Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulation by cyclic di-GMP in Myxococcus xanthus
Autor:Skotnicka, Dorota
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2016-01015
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Regulation durch cyclisches-di-GMP in Myxococcus xanthus


cyclic di-GMP, cyclisches-di-GMP, Diguanylatzyklase, diguanylate cyclase, Exopolysaccharide, exopolysaccharide, Myxococcus xanthus, Myxococcus xanthus

The nucleotide-based second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) is involved in regulating a plethora of processes in bacteria that are typically associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle changes in response to nutrient availability with the formation of spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. Here, we investigated the function of c-di-GMP in M. xanthus. We show that this bacterium synthesizes c-di-GMP. Manipulation of the cellular c-di-GMP level by expression of either an active, heterologous diguanylate cyclase or an active, heterologous phosphodiesterase in vegetative cells caused defects in type IV pili (T4P)-dependent motility whereas gliding motility was unaffected. An increased level of c-di-GMP caused reduced transcription of the pilA gene that encodes the major pilin of T4P, reduced assembly of T4P and altered cell agglutination whereas a decreased level of c-di-GMP caused altered cell agglutination. The systematic inactivation of the 24 genes in M. xanthus encoding proteins containing GGDEF, EAL or HD-GYP domains, which are associated with c-di-GMP synthesis, degradation or binding, identified three genes encoding proteins important for T4P-dependent motility. These three proteins named DmxA, TmoK and SgmT all contain a GGDEF domain. Purified DmxA had diguanylate cyclase activity whereas the TmoK and SgmT (both hybrid histidine protein kinases) did not have diguanylate cyclase activity. During starvation, the c-di-GMP level in M. xanthus increases significantly. Manipulation of this level revealed that a low c-di-GMP level negatively affects the developmental program while an increased level does not interfere with development. Moreover, among the 24 genes encoding proteins containing GGDEF, EAL or HD-GYP domains, we identified two which are specifically involved in development: pmxA and dmxB. pmxA codes for an enzymatically active phosphodiesterase with an HD-GYP domain. dmxB codes for a developmentally induced, enzymatically active diguanylate cyclase. DmxB is essential for the increased c-di-GMP level and regulates exopolysaccharide accumulation during starvation. Our results show that c-di-GMP acts as an important signaling molecule during M. xanthus development, and suggest a model in which a minimal threshold level of c-di-GMP is essential for the successful progression and completion of the developmental program. Additionally, candidates for c-di-GMP effectors in M. xanthus were identified using a capture compound mass spectrometry approach. Some of the candidates were confirmed to bind c-di-GMP in vitro and deletion mutants for genes encoding those proteins were characterized in terms of T4P-dependent motility and development.

Bibliographie / References

  1. Petters, T., (2012) Neue Signalwege in Myxococcus xanthus: Die Entdeckung des SgmT/DigR-Regulons und die Untersuchung der zellulären Rolle von c-di-GMP. In.: PhD thesis, Philipps-Universität Marburg, pp.
  2. Punta, M., P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L. Sonnhammer, S.R. Eddy, A. Bateman & R.D. Finn, (2012) The Pfam protein families database. Nucleic acids research 40: D290-301.
  3. Berleman, J.E., J.J. Vicente, A.E. Davis, S.Y. Jiang, Y.-E. Seo & D.R. Zusman, (2011) FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS ONE 6: e23920.
  4. Wu, S.S. & D. Kaiser, (1996) Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178: 5817-5821.
  5. Wolgemuth, C., E. Hoiczyk, D. Kaiser & G. Oster, (2002) How myxobacteria glide. Current biology : CB 12: 369-377.
  6. Bowden, M.G. & H.B. Kaplan, (1998) The Myxococcus xanthus lipopolysaccharide O- antigen is required for social motility and multicellular development. Mol Microbiol 30: 275-284.
  7. Bellini, D., D.L. Caly, Y. McCarthy, M. Bumann, S.-Q. An, J.M. Dow, R.P. Ryan & M.A. Walsh, (2014) Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre. Mol Microbiol 91: 26-38.
  8. Ryan, R.P., Y. McCarthy, P.A. Kiely, R. O'Connor, C.S. Farah, J.P. Armitage & J.M. Dow, (2012a) Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Mol Microbiol 86: 557-567.
  9. Chin, K.H., Y.C. Lee, Z.L. Tu, C.H. Chen, Y.H. Tseng, J.M. Yang, R.P. Ryan, Y. McCarthy, J.M. Dow, A.H. Wang & S.H. Chou, (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396: 646-662.
  10. Fazli, M., A. O'Connell, M. Nilsson, K. Niehaus, J.M. Dow, M. Givskov, R.P. Ryan & T. Tolker-Nielsen, (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82: 327-341.
  11. Ryan, R.P., T. Tolker-Nielsen & J.M. Dow, (2012b) When the PilZ don't work: effectors for cyclic di-GMP action in bacteria. Trends in microbiology 20: 235-242.
  12. Li, W. & Z.G. He, (2012) LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res. 40: 11292–11307.
  13. Søgaard-Andersen, L., F.J. Slack, H. Kimsey & D. Kaiser, (1996) Intercellular C- signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10: 740-754.
  14. Moak, P.L., W.P. Black, R.A. Wallace, Z. Li & Z.M. Yang, (2015) The Hsp70-like StkA functions between T4P and Dif signaling proteins as a negative regulator of exopolysaccharide in Myxococcus xanthus. Peerj 3.
  15. Minasov, G., S. Padavattan, L. Shuvalova, J.S. Brunzelle, D.J. Miller, A. Baslé, C. Massa, F.R. Collart, T. Schirmer & W.F. Anderson, (2009) Crystal structures of YkuI and its complex with second messenger cyclic di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. J Biol Chem 284: 13174-13184.
  16. Paul, R., S. Abel, P. Wassmann, A. Beck, H. Heerklotz & U. Jenal, (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282: 29170-29177.
  17. Paul, R., S. Weiser, N.C. Amiot, C. Chan, T. Schirmer, B. Giese & U. Jenal, (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes & development 18: 715-727.
  18. Wassmann, P., C. Chan, R. Paul, A. Beck, H. Heerklotz, U. Jenal & T. Schirmer, (2007) Structure of BeF3−-modified response regulator PleD: Implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15: 915-927.
  19. Christen, M., B. Christen, M. Folcher, A. Schauerte & U. Jenal, (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280: 30829-30837.
  20. Aldridge, P., R. Paul, P. Goymer, P. Rainey & U. Jenal, (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47: 1695-1708.
  21. Duerig, A., S. Abel, M. Folcher, M. Nicollier, T. Schwede, N. Amiot, B. Giese & U. Jenal, (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes & development 23: 93-104.
  22. Boehm, A., M. Kaiser, H. Li, C. Spangler, C.A. Kasper, M. Ackermann, V. Kaever, V. Sourjik, V. Roth & U. Jenal, (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141: 107-116.
  23. Spangler, C., A. Bohm, U. Jenal, R. Seifert & V. Kaever, (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. Journal of microbiological methods 81: 226-231.
  24. Abel, S., P. Chien, P. Wassmann, T. Schirmer, V. Kaever, M.T. Laub, T.A. Baker & U. Jenal, (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Molecular cell 43: 550-560.
  25. Nesper, J., A. Reinders, T. Glatter, A. Schmidt & U. Jenal, (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. Journal of proteomics 75: 4874-4878.
  26. Petters, T., X. Zhang, J. Nesper, A. Treuner-Lange, N. Gomez-Santos, M. Hoppert, U. Jenal & L. Sogaard-Andersen, (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 84: 147-165.
  27. Bharati, B.K., I.M. Sharma, S. Kasetty, M. Kumar, R. Mukherjee & D. Chatterji, (2012) A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. Microbiol-Sgm 158: 1415-1427.
  28. Hobley, L., R.K. Fung, C. Lambert, M.A. Harris, J.M. Dabhi, S.S. King, S.M. Basford, K. Uchida, R. Till, R. Ahmad, S. Aizawa, M. Gomelsky & R.E. Sockett, (2012) Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathogens 8: e1002493.
  29. Lobedanz, S. & L. Sogaard-Andersen, (2003) Identification of the C-signal, a contact- dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes & development 17: 2151-2161.
  30. Jelsbak, L. & L. Søgaard-Andersen, (1999) The cell surface-associated intercellular C- signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc Natl Acad Sci USA 96: 5031-5036.
  31. Duvel, J., D. Bertinetti, S. Moller, F. Schwede, M. Morr, J. Wissing, L. Radamm, B. Zimmermann, H.G. Genieser, L. Jansch, F.W. Herberg & S. Haussler, (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. Journal of microbiological methods 88: 229-236.
  32. Huang, B., C.B. Whitchurch & J.S. Mattick, (2003) FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185: 7068-7076.
  33. Lee, V.T., J.M. Matewish, J.L. Kessler, M. Hyodo, Y. Hayakawa & S. Lory, (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65: 1474-1484.
  34. Muñoz -Dorado, J., S. Inouye & M. Inouye, (1991) A Gene Encoding a Protein Serine Threonine Kinase Is Required for Normal Development of M. xanthus, a Gram- Negative Bacterium. Cell 67: 995-1006.
  35. Christen, B., M. Christen, R. Paul, F. Schmid, M. Folcher, P. Jenoe, M. Meuwly & U. Jenal, (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281: 32015-32024.
  36. Harman, J.G., (2001) Allosteric regulation of the cAMP receptor protein. Biochim Biophys Acta 1547: 1-17.
  37. Lancero, H.L., S. Castaneda, N.B. Caberoy, X. Ma, A.G. Garza & W. Shi, (2005) Analysing protein–protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151: 1535-1541.
  38. Kulasakara, H., V. Lee, A. Brencic, N. Liberati, J. Urbach, S. Miyata, D.G. Lee, A.N. Neely, M. Hyodo, Y. Hayakawa, F.M. Ausubel & S. Lory, (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103: 2839-2844.
  39. Heering, J., (2013) Analysis of the response regulator ActA and localization studies of the histidine kinase SgmT in Myxococcus xanthus. In.: BSc thesis, Philipps- Universität Marburg, pp.
  40. Yang, Z.M., Y.Z. Geng, D. Xu, H.B. Kaplan & W.Y. Shi, (1998b) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30: 1123-1130.
  41. Rotem, O., J. Nesper, I. Borovok, R. Gorovits, M. Kolot, Z. Pasternak, I. Shin, T. Glatter, S. Pietrokovski, U. Jenal & E. Jurkevitch, (2015) An extended cyclic di- GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol.
  42. Konovalova, A., S. Lobach & L. Sogaard-Andersen, (2012) A RelA-dependent two- tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol 84: 260-275.
  43. Anantharaman, V. & L. Aravind, (2000) Cache -a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends in biochemical sciences 25: 535-537.
  44. Rao, F., Y. Yang, Y. Qi & Z.-X. Liang, (2008) Catalytic mechanism of cyclic di-GMP- specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190: 3622-3631.
  45. Cotter, P.A. & S. Stibitz, (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Current opinion in microbiology 10: 17-23.
  46. Lancero, H., N.B. Caberoy, S. Castaneda, Y.N. Li, A. Lu, D. Dutton, X.Y. Duan, H.B. Kaplan, W.Y. Shi & A.G. Garza, (2004) Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiol-Sgm 150: 4085-4093.
  47. Zusman, D.R., A.E. Scott, Z. Yang & J.R. Kirby, (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nature reviews. Microbiology 5: 862-872.
  48. Jakobczak, B., D. Keilberg, K. Wuichet & L. Sogaard-Andersen, (2015) Contact-and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus. PLoS Genetics 11.
  49. Ross, P., Y. Aloni, H. Weinhouse, D. Michaeli, P. Weinbergerohana, R. Mayer & M. Benziman, (1986) Control of Cellulose Synthesis in Acetobacter xylinum -a Unique Guanyl Oligonucleotide Is the Immediate Activator of the Cellulose Synthase. Carbohydrate research 149: 101-117.
  50. Chirwa, N.T. & M.B. Herrington, (2003) CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiol-Sgm 149: 525-535.
  51. Curriculum vitae Personal data Name: Dorota Jagoda Skotnicka Date of birth: 09.02.1988
  52. Agarwal, N., G. Lamichhane, R. Gupta, S. Nolan & W.R. Bishai, (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460: 98-102.
  53. Lee, H.J., P.T. Lang, S.M. Fortune, C.M. Sassetti & T. Alber, (2012b) Cyclic AMP regulation of protein lysine acetylation in Mycobacterium tuberculosis. Nat Struct Mol Biol 19: 811-818.
  54. Weber, H., C. Pesavento, A. Possling, G. Tischendorf & R. Hengge, (2006) Cyclic-di- GMP-mediated signalling within the sigma(S) network of Escherichia coli. Mol Microbiol 62: 1014-1034.
  55. Hengge, R., (2010) Cyclic-di-GMP Reaches Out into the Bacterial RNA World. Sci Signal 3.
  56. Römling, U., M.Y. Galperin & M. Gomelsky, (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and molecular biology reviews : MMBR 77: 1-52.
  57. Wireman, J.W. & M. Dworkin, (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798-802.
  58. O'Connor, K.A. & D.R. Zusman, (1991b) Development in Myxococcus xanthus involves differentiation into 2 cell-types, peripheral rods and spores. J Bacteriol 173: 3318-3333.
  59. Singer, M. & D. Kaiser, (1995) Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes & development 9: 1633-1644.
  60. Mignot, T., J.W. Shaevitz, P.L. Hartzell & D.R. Zusman, (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315: 853-856.
  61. Lu, A., K. Cho, W.P. Black, X.Y. Duan, R. Lux, Z. Yang, H.B. Kaplan, D.R. Zusman & W. Shi, (2005) Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 55: 206-220.
  62. Kroos, L. & D. Kaiser, (1987) Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1: 840- 854.
  63. Konovalova, A., T. Petters & L. Sogaard-Andersen, (2010) Extracellular biology of Myxococcus xanthus. Fems Microbiol Rev 34: 89-106.
  64. Bonner, P.J., W.P. Black, Z. Yang & L.J. Shimkets, (2006) FibA and PilA act cooperatively during fruiting body formation of Myxococcus xanthus. Mol Microbiol 61: 1283-1293.
  65. Ogawa, M., S. Fujitani, X. Mao, S. Inouye & T. Komano, (1996) FruA, a putative transcription factor essential for the development of Myxococus xanthus. Mol Microbiol 22: 757-767.
  66. Sommerfeldt, N., A. Possling, G. Becker, C. Pesavento, N. Tschowri & R. Hengge, (2009) Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiol- Sgm 155: 1318-1331.
  67. Wu, S.S. & D. Kaiser, (1995) Genetic and Functional Evidence That Type-Iv Pili Are Required for Social Gliding Motility in Myxococcus xanthus. Mol Microbiol 18: 547-558.
  68. Hodgkin, J. & D. Kaiser, (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol Gen Genet 171: 177-191.
  69. Curtis, P.D. & Y.V. Brun, (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiology and molecular biology reviews : MMBR 74: 13-41.
  70. Müller, F.D., A. Treuner-Lange, J. Heider, S.M. Huntley & P.I. Higgs, (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC genomics 11: 264.
  71. Shimkets, L.J., (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annual review of microbiology 53: 525-549.
  72. Kuspa, A., L. Kroos & D. Kaiser, (1986) Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117: 267- 276.
  73. Chang, B.Y. & M. Dworkin, (1994) Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus. J Bacteriol. 176: 7190-7196.
  74. Newell, P.D., R.D. Monds & G.A. O'Toole, (2009) LapD is a bis-(3 ',5 ')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci USA 106: 3461-3466.
  75. Fabret, C., E. Dervyn, B. Dalmais, A. Guillot, C. Marck, H. Grosjean & P. Noirot, (2011) Life without the essential bacterial tRNA Ile2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis. Mol Microbiol 80: 1062-1074.
  76. Morgan, J.L.W., J.T. McNamara & J. Zimmer, (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21: 489-+.
  77. Christen, M., (2007) Mechanisms of Cyclic-di-GMP Signaling. In.: Universität Basel, pp. 174.
  78. Jenal, U. & J. Malone, (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annual review of genetics 40: 385-407.
  79. Thomasson, B., J. Link, A.G. Stassinopoulos, N. Burke, L. Plamann & P.L. Hartzell, (2002) MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 46: 1399-1413.
  80. Ramelot, T.A., A. Yee, J.R. Cort, A. Semesi, C.H. Arrowsmith & M.A. Kennedy, (2007) NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins: Structure, Function, and Bioinformatics 66: 266-271.
  81. Hobbs, M., E.S. Collie, P.D. Free, S.P. Livingston & J.S. Mattick, (1993) PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7: 669-682.
  82. Merz, A.J., M. So & M.P. Sheetz, (2000) Pilus retraction powers bacterial twitching motility. Nature 407: 98-102.
  83. Amikam, D. & M.Y. Galperin, (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22: 3-6.
  84. Magnusson, L.U., A. Farewell & T. Nystrom, (2005) ppGpp: a global regulator in Escherichia coli. Trends in microbiology 13: 236-242.
  85. Hengge, R., (2009) Principles of c-di-GMP signalling in bacteria. Nature reviews. Microbiology 7: 263-273.
  86. Curtis, P.D., J. Atwood, 3rd, R. Orlando & L.J. Shimkets, (2007) Proteins associated with the Myxococcus xanthus extracellular matrix. J Bacteriol 189: 7634-7642.
  87. Ross, P., H. Weinhouse, Y. Aloni, D. Michaeli, P. Weinberger-Ohana, R. Mayer, S. Braun, E. de Vroom, G.A. van der Marel, J.H. van Boom & M. Benziman, (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325: 279-281.
  88. Schreiter, E.R. & C.L. Drennan, (2007) Ribbon-helix-helix transcription factors: variations on a theme. Nature reviews. Microbiology 5: 710-720.
  89. Sudarsan, N., E.R. Lee, Z. Weinberg, R.H. Moy, J.N. Kim, K.H. Link & R.R. Breaker, (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411-413.
  90. Boyd, C.D. & G.A. O'Toole, (2012) Second messenger regulation of biofilm formation: Breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28: 439-462.
  91. Tozawa, Y. & Y. Nomura, (2011) Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. Plant biology 13: 699-709.
  92. Letunic, I., T. Doerks & P. Bork, (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43: D257-D260.
  93. O'Connor, K.A. & D.R. Zusman, (1997) Starvation-independent sporulation in Myxococcus xanthus involves the pathway for beta-lactamase induction and provides a mechanism for competitive cell survival. Mol Microbiol 24: 839-850.
  94. Caroff, M. & D. Karibian, (2003) Structure of bacterial lipopolysaccharides. Carbohydrate research 338: 2431-2447.
  95. Hagen, D.C., A.P. Bretscher & D. Kaiser, (1978) Synergism between Morphogenetic Mutants of Myxococcus xanthus. Dev Biol 64: 284-296.
  96. Tschowri, N., M.A. Schumacher, S. Schlimpert, N.B. Chinnam, K.C. Findlay, R.G. Brennan & M.J. Buttner, (2014) Tetrameric c-di-GMP Mediates Effective Transcription Factor Dimerization to Control Streptomyces Development. Cell 158: 1136-1147.
  97. Gronewold, T.M. & D. Kaiser, (2001) The act operon controls the level and time of C- signal production for Myxococcus xanthus development. Mol Microbiol 40: 744- 756.
  98. Ellehauge, E., M. Nørregaard-Madsen & L. Søgaard-Andersen, (1998) The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol. 30: 807-817.
  99. Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz & U. Romling, (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39: 1452- 1463.
  100. Wu, S.S., J. Wu & D. Kaiser, (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23: 109-121.
  101. Wu, S.S., J. Wu, Y.L. Cheng & D. Kaiser, (1998) The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 29: 1249-1261.
  102. Ryjenkov, D.A., R. Simm, U. Römling & M. Gomelsky, (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281: 30310-30314.
  103. Merighi, M., V.T. Lee, M. Hyodo, Y. Hayakawa & S. Lory, (2007) The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65: 876-895.
  104. Lovering, A.L., M.J. Capeness, C. Lambert, L. Hobley & R.E. Sockett, (2011) The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. mBio 2: e00163-00111.
  105. Stock, A.M., V.L. Robinson & P.N. Goudreau, (2000) Two-component signal transduction. Annual review of biochemistry 69: 183-215.
  106. Wall, D. & D. Kaiser, (1999) Type IV pili and cell motility. Mol Microbiol 32: 1-10.
  107. Black, W.P., Q. Xu & Z. Yang, (2006) Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol Microbiol 61: 447-456.
  108. Sun, H., D.R. Zusman & W.Y. Shi, (2000) Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Current Biology 10: 1143-1146.
  109. Sondermann, H., N.J. Shikuma & F.H. Yildiz, (2012) You've come a long way: c-di- GMP signaling. Current opinion in microbiology 15: 140-146.
  110. Mahenthiralingam, E., T.A. Urban & J.B. Goldberg, (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nature reviews. Microbiology 3: 144-156.
  111. Guzzo, C.R., R.K. Salinas, M.O. Andrade & C.S. Farah, (2009) PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol 393: 848-866.
  112. Whitfield, C. & M.A. Valvano, (1993) Biosynthesis and Expression of Cell-Surface Polysaccharides in Gram-Negative Bacteria. Adv Microb Physiol 35: 135-246.
  113. Bulyha, I., C. Schmidt, P. Lenz, V. Jakovljevic, A. Hone, B. Maier, M. Hoppert & L. Sogaard-Andersen, (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74: 691-706.
  114. Martinez-Granero, F., M. Redondo-Nieto, P. Vesga, M. Martin & R. Rivilla, (2014) AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113. Bmc Genomics 15.
  115. He, K. & C.E. Bauer, (2014) Chemosensory signaling systems that control bacterial survival. Trends in microbiology 22: 389-398.
  116. Ryjenkov, D.A., M. Tarutina, O.V. Moskvin & M. Gomelsky, (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. J Bacteriol 187: 1792-1798.
  117. Yang, Z., Y. Geng & W. Shi, (1998a) A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J Bacteriol 180: 218-224.
  118. Weimer, R.M., C. Creighton, A. Stassinopoulos, P. Youderian & P.L. Hartzell, (1998) A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J Bacteriol 180: 5357-5368.
  119. Kimura, Y., M. Ohtani & K. Takegawa, (2005) An adenylyl cyclase, CyaB, acts as an osmosensor in Myxococcus xanthus. J Bacteriol 187: 3593-3598.
  120. Jelsbak, L. & L. Søgaard-Andersen, (2002) Pattern formation by a cell surface- associated morphogen in Myxococcus xanthus. Proc Natl Acad Sci USA 99: 2032-2037.
  121. Tischler, A.D. & A. Camilli, (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53: 857-869.
  122. Hickman, J.W., D.F. Tifrea & C.S. Harwood, (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. P Natl Acad Sci USA 102: 14422-14427.
  123. Kimura, Y., Y. Mishima, H. Nakano & K. Takegawa, (2002) An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. J Bacteriol 184: 3578-3585.
  124. Thormann, K.M., S. Duttler, R.M. Saville, M. Hyodo, S. Shukla, Y. Hayakawa & A.M. Spormann, (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol 188: 2681- 2691.
  125. Ryan, R.P., Y. Fouhy, J.F. Lucey, L.C. Crossman, S. Spiro, Y.W. He, L.H. Zhang, S. Heeb, M. Camara, P. Williams & J.M. Dow, (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103: 6712-6717.
  126. Overgaard, M., S. Wegener-Feldbrügge & L. Søgaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 188: 4384-4394.
  127. Li, Y., H. Sun, X. Ma, A. Lu, R. Lux, D. Zusman & W. Shi, (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci USA 100: 5443-5448.
  128. Julien, B., A.D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci USA 97: 9098-9103.
  129. Wu, S.S. & D. Kaiser, (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179: 7748-7758.
  130. Christen, M., B. Christen, M.G. Allan, M. Folcher, P. Jeno, S. Grzesiek & U. Jenal, (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci USA 104: 4112-4117.
  131. Behmlander, R.M. & M. Dworkin, (1994a) Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176: 6295-6303.
  132. Behmlander, R.M. & M. Dworkin, (1994b) Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176: 6304-6311.
  133. Dana, J.R. & L.J. Shimkets, (1993) Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J Bacteriol 175: 3636-3647.
  134. Gill, R.E., M. Karlok & D. Benton, (1993) Myxococcus xanthus encodes an ATP- dependent protease which is required for developmental gene transcription and intercellular signaling. J Bacteriol 175: 4538-4544.
  135. Ishimoto, K.S. & S. Lory, (1992) Identification of Pilr, Which Encodes a Transcriptional Activator of the Pseudomonas aeruginosa Pilin Gene. J Bacteriol 174: 3514- 3521.
  136. Mccleary, W.R., B. Esmon & D.R. Zusman, (1991) Myxococcus xanthus Protein-C Is a Major Spore Surface Protein. J Bacteriol 173: 2141-2145.
  137. O'Connor, K.A. & D.R. Zusman, (1991a) Behavior of peripheral rods and their role in the life-cycle of Myxococcus xanthus. J Bacteriol 173: 3342-3355.
  138. Kuspa, A. & D. Kaiser, (1989) Genes Required for Developmental Signaling in Myxococcus xanthus -3 Asg Loci. J Bacteriol 171: 2762-2772.
  139. Arnold, J.W. & L.J. Shimkets, (1988) Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170: 5771-5777.
  140. Shimkets, L.J., (1986a) Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol 166: 837-841.
  141. Shimkets, L.J., (1986b) Role of cell cohesion in Myxococcus xanthus fruiting body formation. J Bacteriol 166: 842-848.
  142. Kuner, J.M. & D. Kaiser, (1982) Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151: 458-461.
  143. Shimkets, L.J. & D. Kaiser, (1982) Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 152: 451-461.
  144. Ferreira, R.B., L.C. Antunes, E.P. Greenberg & L.L. McCarter, (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190: 851-860.
  145. Shi, X., S. Wegener-Feldbrugge, S. Huntley, N. Hamann, R. Hedderich & L. Sogaard- Andersen, (2008) Bioinformatics and experimental analysis of proteins of two- component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.
  146. Caberoy, N.B., R.D. Welch, J.S. Jakobsen, S.C. Slater & A.G. Garza, (2003) Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol. 185: 6083-6094.
  147. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Sogaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190: 2411-2421.
  148. Kottel, R.H., K. Bacon, D. Clutter & D. White, (1975) Coats from Myxococcus xanthus: characterization and synthesis during myxospore differentiation. J Bacteriol 124: 550-557.
  149. Hickman, J.W. & C.S. Harwood, (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69: 376-389.
  150. Clausen, M., V. Jakovljevic, L. Sogaard-Andersen & B. Maier, (2009) High-Force Generation Is a Conserved Property of Type IV Pilus Systems. J Bacteriol 191: 4633-4638.
  151. Navarro, M.V., N. De, N. Bae, Q. Wang & H. Sondermann, (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17: 1104-1116.
  152. Tamayo, R., J.T. Pratt & A. Camilli, (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual review of microbiology 61: 131-148.
  153. Pratt, J.T., R. Tamayo, A.D. Tischler & A. Camilli, (2007) PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282: 12860-12870.
  154. Krasteva, P.V., J.C. Fong, N.J. Shikuma, S. Beyhan, M.V. Navarro, F.H. Yildiz & H. Sondermann, (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327: 866-868.
  155. Ryan, R.P., Y. McCarthy, M. Andrade, C.S. Farah, J.P. Armitage & J.M. Dow, (2010) Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci USA 107: 5989-5994.
  156. Nan, B.Y., E.M.F. Mauriello, I.H. Sun, A. Wong & D.R. Zusman, (2010) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.
  157. Paul, K., V. Nieto, W.C. Carlquist, D.F. Blair & R.M. Harshey, (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a " backstop brake " mechanism. Mol Cell 38: 128-139.
  158. Black, W.P., F.D. Schubot, Z. Li & Z.M. Yang, (2010) Phosphorylation and Dephosphorylation among Dif Chemosensory Proteins Essential for Exopolysaccharide Regulation in Myxococcus xanthus. J Bacteriol 192: 4267- 4274.
  159. Levi, A., M. Folcher, U. Jenal & H.A. Shuman, (2011) Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. mBio 2: e00316- 00310.
  160. Qi, Y., M.L.C. Chuah, X. Dong, K. Xie, Z. Luo, K. Tang & Z.-X. Liang, (2011) Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long- range conformational change. J Biol Chem 286: 2910-2917.
  161. Nan, B., J. Chen, J.C. Neu, R.M. Berry, G. Oster & D.R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci USA 108: 2498-2503.
  162. Shin, J.S., K.S. Ryu, J. Ko, A. Lee & B.S. Choi, (2011) Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci 20: 270- 277.
  163. Bordeleau, E., L.C. Fortier, F. Malouin & V. Burrus, (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genetics 7: e1002039.
  164. Habazettl, J., M.G. Allan, U. Jenal & S. Grzesiek, (2011) Solution Structure of the PilZ Domain Protein PA4608 Complex with Cyclic di-GMP Identifies Charge Clustering as Molecular Readout. J Biol Chem 286: 14304-14314.
  165. Gomelsky, M., (2011) cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79: 562-565.
  166. Sun, M., M. Wartel, E. Cascales, J.W. Shaevitz & T. Mignot, (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci USA 108: 7559-7564.
  167. Sultan, S.Z., J. E. Pitzer, T. Boquoi, G. Hobbs, M.R. Miller & M. A. Motaleb, (2011) Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect. Immun. 79: 3273-3283.
  168. Giglio, K.M., N. Caberoy, G. Suen, D. Kaiser & A.G. Garza, (2011) A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA 108: E431–E439.
  169. Harris, B.Z., D. Kaiser & M. Singer, (1998) The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes & development 12: 1022-1035.
  170. Luciano, J., R. Agrebi, A.V. Le Gall, M. Wartel, F. Fiegna, A. Ducret, C. Brochier- Armanet & T. Mignot, (2011) Emergence and modular evolution of a novel motility machinery in bacteria. PLoS genetics 7: e1002268.
  171. Roelofs, K.G., J.X. Wang, H.O. Sintim & V.T. Lee, (2011) Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci USA 108: 15528-15533.
  172. Srivastava, D., R.C. Harris & C.M. Waters, (2011) Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 193: 6331-6341.
  173. Bretl, D.J., C. Demetriadou & T.C. Zahrt, (2011) Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis. Microbiol Mol Biol R 75: 566-582.
  174. Shikuma, N.J., J.C. Fong & F.H. Yildiz, (2012) Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT. PLoS Pathogens 8: e1002719.
  175. Lee, B., C. Holkenbrink, A. Treuner-Lange & P.I. Higgs, (2012a) Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 194: 3058-3068.
  176. Whitney, J.C., K.M. Colvin, L.S. Marmont, H. Robinson, M.R. Parsek & P.L. Howell, (2012) Structure of the Cytoplasmic Region of PelD, a Degenerate Diguanylate Cyclase Receptor That Regulates Exopolysaccharide Production in Pseudomonas aeruginosa. J Biol Chem 287: 23582-23593.
  177. Krasteva, P.V., K.M. Giglio & H. Sondermann, (2012) Sensing the messenger: The diverse ways that bacteria signal through c-di-GMP. Protein Sci. 21: 929-948.
  178. Chen, Y., Y. Chai, J.H. Guo & R. Losick, (2012) Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol 194: 5080-5090.
  179. Black, W.P. & Z. Yang, (2004) Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186: 1001- 1008.
  180. Steiner, S., C. Lori, A. Boehm & U. Jenal, (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32: 354-368.
  181. Shanahan, C.A. & S.A. Strobel, (2012) The bacterial second messenger c-di-GMP: probing interactions with protein and RNA binding partners using cyclic dinucleotide analogs. Organic & biomolecular chemistry 10: 9113-9129.
  182. Kazmierczak, B.I., M.B. Lebron & T.S. Murray, (2006) Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60: 1026-1043.
  183. Vorobiev, S., H. Neely, B. Yu, J. Seetharaman, R. Xiao, T. Acton, G. Montelione & J. Hunt, (2012) Crystal structure of a catalytically active GG(D/E)EF diguanylate cyclase domain from Marinobacter aquaeolei with bound c-di-GMP product. J Struct Funct Genomics 13: 177-183.
  184. Christen, M., H.D. Kulasekara, B. Christen, B.R. Kulasekara, L.R. Hoffman & S.I. Miller, (2010) Asymmetrical Distribution of the Second Messenger c-di-GMP upon Bacterial Cell Division. Science 328: 1295-1297.
  185. Friedrich, C., I. Bulyha & L. Sogaard-Andersen, (2014) Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol 196: 378-390.
  186. Chen, Z.H. & P. Schaap, (2012) The prokaryote messenger c-di-GMP triggers stalk cell differentiation in Dictyostelium. Nature 488: 680-683.
  187. Siewering, K., S. Jain, C. Friedrich, M.T. Webber-Birungi, D.A. Semchonok, I. Binzen, A. Wagner, S. Huntley, J. Kahnt, A. Klingl, E.J. Boekema, L. Sogaard-Andersen & C. van der Does, (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. Proc Natl Acad Sci USA 111: E953-961.
  188. Lombard, V., H.G. Ramulu, E. Drula, P.M. Coutinho & B. Henrissat, (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490-D495.
  189. Kaiser, D., (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci USA 76: 5952-5956.
  190. Hodgkin, J. & D. Kaiser, (1977) Cell-to-Cell Stimulation of Movement in Nonmotile Mutants of Myxococcus. Proc Natl Acad Sci USA 74: 2938-2942.
  191. Cohen, D., U. Mechold, H. Nevenzal, Y. Yarmiyhu, T.E. Randall, D.C. Bay, J.D. Rich, M.R. Parsek, V. Kaever, J.J. Harrison & E. Banin, (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 112: 11359-11364.
  192. Orr, M.W., G.P. Donaldson, G.B. Severin, J. Wang, H.O. Sintim, C.M. Waters & V.T. Lee, (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci USA 112: E5048-5057.
  193. Chan, C., R. Paul, D. Samoray, N.C. Amiot, B. Giese, U. Jenal & T. Schirmer, (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101: 17084-17089.
  194. Yang, Z., X. Ma, L. Tong, H.B. Kaplan, L.J. Shimkets & W. Shi, (2000) Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182: 5793-5798.
  195. Sun, J., A. Hesketh & M. Bibb, (2001) Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol 183: 3488- 3498.
  196. Guzzo, C.R., G. Dunger, R.K. Salinas & C.S. Farah, (2013) Structure of the PilZ– FimXEAL–c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. J Mol Biol 425: 2174-2197.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten