Publikationsserver der Universitätsbibliothek Marburg

Titel: Surface-Assisted Chemistry at Interfaces between Metals and Organic Thin Films
Autor: Chen, Min
Weitere Beteiligte: Gottfried, J. Michael (Prof. Dr.)
Veröffentlicht: 2016
URI: https://archiv.ub.uni-marburg.de/diss/z2016/0106
URN: urn:nbn:de:hebis:04-z2016-01067
DOI: https://doi.org/10.17192/z2016.0106
DDC: Chemie
Titel(trans.): Oberflächengestütze Chemie an Grenzflächen zwischen Metallen und organischen Dünnschichten
Publikationsdatum: 2016-04-20
Lizenz: https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Metallorganische Grenzschicht, Corrol, Tiefenprofil, HAXPES, Ullmann-reaction, Metallier, Grenzphase, interphase, Röntgen-Photoelektronenspektroskopie, Porphyrine, Rastertunnelmikroskopie, depth profile, Ullmann-Kupplung, Thermische Desorptionsspektroskopie, metal-organic interface, Phthalocyanin

Summary:
Interfaces between metals and organic thin films are of paramount importance for organic electronic devices. By photoemission spectroscopy (XPS), scanning tunneling microscopy/spectroscopy (STM/STS), temperature programmed desorption/reaction (TPD/TPR) and density functional theory calculations (DFT), chemical reactions and diffusion processes during the formation of interfaces/interphases, and their electronic structures are investigated. The presented thesis focuses on two distinct substance classes, arranged by the reacting functional groups of the involved organic phases. Various reaction systems including organic-on-metal and metal-on-organic interfaces are visited. In the first major topic, the surface coordination chemistry of thin films formed by porphyrinoid molecules with coinage metals - the latter either as crystalline substrate surface or dosed onto the films as atoms - is characterized. Molecular film thicknesses extend from incomplete layers, i.e., submonolayer coverages, to a few ten nanometers, i.e., multilayers. Metalation of 2H-tetraphenylporphyrin (2HTPP) at submonolayer coverages and 2H-phthalocyanine (2HPc) for up to multilayer coverages is found to be possible at elevated temperatures even from an atomically flat copper substrate. TPD/TPR studies reveal that the presence of an exchange mechanism could be responsible for the observed substrate based multilayer metalation. Besides the interfacial chemical bond, i.e., between the surface and the metal complex, secondary effects - such as charge transfer and weak band bending - are characterized in detail for cobalt phthalocyanine adsorbed on Cu(111). Individual molecules in porphyrin or phthalocyanine thin films are able to oxidize cobalt atoms into formal Co(II) species. By modification of the reaction center from porphin to corrole, i.e., essentially by the replacement of an iminic by a pyrrolic nitrogen in the macrocycle, the formation of Co(III) complexes is rendered possible. Moreover, multilayer metalation of 2HTPP molecules with deposited cobalt atoms is investigated in detail by both laboratory X-ray source (XPS) and synchrotronbased hard X-rays (HAXPES). Since the latter is a nondestructive method for bulk composition probing, chemical and physical properties can be investigated. This technique is also applied to obtain a depth profile of a layered battery cathode - initially comprising lithium-nickel-manganese-oxide and lithium-titanium-oxide - after ex situ electrochemical cycling. The second major topic is dedicated to the behavior of purposively designed terminal oligophenylene dibromides on the flat hexagonal single crystal surfaces of copper and silver. Submonolayer amounts of oligophenylene dibromides deposited at cryogenic temperatures on the copper substrate show bromine detachment upon moderate temperature increase along with an intermediate formation of metal-organic oligomers. Upon further annealing, the metal is eliminated and entirely organic covalent structures are formed on the surface in analogy to the Ullmann coupling. The here presented surface reaction allows in situ synthesis of giant hexagonal macrocycles consisting of thirty phenylene units. Macrocycles with altered numbers of members are also accessible with reduced yield. Since these square, pentagonal and heptagonal shapes are not fully compatible with the hexagonal motive of the oligophenylene monomers, they exhibit strained geometries leading to modified electronic structures. These huge molecules are further used as organic quantum corrals to achieve and analyze the induced surface state confinements. Similar precursor compounds are deposited on a silver substrate in order to increase the mobility of the organic molecules as well as to suppress the formation of covalent bonds with the metal. This enables the generation of equilibrium based, self-assembling structures. Utilizing building blocks with three-fold symmetry, defect-free molecular fractal-like patterns - resembling Sierpinski triangles - are obtained. Revealing the chemical and physical processes at the interfaces important for device performance is the intent of this thesis. By fine tuning various intrinsic and external conditions, structural and chemical control of two-dimensional supramolecular phases is achieved. Surface-assisted chemistry - here in situ metalation of porphyrinoid molecules, synthesis of giant honeycombene macrocycles, and two-dimensional molecular selfassembled networks - as well as the properties, e.g., adsorbate-substrate interaction, of formed, and in some cases buried, interfaces/interphases between metals and organic thin films are comprehensively studied with a wide range of complementary ultrahigh vacuum based surface science techniques. The results and conclusions of the therefrom emerged publications are summarized in this work.

Zusammenfassung:
Grenzflächen zwischen Metallen und organischen Dünnschichten sind von herausragender Wichtigkeit für organoelektronische Bauteile. Mittels XPS, STM/STS, TPD/TPR und DFT werden chemische Prozesse während der Bildung von Grenzflächen/Grenzphasen, sowie deren elektronische Strukturen untersucht. Die inhaltlichen Schwerpunkte dieser Dissertation liegen auf zwei verschiedenen Substanzklassen und sind nach den reagierenden funktionellen Gruppen der involvierten organischen Phasen geordnet. Eine Vielzahl an Reaktionssystemen, unter anderem Organik-auf-Metall- und Metall-auf-Organik-Grenzflächen, werden dabei betrachtet. Der erste Hauptaspekt befasst sich mit der Charakterisierung der Oberflächen-Koordinationschemie von Dünnschichten aus porphyrinoiden Molekülen mit Münzmetallen - letztere entweder als kristalline Substratoberfläche oder in atomarer Form auf die Dünnschichten dosiert. Die Stärken der molekularen Dünnschichten reichen von unvollständigen Lagen bis zu einigen zehn Nanometern. Als wesentliches Ergebnis lässt sich festhalten, dass bei erhöhten Temperaturen die Metallierung von Tetraphenylporphyrin (2HTPP) Submonolagen und von Phthalocyanin (2HPc) Multilagen mit Kupfer sogar von atomar flachen Oberflächen möglich ist. Untersuchungen mittels TPD/TPR ergeben, dass die Gegenwart eines Austauschmechanismuses für die beobachtete Metallierung von Multilagen verantwortlich sein könnte. Zusätzlich zu der chemischen Bindung an der Grenzfläche zwischen CoPc und Cu(111) werden sekundäre Effekte - wie z.B. charge transfer und weak band bending - detailliert charakterisiert. Einzelne Moleküle in Dünnschichten aus z.B. Porphyrinen können Cobaltatome zu formal zweiwertigen Co(II) Spezies oxidieren. Durch Modifikation des Zentrums der organischen Komponente, die im Wesentlichen aus dem (formalen) Ersatz eines iminischen durch einen pyrrolischen Stickstoff im Makrocyclus besteht, und Porphin in Corrol wandelt, wird die Bildung von Co(III) Komplexen ermöglicht. Weiterhin wird die Metallierungsreaktion von 2HTPPP mit deponierten Cobaltatomen, sowohl mit XPS als auch mittels synchrotronbasiertem HAXPES, im Detail untersucht. Da die letztgenannte Methode zerstörungsfrei arbeitet, ist es möglich, die chemischen und physikalischen Eigenschaften im Volumen der Probe zu bestimmen. Dieses Verfahren wird hier auch angewandt, um ein Tiefenprofil einer mehrschichtigen Akkumulatorkathode - ursprünglich bestehend aus LNMO und LTO - nach ex situ durchgeführten Ladezyklen zu erstellen. Der zweite Hauptaspekt widmet sich dem Verhalten von gezielt entwickelten endständigen Oligophenylendibromiden auf flachen, hexagonalen Einkristalloberflächen aus Kupfer und Silber. Submonolagen dieser Substanzen, die bei kryogenen Temperaturen auf dem Kupfersubstrat abgeschieden wurden, zeigen bei Temperaturerhöhung Abspaltung einer Bromspezies und Bildung eines metallorganischen Oligomers. Bei weiterem Erhitzen wird, in Analogie zur Ullmann-Kupplung, das Metall eliminiert und kovalente, rein organische Strukturen werden auf der Einkristalloberfläche gebildet. Die hier präsentierte Oberflächenreaktion erlaubt die in situ Synthese von hexagonalen Makrozyklen, die aus dreißig Phenyleneinheiten bestehen. Ringsysteme mit anderen Größen sind ebenfalls erhältlich. Da diese quadratischen, penta-, und heptagonalen Gebilde nicht mit dem hexagonalen Motiv der Monomere verträglich sind, weisen sie gespannte Geometrien auf, die zu einer veränderten elektronischen Struktur führen. Weiterhin werden diese Riesenmoleküle als rein organische Quantengehege (quantum corrals) genutzt, um die durch sie induzierten und begrenzten Oberflächenzustände zu untersuchen. Ähnliche Vorläuferverbindungen werden auf ein Silbersubstrat abgeschieden, um die Mobilität der organischen Moleküle zu erhöhen und um gleichzeitig die Bildung von kovalenten Bindungen mit dem Metall zu unterdrücken. Dies ermöglicht die Erzeugung von gleichgewichtsbasierten, selbstorganisierten Strukturen. Durch die Verwendung von Bausteinen mit dreizähliger Symmetrie können defektfreie, molekulare fraktalartige Muster erhalten werden, die an Sierpinski Dreiecke erinnern. Die Intention dieser Doktorarbeit ist es, die chemischen und physikalischen Prozesse an Grenzflächen, die für die Leistungsfähigkeit von Bauteilen wichtig sind, aufzudecken. Durch sorgsames Einstellen von immanenten und externen Parametern konnte chemische und strukturelle Kontrolle über zweidimensionale supramolekulare Phasen erhalten werden. Aspekte der oberflächenunterstützten Chemie - hier die in situ Metallierung von Porphyrinoiden, die Synthese von wabenartigen Makrozyklen (honeycombenes) und selbstorganisierten Netzwerken - sowie die Eigenschaften, z.B. Adsorbat/Substrat-Wechselwirkungen, von gebildeten und verborgenen Grenzflächen zwischen Metallen und organischen Dünnschichten werden mit einer Vielzahl von sich ergänzenden UHV Techniken untersucht.

Bibliographie / References

  1. Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; and Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum., 2007, 78 (1). doi:013705 10.1063/1.2432410.
  2. Jablonski, A. and Powell, C. J. The electron attenuation length revisited. Surf. Sci. Rep., 2002, 47 (2-3), 35. doi:Pii s0167-5729(02)00031-6.
  3. Faul, C. F. J. and Antonietti, M. Ionic self-assembly: Facile synthesis of supramolecular materials. Adv. Mater., 2003, 15 (9), 673. doi:10.1002/adma.200300379.
  4. Desiraju, G. R. Supramolecular Synthons in Crystal Engineering-A New Organic Synthesis. Angew. Chem. Int. Ed., 1995, 34 (21), 2311. doi:10.1002/anie.199523111.
  5. Stöhr, M.; Wahl, M.; Galka, C. H.; Riehm, T.; Jung, T. A.; and Gade, L. H. Controlling molecular assembly in two dimensions: The concentration dependence of thermally induced 2D aggregation of molecules on a metal surface. Angew. Chem. Int. Ed., 2005, 44 (45), 7394. doi:10.1002/anie.200502316.
  6. Écija, D.; Auwärter, W.; Vijayaraghavan, S.; Seufert, K.; Bischoff, F.; Tashiro, K.; and Barth, J. V. Assembly and Manipulation of Rotatable Cerium Porphyrinato Sandwich Complexes on a Surface. Angew. Chem. Int. Ed., 2011, 50 (17), 3872. doi:10.1002/anie.201007370.
  7. Ullmann, F. and Bielecki, J. Synthesis in the Biphenyl series. (I. Announcement). Ber. Dtsch. Chem. Ges., 1901, 34, 2174. doi:10.1002/cber.190103402141.
  8. Auwärter, W.; Weber-Bargioni, A.; Brink, S.; Riemann, A.; Schiffrin, A.; Ruben, M.; and Barth, J. V. Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions. ChemPhysChem, 2007, 8 (2), 250. doi:10.1002/cphc.200600675.
  9. Buchner, F.; Schwald, V.; Comanici, K.; Steinrück, H.-P.; and Marbach, H. Mi- croscopic evidence of the metalation of a free-base porphyrin monolayer with iron. ChemPhysChem, 2007, 8 (2), 241. doi:10.1002/cphc.200600698.
  10. Kuhn, H. and Huber, W. Kastentestfunktion als Näherung für die Wellenfunktion des Elektrons im Wasserstoffatom und im Wasserstoffmolekelion. Helv. Chim. Acta, 1952, 35 (4), 1155. doi:10.1002/hlca.19520350409.
  11. Kahn, A.; Koch, N.; and Gao, W. Y. Electronic structure and electrical properties of interfaces between metals and pi-conjugated molecular films. J. Polym. Sci. Part B Polym. Phys, 2003, 41 (21), 2529. doi:10.1002/polb.10642.
  12. Dweydari, A. W. and Mee, C. H. B. Work Function Measurements on (100) and (110) Surfaces of Silver. Phys. Status Solidi A, 1975, 27 (1), 223. doi:10.1002/pssa.2210270126.
  13. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interface Anal., 2003, 35 (3), 268. doi:10.1002/sia.1526.
  14. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of electron inelastic mean free paths. VIII. Data for 15 elemental solids over the 50-2000 eV range. Surf. Interface Anal., 2005, 37 (1), 1. doi:10.1002/sia.1997.
  15. Smekal, W.; Werner, W. S. M.; and Powell, C. J. Simulation of electron spectra for surface analysis (SESSA): a novel software tool for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal., 2005, 37 (11), 1059. doi:10.1002/sia.2097.
  16. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interface Anal., 2011, 43 (3), 689. doi:10.1002/sia.3522.
  17. Schmid, M.; Steinrück, H.-P.; and Gottfried, J. M. A new asymmetric Pseudo-Voigt function for more efficient fitting of XPS lines. Surf. Interface Anal., 2014, 46 (8), 505. doi:10.1002/sia.5521.
  18. Seah, M. P. and Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal., 1979, 1 (1), 2. doi:10.1002/sia.740010103.
  19. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of Electron Inelas- tic Mean Free Paths for 31 Materials. Surf. Interface Anal., 1988, 11 (11), 577. doi:10.1002/sia.740111107.
  20. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of Electron Inelastic Mean Free Paths II. Data for 27 Elements over the 50-2000 eV Range. Surf. Interface Anal., 1991, 17 (13), 911. doi:10.1002/sia.740171304.
  21. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of Electron Inelastic Mean Free Paths III. Data for 15 Inorganic Compunds over the 50-2000 eV Range. Surf. Interface Anal., 1991, 17 (13), 927. doi:10.1002/sia.740171305.
  22. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of Electron Inelastic Mean Free Paths (IMFPs) IV. Evaluation of Calculated IMFPs and of the Predictive IMFP Formula TPP-2 for Electron Energies between 50 and 2000 eV. Surf. Interface Anal., 1993, 20 (1), 77. doi:10.1002/sia.740200112.
  23. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of Electron Inelastic Mean Free Paths. V. Data for 14 Organic Compounds over the 50-2000 eV Range. Surf. Interface Anal., 1994, 21 (3), 165. doi:10.1002/sia.740210302.
  24. Werner, W. S. M. Electron transport in solids for quantitative surface analysis. Surf. Interface Anal., 2001, 31 (3), 141. doi:10.1002/sia.973.
  25. Clark, T. σ-Holes. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3 (1), 13. doi:10.1002/wcms.1113.
  26. Käfer, D.; Wöll, C.; and Witte, G. Thermally activated dewetting of organic thin films: the case of pentacene on SiO2 and gold. Appl. Phys. A, 2009, 95 (1), 273. doi:10.1007/s00339-008-5011-3.
  27. Frost, D. C.; McDowell, C. A.; and Woolsey, I. S. Evidence for multiplet splitting of 2p photoelectron lines of transition metal complexes. Chem. Phys. Lett., 1972, 17 (3), 320. doi:10.1016/0009-2614(72)87086-6.
  28. Harima, Y.; Kodaka, T.; Okazaki, H.; Kunugi, Y.; Yamashita, K.; Ishii, H.; and Seki, K. A relationship between a metal work function and a diffusion potential at Schottky barriers in photovoltaic cells based on a molecular semiconductor. Chem. Phys. Lett., 1995, 240 (4), 345. doi:10.1016/0009-2614(95)00540-K.
  29. Hagstrom, S.; Nordling, C.; and Siegbahn, K. Electron spectroscopy for chemical analysis. Phys. Lett., 1964, 9 (3), 235. doi:10.1016/0031-9163(64)90062-9.
  30. Strayer, R. W.; Mackie, W.; and Swanson, L. W. Work function measurements by the field emission retarding potential method. Surf. Sci., 1973, 34 (2), 225. doi:10.1016/0039-6028(73)90117-9.
  31. Binnig, G. and Rohrer, H. Scanning tunneling microscopy. Surf. Sci., 1983, 126 (1), 236. doi:10.1016/0039-6028(83)90716-1.
  32. Aarts, J. F. M. and Phelan, K. G. Dehalogenation of fluoro-and chlorobenzene on Pd(111) studied by electron energy loss spectroscopy. Surf. Sci., 1989, 222 (2-3), L853. doi:10.1016/0039-6028(89)90355-5.
  33. Redhead, P. A. Thermal desorption of gases. Vacuum, 1962, 12 (4), 203. doi:10.1016/0042-207X(62)90978-8.
  34. Brillson, L. J. The structure and properties of metal-semiconductor interfaces. Surf. Sci. Rep., 1982, 2 (2), 123. doi:10.1016/0167-5729(82)90001-2.
  35. Carlson, T. A. and McGuire, G. E. Study of the x-ray photoelectron spectrum of tungsten-tungsten oxide as a function of thickness of the surface oxide layer. J. Electron Spectrosc. Relat. Phenom., 1972, 1 (2), 161. doi:10.1016/0368-2048(72)80029-X.
  36. Wagner, C. D. Sensitivity factors for XPS analysis of surface atoms. J. Electron Spectrosc. Relat. Phenom., 1983, 32 (2), 99. doi:10.1016/0368-2048(83)85087-7.
  37. Mayer, J. T.; Diebold, U.; Madey, T. E.; and Garfunkel, E. Titanium and Reduced Titania Overlayers on Titanium Dioxide(110). J. Electron Spectrosc. Relat. Phenom., 1995, 73 (1), 1. doi:10.1016/0368-2048(94)02258-5.
  38. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; and Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci., 2011, 257 (7), 2717. doi:10.1016/j.apsusc.2010.10.051.
  39. Otsuki, J. STM studies on porphyrins. Coord. Chem. Rev., 2010, 254 (19-20), 2311. doi:10.1016/j.ccr.2009.12.038.
  40. Kuehnle, A. Self-assembly of organic molecules at metal surfaces. Curr. Opin. Colloid Interface Sci., 2009, 14 (2), 157. doi:10.1016/j.cocis.2008.01.001.
  41. Ivanova, T.; Naumkin, A.; Sidorov, A.; Eremenko, I.; and Kiskin, M. X-ray photo- electron spectra and electron structure of polynuclear cobalt complexes. J. Electron Spectrosc. Relat. Phenom., 2007, 156-158 (0), 200. doi:10.1016/j.elspec.2006.12.005.
  42. Powell, C. J. and Jablonski, A. Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: Current status and perspectives. J. Electron Spectrosc. Relat. Phenom., 2010, 178-179, 331. doi:10.1016/j.elspec.2009.05.004.
  43. Werner, W. S. M.; Smekal, W.; Hisch, T.; Himmelsbach, J.; and Powell, C. J. Simula- tion of Electron Spectra for Surface Analysis (SESSA)for quantitative interpretation of (hard) X-ray photoelectron spectra(HAXPES). J. Electron Spectrosc. Relat. Phenom., 2013, 190, 137. doi:10.1016/j.elspec.2013.06.007.
  44. Peisert, H.; Uihlein, J.; Petraki, F.; and Chasse, T. Charge transfer between transition metal phthalocyanines and metal substrates: The role of the tran- sition metal. J. Electron Spectrosc. Relat. Phenom., 2015, 204, Part A, 49. doi:10.1016/j.elspec.2015.01.005.
  45. Gao, Y. Surface analytical studies of interfaces in organic semiconductor devices. Mater. Sci. Eng. R-Rep., 2010, 68 (3), 39. doi:10.1016/j.mser.2010.01.001.
  46. Gorgoi, M.; Svensson, S.; Schäfers, F.; Öhrwall, G.; Mertin, M.; Bressler, P.; Karis, O.; Siegbahn, H.; Sandell, A.; Rensmo, H.; Doherty, W.; Jung, C.; Braun, W.; and Eberhardt, W. The high kinetic energy photoelectron spectroscopy facility at BESSY progress and first results. Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, 601 (1-2), 48. doi:10.1016/j.nima.2008.12.244.
  47. Klappenberger, F. Two-dimensional functional molecular nanoarchitectures -Comple- mentary investigations with scanning tunneling microscopy and X-ray spectroscopy. Prog. Surf. Sci., 2014, 89 (1), 1. doi:10.1016/j.progsurf.2013.10.002.
  48. Echenique, P. M.; Berndt, R.; Chulkov, E. V.; Fauster, T.; Goldmann, A.; and Höfer, U. Decay of electronic excitations at metal surfaces. Surf. Sci. Rep., 2004, 52 (7-8), 219. doi:10.1016/j.surfrep.2004.02.002.
  49. Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep., 2015, 70 (3), 259. doi:10.1016/j.surfrep.2015.04.001.
  50. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; and McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci., 2006, 600 (9), 1771. doi:10.1016/j.susc.2006.01.041.
  51. Villagomez, C. J.; Zambelli, T.; Gauthier, S.; Gourdon, A.; Stojkovic, S.; and Joachim, C. STM images of a large organic molecule adsorbed on a bare metal substrate or on a thin insulating layer: Visualization of HOMO and LUMO. Surf. Sci., 2009, 603 (10-12), 1526. doi:10.1016/j.susc.2008.10.057.
  52. Schmid, M.; Kaftan, A.; Steinrueck, H.-P.; and Gottfried, J. M. The electronic structure of cobalt(II) phthalocyanine adsorbed on Ag(111). Surf. Sci., 2012, 606 (11-12), 945. doi:10.1016/j.susc.2012.02.012.
  53. Alfredsson, Y.; Åhlund, K., J.and Nilson; Kjeldgaard, L.; O'Shea, J. N.; Theobald, J.; Bao, Z.; Mråtensson, N.; Sandell, A.; Puglia, C.; and Siegbahn, H. Phase and molecular orientation in metal-free phthalocyanine films on conducting glass: Characterization of two deposition methods. Thin Solid Films, 2005, 493 (1-2), 13. doi:10.1016/j.tsf.2005.05.012.
  54. Kowarik, S.; Gerlach, A.; Leitenberger, W.; Hu, J.; Witte, G.; Wöll, C.; Pietsch, U.; and Schreiber, F. Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films. Thin Solid Films, 2007, 515 (14), 5606. doi:10.1016/j.tsf.2006.12.020.
  55. Ito, E.; Oji, H.; Ishii, H.; Oichi, K.; Ouchi, Y.; and Seki, K. Interfacial elec- tronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies. Chem. Phys. Lett., 1998, 287 (1-2), 137. doi:10.1016/S0009-2614(98)00153-5.
  56. Guillaud, G.; Simon, J.; and Germain, J. P. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coord. Chem. Rev., 1998, 178-180, Part 2, 1433. doi:10.1016/S0010-8545(98)00177-5.
  57. Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta, 2000, 45 (15-16), 2461 . doi:10.1016/S0013-4686(00)00333-9.
  58. Siegbahn, K. and Edvarson, K. ß-Ray spectroscopy in the precision range of 1 : 10 5 . Nucl. Phys., 1956, 1 (8), 137. doi:10.1016/S0029-5582(56)80022-9.
  59. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep., 2003, 48 (5-8), 53. doi:10.1016/S0167-5729(02)00100-0.
  60. Lesiak, B.; Kosinski, A.; Jablonski, A.; Kover, L.; Toth, J.; Varga, D.; Cserny, I.; Zagorska, M.; Kulszewicz-Bajer, I.; and Gergely, G. Determination of the inelastic mean free path of electrons in polythiophenes using elastic peak electron spectroscopy method. Appl. Surf. Sci., 2001, 174 (1), 70. doi:10.1016/s0169-4332(01)00025-3.
  61. Atanasov, M. and Reinen, D. Non-local electronic effects in core-level photoemission, UV and optical electronic absorption spectra of nickel oxides1. J. Electron Spectrosc. Relat. Phenom., 1997, 86 (1-3), 185. doi:10.1016/S0368-2048(97)00065-0.
  62. Ishii, H.; Yoshimura, D.; Sugiyama, K.; Narioka, S.; Hamatani, Y.; Kawamoto, I.; Miyazaki, T.; Ouchi, Y.; and Seki, K. Electronic structure of 8-hydroxyquinoline aluminum (alq3)/metal interfaces studied by UV photoemission. Synth. Met., 1997, 85 (1-3), 1389. doi:10.1016/S0379-6779(97)80286-X.
  63. Yoshimura, D.; Ishii, H.; Narioka, S.; Sei, M.; Miyazaki, T.; Ouchi, Y.; Hasegawa, S.; Harima, Y.; Yamashita, K.; and Seki, K. The electronic structure of porphyrin/metal interfaces studied by UV photoemission spectroscopy. Synth. Met., 1997, 86 (1-3), 2399. doi:10.1016/S0379-6779(97)81177-0.
  64. Sugiyama, K.; Yoshimura, D.; Ito, E.; Miyazaki, T.; Hamatani, Y.; Kawamoto, I.; Ishii, H.; Ouchi, Y.; and Seki, K. Electronic structure of organic carrier transporting material / metal interfaces as a model interface of electroluminescent device studied by UV photoemission. Synth. Met., 1997, 86 (1-3), 2425. doi:10.1016/S0379-6779(97)81185-X.
  65. Cabana, J.; Casas-Cabanas, M.; Omenya, F. O.; Chernova, N. A.; Zeng, D.; Whit- tingham, M. S.; and Grey, C. P. Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi 0.5 Mn 1.5 O 4 . Chem. Mater., 2012, 24 (15), 2952. doi:10.1021/cm301148d.
  66. Phelan, N. F. and Orchin, M. Cross conjugation. J. Chem. Educ., 1968, 45 (10), 633. doi:10.1021/ed045p633.
  67. Larson, J. W. and McMahon, T. B. Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY-species (X, Y = F, Cl, Br, CN). Inorg. Chem., 1984, 23 (14), 2029. doi:10.1021/ic00182a010.
  68. Mousty-Desbuquoit, C.; Riga, J.; and Verbist, J. J. Electronic structure of titanium(III) and titanium(IV) halides studied by solid-phase x-ray photoelectron spectroscopy. Inorg. Chem., 1987, 26 (8), 1212. doi:10.1021/ic00255a008.
  69. Madura, P. and Scheidt, W. R. Stereochemistry of Low-Spin Cobalt Porphyrins. 8. α, β, γ, δ-Tetraphenylporphinatocobalt (II). Inorg. Chem., 1976, 15 (12), 3182. doi:10.1021/ic50166a056.
  70. Mochida, I.; Suetsugu, K.; Fujitsu, H.; and Takeshita, K. Enhanced catalytic activity of cobalt tetraphenylporphyrin on titanium dioxide by evacuation at elevated temper- atures for intensifying the complex-support interaction. J. Phys. Chem., 1983, 87 (9), 1524. doi:10.1021/j100232a015.
  71. Xi, M. and Bent, B. E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc., 1993, 115 (16), 7426. doi:10.1021/ja00069a048.
  72. Hamor, M. J.; Hamor, T. A.; and Hoard, J. L. The Structure of Crystalline Tetraphenyl- porphine. The Stereochemical Nature of the Porphine Skeleton. J. Am. Chem. Soc., 1964, 86 (10), 1938. doi:10.1021/ja01064a008.
  73. Gaab, K. M.; Thompson, A. L.; Xu, J. J.; Martinez, T. J.; and Bardeen, C. J. Meta- conjugation and excited-state coupling in phenylacetylene dendrimers. J. Am. Chem. Soc., 2003, 125 (31), 9288. doi:10.1021/ja029489h.
  74. Gottfried, J. M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; and Steinrück, H. P. Direct synthesis of a metalloporphyrin complex on a surface. J. Am. Chem. Soc., 2006, 128 (17), 5644. doi:10.1021/ja0610333.
  75. Auwärter, W.; Klappenberger, F.; Weber-Bargioni, A.; Schiffrin, A.; Strunskus, T.; Woll, C.; Pennec, Y.; Riemann, A.; and Barth, J. V. Conformational adaptation and selective adatom capturing of tetrapyridyl-porphyrin molecules on a copper (111) surface. J. Am. Chem. Soc., 2007, 129 (36), 11279. doi:10.1021/ja071572n.
  76. Shubina, T. E.; Marbach, H.; Flechtner, K.; Kretschmann, A.; Jux, N.; Buchner, F.; Steinrück, H.-P.; Clark, T.; and Gottfried, J. M. Principle and mechanism of direct porphyrin metalation: Joint experimental and theoretical investigation. J. Am. Chem. Soc., 2007, 129 (30), 9476. doi:10.1021/ja072360t.
  77. Hieringer, W.; Flechtner, K.; Kretschmann, A.; Seufert, K.; Auwarter, W.; Barth, J. V.; Gorling, A.; Steinrück, H. P.; and Gottfried, J. M. The Surface Trans Effect: Influence of Axial Ligands on the Surface Chemical Bonds of Adsorbed Metalloporphyrins. J. Am. Chem. Soc., 2011, 133 (16), 6206. doi:10.1021/ja1093502.
  78. Haq, S.; Hanke, F.; Dyer, M. S.; Persson, M.; Iavicoli, P.; Amabilino, D. B.; and Raval, R. Clean Coupling of Unfunctionalized Porphyrins at Surfaces To Give Highly Oriented Organometallic Oligomers. J. Am. Chem. Soc., 2011, 133 (31), 12031. doi:10.1021/ja201389u.
  79. Wang, W.; Shi, X.; Wang, S.; Van Hove, M. A.; and Lin, N. Single-Molecule Resolution of an Organometallic Intermediate in a Surface-Supported Ullmann Coupling Reaction. J. Am. Chem. Soc., 2011, 133 (34), 13264. doi:10.1021/ja204956b.
  80. Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z.; Schmid, M.; Steinrück, H.-P.; Gottfried, J. M.; and Lin, N. Coordination and Metalation Bifunctionality of Cu with 5,10,15,20-Tetra(4-pyridyl)porphyrin: Toward a Mixed-Valence Two-Dimensional Co- ordination Network. J. Am. Chem. Soc., 2012, 134 (14), 6401. doi:10.1021/ja300593w.
  81. Björk, J.; Hanke, F.; and Stafström, S. Mechanisms of Halogen-Based Cova- lent Self-Assembly on Metal Surfaces. J. Am. Chem. Soc., 2013, 135 (15), 5768. doi:10.1021/ja400304b.
  82. Shi, Z. L. and Lin, N. Porphyrin-Based Two-Dimensional Coordination Kagome Lattice Self-Assembled on a Au(111) Surface. J. Am. Chem. Soc., 2009, 131 (15), 5376. doi:10.1021/ja900499b.
  83. Zhu, J.; Bebensee, F.; Hieringer, W.; Zhao, W.; Baricuatro, J. H.; Farmer, J. A.; Bai, Y.; Steinrück, H.-P.; Gottfried, J. M.; and Campbell, C. T. Formation of the Calcium/Poly(3-Hexylthiophene) Interface: Structure and Energetics. J. Am. Chem. Soc., 2009, 131 (37), 13498. doi:10.1021/ja904844c.
  84. Schroeder, P. G.; France, C. B.; Park, J. B.; and Parkinson, B. A. Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoe- mission Spectroscopy. J. Phys. Chem. B, 2003, 107 (10), 2253. doi:10.1021/jp025807n.
  85. Lukasczyk, T.; Flechtner, K.; Merte, L. R.; Jux, N.; Maier, F.; Gottfried, J. M.; and Steinrück, H.-P. Interaction of cobalt(II) tetraarylporphyrins with a Ag(111) surface studied with photoelectron spectroscopy. J. Phys. Chem. C, 2007, 111 (7), 3090. doi:10.1021/jp0652345.
  86. Flechtner, K.; Kretschmann, A.; Bradshaw, L. R.; Walz, M.-M.; Steinrueck, H.-P.; and Gottfried, J. M. Surface-confined two-step synthesis of the complex (ammine)(meso- tetraphenylporphyrinato)-zinc(II) on Ag(111). J. Phys. Chem. C, 2007, 111 (16), 5821. doi:10.1021/jp071531d.
  87. Weber-Bargioni, A.; Reichert, J.; Seitsonen, A. P.; Auwärter, W.; Schiffrin, A.; and Barth, J. V. Interaction of cerium atoms with surface-anchored porphyrin molecules. J. Phys. Chem. C, 2008, 112 (10), 3453. doi:10.1021/jp076961i.
  88. Rojas, G.; Chen, X.; Bravo, C.; Kim, J. H.; Kim, J. S.; Xiao, J.; Dowben, P. A.; Gao, Y.; Zeng, X. C.; Choe, W.; and Enders, A. Self-Assembly and Properties of Nonmetalated Tetraphenyl-Porphyrin on Metal Substrates. J. Phys. Chem. C, 2010, 114 (20), 9408. doi:10.1021/jp1012957.
  89. Chen, M.; Feng, X.; Zhang, L.; Ju, H.; Xu, Q.; Zhu, J.; Gottfried, J. M.; Ibrahim, K.; Qian, H.; and Wang, J. Direct Synthesis of Nickel(II) Tetraphenylporphyrin and Its Interaction with a Au(111) Surface: A Comprehensive Study. J. Phys. Chem. C, 2010, 114 (21), 9908. doi:10.1021/jp102031m.
  90. Walch, H.; Gutzler, R.; Sirtl, T.; Eder, G.; and Lackinger, M. Material-and Orientation- Dependent Reactivity for Heterogeneously Catalyzed Carbon-Bromine Bond Homolysis. J. Phys. Chem. C, 2010, 114 (29), 12604. doi:10.1021/jp102704q.
  91. Yoon, J. K.; Son, W.-j.; Chung, K.-H.; Kim, H.; Han, S.; and Kahng, S.-J. Visualizing Halogen Bonds in Planar Supramolecular Systems. J. Phys. Chem. C, 2011, 115 (5), 2297. doi:10.1021/jp110891y.
  92. Di Santo, G.; Castellarin-Cudia, C.; Fanetti, M.; Taleatu, B.; Borghetti, P.; Sangaletti, L.; Floreano, L.; Magnano, E.; Bondino, F.; and Goldoni, A. Conformational Adap- tation and Electronic Structure of 2H-Tetraphenylporphyrin on Ag(111) during Fe Metalation. J. Phys. Chem. C, 2011, 115 (10), 4155. doi:10.1021/jp111151n.
  93. Gonzalez-Moreno, R.; Sanchez-Sanchez, C.; Trelka, M.; Otero, R.; Cossaro, A.; Verdini, A.; Floreano, L.; Ruiz-Bermejo, M.; Garcia-Lekue, A.; Martin-Gago, J. A.; and Rogero, C. Following the Metalation Process of Protoporphyrin IX with Metal Substrate Atoms at Room Temperature. J. Phys. Chem. C, 2011, 115 (14), 6849. doi:10.1021/jp200533a.
  94. Xiao, J.; Ditze, S.; Chen, M.; Buchner, F.; Stark, M.; Drost, M.; Steinrück, H.-P.; Gottfried, J. M.; and Marbach, H. Temperature-Dependent Chemical and Structural Transformations from 2H-tetraphenylporphyrin to Copper(II)-Tetraphenylporphyrin on Cu(111). J. Phys. Chem. C, 2012, 116 (22), 12275. doi:10.1021/jp301757h.
  95. High-Voltage Spinel for Lithium Ion Batteries. J. Phys. Chem. C, 2013, 117 (31), 15947. doi:10.1021/jp405158m.
  96. Chen, M.; Xiao, J.; Steinrueck, H.-P.; Wang, S.; Wang, W.; Lin, N.; Hieringer, W.; and Gottfried, J. M. Combined Photoemission and Scanning Tunneling Microscopy Study of the Surface-Assisted Ullmann Coupling Reaction. J. Phys. Chem. C, 2014, 118 (13), 6820. doi:10.1021/jp4121468.
  97. Chen, M.; Roeckert, M.; Xiao, J.; Drescher, H.-J.; Steinrueck, H.-P.; Lytken, O.; and Gottfried, J. M. Coordination Reactions and Layer Exchange Processes at a Buried Metal-Organic Interface. J. Phys. Chem. C, 2014, 118 (16), 8501. doi:10.1021/jp5019235.
  98. Bai, Y.; Buchner, F.; Wendahl, M. T.; Kellner, I.; Bayer, A.; Steinrück, H.-P.; Marbach, H.; and Gottfried, J. M. Direct metalation of a phthalocyanine monolayer on Ag(111) with coadsorbed iron atoms. J. Phys. Chem. C, 2008, 112 (15), 6087. doi:10.1021/jp711122w.
  99. Blake, M. M.; Nanayakkara, S. U.; Claridge, S. A.; Fernandez-Torres, L. C.; Sykes, E. C. H.; and Weiss, P. S. Identifying Reactive Intermediates in the Ullmann Coupling Reaction by Scanning Tunneling Microscopy and Spectroscopy. J. Phys. Chem. A, 2009, 113 (47), 13167. doi:10.1021/jp903590c.
  100. Buchner, F.; Warnick, K.-G.; Woelfle, T.; Goerling, A.; Steinrueck, H.-P.; Hieringer, W.; and Marbach, H. Chemical Fingerprints of Large Organic Molecules in Scanning Tunneling Microscopy: Imaging Adsorbate-Substrate Coupling of Metalloporphyrins. J. Phys. Chem. C, 2009, 113 (37), 16450. doi:10.1021/jp904680c.
  101. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; and Barth, J. V. Metal-Organicrganic Honeycomb Nanomeshes with Tunable Cavity Size. Nano Lett., 2007, 7 (12), 3813. doi:10.1021/nl072466m.
  102. Wyrick, J.; Kim, D.-H.; Sun, D.; Cheng, Z.; Lu, W.; Zhu, Y.; Berland, K.; Kim, Y. S.; Rotenberg, E.; Luo, M.; Hyldgaard, P.; Einstein, T. L.; and Bartels, L. Do Two-Dimensional "Noble Gas Atoms" Produce Molecular Honeycombs at a Metal Surface? Nano Lett., 2011, 11 (7), 2944. doi:10.1021/nl201441b.
  103. Klappenberger, F.; Kuehne, D.; Krenner, W.; Silanes, I.; Arnau, A.; Javier Gar- cia de Abajo, F.; Klyatskaya, S.; Ruben, M.; and Barth, J. V. Dichotomous Array of Chiral Quantum Corrals by a Self-Assembled Nanoporous Kagome Network. Nano Lett., 2009, 9 (10), 3509. doi:10.1021/nl901700b.
  104. Goldoni, A.; Pignedoli, C. A.; Di Santo, G.; Castellarin-Cudia, C.; Magnano, E.; Bondino, F.; Verdini, A.; and Passerone, D. Room Temperature Metalation of 2H- TPP Monolayer on Iron and Nickel Surfaces by Picking up Substrate Metal Atoms. ACS Nano, 2012, 6 (12), 10800. doi:10.1021/nn304134q.
  105. Di Giovannantonio, M.; El Garah, M.; Lipton-Duffin, J.; Meunier, V.; Cardenas, L.; Fagot Revurat, Y.; Cossaro, A.; Verdini, A.; Perepichka, D. F.; Rosei, F.; and Contini, G. Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization. ACS Nano, 2013, 7 (9), 8190. doi:10.1021/nn4035684.
  106. Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Kuttner, J.; Hilt, G.; and Gottfried, J. M. Surface- Assisted Formation, Assembly, and Dynamics of Planar Organometallic Macrocycles and Zigzag Shaped Polymer Chains with C-Cu-C Bonds. ACS Nano, 2013, 8 (1), 709. doi:10.1021/nn405370s.
  107. Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; and Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391 (6662), 59. doi:10.1038/34139.
  108. Manoharan, H. C.; Lutz, C. P.; and Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature, 2000, 403 (6769), 512. doi:10.1038/35000508.
  109. Rakow, N. A. and Suslick, K. S. A colorimetric sensor array for odour visualization. Nature, 2000, 406 (6797), 710. doi:10.1038/35021028.
  110. Crommie, M. F.; Lutz, C. P.; and Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature, 1993, 363 (6429), 524. doi:10.1038/363524a0.
  111. Heller, E. J.; Crommie, M. F.; Lutz, C. P.; and Eigler, D. M. Scattering and absorption of surface electron waves in quantum corrals. Nature, 1994, 369 (6480), 464. doi:10.1038/369464a0.
  112. Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; and Salmeron, M. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies. Nature, 2003, 422 (6933), 705. doi:10.1038/nature01557.
  113. Auwärter, W.; Ecija, D.; Klappenberger, F.; and Barth, J. V. Porphyrins at interfaces. Nat. Chem., 2015, 7 (2), 105. doi:10.1038/nchem.2159.
  114. Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; and Wu, K. Assembling molecular Sierpinski triangle fractals. Nat. Chem., 2015, 7 (5), 389. doi:10.1038/nchem.2211.
  115. Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; and Hecht, S. Nano- architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol., 2007, 2 (11), 687. doi:10.1038/nnano.2007.346.
  116. Oku, M.; Wagatsuma, K.; and Kohiki, S. Ti 2p and Ti 3p X-ray photoelectron spectra for TiO 2 , SrTiO 3 and BaTiO 3 . Phys. Chem. Chem. Phys., 1999, 1 (23), 5327. doi:10.1039/a907161j.
  117. James, S. L. Metal-organic frameworks. Chem. Soc. Rev., 2003, 32 (5), 276. doi:10.1039/b200393g.
  118. Kretschmann, A.; Walz, M.-M.; Flechtner, K.; Steinrück, H.-P.; and Gottfried, J. M. Tetraphenylporphyrin picks up zinc atoms from a silver surface. Chem. Commun., 2007, (6), 568. doi:10.1039/b614427f.
  119. Politzer, P.; Murray, J. S.; and Clark, T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys., 2010, 12, 7748. doi:10.1039/C004189K.
  120. Buchner, F.; Kellner, I.; Hieringer, W.; Gorling, A.; Steinrück, H. P.; and Marbach, H. Ordering aspects and intramolecular conformation of tetraphenylporphyrins on Ag(111). Phys. Chem. Chem. Phys., 2010, 12 (40), 13082. doi:10.1039/c004551a.
  121. Blunt, M. O.; Russell, J. C.; Champness, N. R.; and Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun., 2010, 46 (38), 7157. doi:10.1039/c0cc01810d.
  122. Shi, Z.; Lin, T.; Liu, J.; Liu, P. N.; and Lin, N. Regulating a two-dimensional metallo- supramolecular self-assembly of multiple outputs. CrystEngComm, 2011, 13 (18), 5532. doi:10.1039/c1ce05340j.
  123. Franc, G. and Gourdon, A. Covalent networks through on-surface chemistry in ultra- high vacuum: state-of-the-art and recent developments. Phys. Chem. Chem. Phys., 2011, 13 (32), 14283. doi:10.1039/c1cp20700h.
  124. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; and Smart, R. S. C. The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys., 2012, 14 (7), 2434. doi:10.1039/c2cp22419d.
  125. Chung, K.-H.; Koo, B.-G.; Kim, H.; Yoon, J. K.; Kim, J.-H.; Kwon, Y.-K.; and Kahng, S.-J. Electronic structures of one-dimensional metal-molecule hybrid chains studied using scanning tunneling microscopy and density functional theory. Phys. Chem. Chem. Phys., 2012, 14 (20), 7304. doi:10.1039/c2cp23295b.
  126. Broglie, M. D. Sur les spectres corpusculaires des éléments. Compt. Rend. Acad. Sci., 1921, 172, 274. doi:10.1051/jphys-rad:0192100209026500.
  127. Fanta, P. E. The Ullmann Synthesis of Biaryls. Synthesis-Stuttgart, 1974, (1), 9. doi:10.1055/s-1974-23219.
  128. Choong, V. E.; Mason, M. G.; Tang, C. W.; and Gao, Y. G. Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum. Appl. Phys. Lett., 1998, 72 (21), 2689. doi:10.1063/1.121100.
  129. Hill, I. G.; Rajagopal, A.; Kahn, A.; and Hu, Y. Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett., 1998, 73 (5), 662. doi:10.1063/1.121940.
  130. Shen, C. F.; Kahn, A.; and Schwartz, J. Role of metal-molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al-F16CuPc case. J. Appl. Phys., 2001, 90 (12), 6236. doi:10.1063/1.1419263.
  131. Watkins, N. J.; Yan, L.; and Gao, Y. Electronic structure symmetry of in- terfaces between pentacene and metals. Appl. Phys. Lett., 2002, 80 (23), 4384. doi:10.1063/1.1485129.
  132. Krause, B.; Durr, A. C.; Schreiber, F.; Dosch, H.; and Seeck, O. H. Thermal stability and partial dewetting of crystalline organic thin films: 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111). J. Chem. Phys., 2003, 119 (6), 3429. doi:10.1063/1.1589471.
  133. Tamm, P. W. and Schmidt, L. D. Binding States of Hydrogen on Tungsten. J. Chem. Phys, 1971, 54 (11), 4775. doi:10.1063/1.1674753.
  134. Alfredsson, Y.; Brena, B.; Nilson, K.; Åhlund, J.; Kjeldgaard, L.; Nyberg, M.; Luo, Y.; Mårtensson, N.; Sandell, A.; Puglia, C.; and Siegbahn, H. Electronic structure of a vapor-deposited metal-free phthalocyanine thin film. J. Chem. Phys., 2005, 122 (21), 214723. doi:10.1063/1.1924539.
  135. Gavrila, G.; Zahn, D. R. T.; and Braun, W. High resolution photoemission spectroscopy: Evidence for strong chemical interaction between Mg and 3,4,9,10- perylene-tetracarboxylic dianhydride. Appl. Phys. Lett., 2006, 89 (16), 162102. doi:10.1063/1.2356305.
  136. Hansma, P. K. and Tersoff, J. Scanning tunneling microscopy. J. Appl. Phys., 1987, 61 (2), R1. doi:10.1063/1.338189.
  137. Diller, K.; Klappenberger, F.; Marschall, M.; Hermann, K.; Nefedov, A.; Woll, C.; and Barth, J. V. Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. J. Chem. Phys., 2012, 136 (1), 14705. doi:10.1063/1.3674165.
  138. Hill, I. G. and Kahn, A. Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N ′ -diphenyl-N,N ′ -bis(l-naphthyl)- 1,1 ′ biphenyl-4,4 ′′ diamine molecular organic semiconductor system. J. Appl. Phys., 1999, 86 (4), 2116. doi:10.1063/1.371018.
  139. Wandelt, K. and Hulse, J. E. Xenon adsorption on palladium. I. The homo- geneous (110), (100), and (111) surfaces. J. Chem. Phys, 1984, 80 (3), 1340. doi:10.1063/1.446815.
  140. Binnig, G.; Rohrer, H.; Gerber, C.; and Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 1982, 40 (2), 178. doi:10.1063/1.92999.
  141. Duke, C. B. The birth and evolution of surface science: Child of the union of science and technology. Proc. Natl. Acad. Sci. U.S.A., 2003, 100 (7), 3858. doi:10.1073/pnas.0730358100.
  142. Frost, D. C.; McDowell, C. A.; and Woolsey, I. S. X-ray photoelectron spectra of cobalt compounds. Mol. Phys., 1974, 27 (6), 1473. doi:10.1080/00268977400101251.
  143. Ishii, H.; Hasegawa, S.; Yoshimura, D.; Sugiyama, K.; Narioka, S.; Sei, M.; Ouchi, Y.; Seki, K.; Harima, Y.; and Yamashita, K. Electronic structures of porphyrins and their interfaces with metals studied by UV photoemission. Mol. Cryst. Liq. Cryst. Sci. Tech- nol. Sect. A-Mol. Cryst. Liq. Cryst., 1997, 296, 427. doi:10.1080/10587259708032338.
  144. Robinson, H. and Rawlinson, W. The magnetic spectrum of the beta rays excited in metals by soft X rays. Phil. Mag., 1914, 28, 277. doi:10.1080/14786440808635209.
  145. Chelvayohan, M. and Mee, C. H. B. Work function measurements on (110), (100) and (111) surfaces of silver. J. Phys. C: Solid State Phys., 1982, 15 (10), 2305. doi:10.1088/0022-3719/15/10/029.
  146. Kroemer, H. Band offsets and chemical bonding: The basis for heterostructure applications. Phys. Scr., 1996, T68, 10. doi:10.1088/0031-8949/1996/t68/001.
  147. Besenbacher, F. Scanning tunnelling microscopy studies of metal surfaces. Rep. Prog. Phys., 1996, 59 (12), 1737. doi:10.1088/0034-4885/59/12/004.
  148. Libbrecht, K. G. The physics of snow crystals. Rep. Prog. Phys., 2005, 68 (4), 855. doi:10.1088/0034-4885/68/4/r03.
  149. Grillo, F.; Früchtl, H.; Francis, S. M.; and Richardson, N. V. Site selectivity in the growth of copper islands on Au (111). New J. Phys., 2011, 13 (1), 013044. doi:10.1088/1367-2630/13/1/013044.
  150. Ladacki, M. and Szwarc, M. Studies of the variations in bond dissociation ener- gies of aromatic compounds. 1. Mono-bromo-aryles. Proceedings of the Royal Soci- ety of London Series a-Mathematical and Physical Sciences, 1953, 219 (1138), 341. doi:10.1098/rspa.1953.0151.
  151. Siegbahn, K. Electron spectroscopy for chemical analysis (e.s.c.a.). Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences, 1970, 268 (1184), 33. doi:10.1098/rsta.1970.0060.
  152. Nordling, C.; Sokolowski, E.; and Siegbahn, K. Precision Method for Obtaining Absolute Values of Atomic Binding Energies. Phys. Rev., 1957, 105 (5), 1676. doi:10.1103/PhysRev.105.1676.
  153. Gupta, R. P. and Sen, S. K. Calculation of multiplet structure of core p-vacancy levels. Phys. Rev. B, 1974, 10 (1), 71. doi:10.1103/PhysRevB.10.71.
  154. Gupta, R. P. and Sen, S. K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B, 1975, 12 (1), 15. doi:10.1103/PhysRevB.12.15.
  155. Fain, S. C. and McDavid, J. M. Work-function variation with alloy composition: Cu-Au. Phys. Rev. B, 1976, 13 (4), 1853. doi:10.1103/PhysRevB.13.1853.
  156. Tersoff, J. and Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B, 1985, 31 (2), 805. doi:10.1103/PhysRevB.31.805.
  157. Kuhlenbeck, H.; Saalfeld, H. B.; Buskotte, U.; Neumann, M.; Freund, H. J.; and Plummer, E. W. π-d backbonding band dispersion and final-state effects for the (2 × 1) p2mg phase of CO on Ni(110). Phys. Rev. B, 1989, 39 (6), 3475. doi:10.1103/PhysRevB.39.3475.
  158. Seki, K.; Yanagi, H.; Kobayashi, Y.; Ohta, T.; and Tani, T. UV photoemission study of dye/AgBr interfaces in relation to spectral sensitization. Phys. Rev. B, 1994, 49 (4), 2760. doi:10.1103/PhysRevB.49.2760.
  159. Li, J. T.; Schneider, W. D.; and Berndt, R. Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111). Phys. Rev. B, 1997, 56 (12), 7656. doi:10.1103/PhysRevB.56.7656.
  160. Gargiani, P.; Angelucci, M.; Mariani, C.; and Betti, M. G. Metal-phthalocyanine chains on the Au(110) surface: Interaction states versus d-metal states occupancy. Phys. Rev. B, 2010, 81, 085412. doi:10.1103/PhysRevB.81.085412.
  161. Stepanow, S.; Miedema, P. S.; Mugarza, A.; Ceballos, G.; Moras, P.; Cezar, J. C.; Carbone, C.; de Groot, F. M. F.; and Gambardella, P. Mixed-valence behavior and strong correlation effects of metal phthalocyanines adsorbed on metals. Phys. Rev. B, 2011, 83 (22), 220401. doi:10.1103/PhysRevB.83.220401.
  162. Mugarza, A.; Robles, R.; Krull, C.; Korytár, R.; Lorente, N.; and Gambardella, P. Electronic and magnetic properties of molecule-metal interfaces: Transition- metal phthalocyanines adsorbed on Ag(100). Phys. Rev. B, 2012, 85 (15), 155437. doi:10.1103/PhysRevB.85.155437.
  163. Salomon, E.; Amsalem, P.; Marom, N.; Vondracek, M.; Kronik, L.; Koch, N.; and Angot, T. Electronic structure of CoPc adsorbed on Ag(100): Evidence for molecule- substrate interaction mediated by Co 3d orbitals. Phys. Rev. B, 2013, 87, 075407. doi:10.1103/PhysRevB.87.075407.
  164. Klappenberger, F.; Kühne, D.; Krenner, W.; Silanes, I.; Arnau, A.; García de Abajo, F. J.; Klyatskaya, S.; Ruben, M.; and Barth, J. V. Tunable Quantum Dot Arrays Formed from Self-Assembled Metal-Organic Networks. Phys. Rev. Lett., 2011, 106 (2), 026802. doi:10.1103/PhysRevLett.106.026802.
  165. Binnig, G.; Rohrer, H.; Gerber, C.; and Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett., 1982, 49, 57. doi:10.1103/PhysRevLett.49.57.
  166. Tersoff, J. and Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett., 1983, 50 (25), 1998. doi:10.1103/PhysRevLett.50.1998.
  167. Becker, R. S.; Golovchenko, J. A.; Hamann, D. R.; and Swartzentruber, B. S. Real- Space Observation of Surface States on Si(111) 7x7 with the Tunneling Microscope. Phys. Rev. Lett., 1985, 55 (19), 2032. doi:10.1103/PhysRevLett.55.2032.
  168. Binnig, G.; Frank, K. H.; Fuchs, H.; Garcia, N.; Reihl, B.; Rohrer, H.; Salvan, F.; and Williams, A. R. Tunneling Spectroscopy and Inverse Photoemission: Image and Field States. Phys. Rev. Lett., 1985, 55 (9), 991. doi:10.1103/PhysRevLett.55.991.
  169. Hamers, R. J.; Tromp, R. M.; and Demuth, J. E. Surface Electronic Structure of Si (111)-(7x7) Resolved in Real Space. Phys. Rev. Lett., 1986, 56 (18), 1972. doi:10.1103/PhysRevLett.56.1972.
  170. Bardeen, J. Tunnelling from a Many-Particle Point of View. Phys. Rev. Lett., 1961, 6 (2), 57. doi:10.1103/PhysRevLett.6.57.
  171. Hasegawa, Y. and Avouris, P. Direct Observation of Standing Wave Formation at Surface Steps Using Scanning Tunneling Spectroscopy. Phys. Rev. Lett., 1993, 71 (7), 1071. doi:10.1103/PhysRevLett.71.1071.
  172. Li, J. T.; Schneider, W. D.; Berndt, R.; and Crampin, S. Electron confinement to nanoscale Ag islands on Ag(111): A quantitative study. Phys. Rev. Lett., 1998, 80 (15), 3332. doi:10.1103/PhysRevLett.80.3332.
  173. Binnig, G. and Rohrer, H. Scanning tunneling microscopy-from birth to adolescence. Rev. Mod. Phys., 1987, 59 (3), 615. doi:10.1103/RevModPhys.59.615.
  174. Ishii, H. and Seki, K. Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. IEEE Trans. Electron Devices, 1997, 44 (8), 1295. doi:10.1109/16.605471.
  175. Ashley, J. C.; Tung, C. J.; and Ritchie, R. H. Inelastic interactions of electrons with polystyrene-calculations of mean free paths, stopping powers, and CSDA ranges. IEEE Trans. Nucl. Sci., 1978, 25 (6), 1566. doi:10.1109/tns.1978.4329573.
  176. Pawin, G.; Wong, K. L.; Kwon, K.-Y.; and Bartels, L. A Homomolecular Porous Network at a Cu(111) Surface. Science, 2006, 313 (5789), 961. doi:10.1126/science.1129309.
  177. Lobo-Checa, J.; Matena, M.; Mueller, K.; Dil, J. H.; Meier, F.; Gade, L. H.; Jung, T. A.; and Stoehr, M. Band Formation from Coupled Quantum Dots Formed by a Nanoporous Network on a Copper Surface. Science, 2009, 325 (5938), 300. doi:10.1126/science.1175141.
  178. Crommie, M. F.; Lutz, C. P.; and Eigler, D. M. Confinement of Electrons to Quantum Corrals on a Metal Surface. Science, 1993, 262 (5131), 218. doi:10.1126/science.262.5131.218.
  179. Venema, L. C.; Wildöer, J. W. G.; Janssen, J. W.; Tans, S. J.; Tuinstra, H. L. J. T.; Kouwenhoven, L. P.; and Dekker, C. Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes. Science, 1999, 283 (5398), 52. doi:10.1126/science.283.5398.52.
  180. Yoshimoto, S. and Itaya, K. Advances in supramolecularly assembled nanostructures of fullerenes and porphyrins at surfaces. Journal of Porphyrins and Phthalocyanines, 2007, 11 (05), 313. doi:10.1142/S1088424607000369.
  181. [160] Hamers, R. J. Atomic-resolution surface spectroscopy with the scan- ning tunneling microscope. Annu. Rev. Phys. Chem., 1989, 40, 531. doi:10.1146/annurev.pc.40.100189.002531.
  182. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem., 2007, 58, 375. doi:10.1146/annurev.physchem.56.092503.141259.
  183. Gellert, M.; Gries, K. I.; Zakel, J.; Kranz, S.; Bradler, S.; Hornberger, E.; Mueller, S.; Yada, C.; Rosciano, F.; Volz, K.; and Boling, B. Charge Transfer across the Interface between LiNi 0.5 Mn 1.5 O 4 High-Voltage Cathode Films and Solid Electrolyte Films. J. Electrochem. Soc., 2015, 162 (4), A754. doi:10.1149/2.0891504jes.
  184. Stöhr, M.; Gabriel, M.; and Moller, R. Analysis of the three-dimensional structure of a small crystallite by scanning tunneling microscopy: Multilayer films of 3,4,9,10- perylenetetracarboxylic-dianhydride (PTCDA) on Cu(110). Europhys. Lett., 2002, 59 (3), 423. doi:10.1209/epl/i2002-00212-8.
  185. Vogel, E. Porphyrinoid macrocycles: A cornucopia of novel chromophores. Pure Appl. Chem., 1996, 68 (7), 1355. doi:10.1351/pac199668071355.
  186. Gottfried, J. M. and Marbach, H. Surface-Confined Coordination Chemistry with Porphyrins and Phthalocyanines: Aspects of Formation, Electronic Structure, and Reactivity. Z. Phys. Chem., 2009, 223 (1-2), 53. doi:10.1524/zpch.2009.6024.
  187. Nesbitt, H. W. and Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation. Am. Mineral., 1998, 83 (3-4), 305. doi:10.2138/am-1998-3-414.
  188. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; and Golab, J. Photodynamic Therapy of Cancer: An Update. Ca-a Cancer Journal for Clinicians, 2011, 61 (4), 250. doi:10.3322/caac.20114.
  189. Kepcija, N.; Huang, T. J.; Klappenberger, F.; and Barth, J. V. Quantum confinement in self-assembled two-dimensional nanoporous honeycomb networks at close-packed metal surfaces. J. Chem. Phys., 2015, 142 (10). doi:101931 10.1063/1.4913244.
  190. Schaefers, F.; Mertin, M.; and Gorgoi, M. KMC-1: A high resolution and high flux soft x-ray beamline at BESSY. Rev. Sci. Instrum., 2007, 78 (12). doi:123102 10.1063/1.2808334.
  191. Bai, Y.; Buchner, F.; Kellner, I.; Schmid, M.; Vollnhals, F.; Steinrück, H.-P.; Marbach, H.; and Gottfried, J. M. Adsorption of cobalt (II) octaethylporphyrin and 2H- octaethylporphyrin on Ag(111): new insight into the surface coordinative bond. New J. Phys., 2009, 11. doi:125004 10.1088/1367-2630/11/12/125004.
  192. Li, Y. and Lin, N. Combined scanning tunneling microscopy and kinetic Monte Carlo study on kinetics of Cu-coordinated pyridyl-porphyrin supramolecular self- assembly on a Au(111) surface. Phys. Rev. B, 2011, 84 (12). doi:125418 10.1103/Phys- RevB.84.125418.
  193. Krenner, W.; Kuehne, D.; Klappenberger, F.; and Barth, J. V. Assessment of Scanning Tunneling Spectroscopy Modes Inspecting Electron Confinement in Surface-Confined Supramolecular Networks. Sci. Rep., 2013, 3. doi:1454 10.1038/srep01454.
  194. Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys. Condens. Matter, 2008, 20 (18). doi:184008 10.1088/0953-8984/20/18/184008.
  195. Witte, G.; Lukas, S.; Bagus, P. S.; and Woll, C. Vacuum level alignment at organ- ic/metal junctions: "Cushion" effect and the interface dipole. Appl. Phys. Lett., 2005, 87 (26), 3. doi:263502 10.1063/1.2151253.
  196. Brede, J.; Linares, M.; Kuck, S.; Schwoebel, J.; Scarfato, A.; Chang, S.-H.; Hoffmann, G.; Wiesendanger, R.; Lensen, R.; Kouwer, P. H. J.; Hoogboom, J.; Rowan, A. E.; Broering, M.; Funk, M.; Stafstrom, S.; Zerbetto, F.; and Lazzaroni, R. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology, 2009, 20 (27). doi:275602 10.1088/0957-4484/20/27/275602.
  197. Glaser, M.; Peisert, H.; Adler, H.; Aygül, U.; Ivanovic, M.; Nagel, P.; Merz, M.; Schuppler, S.; and Chassé, T. Electronic structure at transition metal phthalocyanine- transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films. J. Chem. Phys, 2015, 142 (10), 101918. doi:http://dx.doi.org/10.1063/1.4907899.
  198. Syomin, D. and Koel, B. E. Adsorption of iodobenzene (C 6 H 5 I) on Au(111) surfaces and production of biphenyl (C 6 H 5 -C 6 H 5 ). Surf. Sci., 2001, 490 (3), 265. doi:10.1016/s0039- 6028(01)01319-x.
  199. Tanuma, S.; Powell, C. J.; and Penn, D. R. Calculations of electron inelastic mean free paths (IMFPs) .6. Analysis of the Gries inelastic scattering model and predictive IMFP equation. Surf. Interface Anal., 1997, 25 (1), 25. doi:10.1002/(sici)1096- 9918(199701)25:1<25::aid-sia207>3.0.co;2-2.
  200. Buchner, F.; Flechtner, K.; Bai, Y.; Zillner, E.; Kellner, I.; Steinrück, H. P.; Mar- bach, H.; and Gottfried, J. M. Coordination of iron atoms by tetraphenylporphyrin monolayers and multilayers on Ag(111) and formation of iron-tetraphenylporphyrin.
  201. Coverage Dependent N 1s Spectra of 2HTPP Metalated by Cobalt. . . 94
  202. McCafferty, E. and Wightman, J. P. Determination of the concentration of surface hy- droxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998, 26 (8), 549. doi:10.1002/(sici)1096-9918(199807)26:8<549::aid-sia396>3.3.co;2-h.
  203. Briggs, D. and Gibson, V. A. Direct observation of multiplet splitting in 2p photoelec- tron peaks of cobalt complexes. Chem. Phys. Lett., 1974, 25 (4), 493. doi:10.1016/0009- 2614(74)85350-9.
  204. Cumpson, P. J. and Seah, M. P. Elastic scattering corrections in AES and XPS .2. Estimating attenuation lengths and conditions required for their valid use in overlayer/- substrate experiments. Surf. Interface Anal., 1997, 25 (6), 430. doi:10.1002/(SICI)1096- 9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7.
  205. Hamers, R. J.; Tromp, R. M.; and Demuth, J. E. Electronic and geometric structure of Si(111)-(7x7) and Si(001) surfaces. Surf. Sci., 1987, 181 (1), 346. doi:10.1016/0039- 6028(87)90176-2.
  206. Seki, K.; Tani, T.; and Ishii, H. Electronic structures of organic-inorganic interfaces studied by UV photoemission. Thin Solid Films, 1996, 273 (1-2), 20. doi:10.1016/0040- 6090(95)06765-5.
  207. Seki, K.; Ito, E.; and Ishii, H. Energy level alignment at organic/metal interfaces studied by UV photoemission. Synth. Met., 1997, 91 (1-3), 137. doi:10.1016/S0379- 6779(98)80075-1.
  208. Moulder, J. and Chastain, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation, 1992.
  209. Tanuma, S.; Powell, C. J.; and Penn, D. R. Inelastic Mean Free Paths of Low-Energy Electrons in Solids. Acta Phys. Pol. A, 1992, 81 (2), 169.
  210. Chen, C. J. Introduciton to Scanning Tunneling Microscopy. 1st Edition, Oxford University Press, New York, 1993.
  211. Ertl, G. and Küppers, J. Low Energy Electrons and Surface Chemistry. 2nd edition, VCH Verlagsgesellschaft, Weinheim, Germany, 1985.
  212. Monolayer Metalation of 3HHEDMC on Ag(111) at Low Temperature. 86
  213. Prins, L. J.; Reinhoudt, D. N.; and Timmerman, P. Noncovalent synthesis using hydrogen bonding. Angew. Chem. Int. Ed., 2001, 40 (13), 2382. doi:10.1002/1521- 3773(20010702)40:13<2382::aid-anie2382>3.0.co;2-g.
  214. Seah, M. P.; Gilmore, I. S.; and Spencer, S. J. Quantitative XPS: I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database. J. Electron Spectrosc. Relat. Phenom., 2001, 120 (1-3), 93. doi:10.1016/S0368- 2048(01)00311-5.
  215. Conversano, E. and Tedeschini-Lalli, L. Sierpinsky Triangles in Stone, on Medieval Floors in Rome. Aplimat J. Appl. Math., 2011, 4, 113.
  216. Hickmott, T. W. and Ehrlich, G. Structure-sensitive chemisorption: The mechanism of desorption from tungsten. J. Phys. Chem. Solids, 1958, 5 (1), 47. doi:10.1016/0022- 3697(58)90131-8.
  217. Gottfried, J. M. Surface Chemistry of Porphyrins and other Complex Adsorbate Systems. Habilitation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2009.
  218. Bibliography [1] Milgrom, L. R. The colors of life: an introduction to the chemistry of porphyrins and related compunds. Oxford University Press, New York, 1997.
  219. Mandelbrot, B. B. The Fractal Geometry of Nature. W. H. Freemann and Company, New York, 1982.
  220. Xiao, J. The Study of Molecular Band Offsets at the Heteromolecular Interface. Ph.D. thesis, University of Nebraska, 2009.
  221. Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; and Kim, J.-H. Understanding Transition-Metal Dissolution Behavior in LiNi 0 .5Mn 1 .5O 4
  222. SPECS. User Manual for UV-Source UVS 10/35., version 2.4 edition, 2009.
  223. Ishii, H.; Sugiyama, K.; Ito, E.; and Seki, K. Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv. Mater., 1999, 11 (8), 605. doi:10.1002/(sici)1521-4095(199906)11:8<605::aid-adma605>3.3.co;2-h.
  224. Bebensee, F. Metal-Polymer Interfaces Studied with Adsorption Microcalorimetry and Photoelectron Spectroscopy. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen- Nürnberg, 2010.
  225. Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters. https://vuo.elettra.eu/services/elements/WebElements.html.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten