Publikationsserver der Universitätsbibliothek Marburg

Titel:Diversity and ecology of spider assemblages in secondary forests of the southern Mata Atlântica, Brazil - Implications for environmental conservation
Autor:Raub, Florian
Weitere Beteiligte: Brandl, Roland (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0088
URN: urn:nbn:de:hebis:04-z2016-00880
DOI: https://doi.org/10.17192/z2016.0088
DDC: Biowissenschaften, Biologie
Titel (trans.):Diversität und Ökologie von Spinnengemeinschaften der südlichen Mata Atlântica, Brasilien - Schlussfolgerungen für den Naturschutz
Publikationsdatum:2016-03-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Brasilien, Spiders, Secondary Forests, Mata Atlântica, Naturschutz, Diversity, Ecology, Ökologie, Mata Atlântica, Vielfalt, Spinnen

Summary:
The objective of my thesis was to assess the diversity and the ecology of spider assemblages in secondary forests of the southern Mata Atlântica, with impact for environmental conservation and the protection of the regional biodiversity. My approach to address these questions was carried out in the frame of a multi-taxon approach of the bilateral cooperation project SOLOBIOMA. The aim of this project was the evaluation of the value of different secondary forest stages for the conservation of the local and regional biodiversity and implications for soil function. Therefore my work addresses the diversity of spiders by describing and analyzing a large sampling carried out in different succesional stages of forest, as well as investigating the ecology of the predatory spider assemblage in an experimental approach of the interactions of spiders with habitat structures and nutritional resources in the soil food web. To assess the conservation value of secondary forests and their contribution to maintain the regional diversity I compared the spider assemblages of secondary forests of different age (stage) and old-growth forests (chapter 2 & 3). We sampled spiders using a standard protocol in 24 sites of three successional stages and old-growth forests in two nature reserves in the state of Paraná in Brazil. The sampled region represents a relatively good preserved region of the Mata Atlântica, where the matrix of a patchy landscape is still forest. Generic richness and diversity showed no differences between successional stages but guild diversity did. A high alpha diversity and a high turnover among sites as well as the lack of differences in richness between the stages support the value of secondary forests for species conservation in the studied region. Beta diversity turned out to be strongly based on turnover, not on gain/loss during succession. The spatial levels contributed more to beta diversity than expected, without the expected strong influence of the forest stage. Patterns were consistent for both identification levels and every method, leading to the conclusion that one of two parts of the sampling protocol and identification to genera are sufficient to assess the diversity of spiders under conservation interest. During the experimental approach (chapter 4) I discovered that adding artificial litter had no effect on the studied taxa, adding food had a positive effect on decomposers independent from the forest stage, but not on predators. These results suggest that the soil fauna in tropical forests in general is food limited and the lack of a bottom-up effect on predators suggest that these organisms are not predominantly regulated by the abundance of prey but rather by competition or predation. However, it would be premature to conclude from one single experiment that the processes influencing the soil and epigeic fauna are generally similar across different successional stages, we can see evidence for distinct functional similarity. These results highlight the value of secondary forests for the conservation of forest species and associated ecological processes. I conclude from the results of the biodiversity study and the experiment that maintaining the heterogeneity of a mosaic landscape seems to be a good recommendation for conservation of the regional invertebrate biodiversity and its ecosystem function in the southern Mata Atlântica. Our analyses from a spider perspective point out to the importance of a pattern of different land use and regeneration types as well as old-growth forest in protected areas to maximize conservation success. To guarantee a protection of the widest range of spider diversity on the long term the protection of large, contiguous areas of forest should be reached and, if a decision is obligate, preferred to the protection of small (mostly isolated) old-growth forest remnants.

Bibliographie / References

  1. Raub, F., Höfer, H., Scheuermann, L. Britez, R.M. de (2015). Conserving landscape structure – conclusions from partitioning of spider diversity in southern Atlantic forests of Brazil. Studies on Neotropical Fauna and Environment, DOI:10.1080/01650521.2015.1071959, 1-18.
  2. Uetz, G. W. (1991). Habitat structure and spider foraging. In: S.S. Bell (Ed.), Habitat structure (pp. 325–348). London: Chapman & Hall
  3. Wise, D. H. & Wagner, J. D. (1992). Evidence of exploitative competition among young stages of the wolf spider Schizocosa ocreata. Oecologia, 91, 7–13.
  4. Rypstra, A. L. (1983). The importance of food and space in limiting web-spider densities a test using field enclosures. Oecologia, 59, 312–316.
  5. Uetz, G. W. (1979). The influence of variation in litter habitats on spider communities. Oecologia, 40, 29–42.
  6. Gießelmann, U. C., Martins, K. G., Brändle, M., Schädler, M., Marques, R., Brandl, R. (2010). Diversity and ecosystem functioning: litter decomposition dynamics in the Atlantic rainforest. Applied Soil Ecology, 46, 283–290.
  7. Raub, F., Scheuermann, L., Höfer, H. & Brandl, R. (2014). No bottom-up effects of food addition on predators in a tropical forest. Basic and Applied Ecology, 15, 59-65.
  8. Bihn, J. H., Verhaagh, M., Brändle, M., Brandl, R. (2008b). Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological Conservation, 141, 733–743.
  9. Liebsch, D., Marques, M. C. M., Goldberg, R. (2008). How long does the Atlantic rain forest take to recover after a disturbance? Changes in species composition and ecological features in secondary sucession. Biological Conservation, 141, 1717–1725.
  10. Laurance, W. F. (2009). Conserving the hottest of the hotspots. Biological Conservation, 142, 1137.
  11. Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological reviews of the Cambridge Philosophical Society, 81, 1–31.
  12. Tiessen, H., Cuevas, E., Chacon, P. (1994). The role of soil organic matter in sustaining soil fertility. Nature, 371, 783–785.
  13. Dunn, R. R. (2004). Recovery of faunal communities during tropical forest regeneration. Conservation Biology, 18, 302–309.
  14. Bihn, J. H., Verhaagh, M., Brandl, R. (2008a). Ecological stoichiometry along a gradient of forest succession: Bait preferences of litter ants. Biotropica, 40, 597-599.
  15. Lo-Man-Hung, N. F., Gardner, T. A., Ribeiro-Júnior, M. A., Barlow, J., Bonaldo, A. B., (2008). The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. Journal of Arachnology, 36, 394–401.
  16. Publications Raub, F., Höfer, H., Scheuermann, L. & Brandl, R. (2014). The conservation value of secondary forests in the southern Brazilian Mata Atlântica from a spider perspective. Journal of Arachnology, 42, 52-73.
  17. Robinson, J. V (1981). The effect of architectural variation in habitat on a spider community: an experimental field study. Ecology, 62, 73–80.
  18. Bultman, T. L. & Uetz, G. W. (1984). Effect of structure and nutritional quality of litter on abundance of litter-dwelling rthropods. The American Midland Naturalist, 111, 165–172.
  19. Rypstra, A. L. (1986). Web spiders in temperature and tropical forests: relative abundance and environmental correlates. The American Midland Naturalist, 115, 42–51.
  20. David, J.-F., Ponge, J.-F., Arpin, P., Vannier, G. (1991). Reactions of the macrofauna of a forest mull to experimental perturbations of litter supply. Oikos, 61, 316–326.
  21. Bultman, T. L. & Uetz, G. W. (1982). Abundance and community structure of forest floor spiders following litter manipulation. Oecologia, 55, 34–41.
  22. Langellotto, G. A. & Denno, R. F. (2004). Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia, 139, 1–10.
  23. Appendix – Supporting Material Chapter 4: Additional figures and tables. Page 111 ff <0.001 -0.47 0.64 -0.67 0.50 -1.87 0.06 -0.08 0.93
  24. Swift, M. J., Heal, O. W., Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. vol. 5, University of Calfornia Press, Berkeley, 167–219.
  25. Anderson, J. M. & Swift, M. J. (1983). Decomposition in tropical forests. In: S.L. Sutton (Ed.), Decomposition in tropical forests (pp. 287–309). Oxford: Blackwell BASF (1995). Styropor. BASF, 180, 4
  26. Stippich, G. (1989). Die Bedeutung von natürlichen und künstlichen Strukturelementen fur die Besiedelung des Waldbodens durch Spinnen. Verhandlungen der Gesellschaft für Ökologie, 17, 293–298.
  27. Schröder, P. (2000). Die Klimate der Welt: aktuelle Daten und Erläuterungen (Pp. 159).Thieme, Stuttgart, Germany.
  28. Greany, P. D., Agee, H. R., Burditt, A. K., Chambers, D. L. (1977). Field studies on color preferences of the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae).
  29. Halaj, J., Ross, D. W., Moldenke, R. (2000). Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos, 90, 139–152.
  30. Scheidler, M. (1990). Influence of habitat structure and vegetation architecture on spiders. Zoologischer Anzeiger Jena, 225, 333–340.
  31. Finke, D. L. & Denno, R. F. (2002). Intraguild predation diminish in complex-structured vegetation: implications for prey supression. Ecology, 83, 643–652.
  32. Bates, D. M. (2010). lme4: mixed-effects modeling with R. Springer. http://lme4.r-forge.r- project.org/lMMwR/lrgprt.pdf
  33. IBGE. (1992). Manual técnico da vegetação brasileira: série manuais técnicos em geocíências (Pp. 92). Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil.
  34. Vitousek, P. M. & Sanford Jr., R. L. (1986). Nutrient Cycling in Moist Tropical Forest. Annual Review of Ecology and Systematics, 17, 137–167
  35. Bazzaz, F. A. & Pickett, S. T. A. (1980). Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology, Evolution, and Systematics, 11, 287– 310.
  36. Hunter, M. D. & Price, P. W. (1992). Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724-732.
  37. R Development Core Team (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  38. Chen, B. & Wise, D. H. (1997). Responses of forest-floor fungivores to experimental food enhancement. Pedobiologia, 41, 316–326.
  39. Schmidt, P., Dickow, K., Rocha, A. A., Marques, R., Scheuermann, L., Römbke, J., Förster, B., Höfer, H. (2008). Soil macrofauna and decomposition rates in southern Brazilian Atlantic rainforests. Ecotropica, 14, 89–100.
  40. Höfer, H., Verhaagh, M., Fabry, R. (2007). SOLOBIOMA -Bodenbiota und Biogeochemie in Küstenregenwäldern Südbrasiliens. Ein deutsch-brasilianisches Forschungsprojekt vor dem Hintergrund des Übereinkommens über die biologische Vielfalt. Umweltwissenschaften und Schadstoff-Forschung (UWSF), 19, 128–131.
  41. Duffey, E. (1966). Spider ecology and habitat structure. Senckenbergiana biologica, 47, 45– 49.
  42. Sticky traps All arthropods -1.60 0.11 3.28 0.001 -4.47 <0.001 2.65 0.008 1.63 0.10 0.66 0.51
  43. Scheu, S. (2002). The soil food web: structure and perspectives. European Journal of Soil Biology, 38, 11–20.
  44. Oksanen, J., Kindt, R., Legendre, P., O´Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H. (2009). vegan: community ecology package. R package version 1.15-2.
  45. Raub, F., Stierhof, T., Höfer, H. (2012). Vom Karteikasten zu modernen Informationssystemen – Die Entwicklung der zoologischen Datenbanken am SMNK. Carolinea, 70, 91–101.
  46. Spears, L. R. & MacMahom, J. A. (2012). An experimental study of spiders in a shrub-steppe ecosystem: the effects of prey availability and shrup architecture. Journal of Arachnology, 40, 218–227.
  47. Scheu, S. & Schaefer, M. (1998). Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources. Ecology, 79, 1573–1585.
  48. Chen, B. & Wise, D. H. (1999). Bottom-up limitation of predaceous arthropods in a detritus- based terrestrial food web. Ecology, 80, 761–772.
  49. Heneghan, L., Coleman, D. C., Zou, X., Crossley JR., D. A., Haines, B. L. (1999). Soil microarthropod contributions to decomposition dynamics: Tropical-temperate comparisons of a single substrate. Ecology, 80, 1873–1882
  50. Gill, R. W. (1969). Soil microarthropod abundance following old-field litter manipulation. Ecology, 50, 805–816.
  51. Wise, D. H., Snyder, W. E., Tuntibunpakus, P. (1999). Spiders in decomposition food webs of agroecosystems: theory and evidence. Journal of Arachnology, 27, 363–370.
  52. Lawrence, K. L. & Wise, D. H. 2000. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia, 44, 33–39.
  53. Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, 3–15.
  54. Höfer, H., Martius, C., Beck, L. (1996). Decomposition in an Amazonian rain forest after experimental litter addition in small plots. Pedobiologia, 40, 570–576.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten