Publikationsserver der Universitätsbibliothek Marburg

Titel:Mechanismen der NFATc1-abhängigen Regulation von Stammzelleigenschaften im Pankreaskarzinom
Autor:Vogt, Sophia
Weitere Beteiligte: Ellenrieder, Volker (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0378
DOI: https://doi.org/10.17192/z2016.0378
URN: urn:nbn:de:hebis:04-z2016-03781
DDC: Medizin
Titel (trans.):Mechanisms of NFATc1-dependent regulation of stem cell characteristics in the pancreas carcinoma
Publikationsdatum:2016-06-16
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
Stammzelleigenschaften, Chemoresistenz, Stammzelle, NFAT, chemoresistance, Sox2, Stemness, Protein p53, Bauchspeicheldrüsenkrebs, pancreatic cancer

Zusammenfassung:
Die infauste Prognose des Pankreaskarzinoms ist vor allem dem aggressiven Wachstumsverhalten und der ausgeprägten Resistenz gegenüber konventionellen Chemotherapeutika geschuldet. Beide Charakteristika sind mit einer Entdifferenzierung des Tumors und der Aneignung von Stammzelleigenschaften assoziiert. Die Transformation in stammzellartige Tumorzellen geht mit der Aktivierung spezifischer Gensignaturen und der Induktion von Stammzellfaktoren (Sox2, Klf4, Oct4, Nanog und Bmi1) einher. Ein zentrales Ereignis der Entdifferenzierung und Aneignung von Stammzelleigenschaften ist der Verlust des Tumorsuppressors p53, der in 75 % aller humanen Pankreaskarzinome beobachtet wird. Das trifft in besonderem Maße auf Tumore mit Aktivierung des onkogenen Transkriptionsfaktors NFATc1 zu, der ebenfalls in der Mehrzahl humaner Pankreaskarzinome exprimiert wird und das Wachstum und Metastasierungsverhalten von Tumoren moduliert. Im Mittelpunkt dieser Arbeit stand die Regulation von Stammzelleigenschaften im Pankreaskarzinom durch einen bislang nicht beschriebenen und antagonistisch wirkenden p53-NFATc1- Signalweg. Wir konnten zeigen, dass die Funktion von NFATc1 im Pankreaskarzinom durch p53 definiert wird und dass der Verlust von p53 über NFATc1-abhängige Aktivierung des Stammzellfaktors Sox2 (und anderer Stammzellfaktoren) sowohl in vivo als auch in vitro die Ausbildung von Stammzelleigenschaften begünstigt. Dabei induziert NFATc1 die Expression von Sox2 durch direkte Bindung an Promotor und Enhancer sowie gleichzeitige Rekrutierung der RNA-Polymerase II. Die NFATc1-Sox2-vermittelte Aneignung von Stammzelleigenschaften setzt eine Hemmung des hierarchisch dominanten p53-microRNA-200c-Signalweges voraus, der die Aktivierung von Sox2 und anderer Stammzellfaktoren unterdrückt. Zusammenfassend tragen die Ergebnisse dieser Arbeit zu einem besseren Verständnis der molekularen Mechanismen der Tumorprogression im Pankreaskarzinom bei und zeigen, dass zentrale Aspekte der zellulären Plastizität und Regulation von Stammzelleigenschaften durch ein hierarchisch angelegtes Netzwerk kontrolliert werden. Die Erkenntnis, dass der häufige Verlust von p53 durch Aktivierung des NFATc1-Sox2-Signalweges zur Ausbildung von Stammzelleigenschaften führt, eröffnet möglicherweise neue und zielgerichtete Ansätze in der Behandlung des Pankreaskarzinoms.

Bibliographie / References

  1. Friday BB, Horsley V, Pavlath GK. Calcineurin activity is required for the initiation of skeletal muscle differentiation. The Journal of cell biology 2000;149:657-66.
  2. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer research 2007;67:1030-7.
  3. Chang CP, Neilson JR, Bayle JH, et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell 2004;118:649-63.
  4. Rachagani S, Macha MA, Heimann N, et al. Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Advanced drug delivery reviews 2015;81:16-33. -126 -
  5. Chen NM, Singh G, Koenig A, et al. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas. Gastroenterology 2015;148:1024-34 e9.
  6. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature cell biology 2009;11:1487-95.
  7. Kuhnle M, Egger M, Muller C, et al. Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar. Journal of medicinal chemistry 2009;52:1190-7.
  8. Garajová I, Le Large TY, Frampton AE, Rolfo C, Voortman J, Giovannetti E. Molecular mechanisms underlying the role of microRNAs in the chemoresistance of pancreatic cancer. BioMed research international 2014;2014:678401.
  9. Santisteban M, Reiman JM, Asiedu MK, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer research 2009;69:2887-95.
  10. Mammucari C, Tommasi di Vignano A, Sharov AA, et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Developmental cell 2005;8:665-76.
  11. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor- initiating cells. PloS one 2009;4:e6816. -123 -
  12. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science (New York, NY) 2008;321:699-702.
  13. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76.
  14. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell stem cell 2007;1:313-23.
  15. Neal JW, Clipstone NA. A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. The Journal of biological chemistry 2003;278:17246-54.
  16. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4. -122 -
  17. Buchholz M, Ellenrieder V. An emerging role for Ca2+/calcineurin/NFAT signaling in cancerogenesis. Cell cycle (Georgetown, Tex) 2007;6:16-9.
  18. Baas IO, Mulder JW, Offerhaus GJ, Vogelstein B, Hamilton SR. An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. The Journal of pathology 1994;172:5-12.
  19. Hruban RH, Takaori K, Klimstra DS, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. The American journal of surgical pathology 2004;28:977-87.
  20. Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? mAbs 2009;1:12-25.
  21. Singh SK, Chen NM, Hessmann E, et al. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO journal 2015;34:517-30.
  22. Loh C, Shaw KT, Carew J, et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. The Journal of biological chemistry 1996;271:10884-91.
  23. Liu J, Farmer JD, Jr., Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991;66:807-15.
  24. Damjanov I, Fan F. Cancer Grading Manual. New York: Springer; 2007. -121 -
  25. Bosetti C, Bertuccio P, Malvezzi M, et al. Cancer mortality in Europe, 2005-2009, and an overview of trends since 1980. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2013. -120 -
  26. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annual review of medicine 2007;58:267-84.
  27. Hu QL, Jiang QY, Jin X, et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials 2013;34:2265- 76.
  28. Nikorowitsch J. Charakterisierung der Kooperation von NFATc1 und KrasG12D bei der Genese des Pankreaskarzinoms im transgenen Mausmodell [Dissertation]: Marburg; 2013.
  29. Andea A, Sarkar F, Adsay VN. Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2003;16:996-1006.
  30. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science (New York, NY) 1994;265:346- 55.
  31. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nature genetics 1992;1:45-9.
  32. Völker N. Die Rolle von NFATc1 und p53 bei der epithelial-mesenchymalen Transition des Pankreaskarzinoms [Dissertation]: Marburg; voraussichtlich 2016. -128 -
  33. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development (Cambridge, England) 2002;129:2447-57.
  34. Lee Y, Han J, Yeom KH, Jin H, Kim VN. Drosha in primary microRNA processing. Cold Spring Harbor symposia on quantitative biology 2006;71:51-7.
  35. Li D, Su D, Xue L, Liu Y, Pang W. Establishment of pancreatic cancer stem cells by flow cytometry and their biological characteristics. International journal of clinical and experimental pathology 2015;8:11218-23.
  36. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2013. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2013;24:792-800.
  37. Bhattacharya B, Miura T, Brandenberger R, et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004;103:2956-64.
  38. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS one 2008;3:e2888. -125 -
  39. Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature 2008;456:344-9.
  40. Schneider G, Schmid RM. Genetic alterations in pancreatic carcinoma. Molecular cancer 2003;2:15.
  41. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine 1997;3:730-7.
  42. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science (New York, NY) 1988;241:202-5. -127 -
  43. Tu C, Tan YH, Shaw G, et al. Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution. Acta crystallographica Section D, Biological crystallography 2008;64:471-7.
  44. Wasif N, Ko CY, Farrell J, et al. Impact of tumor grade on prognosis in pancreatic cancer: should we include grade in AJCC staging? Annals of surgical oncology 2010;17:2312-20.
  45. Chene P. In vitro analysis of the dominant negative effect of p53 mutants. Journal of molecular biology 1998;281:205-9.
  46. Satoh K, Hamada S, Shimosegawa T. Involvement of epithelial to mesenchymal transition in the development of pancreatic ductal adenocarcinoma. Journal of gastroenterology 2015;50:140-6.
  47. Lu Y, Zhu H, Shan H, et al. Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer letters 2013;340:113-23.
  48. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews Genetics 2008;9:102- 14.
  49. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
  50. Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Molecular cancer 2010;9:169.
  51. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
  52. Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell stem cell 2008;2:333-44.
  53. Ottenhof NA, de Wilde RF, Maitra A, Hruban RH, Offerhaus GJ. Molecular characteristics of pancreatic ductal adenocarcinoma. Pathology research international 2011;2011:620601.
  54. Hinds PW, Finlay CA, Quartin RS, et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1990;1:571-80.
  55. Hessmann E, Schneider G, Ellenrieder V, Siveke JT. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2015.
  56. Sattler HP, Lensch R, Rohde V, et al. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. The Prostate 2000;45:207-15.
  57. Beals CR, Clipstone NA, Ho SN, Crabtree GR. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes & development 1997;11:824-34.
  58. Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial- mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell cycle (Georgetown, Tex) 2011;10:1312-21.
  59. Costa A, Marasca R, Valentinis B, et al. p53 gene point mutations in relation to p53 nuclear protein accumulation in colorectal cancers. The Journal of pathology 1995;176:45-53.
  60. Lane DP. Cancer. p53, guardian of the genome. Nature 1992;358:15-6.
  61. Seufferlein T, Bachet JB, Van Cutsem E, Rougier P. Pancreatic adenocarcinoma: ESMO- ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2012;23
  62. Spalding D, Williamson RCN. Pancreatic cancer. Medicine 2007;35:325-9.
  63. Quint K, Tonigold M, Di Fazio P, et al. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. International journal of oncology 2012;41:2093-102.
  64. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterology clinics of North America 2007;36:831-49, vi.
  65. Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer cell 2003;4:437-50.
  66. Koenig A, Fernandez-Zapico ME, Ellenrieder V. Primers on molecular pathways--the NFAT transcription pathway in pancreatic cancer. Pancreatology : official journal of the International Association of Pancreatology (IAP) [et al] 2010a;10:416-22.
  67. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA: a cancer journal for clinicians 2013;63:318-48.
  68. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends in cell biology 2007;17:118-26.
  69. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nature reviews Cancer 2001;1:68-76.
  70. Tsutsumi-Ishii Y, Tadokoro K, Hanaoka F, Tsuchida N. Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1995;6:1-8.
  71. Seitz H, Zamore PD. Rethinking the microprocessor. Cell 2006;125:827-9.
  72. Graef IA, Chen F, Chen L, Kuo A, Crabtree GR. Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 2001;105:863-75.
  73. Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor- initiating cells in osteosarcomas. Oncogene 2012;31:2270-82.
  74. Herreros-Villanueva M, Zhang JS, Koenig A, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2013;2:e61.
  75. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem cells (Dayton, Ohio) 2009;27:2383-92.
  76. Merchant AA, Matsui W. Targeting Hedgehog--a cancer stem cell pathway. Clinical cancer research : an official journal of the American Association for Cancer Research 2010;16:3130-40.
  77. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15.
  78. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature medicine 2011;17:211-5.
  79. Abel EV, Kim EJ, Wu J, et al. The notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PloS one 2014;9:e91983.
  80. Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. Journal of molecular cell biology 2014;6:214-30.
  81. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899-908.
  82. Partensky C. Toward a better understanding of pancreatic ductal adenocarcinoma: glimmers of hope? Pancreas 2013;42:729-39.
  83. Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development 2003;17:2205-32.
  84. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annual review of immunology 1997;15:707-47.
  85. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature reviews Cancer 2009;9:265-73.
  86. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer cell 2005;7:469-83.
  87. Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. Journal of molecular cell biology 2011;3:44-50.
  88. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature reviews Drug discovery 2009;8:806-23.
  89. Koorstra JB, Hong SM, Shi C, et al. Widespread activation of the DNA damage response in human pancreatic intraepithelial neoplasia. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2009;22:1439-45.
  90. Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004;119:847-60.
  91. Baumgart S, Chen NM, Siveke JT, et al. Inflammation induced NFATc1-STAT3 Transcription Complex Promotes Pancreatic Cancer initiation by KrasG12D. Cancer discovery 2014.
  92. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-54.
  93. Rochefort MM, Ankeny JS, Kadera BE, et al. Impact of Tumor Grade on Pancreatic Cancer Prognosis: Validation of a Novel TNMG Staging System. Annals of surgical oncology 2013.
  94. Tanase CP, Neagu AI, Necula LG, et al. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World journal of gastroenterology : WJG 2014;20:10790-801.
  95. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Molecular and cellular biology 1998;18:3735-43.
  96. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research 2006;34:D140-4.
  97. Buchholz M, Schatz A, Wagner M, et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. The EMBO journal 2006;25:3714-24.
  98. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proceedings of the National Academy of Sciences of the United States of America 2003;100:8424-9.
  99. Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular cell 2007;26:745-52.
  100. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development 2003;17:1253-70.
  101. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America 2007;104:15472-7.
  102. Wong HH, Lemoine NR. Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nature reviews Gastroenterology & hepatology 2009;6:412-22.
  103. Hruban RH, Maitra A, Goggins M. Update on pancreatic intraepithelial neoplasia. International journal of clinical and experimental pathology 2008;1:306-16.
  104. Douglas D, Hsu JH, Hung L, et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer research 2008;68:6507-15.
  105. Lo HW, Hsu SC, Xia W, et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer research 2007;67:9066- 76.
  106. Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Molecular and cellular biology 2008;28:7168-81.
  107. Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer research 2009;69:2400-7.
  108. Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. International journal of cancer Journal international du cancer 2007;120:1046-54.
  109. Zhou J, Wang CY, Liu T, et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World journal of gastroenterology : WJG 2008;14:925-30.
  110. Li Y, VandenBoom TG, 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine- resistant pancreatic cancer cells. Cancer research 2009;69:6704-12.
  111. Furman JL, Artiushin IA, Norris CM. Disparate effects of serum on basal and evoked NFAT activity in primary astrocyte cultures. Neuroscience letters 2010;469:365-9.
  112. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology 2010;2:a001008.
  113. Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. Journal of the National Cancer Institute 2010;102:340-51.
  114. Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nature reviews Cancer 2009;9:810-20.
  115. Koenig A, Linhart T, Schlengemann K, et al. NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells. Gastroenterology 2010b;138:1189-99 e1-2.
  116. McCaughan F, Pole JC, Bankier AT, et al. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. American journal of respiratory and critical care medicine 2010;182:83-91.
  117. Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends in cell biology 2010;20:299-309.
  118. Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics 2008;40:499- 507.
  119. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer research 2010;70:3606-17.
  120. Shankar S, Nall D, Tang SN, et al. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PloS one 2011;6:e16530.
  121. Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature cell biology 2011;13:317-23.
  122. Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. The Journal of clinical investigation 2004;113:175-9.
  123. Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes & development 2001;15:3243-8.
  124. Spike BT, Wahl GM. p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes & cancer 2011;2:404-19.
  125. Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PloS one 2011;6:e24099.
  126. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010;29:4741-51.
  127. Cox JL, Wilder PJ, Desler M, Rizzino A. Elevating SOX2 levels deleteriously affects the growth of medulloblastoma and glioblastoma cells. PloS one 2012;7:e44087.
  128. Proctor E, Waghray M, Lee CJ, et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PloS one 2013;8:e55820.
  129. Baumgart S, Glesel E, Singh G, et al. Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology 2012;142:388-98 e1-7.
  130. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Molecular cell 2006;21:307-15.
  131. Wang X, Liu Q, Hou B, et al. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells. PloS one 2013;8:e73942.
  132. Luo C, Shaw KT, Raghavan A, et al. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proceedings of the National Academy of Sciences of the United States of America 1996;93:8907-12.
  133. Murray OT, Wong CC, Vrankova K, Rigas B. Phospho-sulindac inhibits pancreatic cancer growth: NFATc1 as a drug resistance candidate. International journal of oncology 2014;44:521-9.
  134. Herreros-Villanueva M, Bujanda L, Billadeau DD, Zhang JS. Embryonic stem cell factors and pancreatic cancer. World journal of gastroenterology : WJG 2014;20:2247-54.
  135. Srivastava SK, Arora S, Singh S, Bhardwaj A, Averett C, Singh AP. MicroRNAs in pancreatic malignancy: progress and promises. Cancer letters 2014;347:167-74.
  136. Castellanos JA, Merchant NB, Nagathihalli NS. Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. OncoTargets and therapy 2013;6:1261-7.
  137. Liu A, Yu X, Liu S. Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chinese journal of cancer 2013;32:483-7. -124 -
  138. Koorstra JB, Hustinx SR, Offerhaus GJ, Maitra A. Pancreatic carcinogenesis. Pancreatology : official journal of the International Association of Pancreatology (IAP) [et al] 2008;8:110- 25.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten