media; 2012. 371 p.
  23. Sauer T, Galinski EA. Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnol Bioeng. 1998: 57(3): 306-13.
  24. Sleator RD, Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev. 2002: 26(1): 49-71.
  25. Dang H, Lovell CR. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol. 2000: 66(2): 467-75.
  26. Young R. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 1992: 56(3): 430-81.
  27. Widderich N, Höppner A, Pittelkow M, Heider J, Smits SHJ, Bremer E. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PloS One. 2014: 9(4): e93809.
  28. Widderich N, Kobus S, Höppner A, Riclea R, Seubert A, Dickschat JS, et al. Biochemistry and crystal structure of ectoine synthase: A metal-containing member of the cupin superfamily. PLoS ONE. 2016: 11(3):
  29. Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT. Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr. 2005: 50(5): 1697-706.
  30. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev MMBR. 1998: 62(2): 504-44.
  31. Pittelkow M, Bremer E. Cellular adjustments of Bacillus subtilis and other Bacilli to fluctuating salinities. In: Ventosa A, Oren A, Ma Y, editors. Halophiles and Hypersaline Environments. Springer Berlin Heidelberg; 2011: p. 275-302.
  32. Pawlowski K, Klosse U, de Bruijn FJ. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet MGG. 1991: 231(1): 124-38.
  33. Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, Hiramoto M, et al. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol. 1999: 181(1): 91-9.
  34. Louis P, Galinski EA. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiol Read Engl. 1997: 143 (4): 1141-9.
  35. Zheng Y, Roberts RJ, Kasif S, Guan C. Characterization of two new aminopeptidases in Escherichia coli. J Bacteriol. 2005: 187(11): 3671-7.
  36. Lo C-C, Bonner CA, Xie G, D'Souza M, Jensen RA. Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev MMBR. 2009: 73(4): 594-651.
  37. Kurz M. Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst. 2008: 4(6): 1-14
  38. Kolp S, Pietsch M, Galinski EA, Gütschow M. Compatible solutes as protectants for zymogens against proteolysis. Biochim Biophys Acta. 2006: 1764(7): 1234-42.
  39. Bouvier TC, del Giorgio PA. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr. 2002: 47(2): 453- 70.
  40. Bremer E, Kramer R, Krämer R. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. Comp Biochem Physiol A Mol Integr Physiol. 2000: 126(17)
  41. Höppner A, Widderich N, Lenders M, Bremer E, Smits SHJ. Crystal structure of the ectoine hydroxylase, a snapshot of the active site. J Biol Chem. 2014: 289(43): 29570-83.
  42. Hanekop N, Höing M, Sohn-Bösser L, Jebbar M, Schmitt L, Bremer E. Crystal structure of the ligand-binding protein EhuB from Sinorhizobium meliloti reveals substrate recognition of the compatible solutes ectoine and hydroxyectoine. J Mol Biol. 2007: 374(5): 1237-50.
  43. Gonin S, Arnoux P, Pierru B, Lavergne J, Alonso B, Sabaty M, et al. Crystal structures of an extracytoplasmic solute receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for alpha-keto acid binding. BMC Struct Biol. 2007: 7: 11.
  44. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 2002: 418(6898): 630-3.
  45. Todd JD, Curson ARJ, Kirkwood M, Sullivan MJ, Green RT, Johnston AWB. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol. 2011: 13(2): 427-38.
  46. Todd JD, Kirkwood M, Newton-Payne S, Johnston AWB. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 2012: 6(1): 223- 6.
  47. Incharoensakdi A, Waditee R. Degradation of glycinebetaine by betaine-homocysteine methyltransferase in Aphanothece halophytica: effect of salt downshock and starvation. Curr Microbiol. 2000: 41(4): 227-31.
  48. Herzog RM, Galinski EA, Trüper HG. Degradation of the compatible solute trehalose in Ectothiorhodospira halochloris: isolation and characterization of trehalase. Arch Microbiol. 1990: 153(6): 600-6.
  49. Spies MA, Reese JG, Dodd D, Pankow KL, Blanke SR, Baudry J. Determinants of catalytic power and ligand binding in glutamate racemase. J Am Chem Soc. 2009: 131(14): 5274- 84.
  50. Berger EA. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Natl Acad Sci U S A. 1973: 70(5): 1514-8.
  51. Berger EA, Heppel LA. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974: 249(24): 7747-55.
  52. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Diffusion of Small Molecules across Phospholipid Bilayers. Macmillan Leraning. 2000
  53. Reisch CR, Moran MA, Whitman WB. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol. 2008: 190(24): 8018-24.
  54. Miller TR, Belas R. Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Appl Environ Microbiol. 2004: 70(6): 3383-91.
  55. Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in arctic versus antarctic Pack Ice. Appl Environ Microbiol. 2003: 69(11): 6610-9.
  56. Brinkhoff T, Giebel H-A, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008: 189(6): 531-9.
  57. Rice AJ, Park A, Pinkett HW. Diversity in ABC transporters: type I, II and III importers. Crit Rev Biochem Mol Biol. 2014: 49(5): 426-37.
  58. Driessen AJ, Rosen BP, Konings WN. Diversity of transport mechanisms: common structural principles. Trends Biochem Sci. 2000: 25(8): 397-401.
  59. Welsh DT. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev. 2000: 24(3): 263-90.
  60. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004: 28(2): 127-81.
  61. Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. FEBS Lett. 2005: 579(21): 4775-80.
  62. Buommino E, Schiraldi C, Baroni A, Paoletti I, Lamberti M, De Rosa M, et al. Ectoine from halophilic microorganisms induces the expression of hsp70 and hsp70B' in human keratinocytes modulating the proinflammatory response. Cell Stress Chaperones. 2005: 10(3): 197-203.
  63. Jebbar M, Sohn-Bösser L, Bremer E, Bernard T, Blanco C. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol. 2005: 187(4): 1293-304.
  64. Pastor JM, Salvador M, Argandoña M, Bernal V, Reina-Bueno M, Csonka LN, et al. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv. 2010: 28(6): 782-801.
  65. Ruffert S, Lambert C, Peter H, Wendisch VF, Kramer R. Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem. 1997: 247(2): 572-80.
  66. Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006: 60: 255-80.
  67. Sowell SM, Abraham PE, Shah M, Verberkmoes NC, Smith DP, Barofsky DF, et al. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J. 2011 May;5(5):856-65.
  68. Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014: 78(4): 573-87.
  69. Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J. 1993: 290(1): 205-18.
  70. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000: 66(7): 3052-7.
  71. Yokoyama K, Ishijima SA, Clowney L, Koike H, Aramaki H, Tanaka C, et al. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol Rev. 2006: 30(1): 89-108.
  72. Schulz A, Stöveken N, Binzen IM, Hoffmann T, Heider J, Bremer E. Feeding on compatible solutes: a substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol. 2016: (submitted).
  73. Christen P, Mehta PK. From cofactor to enzymes. The molecular evolution of pyridoxal-5'- phosphate-dependent enzymes. Chem Rec N Y N. 2001: 1(6): 436-47.
  74. Möckel B, Eggeling L, Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol. 1992: 174(24): 8065-72.
  75. Treptow NA, Shuman HA. Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol. 1985: 163(2): 654-60.
  76. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010: 4(6): 784-98.
  77. Denger K, Smits THM, Cook AM. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides. Microbiol Read Engl. 2006: 152(11): 3197-206.
  78. Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature. 2004: 432(7019): 910-3.
  79. Tanne C, Golovina EA, Hoekstra FA, Meffert A, Galinski EA. Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant. Front Microbiol. 2014: 5: 1-13.
  80. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLOS ONE. 2011: 6(9): e24570.
  81. Commichau FM, Gunka K, Landmann JJ, Stülke J. Glutamate metabolism in Bacillus subtilis: Gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. J Bacteriol. 2008: 190(10): 3557-64.
  82. Serra AL, Mariscotti JF, Barra JL, Lucchesi GI, Domenech CE, Lisa AT. Glycine Betaine transmethylase mutant of Pseudomonas aeruginosa. J Bacteriol. 2002: 184(15): 4301-3.
  83. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant Bacteria. Int J Syst Evol Microbiol. 1980: 30(2): 485-95.
  84. Rimsa V, Eadsforth TC, Joosten RP, Hunter WN. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies. Acta Crystallogr D Biol Crystallogr. 2014: 70(2): 279-89.
  85. Christie-Oleza JA, Miotello G, Armengaud J. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics. 2012: 13(73): 1-13.
  86. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD. Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol. 2004: 6(2): 121-30.
  87. Manzanera M, García de Castro A, Tøndervik A, Rayner-Brandes M, Strøm AR, Tunnacliffe A. Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol. 2002: 68(9): 4328-33.
  88. Malin G, Lapidot A. Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J Bacteriol. 1996: 178(2): 385-95.
  89. Buchholz K, Seibel J. Industrial carbohydrate biotransformations. Carbohydr Res. 2008: 343(12): 1966-79.
  90. Kunte H, Lentzen G, Galinski E. Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol. 2014: 3(1): 10-25.
  91. Oren A, Heldal M, Norland S, Galinski EA. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extrem Life Extreme Cond. 2002: 6(6): 491-8.
  92. Galinski EA, Oren A. Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium Ectothiorhodospira marismortui.
  93. Liu W, Peterson PE, Langston JA, Jin X, Zhou X, Fisher AJ, et al. Kinetic and crystallographic analysis of active site mutants of Escherichia coli γ-aminobutyrate aminotransferase. Biochemistry (Mosc). 2005: 44(8): 2982-92.
  94. Guerrero R, Berlanga M. Life's unity and flexibility: the ecological link. Int Microbiol Off J Span Soc Microbiol. 2006: 9(3): 225-35.
  95. Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, et al. Ligand- induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell. 2006: 126(6): 1095-108.
  96. Sweeney TE, Beuchat CA. Limitations of methods of osmometry: measuring the osmolality of biological fluids. Am J Physiol. 1993: 264(3): R469-480.
  97. Bohannan BJM. Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000: 3(4): 362-77.
  98. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science. 1982: 217(4566): 1214-22.
  99. Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, et al. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci. 2006: 103(47): 17933-8.
  100. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999: 399(6736): 541-8.
  101. Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol. 2007: 5(10): 801-12.
  102. Sukharev SI, Blount P, Martinac B, Kung C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol. 1997: 59: 633-57.
  103. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008: 9(2): 112-24.
  104. Mosier AC, Justice NB, Bowen BP, Baran R, Thomas BC, Northen TR, et al. Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics. mBio. 2013: 4(2): e00484-12.
  105. Kieft TL, soroker E, firestone MK. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem. 1987: 19(2): 119-26.
  106. Brown AD. Microbial water stress. Bacteriol Rev. 1976: 40(4): 803-46.
  107. Hidalgo E, Chen YM, Lin EC, Aguilar J. Molecular cloning and DNA sequencing of the Escherichia coli K-12 ald gene encoding aldehyde dehydrogenase. J Bacteriol. 1991: 173(19): 6118-23.
  108. Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev MMBR. 2008: 72(1): 85-109.
  109. Niegemann E, Schulz A, Bartsch K. Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene. Arch Microbiol. 1993: 160(6): 454-60.
  110. Kiene RP, Linn LJ, Bruton JA. New and important roles for DMSP in marine microbial communities. J Sea Res. 2000: 43(3-4): 209-24.
  111. Grammann K, Volke A, Kunte HJ. New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol. 2002: 184(11): 3078-85.
  112. Howarth RW, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol Oceanogr. 2006: 51: 364- 76.
  113. Vitousek PM, Howarth RW Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry. 1991: 13(2):87-115.
  114. Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature. 2011: 473(7346): 208-11.
  115. Boncompagni E, Osteras M, Poggi MC, le Rudulier D. Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol. 1999: 65(5): 2072-7.
  116. Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 1987: 326(6114): 655-61.
  117. Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst. 2005; 1(5):
  118. Cayley S, Lewis BA, Record MT. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992: 174(5): 1586-95.
  119. Martin DD, Ciulla RA, Roberts MF. Osmoadaptation in archaea. Appl Environ Microbiol. 1999: 65(5): 1815-25.
  120. Roesser M, Müller V. Osmoadaptation in Bacteria and Archaea: common principles and differences. Environ Microbiol. 2001: 3(12): 743-54.
  121. Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wróblewski H, Blanco C, et al. Osmoadaptation in Rhizobia: ectoine-induced salt tolerance. J Bacteriol. 1994: 176(17): 5210-7.
  122. Kunte HJ. Osmoregulation in Bacteria: Compatible Solute Accumulation and Osmosensing. Environ Chem. 2006: 3(2): 94-9.
  123. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol. 2001: 130(3): 437-60.
  124. Bursy J, Pierik AJ, Pica N, Bremer E. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem. 2007 : 282(43): 31147-55.
  125. Buchan A, González JM, Moran MA. Overview of the marine roseobacter lineage. Appl Environ Microbiol. 2005: 71(10): 5665-77.
  126. Dickschat JS, Zell C, Brock NL. Pathways and Substrate Specificity of DMSP catabolism in marine Bacteria of the Roseobacter clade. ChemBioChem. 2010: 11(3): 417-25.
  127. Cánovas M, Torroglosa T, Iborra JL. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzyme Microb Technol. 2005: 37(3): 300-8.
  128. Young R, Wang I-N, Roof WD, Young R, Wang I-N, Roof WD. Phages will out: strategies of host cell lysis. Trends Microbiol. 2000: 8(3): 120-8.
  129. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993: 294 (1): 1-14.
  130. Kumar R, Zhao S, Vetting MW, Wood BM, Sakai A, Cho K, et al. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine. mBio. 2014: 5(1).
  131. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. Proc Natl Acad Sci. 1998: 95(12): 6578-83.
  132. Ishihama A. Prokaryotic genome regulation: A revolutionary paradigm. Proc Jpn Acad Ser B. 2012: 88(9): 485-508.
  133. Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev. 2010: 34(5): 628-45.
  134. Hoffmann T, Bremer E. Protection of Bacillus subtilis against cold stress via compatible- solute acquisition. J Bacteriol. 201: 193(7): 1552-62.
  135. Timasheff SN. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry (Mosc). 2002: 41(46): 13473-82.
  136. Hochschild A, Dove SL. Protein-Protein contacts that activate and repress prokaryotic transcription. Cell. 1998: 92(5): 597-600.
  137. Poolman B, Glaasker E. Regulation of compatible solute accumulation in bacteria. Mol Microbiol. 1998: 29(2): 397-407.
  138. Halverson LJ, Jones TM, Firestone MK. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J. 2000: 64(5): 1630.
  139. Wiggins PM. Role of water in some biological processes. Microbiol Rev. 1990: 54(4): 432- 49.
  140. Salgado P, Kiene R, Wiebe W, Magalhães C. Salinity as a regulator of DMSP degradation in Ruegeria pomeroyi DSS-3. J Microbiol Seoul Korea. 2014: 52(11): 948-54.
  141. Lanyi JK. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 : 38(3): 272-90.
  142. McCue KF, Hanson AD. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol. 1992: 18(1): 1-11.
  143. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate- demethylating bacteria from marine environments. Int J Syst Evol Microbiol. 2003: 53(5): 1261-9.
  144. Widderich N, Czech L, Elling FJ, Könneke M, Stöveken N, Pittelkow M, et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol. 2015 : 18(4): 1227-48.
  145. Foster PL. Stress-Induced Mutagenesis in Bacteria. Crit Rev Biochem Mol Biol. 2007: 42(5): 373-97.
  146. Tkaczuk KL, A. Shumilin I, Chruszcz M, Evdokimova E, Savchenko A, Minor W. Structural and functional insight into the universal stress protein family. Evol Appl. 2013: 6(3): 434- 49.
  147. Tam R, Saier MH. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 1993: 57(2): 320-46.
  148. Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, et al. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res. 2006: 34(5): 1439-49.
  149. Eisenberg, Wachtel and EJ. Structural Studies of Halophilic Proteins, Ribosomes, and Organelles of Bacteria Adapted to Extreme Salt Concentrations. Annu Rev Biophys Biophys Chem. 1987: 16(1): 69-92.
  150. Schweikhard ES, Kuhlmann SI, Kunte H-J, Grammann K, Ziegler CM. Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581(T). Biochemistry (Mosc). 2010: 49(10): 2194-204.
  151. Okrasa K, Levy C, Hauer B, Baudendistel N, Leys D, Micklefield J. Structure and mechanism of an unusual malonate decarboxylase and related racemases. Chem Weinh Bergstr Ger. 2008: 14(22): 6609-13.
  152. Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP- binding cassette systems. Microbiol Mol Biol Rev MMBR. 2008: 72(2): 317-364.
  153. Gallagher DT, Monbouquette HG, Schröder I, Robinson H, Holden MJ, Smith NN. Structure of alanine dehydrogenase from Archaeoglobus: active site analysis and relation to bacterial cyclodeaminases and mammalian mu crystallin. J Mol Biol. 2004: 342(1): 119- 30.
  154. Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the Helix-Turn-Helix GntR Family of Bacterial Regulators in the FadR, HutC, MocR, and YtrA Subfamilies. J Biol Chem. 2002: 277(15): 12507-15.
  155. Goldmann A, Lecoeur L, Message B, Delarue M, Schoonejans E, Tepfer D. Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett. 1994: 115(2-3): 305-11.
  156. Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, et al. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 2008: 74(23): 7286- 96.
  157. Hoffmann T, von Blohn C, Stanek A, Moses S, Barzantny H, Bremer E. Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells.
  158. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter to the genus Ruegeria Int J Syst Evol Microbiol. 2007: 57(4): 815-9.
  159. Sydlik U, Gallitz I, Albrecht C, Abel J, Krutmann J, Unfried K. The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med. 2009: 180(1): 29-35.
  160. Inbar L, Frolow F, Lapidot A. The conformation of new tetrahydropyrimidine derivatives in solution and in the crystal. Eur J Biochem FEBS. 1993 : 214(3): 897-906.
  161. Lecher J, Pittelkow M, Zobel S, Bursy J, Bönig T, Smits SHJ, et al. The crystal structure of UehA in complex with ectoine-A comparison with other TRAP-T binding proteins. J Mol Biol. 2009: 389(1): 58-73.
  162. García-Estepa R, Argandoña M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol. 2006: 188(11): 3774-84.
  163. Booth IR, Miller S, Müller A, Lehtovirta-Morley L. The evolution of bacterial mechanosensitive channels. Cell Calcium. 2015: 57(3): 140-50.
  164. Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol. 2002: 15(2): 173-90.
  165. Galinski EA, Stein M, Amendt B, Kinder M. The kosmotropic (structure-forming)effect of compensatory solutes. Comp Biochem Physiol A Physiol. 1997: 117(3): 357-65.
  166. Brinkman AB, Ettema TJG, de Vos WM, van der Oost J. The Lrp family of transcriptional regulators. Mol Microbiol. 2003: 48(2): 287-94.
  167. Severin J, Wohlfarth A, Galinski EA. The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Microbiology. 1992: 138(8): 1629-38.
  168. Yonaha K, Nishie M, Aibara S. The primary structure of omega-amino acid:pyruvate aminotransferase. J Biol Chem. 1992: 267(18): 12506-10.
  169. Bünger J, Degwert J, Driller H. The protective function of compatible solute ectoin on the skin, skin cells and its biomolecules with respect to UV radiation, immunosuppression and membrane damage. IFSCC Mag. 2001: 4: 127-31.
  170. Browning DF, Busby SJW. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004: 2(1): 57-65.
  171. Holtmann G, Bremer E. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol. 2004: 186(6): 1683-93.
  172. Galinski EA, Herzog RM. The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol. 1990: 153(6): 607- 13.
  173. Ladue JS, Wróblewski F. The significance of the serum glutamic oxalacetic transaminase activity following acute myocardial infarction. Circulation. 1955: 11(6): 871-7.
  174. Wang D, Xue H, Wang Y, Yin R, Xie F, Luo L. The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa. Appl Environ Microbiol. 2013: 79(23): 7150-9.
  175. Wohlfarth A, Severin J, Galinski EA. The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. Microbiology. 1990: 136(4): 705-12.
  176. Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. J Biophys. Biophys J. 1985: 47(3): 411-4.
  177. Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem. 1981: 256(14): 7193-201.
  178. Inbar L, Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C-and 15N- labeled L-glutamate and 13C and 15N NMR spectroscopy. J Biol Chem. 1988: 263(31): 16014-22.
  179. Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B, Thomas GH. The substrate- binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A. 2009: 106(6): 1778-83.
  180. Mann NH. The third age of phage. PLoS Biol. 2005: 3(5): 182.
  181. Kelly DJ, Thomas GH. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev. 2001: 25(4): 405-24.
  182. Makarova KS, Grishin NV. The Zn-peptidase superfamily: functional convergence after evolutionary divergence. J Mol Biol. 1999: 292(1): 11-7.
  183. Karmen A, Wróblewski F, LaDue JS. Transaminase activity in human blood. J Clin Invest. 1955: 34(1): 126-33.
  184. González JM, Kiene RP, Moran MA. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol. 1999: 65(9): 3810-9.
  185. Goodman BE. Transport of small molecules across cell membranes: Water channels and urea transporters. Adv Physiol Educ. 2002: 26(3): 146-57.
  186. Rabus R, Jack DL, Kelly DJ, Saier MH. TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiol Read Engl. 1999: 145 (12): 3431-45.
  187. Forward JA, Behrendt MC, Wyborn NR, Cross R, Kelly DJ. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria. J Bacteriol. 1997: 179(17): 5482-93.
  188. Lambert C, Erdmann A, Eikmanns M, Kramer R. Triggering glutamate excretion in Corynebacterium glutamicum by modulating the membrane state with local anesthetics and osmotic gradients. Appl Environ Microbiol. 1995: 61(12): 4334-42.
  189. Mulligan C, Kelly DJ, Thomas GH. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization. J Mol Microbiol Biotechnol. 2007: 12(4): 218-26.
  190. Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in Bacteria and Archaea. FEMS Microbiol Rev. 2011: 35(1): 68-86.
  191. Peters P, Galinski E a., Trüper H g. The biosynthesis of ectoine. FEMS Microbiol Lett. 1990: 71(1-2): 157-62.
  192. Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol. 1998: 170(5): 319-30.
  193. Welsh DT, Guyoneaud R, Caumette P. Utilization of the compatible solutes sucrose and trehalose by purple sulfur and nonsulfur bacteria. Can J Microbiol. 1998: 44(10): 974-9.
  194. Suttle CA. Viruses in the sea. Nature. 2005: 437(7057): 356-61.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten