Publikationsserver der Universitätsbibliothek Marburg

Titel:Bewegungskontrolle der Handmotorik bei Patienten mit Asperger Autismus
Autor:Riegg, Florian
Weitere Beteiligte: Dodel, Richard (Prof. Dr. med.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0188
DOI: https://doi.org/10.17192/z2016.0188
URN: urn:nbn:de:hebis:04-z2016-01885
DDC: Medizin
Titel (trans.):Motor control of hand movement in patients with Asperger Autism
Publikationsdatum:2016-03-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Interne Vorwärtsmodelle, pegboard, prädiktive Bewegungskontrolle, predictive motor control, grip force, Pegboard, internal forward models, Bewegungssteuerung, Greifen, Autismus, Kleinhirn, Asperger autism, reach-to-grasp, Asperger Autismus, Griffkraft

Zusammenfassung:
Einleitung: Patienten, die an einer Autismus-Spektrum-Störung leiden, weisen häufig motorische Defizite unterschiedlichen Ausmaßes auf. Es ist unklar, welche Pathophysiologie und welche Hirnsysteme für diese Bewegungsstörungen verantwortlich sind. Post-mortem Untersuchungen, strukturelle und funktionelle Bildgebungsstudien sowie behaviorale Studien bei Autisten ergaben Hinweise, dass das Kleinhirn dieser Patienten Veränderungen aufweist, welche einen Beitrag zu den beschriebenen Bewegungsstörungen leisten könnten. Eine prädiktive Bewegungskontrolle basiert vermutlich auf sogenannten internen Modellen, die sowohl dynamische Wirkungen eigener Bewegungen als auch Objekteigenschaften sowie die daraus resultierenden sensorischen Feedbackinformationen vorhersehen und in die prädiktiven motorischen Befehle integrieren. Es bestehen Hinweise, dass Regionen des Kleinhirns hirnanatomisches Korrelat solcher interner Modelle darstellen. In dieser Studie wurden motorische Funktionen von Asperger-Patienten auf prädiktive Kontrollmechanismen und Bewegungskoordination anhand einer Reihe von Experimenten untersucht. Methoden: Es wurden die motorischen Leistungen von 11 Patienten mit Asperger-Autismus im Vergleich zu 11 gesunden Kontrollpersonen getestet. Die Gruppen waren alters-, geschlechts- und intelligenzangepasst, alle Teilnehmer waren rechtshändig. In Versuch 1 wurde die Platzierungsaufgabe des Purdue Pegboard Tests durchgeführt. Dabei mussten kleine Metallstifte in untereinander angeordnete, vorgestanzte Löcher schnellstmöglich in einer vorgegebenen Zeit gesteckt werden. Auf diese Weise konnten wir die Feinmotorik und Hand-Auge-Koordination untersuchen und zugleich erhebliche motorische Defizite ausschließen. In Versuch 2 untersuchten wir die prädiktive Bewegungskontrolle anhand der Kopplung von Griff- und Lastkraft beim Anheben eines Objektes. Die Probanden mussten ein Testobjekt greifen und anheben, welches einen Griffkraft- und einen Bewegungssensor beinhaltete. In einer weiteren Versuchsanordnung ließen die Teilnehmer ein Gewicht in ein Behältnis fallen, welches an das mit der kontralateralen Hand gehaltene Testobjekt angebracht war. Dadurch konnte ein prädiktiver Anstieg der Griffkraft untersucht werden. In Versuch 3 griffen die Teilnehmer einen Würfel zwischen Zeigefinger und Daumen. Eine Greifbewegung besteht aus zwei Komponenten: dem Handtransport und der Griffformation. Es wurden mehrere Parameter berechnet, die das örtliche und zeitliche Zusammenspiel der beiden Komponenten beschreiben. Die Greifbewegungen wurden dreidimensional mit einem Bewegungsanalysesystem aufgezeichnet. Ergebnisse: Im Purdue Pegboard Test zeigten Patienten signifikant geringere Werte als Gesunde, insbesondere mit der linken Hand. Die Defizite entsprachen jedoch nicht einer funktionellen motorischen Störung. In den Hebeversuchen wiesen Patienten eine signifikant schlechtere zeitliche Koordination zwischen Griff- und Lastkraftanstieg auf. Im Versuch zur selbstgenerierten Gewichtspertubation konnten beide Gruppen einen prädiktiven Anstieg der Griffkraft entwickeln. Patienten zeigten jedoch eine signifikant höhere Ausgangsgriffkraft und eine geringere absolute Griffkraftzunahme vor Gewichtseinschlag. In den Greifversuchen wählten Patienten eine wesentlich flachere und geradere Annäherung an das Objekt als gesunde Kontrollen. Patienten wiesen zudem eine signifikant kleinere Fingeröffnung und Fingeröffnungsgeschwindigkeit auf. Die Geschwindigkeit des Handtransports war in der Patientengruppe im Mittel deutlich langsamer als in der Kontrollgruppe. Die zeitliche Kopplung zwischen Handtransport und Griffformation unterschied sich zwischen den Gruppen jedoch kaum. Diskussion: In unseren Versuchen offenbarten wir mehrere signifikante Unterschiede der motorischen Leistungen und des motorischen Verhaltens zwischen Asperger- Patienten und gesunden Kontrollpersonen. Dies lässt eine gestörte prädiktive Bewegungskontrolle und eine zerebelläre Störung bei Asperger-Autismus annehmen. Insbesondere zeigten wir, dass Patienten eine veränderte Kopplung zwischen Griff- und Lastkraft beim Heben eines Objekts aufwiesen. Des Weiteren könnte die veränderte Handbewegungskurve in den Greifversuchen aus einem gestörten temporospatialen Zusammenspiel von proximalen und distalen Muskelgruppen resultieren und eine veränderte zerebelläre Verarbeitung von Vorwärtsmodellen widerspiegeln. Die langsamere Handbewegungsgeschwindigkeit der Patienten in den Greifversuchen korrelierte mit deren Leistungen im Purdue Pegboard Test. Wir nehmen an, dass diese Verlangsamung kompensatorisch ist, um eine gestörte Verarbeitung von internen Modellen und deren Integration in die prädiktive Bewegungskontrolle auszugleichen.

Bibliographie / References

  1. Johnson-Greene, D., K. M. Adams, et al. (1997). "Impaired upper limb coordination in alcoholic cerebellar degeneration." Arch Neurol 54(4): 436-439.
  2. Bailey, A., P. Luthert, et al. (1998). "A clinicopathological study of autism." Brain 121 ( Pt 5): 889-905.
  3. Palmen, S. J., H. van Engeland, et al. (2004). "Neuropathological findings in autism." Brain 127(Pt 12): 2572-2583.
  4. Ilg, W., M. A. Giese, et al. (2008). "The influence of focal cerebellar lesions on the control and adaptation of gait." Brain 131(Pt 11): 2913-2927.
  5. Jeannerod, M., Y. Paulignan, et al. (1998). "Grasping an object: one movement, several components." Novartis Foundation symposium 218: 5-16; discussion 16-20.
  6. Bastian, A. J. and W. T. Thach (1995). "Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus." Ann Neurol 38(6): 881-892.
  7. Vingerhoets, F. J., M. Schulzer, et al. (1997). "Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion?" Ann Neurol 41(1): 58-64.
  8. Fellows, S. J. and J. Noth (2004). "Grip force abnormalities in de novo Parkinson's disease." Movement Disorders 19(5): 560-565.
  9. Rizzolatti, G., L. Fadiga, et al. (1996). "Localization of grasp representations in humans by PET: 1. Observation versus execution." Exp Brain Res 111(2): 246-252.
  10. Flanagan, J. R. and A. M. Wing (1993). "Modulation of grip force with load force during point- to-point arm movements." Exp Brain Res 95(1): 131-143.
  11. Kohen-Raz, R., F. R. Volkmar, et al. (1992). "Postural control in children with autism." J Autism Dev Disord 22(3): 419-432.
  12. Asperger, H. (1944). Die "Autistischen Psychopathen" im Kindesalter. Archiv für Psychiatrie und Nervenkrankheiten 117. Wien: 76-136.
  13. Manjiviona, J. and M. Prior (1995). "Comparison of Asperger syndrome and high-functioning autistic children on a test of motor impairment." J Autism Dev Disord 25(1): 23-39.
  14. Rand, M. K., Y. Shimansky, et al. (2000). "Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients." Exp Brain Res 135(2): 179-188.
  15. Serrien, D. J. and M. Wiesendanger (1999). "Grip-load force coordination in cerebellar patients." Exp Brain Res 128(1-2): 76-80.
  16. Marteniuk, R. G., J. L. Leavitt, et al. (1990). "Functional relationships between grasp and transport components in a prehension task." Human Movement Science 9(2): 149-176.
  17. Rost, K., D. A. Nowak, et al. (2005). "Preserved and impaired aspects of predictive grip force control in cerebellar patients." Clin Neurophysiol 116(6): 1405-1414.
  18. Stanfield, A. C., A. M. McIntosh, et al. (2008). "Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies." Eur Psychiatry 23(4): 289-299.
  19. Miall, R. C. and L. O. D. Christensen (2004). "The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance." Neurosci Lett 371(2–3): 185-189.
  20. Küper, M., J. Hermsdörfer, et al. (2011). "Lesions of the dentate and interposed nuclei are associated with impaired prehension in cerebellar patients." Neurosci Lett 499(2): 132- 136.
  21. Kuhn, S., A. Romanowski, et al. (2012). "Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds." Neuroimage 59(2): 1615-1621.
  22. Imazu, S., T. Sugio, et al. (2007). "Differences between actual and imagined usage of chopsticks: an fMRI study." Cortex 43(3): 301-307.
  23. Kawato, M., T. Kuroda, et al. (2003). "Internal forward models in the cerebellum: fMRI study on grip force and load force coupling." Prog Brain Res 142: 171-188.
  24. Fellows, S. J., J. Ernst, et al. (2001). "Precision grip deficits in cerebellar disorders in man." Clin Neurophysiol 112(10): 1793-1802.
  25. Osu, R., Y. Uno, et al. (1997). "Possible explanations for trajectory curvature in multijoint arm movements." J Exp Psychol Hum Percept Perform 23(3): 890-913.
  26. Costa, L. D., H. G. Vaughan, Jr., et al. (1963). "Purdue Pegboard as a predictor of the presence and laterality of cerebral lesions." J Consult Psychol 27: 133-137.
  27. Courchesne, E., R. Yeung-Courchesne, et al. (1988). "Hypoplasia of cerebellar vermal lobules VI and VII in autism." N Engl J Med 318(21): 1349-1354.
  28. Jeannerod, M. (1984). "The timing of natural prehension movements." J Mot Behav 16(3): 235- 254.
  29. Mostofsky, S. H., R. Bunoski, et al. (2004). "Children with autism adapt normally during a catching task requiring the cerebellum." Neurocase 10(1): 60-64.
  30. Nowak, D. A., J. Hermsdorfer, et al. (2004). "Predictive and reactive finger force control during catching in cerebellar degeneration." Cerebellum 3(4): 227-235.
  31. Gowen, E. and R. C. Miall (2007). "The cerebellum and motor dysfunction in neuropsychiatric disorders." Cerebellum 6(3): 268-279.
  32. Timmann, D. and I. Daum (2007). "Cerebellar contributions to cognitive functions: A progress report after two decades of research." Cerebellum 6(3): 159-162.
  33. Ouchi, Y., H. Okada, et al. (1999). "Brain activation during maintenance of standing postures in humans." Brain 122 ( Pt 2): 329-338.
  34. McAlonan, G. M., E. Daly, et al. (2002). "Brain anatomy and sensorimotor gating in Asperger's syndrome." Brain 125(Pt 7): 1594-1606.
  35. McAlonan, G. M. (2004). "Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism." Brain 128(2): 268-276.
  36. Grafton, S. T., A. H. Fagg, et al. (1996). "Functional anatomy of pointing and grasping in humans." Cerebral cortex 6(2): 226-237.
  37. Miall, R. C. and P. Silburn (1997). "A study of motor performance and motor learning in episodic ataxia." Neuroreport 8(9-10): 2159-2164.
  38. Mari, M., U. Castiello, et al. (2003). "The reach-to-grasp movement in children with autism spectrum disorder." Philos Trans R Soc Lond B Biol Sci 358(1430): 393-403.
  39. Begliomini, C., M. B. Wall, et al. (2007). "Differential cortical activity for precision and whole- hand visually guided grasping in humans." Eur J Neurosci 25(4): 1245-1252.
  40. Klin, A., F. R. Volkmar, et al. (1995). "Validity and neuropsychological characterization of Asperger syndrome: convergence with nonverbal learning disabilities syndrome." J Child Psychol Psychiatry 36(7): 1127-1140.
  41. Rinehart, N. J., B. J. Tonge, et al. (2006). "Gait function in newly diagnosed children with autism: Cerebellar and basal ganglia related motor disorder." Dev Med Child Neurol 48(10): 819-824.
  42. Shadmehr, R. and H. H. Holcomb (1997). "Neural Correlates of Motor Memory Consolidation." Science 277(5327): 821-825.
  43. Blakemore, S. J., D. Wolpert, et al. (2000). "Why can't you tickle yourself?" Neuroreport 11(11): R11-16.
  44. Diedrichsen, J. (2004). "Cerebellar Involvement in Anticipating the Consequences of Self- Produced Actions During Bimanual Movements." J Neurophysiol 93(2): 801-812.
  45. Küper, M., B. Brandauer, et al. (2011). "Impaired prehension is associated with lesions of the superior and inferior hand representation within the human cerebellum." J Neurophysiol 105(5): 2018-2029.
  46. Monzee, J. and A. M. Smith (2004). "Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip." J Neurophysiol 91(3): 1230-1239.
  47. Minshew, N. J., K. Sung, et al. (2004). "Underdevelopment of the postural control system in autism." Neurology 63(11): 2056-2061.
  48. Courchesne, E., O. Saitoh, et al. (1994). "Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging." AJR. American journal of roentgenology 162(1): 123-130.
  49. Akshoomoff, N. A. and E. Courchesne (1994). "ERP Evidence for a Shifting Attention Deficit in Patients with Damage to the Cerebellum." J Cogn Neurosci 6(4): 388-399.
  50. Griebling, J., N. J. Minshew, et al. (2010). "Dorsolateral prefrontal cortex magnetic resonance imaging measurements and cognitive performance in autism." Journal of child neurology 25(7): 856-863.
  51. Gribble, P. L. and D. J. Ostry (1999). "Compensation for interaction torques during single-and multijoint limb movement." J Neurophysiol 82(5): 2310-2326.
  52. Abell, F., M. Krams, et al. (1999). "The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans." Neuroreport 10(8): 1647-1651.
  53. Muller, F. and J. Dichgans (1994). "Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions." Exp Brain Res 101(3): 485-492.
  54. Paulignan, Y., V. G. Frak, et al. (1997). "Influence of object position and size on human prehension movements." Exp Brain Res 114(2): 226-234.
  55. Castiello, U., K. Bennett, et al. (1999). "The reach-to-grasp movement in Parkinson's disease: response to a simultaneous perturbation of object position and object size." Exp Brain Res 125(4): 453-462.
  56. Rinehart, N. J., M. A. Bellgrove, et al. (2006). "An examination of movement kinematics in young people with high-functioning autism and Asperger's disorder: further evidence for a motor planning deficit." J Autism Dev Disord 36(6): 757-767.
  57. Meindl, T., B. Schmid, et al. (2012). "Contribution of the Cerebellum to the Coupling of Grip Force and Pull Force During an Isometric Precision Grip Task." The Cerebellum 11(1): 167-180.
  58. Nowak, D. A., H. Topka, et al. (2007). "The role of the cerebellum for predictive control of grasping." Cerebellum 6(1): 7-17.
  59. Gidley Larson, J. C., A. J. Bastian, et al. (2008). "Acquisition of internal models of motor tasks in children with autism." Brain 131(Pt 11): 2894-2903.
  60. Sivaswamy, L., A. Kumar, et al. (2010). "A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder." Journal of child neurology 25(10): 1223-1231.
  61. Nowak, D. A. and J. Hermsdorfer (2004). "[Analysis of grip force during object manipulation. Method for the objective measurement of physiological normal and impaired hand function]." Der Nervenarzt 75(8): 725-733.
  62. Kudoh, N., M. Hattori, et al. (1997). "An analysis of spatiotemporal variability during prehension movements: effects of object size and distance." Exp Brain Res 117(3): 457- 464.
  63. Desmurget, M., C. Prablanc, et al. (1999). "Are Reaching Movements Planned to be Straight and Invariant in the Extrinsic Space? Kinematic Comparison Between Compliant and Unconstrained Motions." The Quarterly Journal of Experimental Psychology Section A 52(4): 981-1020.
  64. Szatmari, P., L. Tuff, et al. (1990). "Asperger's syndrome and autism: neurocognitive aspects." J Am Acad Child Adolesc Psychiatry 29(1): 130-136.
  65. Wing, L. (1981). "Asperger syndrome: a clinical account." Psychological Medicine 11: 115-129.
  66. Gilbert, S. J., G. Bird, et al. (2008). "Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: an fMRI study of two executive function tasks." Neuropsychologia 46(9): 2281-2291.
  67. Williams, R. S., S. L. Hauser, et al. (1980). "Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior." Arch Neurol 37(12): 749-753.
  68. Gowen, E. and R. C. Miall (2005). "Behavioural aspects of cerebellar function in adults with Asperger syndrome." Cerebellum 4(4): 279-289.
  69. Jahn, K., A. Deutschländer, et al. (2004). "Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging." Neuroimage 22(4): 1722-1731.
  70. Nickl-Jockschat, T., U. Habel, et al. (2012). "Brain structure anomalies in autism spectrum disorder--a meta-analysis of VBM studies using anatomic likelihood estimation." Human brain mapping 33(6): 1470-1489.
  71. Blakemore, S. J., D. M. Wolpert, et al. (1998). "Central cancellation of self-produced tickle sensation." Nat Neurosci 1(7): 635-640.
  72. Bastian, A. J., T. A. Martin, et al. (1996). "Cerebellar ataxia: abnormal control of interaction torques across multiple joints." J Neurophysiol 76(1): 492-509.
  73. Whitney, E. R., T. L. Kemper, et al. (2008). "Cerebellar Purkinje Cells are Reduced in a Subpopulation of Autistic Brains: A Stereological Experiment Using Calbindin-D28k." Cerebellum 7(3): 406-416.
  74. Coltz, J. D., M. T. Johnson, et al. (1999). "Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking." J Neurosci 19(5): 1782-1803.
  75. Rand, M. K., A. L. Smiley-Oyen, et al. (2006). "Control of aperture closure during reach-to-grasp movements in parkinson's disease." Exp Brain Res 168(1-2): 131-142.
  76. Haggard, P., R. C. Miall, et al. (1995). "Damage to cerebellocortical pathways after closed head injury: a behavioural and magnetic resonance imaging study." Journal of neurology, neurosurgery, and psychiatry 58(4): 433-438.
  77. Mostofsky, S. H., S. K. Powell, et al. (2009). "Decreased connectivity and cerebellar activity in autism during motor task performance." Brain 132(9): 2413-2425.
  78. Nowak, D. A., D. Timmann, et al. (2007). "Dexterity in cerebellar agenesis." Neuropsychologia 45(4): 696-703.
  79. Nowak, D. A., C. Grefkes, et al. (2007). "Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke." European Journal of Neuroscience 25(10): 3173-3184.
  80. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Washington, D.C, American Psychiatric Association.
  81. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders : DSM-IV-TR. Washington, DC, American Psychiatric Association: xxxvii, 943.
  82. Nayate, A., B. J. Tonge, et al. (2012). "Differentiation of high-functioning autism and Asperger's disorder based on neuromotor behaviour." J Autism Dev Disord 42(5): 707-717.
  83. David, N., A. Gawronski, et al. (2007). "Dissociation Between Key Processes of Social Cognition in Autism: Impaired Mentalizing But Intact Sense of Agency." J Autism Dev Disord 38(4): 593-605.
  84. Fombonne, E. and L. Tidmarsh (2003). "Epidemiologic data on Asperger disorder." Child Adolesc Psychiatr Clin N Am 12(1): 15-21.
  85. Boecker, H., A. Lee, et al. (2005). "Force level independent representations of predictive grip force–load force coupling: A PET activation study." Neuroimage 25(1): 243-252.
  86. Wolpert, D. M. and R. C. Miall (1996). "Forward Models for Physiological Motor Control." Neural Netw 9(8): 1265-1279.
  87. Schoch, B., A. Dimitrova, et al. (2006). "Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients." Neuroimage 30(1): 36-51.
  88. Vilensky, J. A., A. R. Damasio, et al. (1981). "Gait disturbances in patients with autistic behavior: a preliminary study." Arch Neurol 38(10): 646-649.
  89. Hejdukova, B., N. Hosseini, et al. (2002). "Grip and load force coordination during a manual transport movement: findings in healthy participants." Motor Control 6(3): 282-293.
  90. Nowak, D. A., J. Hermsdorfer, et al. (2002). "Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy." Exp Brain Res 145(1): 28-39.
  91. Tewes, U. (1991). Hamburg-Wechsler Intelligenztest fuer Erwachsene, Revision 1991. Bern, Huber.
  92. Bauman, M. and T. L. Kemper (1985). "Histoanatomic observations of the brain in early infantile autism." Neurology 35(6): 866-874.
  93. Imamizu, H., S. Miyauchi, et al. (2000). "Human cerebellar activity reflecting an acquired internal model of a new tool." Nature 403(6766): 192-195.
  94. Nowak, D. A., J. Hermsdörfer, et al. (2005). "Impaired generalization of weight-related information during grasping in cerebellar degeneration." Neuropsychologia 43(1): 20- 27.
  95. Courchesne, E., J. Townsend, et al. (1994). "Impairment in shifting attention in autistic and cerebellar patients." Behavioral neuroscience 108(5): 848-865.
  96. van Donkelaar, P. and R. G. Lee (1994). "Interactions between the eye and hand motor systems: disruptions due to cerebellar dysfunction." J Neurophysiol 72(4): 1674-1685.
  97. Kawato, M. (1999). "Internal models for motor control and trajectory planning." Curr Opin Neurobiol 9(6): 718-727.
  98. Wolpert, D. M., R. C. Miall, et al. (1998). "Internal models in the cerebellum." Trends in Cognitive Sciences 2(9): 338-347.
  99. World Health Organization (1990). International statistical classification of diseases and related health problems (ICD-10). Geneva, World Health Organization (WHO).
  100. Ghaziuddin, M., E. Butler, et al. (1994). "Is clumsiness a marker for Asperger syndrome?" J Intellect Disabil Res 38 ( Pt 5): 519-527.
  101. Hallett, M., M. K. Lebiedowska, et al. (1993). "Locomotion of autistic adults." Arch Neurol 50(12): 1304-1308.
  102. Ritvo, E. R., B. J. Freeman, et al. (1986). "Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report." Am J Psychiatry 143(7): 862-866.
  103. Nitschke, M. F., G. Stavrou, et al. (2003). "Modulation of cerebellar activation by predictive and non-predictive sequential finger movements." Cerebellum 2(3): 233-240.
  104. Schmitz, C., J. Martineau, et al. (2003). "Motor control and children with autism: deficit of anticipatory function?" Neurosci Lett 348(1): 17-20.
  105. Fournier, K. A., C. J. Hass, et al. (2010). "Motor coordination in autism spectrum disorders: a synthesis and meta-analysis." J Autism Dev Disord 40(10): 1227-1240.
  106. Weimer, A. K., A. M. Schatz, et al. (2001). ""Motor" impairment in Asperger syndrome: evidence for a deficit in proprioception." J Dev Behav Pediatr 22(2): 92-101.
  107. Hardan, A. Y., M. Kilpatrick, et al. (2003). "Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism." Journal of child neurology 18(5): 317-324.
  108. Wolpert, D. M. and M. Kawato (1998). "Multiple paired forward and inverse models for motor control." Neural Netw 11(7-8): 1317-1329.
  109. Desmurget, M. and C. Prablanc (1997). "Postural control of three-dimensional prehension movements." J Neurophysiol 77(1): 452-464.
  110. Molloy, C. A., K. N. Dietrich, et al. (2003). "Postural stability in children with autism spectrum disorder." J Autism Dev Disord 33(6): 643-652.
  111. Fellows, S. J., J. Noth, et al. (1998). "Precision grip and Parkinson's disease." Brain 121(9): 1771- 1784.
  112. Johansson, R. S. and G. Westling (1988). "Programmed and triggered actions to rapid load changes during precision grip." Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 71(1): 72-86.
  113. Espinoza, E. and A. M. Smith (1990). "Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights." J Neurophysiol 64(3): 698-714.
  114. Mason, C. R., C. M. Hendrix, et al. (2006). "Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey." J Neurophysiol 95(1): 144-158.
  115. Dugas, C. and A. M. Smith (1992). "Responses of cerebellar Purkinje cells to slip of a hand-held object." J Neurophysiol 67(3): 483-495.
  116. Johansson, R. S. and G. Westling (1984). "Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects." Exp Brain Res 56(3): 550-564.
  117. Paulignan, Y., C. MacKenzie, et al. (1991). "Selective perturbation of visual input during prehension movements. 1. The effects of changing object position." Exp Brain Res 83(3): 502-512.
  118. Spraker, M. B., D. M. Corcos, et al. (2012). "Specific cerebellar regions are related to force amplitude and rate of force development." Neuroimage 59(2): 1647-1656.
  119. Gomi, H., M. Shidara, et al. (1998). "Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes." J Neurophysiol 80(2): 818-831.
  120. Oldfield, R. C. (1971). "The assessment and analysis of handedness: the Edinburgh inventory." Neuropsychologia 9(1): 97-113.
  121. Baron-Cohen, S., S. Wheelwright, et al. (2001). "The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians." J Autism Dev Disord 31(1): 5-17.
  122. Miall, R. C., G. Z. Reckess, et al. (2001). "The cerebellum coordinates eye and hand tracking movements." Nat Neurosci 4(6): 638-644.
  123. Blakemore, S. J., C. D. Frith, et al. (2001). "The cerebellum is involved in predicting the sensory consequences of action." Neuroreport 12(9): 1879-1884.
  124. Kemper, T. L. and M. L. Bauman (1993). "The contribution of neuropathologic studies to the understanding of autism." Neurologic clinics 11(1): 175-187.
  125. Nowak, D. A., J. Hermsdorfer, et al. (2001). "The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object." Eur J Neurosci 14(4): 756-762.
  126. Ehlers, S. and C. Gillberg (1993). "The epidemiology of Asperger syndrome. A total population study." J Child Psychol Psychiatry 34(8): 1327-1350.
  127. Flanagan, J. R. and A. M. Wing (1997). "The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads." J Neurosci 17(4): 1519-1528.
  128. Bootsma, R. J., R. G. Marteniuk, et al. (1994). "The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics." Exp Brain Res 98(3): 535-541.
  129. Holmes, G. (1917). "The symptoms of acute cerebellar injuries due to gunshot injuries." Brain 40(4): 461-535.
  130. Silk, T. J., N. Rinehart, et al. (2006). "Visuospatial processing and the function of prefrontal- parietal networks in autism spectrum disorders: a functional MRI study." Am J Psychiatry 163(8): 1440-1443.
  131. Timmann, D. (1997). Zur Bedeutung des menschlichen Kleinhirns für einfache und komplexe motorische Lernvorgänge. Habilitation Habilitationsschrift, Universität Essen.
  132. Ghaziuddin, M. and E. Butler (1998). "Clumsiness in autism and Asperger syndrome: a further report." J Intellect Disabil Res 42 ( Pt 1): 43-48.
  133. Baron-Cohen, S., S. Wheelwright, et al. (2001). "The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism." J Child Psychol Psychiatry 42(2): 241-251.
  134. Gentilucci, M., U. Castiello, et al. (1991). "Influence of different types of grasping on the transport component of prehension movements." Neuropsychologia 29(5): 361-378.
  135. Flanagan, J. R., J. Tresilian, et al. (1993). "Coupling of grip force and load force during arm movements with grasped objects." Neurosci Lett 152(1–2): 53-56.
  136. Schmitz, N., K. Rubia, et al. (2006). "Neural correlates of executive function in autistic spectrum disorders." Biol Psychiatry 59(1): 7-16.
  137. Sailer, U., T. Eggert, et al. (2005). "Impaired temporal prediction and eye-hand coordination in patients with cerebellar lesions." Behav Brain Res 160(1): 72-87.
  138. Bursztyn, L. L. C. D., G. Ganesh, et al. (2006). "Neural Correlates of Internal-Model Loading." Current Biology 16(24): 2440-2445.
  139. Catani, M., D. K. Jones, et al. (2008). "Altered cerebellar feedback projections in Asperger syndrome." Neuroimage 41(4): 1184-1191.
  140. Maltz, A. and T. E. Goldberg (1982). "Neuropsychological recovery following acute cerebellar ataxia." J Clin Neuropsychol 4(4): 297-305.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten