Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierung des STAT3-Signalwegs in der NFATc1-abhängigen Genese und Progression des Pankreaskarzinoms
Autor:Brunner, Marius
Weitere Beteiligte: Ellenrieder, Volker (Prof. Dr. med.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0454
URN: urn:nbn:de:hebis:04-z2016-04547
DOI: https://doi.org/10.17192/z2016.0454
DDC: Medizin
Titel (trans.):Characterisation of the STAT3-pathway in the NFATc1-dependant development and progression of pancreatic carcinomas
Publikationsdatum:2016-07-19
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Enhancer, Pankreaskarzinom, STAT3, Stroma, PDAC, Promotor, Enhancer, Tumor, epigenetic, pancreatic carcinoma, NFATc1, ADM, KRAS, STAT3, NFAT, RCAN1, PanIN, NFAT, Epigenetik

Zusammenfassung:
Das duktale Adenokarzinom des Pankreas zählt zu den aggressivsten soliden Tumoren und ist durch eine ausgeprägte Resistenz gegenüber Standardchemotherapeutika sowie eine infauste Prognose gekennzeichnet. Detaillierte Untersuchungen der zugrunde lie-genden Mechanismen beschreiben eine zentrale Rolle inflammatorischer Signalwege in der Karzinogenese und Progression des Pankreaskarzinoms. In Vorarbeiten konnte un-sere Arbeitsgruppe den inflammatorischen Transkriptionsfaktor NFATc1 als wichtiges Onkogen in der Entzündungs-assoziierten Pankreaskarzinogenese identifizieren. Mole-kulare Analysen in diversen in vitro und in vivo Modellen des Pankreaskarzinoms erga-ben darüber hinaus, dass NFATc1 in einem hohen Prozentsatz humaner Pankreaskar-zinome überexprimiert wird und funktionell mit dem inflammatorischen Transkriptions-faktor STAT3 interagiert, um onkogene Gensignaturen während der Progression des Pankreaskarzinoms zu kontrollieren. Ziel dieser Arbeit war es, den Mechanismus der NFATc1:STAT3-abhängigen Genregu-lation genauer zu untersuchen und die Komplexbildung beider Partner an der DNA zu charakterisieren. Weiterhin sollte die biologische Relevanz eines konditionalen STAT3-Verlusts im Kontext einer pankreasspezifischen KRASG12D- sowie NFATc1-Aktivierung in einem transgenen Mausmodell in vivo analysiert werden. Die im Rahmen der vorliegenden Arbeit gewonnen Daten zeigen, dass die NFATc1-ab-hängige transkriptionelle Regulation onkogener Gensignaturen die Bindung des Tran-skriptionsfaktors an Enhancerregionen ausgewählter Zielgene voraussetzt. Im Gegen-satz dazu identifizierten ChIP-Analysen das NFATc1-Partnerprotein STAT3 an den je-weiligen Promotoren NFATc1-kontrollierter Zielgene. Darüber hinaus werden sowohl die NFATc1-Bindung an dessen Zielgenen sowie deren transkriptionelle Aktivierung durch NFATc1 maßgeblich von der Aktivität des IL-6-STAT3-Signalwegs determiniert. Diese Ergebnisse suggerieren eine Enhancer-Promotor-Loop-Formation als Mechanismus der Transkriptionskontrolle onkogener Signaturen durch NFATc1:STAT3 Komplexe. Um die biologische Relevanz dieser Interaktion in vivo zu untersuchen, wurde ein trans-genes Mausmodell generiert, das zusätzlich zu den konstitutiven Aktivierungen von KRASG12D und NFATc1 einen Verlust der STAT3-Expression im Pankreas aufweist. Diese Mäuse zeigten entgegen der Erwartungen eine beschleunigte Pankreaskarzinom-progression und eine deutlich verringerte mittlere Überlebenszeit von nur 60 Tagen gegenüber ihren Wurfgeschwistern ohne pankreasspezifischen STAT3-Verlust. Morpholo-gisch waren die Pankreaskarzinome STAT3-defizienter Mäuse durch eine ausgeprägte Zunahme des stromalen Tumoranteils gekennzeichnet. Diese Arbeit unterstreicht die onkogenen Funktionen von NFATc1 in der Karzinogenese und Progression des Pankreaskarzinoms und identifiziert die Komplexbildung mit STAT3 als zentralen transkriptionellen Mechanismus für die Kontrolle onkogener Gensignaturen im inflammations-assoziierten Pankreaskarzinom. Trotz der Charakterisierung von NFATc1 als vielversprechende Zielstruktur in der Behandlung des Pankreaskarzinoms existieren bis dato keine therapeutischen Strategien, die eine spezifische pharmakologi-sche Inhibition von NFATc1 in der Tumorzelle ermöglichen. Vor dem Hintergrund erfolgsversprechender Daten einer aktuellen klinischen Studie zur Inhibition des Jak/STAT3-Signalwegs in der Therapie des Pankreaskarzinoms und der hier beschriebenen zentralen Funktion von STAT3 in der NFATc1-abhängigen Tran-skriptionskontrolle erscheint die pharmakologische Inhibition des NFATc1-Partnerpro-teins STAT3 ein vielversprechender indirekter therapeutischer Ansatz für die Blockade der NFATc1-vermittelten Tumorprogression zu sein. Die beschleunigte Tumorprogres-sion im STAT3-defizienten in vivo Modell auf der Basis einer konstitutiven NFATc1-Akti-vierung hingegen deutet darauf hin, dass eine Inhibition des Jak/STAT3-Signalwegs v.a. in NFATc1-negativen Pankreaskarzinomen wirksam sein könnte und unterstreicht somit die Notwendigkeit der molekularen Stratifizierung für die Therapie dieser heterogenen Tumorerkrankung.

Bibliographie / References

  1. Scholz, A. et al., 2003. Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology, 125(3), pp.891-905.
  2. Singh, S.K. et al., 2015. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO Journal, 34(4), pp.517-530.
  3. Ghaneh, P., Costello, E. & Neoptolemos, J.P., 2008. Biology and management of pancreatic cancer. Postgraduate medical journal, 84(995), pp.478-497.
  4. Toyonaga, T. et al., 2003. Blockade of constitutively activated Janus kinase/signal transducer and activator of transcription-3 pathway inhibits growth of human pancreatic cancer. Cancer Letters, 201(1), pp.107-116.
  5. Siegel, R.L., Miller, K.D. & Jemal, A., 2015. Cancer Statistics, 2015. CA Cancer J Clin, 65(1), pp.5-29.
  6. Qiu, W. & Su, G.H., 2013. Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis. Cancer metastasis reviews, 32(0), pp.10.1007/s10555-012-9408-2.
  7. Kadauke, S. & Blobel, G.A., 2009. Chromatin loops in gene regulation. Biochimica et biophysica acta, 1789(1), pp.17-25.
  8. Guerra, C. et al., 2015. Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice. Cancer Cell, 11(3), pp.291-302.
  9. Jura, N., Archer, H. & Bar-Sagi, D., 2005. Chronic pancreatitis, pancreatic adenocarcinoma and the black box in-between. Cell Res, 15(1), pp.72-77.
  10. Migone, T.S. et al., 1995. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science (New York, N.Y.), 269(5220), pp.79-81.
  11. Luger, K. et al., 1997. Crystal structure of the nucleosome core particle at 2.8[thinsp]A resolution. Nature, 389(6648), pp.251-260.
  12. Grivennikov, S.I. & Karin, M., 2010. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine & Growth Factor Reviews, 21(1), pp.11-19.
  13. Yeo, T.P., 2015. Demographics, Epidemiology, and Inheritance of Pancreatic Ductal Adenocarcinoma. Seminars in Oncology, 42(1), pp.8-18.
  14. Özdemir, B.C. et al., 2014. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Diminished Survival. Cancer cell, 25(6), pp.719-734.
  15. Singh, S.K. et al., 2011. Disruption of a Nuclear NFATc2 Protein Stabilization Loop Confers Breast and Pancreatic Cancer Growth Suppression by Zoledronic Acid. The Journal of Biological Chemistry, 286(33), pp.28761-28771.
  16. Song, L. & Crawford, G.E., 2010. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor protocols, 2010(2), p.pdb.prot5384-pdb.prot5384.
  17. Cox, A.D. et al., 2014. Drugging the undruggable Ras: mission possible? Nature reviews. Drug discovery, 13(11), pp.828-851.
  18. Yoon, K.H., 2010. Efficacy and Cytokine Modulating Effects of Tacrolimus in Systemic Lupus Erythematosus: A Review. Journal of Biomedicine and Biotechnology, 2010, p.686480.
  19. Neesse, A. et al., 2014. Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma. OncoTargets and therapy, 7, pp.33-43.
  20. Hruban, R.H., Maitra, A., Schulick, R., et al., 2008. Emerging Molecular Biology of Pancreatic Cancer. Gastrointestinal Cancer Research : GCR, 2(4 Suppl 2), pp.S10-S15.
  21. Mancini, M. & Toker, A., 2009. NFAT Proteins: Emerging Roles in Cancer Progression. Nature reviews. Cancer, 9(11), pp.810-820.
  22. Yu, C.L. et al., 1995. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science (New York, N.Y.), 269(5220), pp.81- 83.
  23. Krivega, I. & Dean, A., 2012. Enhancer and promoter interactions-long distance calls. Current Opinion in Genetics & Development, 22(2), pp.79-85.
  24. Herz, H.-M., Hu, D. & Shilatifard, A., 2014. Enhancer Malfunction in Cancer. Molecular cell, 53(6), pp.859-866.
  25. Ong, C.-T. & Corces, V.G., 2012. Enhancers: emerging roles in cell fate specification. EMBO Reports, 13(5), pp.423-430.
  26. Porta, M. et al., 2005. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 7(5), pp.189-97.
  27. Jacobs, E.J. et al., 2010. Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International journal of cancer. Journal international du cancer, 127(6), pp.1421- 1428.
  28. Conroy, T. et al., 2011. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England journal of medicine, 364(19), pp.1817-1825.
  29. Molnar, A.O. et al., 2015. Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. BMJ : British Medical Journal, 350, p.h3163.
  30. Hezel, A.F. et al., 2006. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Development, 20(10), pp.1218-1249.
  31. Matsuda, Y. et al., 2015. Gradual Telomere Shortening and Increasing Chromosomal Instability among PanIN Grades and Normal Ductal Epithelia with and without Cancer in the Pancreas A. J. Lustig, ed. PLoS ONE, 10(2), p.e0117575.
  32. McLean, C.Y. et al., 2010. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotech, 28(5), pp.495-501.
  33. Creyghton, M.P. et al., 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America, 107(50), pp.21931-21936.
  34. Shaw, J.P. et al., 1988. Identification of a putative regulator of early T cell activation genes. Science, 241(4862), pp.202-205.
  35. Singh, H., Longo, D.L. & Chabner, B. a., 2015. Improving Prospects for Targeting RAS. Journal of Clinical Oncology.
  36. Von Hoff, D.D. et al., 2013. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. The New England journal of medicine, 369(18), pp.1691-703.
  37. Luo, C. et al., 1996. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proceedings of the National Academy of Sciences, 93(17), pp.8907-8912.
  38. Lesina, M. et al., 2014. Interleukin-6 in inflammatory and malignant diseases of the pancreas. Seminars in Immunology, 26(1), pp.80-87.
  39. O'Shea, J.J., Holland, S.M. & Staudt, L.M., 2013. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine, 368(2), pp.161-170.
  40. Marsman, J. & Horsfield, J.A., 2012. Long distance relationships: Enhancer-promoter communication and dynamic gene transcription. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(11-12), pp.1217-1227.
  41. Cook, N.R. et al., 2005. Low-dose aspirin in the primary prevention of cancer: The women's health study: a randomized controlled trial. JAMA, 294(1), pp.47-55.
  42. Kaunisto, A. et al., 2015. NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer. Molecular Oncology, 9(6), pp.1140- 1154.
  43. Wu, A. et al., 2010. NFAT and AP1 are Essential for the Expression of a Glioblastoma Wu, H. et al., 2015. NFAT signaling and the invention of vertebrates. Trends in Cell Biology, 17(6), pp.251-260.
  44. Metzelder, S.K. et al., 2015. NFATc1 as a therapeutic target in FLT3-ITD-positive AML. Leukemia, 29(7), pp.1470-1477.
  45. Chen, N.-M. et al., 2015. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas. Gastroenterology, 148(5), pp.1024-1034.e9.
  46. König, A., Linhart, T., et al., 2010. NFAT-Induced Histone Acetylation Relay Switch Promotes c-Myc-Dependent Growth in Pancreatic Cancer Cells. Gastroenterology, 138(3), pp.1189-1199.e2.
  47. Macian, F., 2005. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol, 5(6), pp.472-484.
  48. Crabtree, G.R. & Olson, E.N., 2015. NFAT Signaling. Cell, 109(2), pp.S67-S79.
  49. Tripathi, M.K. et al., 2014. Nuclear Factor of Activated T-cell Activity Is Associated with Metastatic Capacity in Colon Cancer. Cancer Research, 74(23), pp.6947-6957.
  50. Shou, J. et al., 2015. Nuclear factor of activated T cells in cancer development and treatment. Cancer Letters, 361(2), pp.174-184.
  51. Collins, M.A. et al., 2012. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. The Journal of Clinical Investigation, 122(2), pp.639-653.
  52. Ryan, D.P., Hong, T.S. & Bardeesy, N., 2014. Pancreatic adenocarcinoma. N Engl J Med, 371, pp.1039-1049.
  53. DiMagno, E.P., 1999. Pancreatic cancer: clinical presentation, pitfalls and early clues. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO, 10 Suppl 4, pp.140-2.
  54. Garrido-Laguna, I. & Hidalgo, M., 2015. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nature reviews. Clinical oncology, 12(6), pp.319-34.
  55. Koorstra, J.B.M. et al., 2008. Pancreatic carcinogenesis. Pancreatology, 8(2), pp.110- 125.
  56. Konstantinidis, I.T. et al., 2013. Pancreatic ductal adenocarcinoma: is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a “true” R0 resection? Annals of surgery, 257(4), pp.731-6.
  57. Shigekawa, M. et al., 2012. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction. American Journal of Pathology, 181(6), pp.2105- 2113.
  58. Duell, E.J. et al., 2012. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Annals of Oncology, 23(11), pp.2964-2970.
  59. Macián, F., López-Rodríguez, C. & Rao, a, 2001. Partners in transcription: NFAT and Malvezzi, P. & Rostaing, L., 2015. The safety of calcineurin inhibitors for kidneytransplant patients. Expert Opinion on Drug Safety, 14(10), pp.1531-1546.
  60. Hassan, M.M. et al., 2007. Passive smoking and the use of noncigarette tobacco products in association with risk for pancreatic cancer: a case-control study. Cancer, 109(12), pp.2547-2556.
  61. Kanda, M. et al., 2012. Presence of Somatic Mutations in Most Early-Stage Pancreatic Intraepithelial Neoplasia. Gastroenterology, 142(4), pp.730-733.e9.
  62. König, A., Fernandez-Zapico, M.E. & Ellenrieder, V., 2010. Primers on Molecular Pathways - The NFAT Transcription Pathway in Pancreatic Cancer. Pancreatology, 10(4), pp.416-422.
  63. Klein, A.P. et al., 2004. Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Research, pp.2634-2638.
  64. Hurwitz, H.I. et al., 2015. Randomized, Double-Blind, Phase II Study of Ruxolitinib or Placebo in Combination With Capecitabine in Patients With Metastatic Pancreatic Cancer for Whom Therapy With Gemcitabine Has Failed. Journal of Clinical Oncology, 33(34), pp.4039-4047.
  65. Graef, I. a. et al., 2001. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell, 105, pp.863-875.
  66. Wang, H. et al., 2011. Signal transducer and activator of transcription 3 in liver diseases: A novel therapeutic target. International Journal of Biological Sciences, 7(5), pp.536-550.
  67. Koskela, H.L.M. et al., 2012. Somatic STAT3 Mutations in Large Granular Lymphocytic Leukemia. The New England journal of medicine, 366(20), pp.1905-1913.
  68. Fukuda, A. et al., 2011. Stat3 and MMP7 Contribute to Pancreatic Ductal Adenocarcinoma Initiation and Progression. Cancer cell, 19(4), pp.441-455.
  69. Corcoran, R.B. et al., 2011. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer research, 71(14), pp.5020-5029.
  70. Lesina, M. et al., 2011. Stat3/Socs3 Activation by IL-6 Transsignaling Promotes Progression of Pancreatic Intraepithelial Neoplasia and Development of Pancreatic Cancer. Cancer Cell, 19(4), pp.456-469.
  71. Wake, M.S. & Watson, C.J., 2015. STAT3 the oncogene - still eluding therapy? FEBS Journal, 282(14), pp.2600-2611.
  72. Darnell, J.E., 1997. STATs and Gene Regulation. Science, 277(5332), pp.1630-1635.
  73. Yu, H., Pardoll, D. & Jove, R., 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9(11), pp.798-809.
  74. Rhim, A.D. et al., 2014. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer cell, 25(6), pp.735-747.
  75. Chen, L. et al., 1998. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature, 392(6671), pp.42-48.
  76. Remo, A. et al., 2015. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. Journal of Translational Medicine, 13, p.138.
  77. Scalea, J.R. et al., 2015. Tacrolimus for the prevention and treatment of rejection of solid organ transplants. Expert Review of Clinical Immunology, pp.1-10.
  78. Medyouf, H. et al., 2007. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med, 13(6), pp.736-741.
  79. Siveen, K.S. et al., 2014. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1845(2), pp.136-154.
  80. Erkan, M. et al., 2008. The Activated Stroma Index Is a Novel and Independent Prognostic Marker in Pancreatic Ductal Adenocarcinoma. Clinical Gastroenterology and Hepatology, 6(10), pp.1155-1161.
  81. Strahl, B.D. & Allis, C.D., 2000. The language of covalent histone modifications. Nature, 403(6765), pp.41-45.
  82. Lee, J.-Y. & Hennighausen, L., 2005. The transcription factor Stat3 is dispensable for pancreatic β-cell development and function. Biochemical and Biophysical Research Communications, 334(3), pp.764-768.
  83. Xie, K., Wei, D. & Huang, S., 2006. Transcriptional anti-angiogenesis therapy of human pancreatic cancer. Cytokine & growth factor reviews, 17(3), pp.147-156.
  84. Hogan, P.G. et al., 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development , 17 (18 ), pp.2205-2232.
  85. Nolis, I.K. et al., 2009. Transcription factors mediate long-range enhancer-promoter interactions. Proceedings of the National Academy of Sciences of the United States of America, 106(48), pp.20222-20227.
  86. Rao, A., Luo, C. & Hogan, P.G., 1997. Transcription Factors of the NFAT family : Regulation and Function. Annual Review of Immunology, 15(1), pp.707-747.
  87. Elgar, G. & Vavouri, T., 2008. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends in Genetics, 24(7), pp.344-352.
  88. Hruban, R.H., Maitra, A. & Goggins, M., 2008. Update on pancreatic intraepithelial neoplasia. International journal of clinical and experimental pathology, 1(4), pp.306-316.
  89. Waddell, N. et al., 2015. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), pp.495-501.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten