Publikationsserver der Universitätsbibliothek Marburg

Titel:Dynamics in bacterial flagellar systems
Autor:Brenzinger, Susanne
Weitere Beteiligte: Thormann, Kai (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0237
DOI: https://doi.org/10.17192/z2016.0237
URN: urn:nbn:de:hebis:04-z2016-02375
DDC: Biowissenschaften, Biologie
Titel (trans.):Dynamiken in bakteriellen Flagellensystemen
Publikationsdatum:2017-02-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Mikrobiologie, Motility, Bacterial flagella, Motilität, Cell physiology, Zellphysiologie, Flagelle

Summary:
Bacterial cells are highly organized with respect to their shape, structure or function. In particular flagellar motility and chemotaxis of many bacteria require a precise spatiotemporal regulation of the corresponding components to avoid wasting energy. Despite the tight regulation, flagellar motility and chemotaxis are also targets of adaptation in response to extra- and intracellular cues. The balance between tight regulation and flexible adaptation allows bacteria to efficiently thrive in changing and potentially nutrient limiting environments. This thesis focuses on the adaptation of the flagella-mediated motility of the γ-proteobacterium Shewanella oneidensis MR 1 by dynamically exchanging one of its motor components and a system in Shewanella putrefaciens CN-32 that ensures proper polar localization of several proteins, among them the chemotaxis system. S. oneidensis MR-1 possesses a single polar flagellar system but harbors two types of ion-channels, the so-called stators, that power flagellar rotation. The second chapter demonstrates that both stators, the native Na+-dependent PomAB and putatively acquired H+-dependent MotAB complex, are solely sufficient to drive motility in liquid environments and may interact with the flagellar rotor in varying configurations depending on sodium-ion concentrations, likely forming a hybrid motor. The principal environmental cue that can be integrated and reacted to by PomAB/MotAB stator swapping is the external Na+ concentration. Functionality of MotAB on the other hand seems to be tied to the membrane potential and load on the flagellum. Some limitations of MotAB can be overcome by small point mutations in the plug domain of MotB, likely by changing the MotAB channel properties and/or its mechanosensing capability. The second system studied was a landmark protein that serves as an organizational platform involved in different cellular processes including chemotaxis. This transmembrane protein was identified as the functional orthologue of Vibrio cholerae HubP. In S. putrefaciens CN-32 it is required for polar localization and possibly the correct function of the chemotaxis components, but not for placement of the flagellum which depends on the GTPase FlhF. Localization of HubP itself may be dependent on its LysM peptidoglycan-binding domain. Since the swimming speed was decreased when hubP was deleted, a so far unidentified modulator of flagellar motility might require HubP for proper function. In addition, deletion of hubP caused an impairment in twitching motility and affected proper localization of the chromosome partitioning system. Due to its structural similarity to Pseudomonas aeruginosa FimV and partially matching phenotypes upon deletion, the group of HubP/FimV homologs, characterized by a rather conserved N-terminal periplasmic section and a highly variable acidic cytoplasmic part, may serve as polar markers in various bacterial species with respect to different cellular functions. Thus, two separate systems target the flagellum and chemotaxis system to the cell pole.

Bibliographie / References

  1. Terahara, N., Sano, M. & Ito, M., 2012. A Bacillus Flagellar Motor That Can Use Both Na+ and K+ as a Coupling Ion Is Converted by a Single Mutation to Use Only Na+. PLoS ONE, 7(9).
  2. Lam, H., Schofield, W.B. & Jacobs-Wagner, C., 2006. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell, 124(5), pp.1011-1023.
  3. Yamaichi, Y. et al., 2012. A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes and Development, 26(20), pp.2348-2360.
  4. Cluzel, P., Surette, M. & Leibler, S., 2000. An ultrasensitive bacterial motor revealed by monitoring Fogel, M.A. & Waldor, M.K., 2006. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes and Development, 20(23), pp.3269-3282.
  5. Huitema, E. et al., 2006. Bacterial birth scar proteins mark future flagellum assembly site. Cell, 124(5), pp.1025-1037.
  6. Takekawa, N. et al., 2012. Characterization of PomA mutants defective in the functional assembly of the Na+-driven flagellar motor in Vibrio alginolyticus. Journal of Bacteriology, 194(8), pp.1934- 1939.
  7. Li, N., Kojima, S. & Homma, M., 2011. Characterization of the periplasmic region of PomB, a Na +- driven flagellar stator protein in Vibrio alginolyticus. Journal of Bacteriology, 193(15), pp.3773- 3784.
  8. Morimoto, Y. V. et al., 2010. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Molecular Microbiology, 78(5), pp.1117-1129.
  9. Takekawa, N., Kojima, S. & Homma, M., 2014. Contribution of many charged residues at the statorrotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. Journal of Bacteriology, 196(7), pp.1377-1385.
  10. Kim, K. et al., 2006. Crystal structure of PilF: Functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 340(4), pp.1028-1038.
  11. Möll, A. et al., 2010. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Molecular Microbiology, 77(1), pp.90-107.
  12. Sowa, Y. et al., 2005. Direct observation of steps in rotation of the bacterial flagellar motor. Nature, 437(7060), pp.916-919.
  13. Morimoto, Y. V. et al., 2013. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. Journal of Bacteriology, 195(3), pp.474-481.
  14. Beeby, M. et al., 2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. , pp.1-10.
  15. Lele, P.P., Hosu, B.G. & Berg, H.C., 2013. Dynamics of mechanosensing in the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America, 110(29), pp.11839-44.
  16. Kojima, S., 2015. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Current Opinion in Microbiology, 28, pp.66-71.
  17. Alexandre, G., Greer-Phillips, S. & Zhulin, I.B., 2004. Ecological role of energy taxis in microorganisms. FEMS Microbiology Reviews, 28(1), pp.113-126.
  18. Stocker, R. & Seymour, J.R., 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiology and molecular biology reviews : MMBR, 76(4), pp.792-812.
  19. Vilella, A.J. et al., 2009. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research, 19(2), pp.327-335.
  20. Ugalde, J. a, Chang, B.S.W. & Matz, M. V, 2004. Evolution of coral pigments recreated. Science (New York, N.Y.), 305(5689), p.1433.
  21. Matz, M. V., Lukyanov, K.A. & Lukyanov, S.A., 2002. Family of the green fluorescent protein: Journey to the end of the rainbow. BioEssays, 24(10), pp.953-959.
  22. Altegoer, F. et al., 2014. From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum. Biotechnology & genetic engineering reviews, 30(1-2), pp.49-64.
  23. Nishihara, Y. & Kitao, A., 2015. Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. Proceedings of the National Academy of Sciences, p.201502991.
  24. Semmler, a. B.T. et al., 2000. Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa. Microbiology, 146(6), pp.1321-1332.
  25. Begg, K.J., Hatfull, G.F. & Donachie, W.D., 1980. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: Cell division gene ftsQ. Journal of Bacteriology, 144(1), pp.435-437.
  26. Asai, Y. et al., 2003. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol, 327(2), pp.453-463.
  27. Tipping, M.J., Delalez, N.J., et al., 2013. Load-dependent assembly of the bacterial flagellar motor. mBio, 4(4).
  28. Sourjik, V. & Berg, H.C., 2000. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Molecular Microbiology, 37(4), pp.740-751.
  29. Boschert, R., Adler, F.R. & Blair, D.F., 2015. Loose coupling in the bacterial flagellar motor. Proceedings of the National Academy of Sciences of the United States of America, 112(15), pp.4755-60.
  30. Buist, G. et al., 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology, 68(4), pp.838-847.
  31. Wadhams, G.H. & Armitage, J.P., 2004. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol, 5(12), pp.1024-1037.
  32. Ghosh, S.K., Hajra, S., Paek, A., and Jayaram, M., 2006. Mechanisms for chromosome and plasmid segregation. Annual review of biochemistry, 75, pp.211-241.
  33. Reeve, J.N. et al., 1973. Minicells of Bacillus subtilis. Journal of Bacteriology, 114(2), pp.860-873.
  34. Terahara, N., Krulwich, T. a & Ito, M., 2008. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proceedings of the National Academy of Sciences of the United States of America, 105(38), pp.14359-64.
  35. Jaques, S., Kim, Y.K. & McCarter, L.L., 1999. Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proceedings of the National Academy of Sciences of the United States of America, 96(10), pp.5740-5745.
  36. Kojima, S. et al., 1999. Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. Journal of molecular biology, 285(4), pp.1537- 47.
  37. Lo, C.-J. et al., 2007. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophysical journal, 93(1), pp.294-302.
  38. Gerdes, K., Moller-Jensen, J. & Jensen, R.B., 2000. Plasmid and chromosome partitioning: Surprises from phylogeny. Molecular Microbiology, 37(3), pp.455-466.
  39. Bai, F. et al., 2013. Populational heterogeneity vs. temporal fluctuation in escherichia coli flagellar motor switching. Biophysical Journal, 105(9), pp.2123-2129.
  40. Tipping, M.J., Steel, B.C., et al., 2013. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Molecular Microbiology, 87(2), pp.338-347.
  41. Stocker, R. et al., 2008. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 105(11), pp.4209-4214.
  42. Gosink, K.K. & Häse, C.C., 2000. Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. Journal of Bacteriology, 182(15), pp.4234-4240.
  43. Sourjik, V. & Wingreen, N.S., 2012. Responding to chemical gradients: bacterial chemotaxis. Current Opinion in Cell Biology, 24(2), pp.262-268.
  44. Michel, G.P.F. et al., 2011. Role of fimV in type II secretion system-dependent protein secretion of Pseudomonas aeruginosa on solid medium. Microbiology (Reading, England), 157(Pt 7), pp.1945-54.
  45. Yakushi, T. et al., 2006. Roles of charged residues of rotor and stator in flagellar rotation: Comparative study using H+-driven and Na+-driven motors in Escherichia coli. Journal of Bacteriology, 188(4), pp.1466-1472.
  46. Bange, G. & Sinning, I., 2013. SIMIBI twins in protein targeting and localization. Nature structural & molecular biology, 20(7), pp.776-80.
  47. Lipkow, K., Andrews, S.S. & Bray, D., 2005. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. In Journal of Bacteriology. pp. 45-53.
  48. Fukuoka, H. et al., 2009. Sodium-dependent dynamic assembly of membrane complexes in sodiumdriven flagellar motors. Molecular Microbiology, 71(4), pp.825-835.
  49. Kazmierczak, B.I. & Hendrixson, D.R., 2013. Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular Microbiology, 88(4), pp.655-663.
  50. Bubendorfer, S. et al., 2012. Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol Microbiol, 83(2), pp.335-350.
  51. Thiem, S. & Sourjik, V., 2008. Stochastic assembly of chemoreceptor clusters in Escherichia coli. Molecular Microbiology, 68(5), pp.1228-1236.
  52. Thattai, M. & Van Oudenaarden, A., 2004. Stochastic gene expression in fluctuating environments. Genetics, 167(1), pp.523-530.
  53. Booth, I.R., 2002. Stress and the single cell: Intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. International Journal of Food Microbiology, 78(1-2), pp.19-30.
  54. Che, Y.S. et al., 2008. Suppressor analysis of the MotB(D33E) mutation to probe bacterial flagellar motor dynamics coupled with proton translocation. Journal of Bacteriology, 190(20), pp.6660- 6667.
  55. Oldfield, N.J. et al., 2007. T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cellular Microbiology, 9(2), pp.463-478.
  56. Cerveny, L. et al., 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: Role in virulence mechanisms. Infection and Immunity, 81(3), pp.629-635.
  57. Mohl, D.A., Easter, J. & Gober, J.W., 2001. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Molecular Microbiology, 42(3), pp.741-755.
  58. Castillo, D.J. et al., 2013. The C-terminal periplasmic domain of MotB is responsible for loaddependent control of the number of stators of the bacterial flagellar motor. Biophysics, 9, pp.173-181.
  59. Hosking, E.R. et al., 2006. The Escherichia coli MotAB proton channel unplugged. J Mol Biol, 364(5), pp.921-937.
  60. Pandza, S. et al., 2000. The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Molecular microbiology, 36(2), pp.414-423.
  61. Kent, W. et al., 2002. The human genome browser at UCSC. Genome Research, 12(6), pp.996-1006.
  62. Reid, S.W. et al., 2006. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proceedings of the National Academy of Sciences of the United States of America, 103(21), pp.8066-8071.
  63. Wehbi, H. et al., 2011. The peptidoglycan-binding protein fimv promotes assembly of the pseudomonas aeruginosa type IV pilus secretin. Journal of Bacteriology, 193(2), pp.540-550.
  64. Lutkenhaus, J., 1998. The regulation of bacterial cell division: a time and place for it. Current opinion in microbiology, 1(2), pp.210-215.
  65. Bateman, a & Bycroft, M., 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). Journal of molecular biology, 299(4), pp.1113-1119.
  66. Blatch, G.L. & Lässle, M., 1999. The tetratricopeptide repeat: A structural motif mediating proteinprotein interactions. BioEssays, 21(11), pp.932-939.
  67. Inoue, Y. et al., 2008. Torque-Speed Relationships of Na+-driven Chimeric Flagellar Motors in Escherichia coli. Journal of Molecular Biology, 376(5), pp.1251-1259.
  68. Thormann, K.M. & Paulick, A., 2010. Tuning the flagellar motor. Microbiology, 156(5), pp.1275-1283.
  69. Paulick, A. et al., 2009. Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Molecular Microbiology, 71(4), pp.836-850.
  70. Shapiro, L., McAdams, H.H. & Losick, R., 2009. Why and how bacteria localize proteins. Science (New York, NY), 326(5957), pp.1225-1228.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten