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Zusammenfassung

Eine abstrakte Interpretation der Rothe Methode zur Diskretisierung von Evolutions-
gleichungen wird hergeleitet. Die Fehlerfortpflanzung wird untersucht und Bedingungen
an die Toleranzen werden bewiesen, welche die Konvergenz im Falle von approx-
imativen Operatorauswertungen sicher stellen. Zur Untermauerung der abstrakten
Analysis wird das linear implizite Eulerschema mit uniformer Zeitdiskretisierung auf
eine Klasse von semi-linearen parabolischen stochastischen partiellen Differentialglei-
chungen angewendet. Unter Verwendung der Existenz von optimalen adaptiven Metho-
den für die elliptischen Teilprobleme werden hinreichende Bedingungen gezeigt, welche
die Konvergenz mit zugehörigen Konvergenzordnungen auch im Fall von approx-
imativen Operatorauswertungen sichern. Obere Komplexitätsschranken werden im
deterministischen Fall bewiesen.

Die stochastische Poissongleichung mit zufälligen rechten Seiten dient als Modell-
gleichung für die elliptischen Teilprobleme. Die zufälligen rechten Seiten werden, ba-
sierend auf Waveletentwicklungen, eingeführt anhand eines stochastischen Modells,
welches, wie gezeigt wird, eine explizite Regularitätskontrolle deren Realisierungen
bietet und dünn besetzte Entwicklungen induzieren kann. Für diese Klasse von Glei-
chungen werden obere Fehlerschranken der besten N -term Waveletapproximation
auf verschiedenen beschränkten Gebieten bewiesen. Sie zeigen, dass die Verwendung
von nichtlinearen (adaptiven) Methoden gegenüber uniformen linearen Methoden
gerechtfertigt ist, insbesondere bei dünn besetzten Entwicklungen auf zwei oder drei
dimensionalen Lipschitzgebieten.

Die Klasse von zufälligen Funktionen, welche aus dem stochastischen Modell abgelei-
tet werden kann, ist an sich interessant, da sie dünn besetzte Varianten von allgemeinen
Gauß’schen zufälligen Funktionen liefert. In verschiedenen Glattheitsräumen wird
die Regularität der zufälligen Funktionen analysiert, ebenso werden lineare und nicht-
lineare Approximationsergebnisse bewiesen, welche deren Anwendbarkeit in numerischen
Experimenten verdeutlicht.

III





Preface

I would like to express my gratitude to everyone who has supported me in regards to
this dissertation. First and foremost, I am deeply grateful for my research advisor Prof.
Stephan Dahlke. Stephan, you have been a tremendous supporter of my work in all
aspects and I am so grateful that you have taken me on as a doctoral candidate. In
particular your demand for a broad and precise mathematical background together
with your professional insights have been the foundation of my mathematical research.
Additionally, you have assembled a great team of colleagues and an excellent work
environment, which have helped to develop my work.

Furthermore, I deeply appreciate the support from the Deutsche Forschungsge-
meinschaft and the priority program DFG-SPP 13241. I would like to especially thank
and recognize the members of our research group ’Adaptive Wavelet Methods for
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Chapter 1

Introduction

The numerical treatment of stochastic partial differential equations (SPDEs) is a recent
and active area of research. It combines the fields of numerics of partial differential
equations with stochastic analysis. Evolution equations of the parabolic type, for
instance, describe diffusion processes that are very often used for the mathematical
modeling of economical, biological, chemical, and physical processes. The inclusion
of a stochastic driving process allows to incorporate random distortions or noise
into the model. In a growing number of applications, e.g., in computational finance,
epidemiology, population genetics, and many more, this has become important in order
to, e.g., account for uncertainties and therefore improve the accuracy in the predictions
of the model.

In general, partial differential equations are not solved in a direct fashion due to
complexity reasons. Instead, a discretization scheme is applied to the equation and
iterative numerical schemes are employed to obtain an approximation to the solution
up to a prescribed tolerance. Also approximations to explicitly given objects of the
equations are required, due to storage constraints. Considering evolution equations,
aside of simultaneous space-time numerical approximation schemes, there are two
principally different discretization approaches: the vertical method of lines and the
horizontal method of lines. The former starts with an approximation first in space, and
then proceeds in time, while the latter starts with a discretization first in time, and
then in space; it is also known as Rothe’s method.

Very often, the vertical method of lines is preferred, since after the discretization
in space is performed just finite dimensional ordinary stochastic differential equations
(SDE) in time direction have to be solved, for which there are many approaches available.
However, there are also certain drawbacks; in many applications the utilization of
adaptive strategies allows to increase efficiency, but in the context of the vertical
method of lines the combination with spatial adaptivity is at least not straightforward.
In contrast, the use of adaptive methods somewhat suggests itself when investigating
the horizontal method of lines. Namely, using Rothe’s method, the parabolic equation
can be interpreted as an abstract Cauchy problem, i.e., as a SDE in some suitable
function space. Then, in time direction, one can use one of the SDE-solver with step
size control. Note that any such solver must be based on an implicit discretization
scheme due to stability reasons, since the equation under consideration is usually stiff.
On this account, in each time step, a system of elliptic equations with random functions
as right-hand sides has to be solved. To this end, adaptive numerical schemes that are
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2 Chapter 1. Introduction

well-established for elliptic deterministic equations, can be used, e.g., adaptive finite
element or wavelet methods.

The motivation of this dissertation is based exactly on this line of thought and
its results are organized as follows. Chapter 2 provides the setting and theoretical
foundation for the subject of this dissertation. In Chapter 3 we introduce and investigate
a new class of random functions for the numerical modeling of stochastic equations. In
Chapter 4 we consider the stationary case and employ this class of random functions as
right-hand sides to the Poisson equation, which serves as model problem for the elliptic
subproblems. Finally, in Chapter 5 we investigate the error propagation and analyze
the convergence of spatially adaptive Rothe methods for deterministic and stochastic
evolution equations of the parabolic type.

In this introduction, following the summary, we give an overview of related research
results that are within the scope of the subject matter in Section 1.2. In the subsequent
Sections 1.3, 1.4, and 1.5, we state the introductions to the individual chapters including
the main results.

1.1 Summary

An abstract interpretation of Rothe’s method for the discretization of evolution equa-
tions is derived. The error propagation is analyzed and condition on the tolerances
are proven, which ensure convergence in the case of inexact operator evaluations. Sub-
stantiating the abstract analysis, the linearly implicit Euler scheme on a uniform time
discretization is applied to a class of semi-linear parabolic stochastic partial differential
equations. Using the existence of asymptotically optimal adaptive solver for the elliptic
subproblems, sufficient conditions for convergence with corresponding convergence
orders also in the case of inexact operator evaluations are shown. Upper complexity
bounds are proven in the deterministic case.

The stochastic Poisson equation with random right hand sides is used as model
equation for the elliptic subproblems. The random right hand sides are introduced
based on wavelet decompositions and a stochastic model that, as is shown, provides
an explicit regularity control of their realizations and induces sparsity of the wavelet
coefficients. For this class of equations, upper error bounds for best N -term wavelet
approximation on different bounded domains are proven. They show that the use
of nonlinear (adaptive) methods over uniform linear methods is justified whenever
sparsity is present, which in particularly holds true on Lipschitz domains of two or
three dimensions.

By providing sparse variants of general Gaussian random functions, the class of
random functions derived from the stochastic model is interesting on its own. The
regularity of the random functions is analyzed in certain smoothness spaces, as well as
linear and nonlinear approximation results are proven, which clarify their applicability
for numerical experiments.

1.2 Overview of related research results

We give an overview of research results that are related to the scope of the subject
matter. Additional research results, which are more specifically related to the results of



1.3. A class of random functions 3

this dissertation, are given in the subsequent introductions.

When it comes to numerical approximations of the objects of interest, e.g., the
solutions of partial differential equations, then the approximation order that can be
achieved usually depends on the membership of these objects in specific scales of
smoothness spaces. For approximation schemes based on wavelets, it is well-known that
the approximation order of linear uniform wavelet algorithms depends on the Sobolev
smoothness of the underlying object, whereas the approximation order of nonlinear
algorithms such as best N -term wavelet approximation in L2 depends on the regularity
in the specific scale

Bs
τ (Lτ ), where

1

τ
=
s

d
+

1

2
, s > 0, (1.1)

of Besov spaces. We refer to Dahlke et al. [45], DeVore [65], DeVore et al. [66],
and the references therein for further information. These relationships are a consequence
of the fact that wavelets are able to characterize smoothness spaces such as Besov and
Sobolev spaces, respectively, i.e., the corresponding smoothness norms are equivalent
to weighted sequence norms of wavelet decomposition coefficients, see, e.g., DeVore
et al. [66], Frazier, Jawerth [80], Meyer [129], Runst, Sickel [143], Triebel
[162] for details. Furthermore, this connection often motivates to analyze the Besov
regularity of solutions of various problems, see, e.g., Cioica et al. [26], Dahlke
[41, 42, 43], Dahlke, DeVore [47], Dahlke, Sickel [55, 56], Dahlke, Weimar
[57], Eckhardt [73], Hansen [99], Hansen, Sickel [100].

Adaptive wavelet methods for deterministic elliptic and parabolic partial differential
equations have been studied intensively in recent years, see, e.g., Cohen et al.
[29, 30, 31], Dahlke et al. [46, 49, 50, 51], Gantumur et al. [81], Kappei
[106], Lellek [122], Raasch [138], Schwab, Stevenson [146, 147], Stevenson
[150, 152], Stevenson, Werner [153, 154], Werner [174]. Usually, best N -term
wavelet approximation is used as a benchmark for adaptive wavelet schemes, since it is
an almost optimal approximation scheme, see Dahlke et al. [53, 54].

Also motivated by above observations, the relations of stochastic analysis and
the theory of function spaces has become a field of increasing interest. For instance,
approximations and the regularity of the solutions to SDEs and SPDEs in several
function spaces has been studied in, e.g., Cioica [20], Cioica et al. [27], Jentzen,
Kloeden [102], Jentzen, Röckner [103], Kim [109, 110], Kruse, Larsson [116],
Krylov [117], Lindner [124], van Neerven et al. [164, 165]. We also we refer to
Kovács et al. [112, 113, 114], Walsh [171] for convergence results based on finite
element discretization applied to SPDEs. For stochastic ordinary differential equations
nonlinear approximation of the solution process is studied in, e.g., Creutzig et al.
[38], Slassi [149]. Note that these references are indicative only.

1.3 A class of random functions

In Chapter 3 we analyze the regularity of a class of random functions in certain
smoothness spaces and state linear and nonlinear approximation results. The random
functions are defined in terms of wavelet decompositions according to a stochastic
model that provides an explicit regularity control of their realizations and, in particular,
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induces sparsity of the wavelet coefficients. We expect this stochastic model to be an
interesting tool to generate test functions in numerical experiments.

Some effort has been spent to create random functions whose realizations pos-
sess, almost everywhere, a prescribed regularity in Besov or Sobolev spaces, see, e.g.,
Abramovich et al. [1], Bochkina [12, 13], Cohen, d’Ales [32], Cohen et al.
[34], Creutzig et al. [38], Kon, Plaskota [111]. Often, one major tool has been
the wavelet characterization of smoothness spaces. Based on a fixed wavelet basis,
random coefficients have been designed which, by means of the norm equivalences,
guarantee the desired regularity. In, e.g., Abramovich et al. [1], Bochkina [12],
in the context of Bayesian non-parametric regression, the random wavelet coefficients
wj,k have been modeled as an independent mixture of Bernoulli distributions Yj and
standard normal distributions Zj:

wj,k ∼ (1− πj)Yj + πjτjZj,

where πj ∈ [0, 1] and τj > 0. In particular, τ 2j = 2−αjC1 and πj = min{1, 2−βjC2} have
been studied and it has been investigated how the parameters α, β ≥ 0 have to be tuned
to yield a certain prescribed Besov smoothness. However, only the one-dimensional
setting d = 1, smoothness parameters s > 0, and integrability parameters p, q > 1 have
been analyzed. The paper Bochkina [13] considers more general parametrizations
and also focuses on Bayesian non-parametric wavelet regression. While nonlinear
approximation methods are extensively studied in the deterministic case, see DeVore
[65] and the references therein for details and a survey, far less is known for random
functions. For the latter, we refer to Cohen, d’Ales [32], Cohen et al. [34], where
wavelet methods are analyzed, and to Creutzig et al. [38], Kon, Plaskota [111],
where free knot splines are used. Again, in these papers only the one-dimensional case
is studied.

In Chapter 3, in particular in Section 3.1, we define and analyze random functions by
generalizing the stochastic model as introduced in Abramovich et al. [1], Bochkina
[12] and study different approximations. First, let us summarize the setting. The random
function (stochastic field) X is defined in terms of a stochastic wavelet decomposition

X =

j≥0


k∈∇j

Yj,kZ
′
j,kψj,k. (1.2)

Here {ψj,k : j ≥ 0, k ∈ ∇j} is a wavelet Riesz basis for L2(O), where O ⊂ Rd is a
bounded domain and j denotes the scale parameter. Furthermore, ∇j is a finite set with,
in order of magnitude, 2jd elements, and Yj,k and Z

′
j,k are independent random variables.

In a slightly simplified version of the stochastic model, Yj,k is Bernoulli distributed
with parameter 2−βjd and Z ′

j,k is normally distributed with mean zero and variance

2−αjd, where β ∈ [0, 1] and α + β > 1. Note that the sparsity of the decomposition
(1.2) depends monotonically on β. For β = 0, i.e., with no sparsity present, (1.2) is
the Karhunen-Loève decomposition of a Gaussian random function X if the wavelets
form an orthonormal basis of L2(O). Additionally, we discuss stochastic fields X with
realizations in Besov spaces with negative smoothness, i.e., we allow α ∈ R. Such
stochastic fields are in particular natural to consider for the modeling of stochastic
Poisson equations with random right-hand sides, where the Laplacian is a bounded
operator from H1

0 onto H−1, the normed dual of H1
0 , cf. Chapter 4.
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Let us now point to the main results of Section 3.1. The random function X takes
values in the (quasi-) Besov space Bs

q(Lp(O)), 0 < p, q < ∞, and p, q > 1 for s < 0,
with probability one if and only if

s < d ·

α− 1

2
+
β

p


,

see Theorem 3.10. In Abramovich et al. [1], Bochkina [12] the result was stated
for d = 1, s > 0, and p, q ≥ 1. In particular, the smoothness of X along the scale
of Sobolev spaces Hs(O) = Bs

2(L2(O)) is determined by α + β, and for β > 0 with
decreasing p ∈ (0, 2] the smoothness can get arbitrarily large.

We study different approximations X of X with respect to the norm in L2(O),
where we always consider the average error

(E[∥X − X∥2L2(O)])
1/2

for any approximation X. Let β ∈ [0, 1] and α + β > 1. For the optimal linear uniform
approximation, i.e., for the approximation from an optimally chosen N -dimensional
subspace of L2(O), the corresponding error rate is asymptotically equivalent to N−ϱ

with

ϱ =
α + β − 1

2
,

see Theorem 3.15. In contrast, for the best average N -term wavelet approximation we
only require that the average number of non-zero wavelet coefficients is at most N . In
this case the corresponding errors exhibit asymptotically at most the rate N−ϱ with

ϱ =
α + β − 1

2(1− β)

and β < 1, see Theorem 3.17. The best average N -term wavelet approximation is supe-
rior to optimal linear uniform approximation if β > 0. The simulation of the respective
average N -term wavelet approximation is possible at an average computational cost of
order N , which is crucial in computational practice, see Remark 3.18.

Furthermore, we extend our findings and study different approximations X of X
with respect to the norms of the Besov spaces Bν

p (Lp(O)), where ν ∈ R and 1 < p <∞.
Analogously to above, we consider the average error

(E[∥X − X∥pBν
p (Lp(O))])

1/p

for any approximation X. Let β ∈ [0, 1) and α ∈ R. For the optimal linear uniform
approximation, the corresponding errors exhibit asymptotically at most the rate N−ϱ

with

ϱ =
α− 1

2
+
β

p
− ν

d
,

see Theorem 3.20. In contrast, for best average N -term wavelet approximation with
respect to Bν

p (Lp(O)), the corresponding errors exhibit asymptotically at most the rate
N−ϱ with

ϱ =
1

1− β


α− 1

2
+
β

p
− ν

d


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and β < 1, see Theorem 3.23. Again, the best average N -term wavelet approximation
is superior to optimal linear uniform approximation if β > 0.

Moreover, with respect to the norm in Hµ(O) we also obtain lower error bounds,
see Theorem 3.22 for optimal linear uniform approximation, and Theorem 3.25 for best
average N -term wavelet approximation.

In Section 3.2, we discuss additional important classes of smoothness spaces, specifi-
cally the anisotropic Sobolev and Besov spaces. Once again, to design random functions
in these spaces is of independent interest, but nevertheless, we are convinced that
there are a lot of possible applications. As an example, let us mention certain elliptic
equations with random coefficients as they occur, e.g., in the modeling of groundwater
flow problems Ernst et al. [78], Ernst, Ullmann [79], Ullmann et al. [163].
Usually, the random coefficients are modeled by highly isotropic lognormal distribu-
tions. However, due to certain anisotropic features that might show up in the physical
environment, it could be more appropriate to use stochastic models that reflect these
kinds of anisotropies. Therefore, we derive stochastic fields with prescribed smoothness
in anisotropic smoothness spaces. The major tool is again the wavelet characterization
of these spaces as derived, e.g., in Garrigós et al. [82], Garrigós, Tabacco [83].

Finally, in Section 3.3, we construct new bases of stochastic tensor wavelets. To our
best knowledge, these kinds of stochastic fields have not been considered before. Tensor
wavelets are in a certain sense the wavelet version of the sparse grid approach, see,
e.g., Bungartz, Griebel [16] for a detailed discussion on sparse grids. They are very
important for the following reason: Similar to sparse grids, (adaptive) approximation
schemes based on these wavelets can give rise to dimension-independent convergence
rates, see Schwab, Stevenson [146]. In this sense, tensor wavelets provide a way
to break the famous curse of dimensionality. The spaces that can be characterized by
tensor wavelets are generalized dominated mixed smoothness spaces, see Section 2.2 for
details. Therefore, in Section 3.3, we derive stochastic fields with prescribed regularity
in these spaces.

1.4 Application to the stochastic Poisson equation

In Chapter 4 we consider the stochastic Poisson equation on bounded domains, where
the right-hand side is a random function which is given by the stochastic model that
is analyzed in Section 3.1. In order to obtain approximations to the realizations of
the solution, we employ asymptotically optimal adaptive wavelet algorithms as they
asymptotically realize the approximation rate of best N -term wavelet approximation.
Since the related convergence analysis of these adaptive wavelet algorithms relies on the
energy norm, which is equivalent to the norm in H1, we analyze best N -term wavelet
approximation in H1 for the considered class of stochastic Poisson equations. Moreover,
the asymptotic results are matched by numerical experiments.

Solving stochastic evolution equations by application of Rothe’s method, i.e., the
evolution equation is first discretized in time, and then in space, due to stability reasons,
one has to use an implicit time discretization scheme. This leads to elliptic boundary
value problems with random right-hand sides that need to be solved in every time step.
Therefore, a particular but nevertheless very important model problem is the Poisson
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equation
−∆U = X in O,

U = 0 on ∂O,
(1.3)

with random right-hand side X and O ⊂ Rd a bounded (Lipschitz) domain. Different
numerical problems have been studied for Poisson equations, or more generally, for
elliptic equations with a random right-hand side and/or a random diffusion coefficient.
The computational task is to approximate either the realizations of the solution or at
least their moments, and different techniques like stochastic finite element methods,
sparse grids, or polynomial chaos decompositions are employed. A, by no means
complete, list of papers includes Babuška et al. [7], Cohen et al. [35], Ernst
et al. [78], Nobile et al. [131], Ritter, Wasilkowski [140], Todor, Schwab
[156], Wan, Karniadakis [172], Xiu, Karniadakis [176]. Stochastic differential
equations, in general, yield implicitly given random functions, which holds true in
particular for U in (1.3). For stochastic ordinary differential equations nonlinear
approximation of the solution process is studied in Creutzig et al. [38], Slassi
[149].

Stochastic elliptic equations of the form (1.3) also arise in, e.g., Breckner, Gre-
cksch [15], Cox, van Neerven [37], Debussche, Printems [64], Grecksch,
Tudor [84], Gyöngy, Nualart [93], Printems [137] as sub-problems of stochastic
evolution equations that are discretized by means of Rothe’s method, cf. Section 1.5.

In Section 4.1, we analyze best N -term wavelet approximation for the Poisson
equation (1.3) with right-hand sides X which are based on the stochastic model
considered in Section 3.1. The solution U of the Poisson equation is approximated with
respect to the norm in H1(O) and we consider the average error (E∥U − U∥2H1(O))

1/2

for any approximation U . Here, the space H1(O) is the natural choice, since its norm
is equivalent to the energy norm and the convergence analysis of adaptive wavelet
algorithms relies on this norm. We study the N -term wavelet approximation under
different assumptions on the domain O, and we establish upper bounds of the form
N−(ϱ−ε), which hold for every ε > 0. For any bounded Lipschitz domain O in dimension
d = 2 or 3 we obtain

ϱ = min


1

2(d− 1)
,
α + β − 1

6
+

2

3d


,

see Theorem 4.1. Regardless of the smoothness of X we have ϱ ≤ 1/(2(d− 1)), e.g.,
due to possible singularities of U at the boundary of O. On the other hand, uniform
approximation schemes can only achieve the order N−1/(2d) on general Lipschitz domains
O, and we always have ϱ > 1/(2d). For more specific domains we fully benefit from
the smoothness of the right-hand side. First,

ϱ =
α + β

2

if O is a simply connected polygonal domain in R2, see Theorem 4.5, and

ϱ =
1

1− β


α− 1

2
+ β


+

1

d

for bounded C∞-domains O ⊂ Rd, see Theorem 4.6.
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These rates for the best N -term wavelet approximation of U are actually achieved
by suitable adaptive wavelet algorithms, which have been developed for deterministic
elliptic PDEs. Those algorithms converge for a large class of operators, including
operators of negative order, and they are asymptotically optimal in the sense that they
realize the optimal order of convergence, while staying efficient, i.e., the computational
cost is proportional to the number N , see Cohen et al. [29, 30], Dahlke et al.
[45], Gantumur et al. [81]. Moreover, the algorithmic approach can be extended to
wavelet frames, i.e., to redundant wavelet systems, which are much easier to construct
than wavelet bases on general domains, see Dahlke et al. [50], Stevenson [150].

Numerical experiments are presented in Section 4.2 to complement the asymptotic
error analysis. We determine empirical rates of convergence for adaptive and uniform
approximation of the solution U to the Poisson equation (1.3) in dimension d = 1.
It turns out that the empirical rates fit very well to the asymptotic results, and we
observe superiority of the adaptive scheme already for moderate accuracies.

1.5 On the convergence of the inexact linearly im-

plicit Euler scheme

In Chapter 5 we investigate the error propagation and analyze the convergence of
Rothe’s method for evolution equations of the parabolic type with focus on linearly
implicit one-step methods. We use uniform discretizations in time and non-uniform
(adaptive) discretizations in space. The space discretization methods are assumed to
converge up to a given tolerance ε when applied to the resulting elliptic subproblems.
Typical examples are adaptive finite element or wavelet methods. We investigate how
the tolerances ε in each time step have to be tuned so that the overall scheme converges
with the same order as in the case of exact evaluations of the elliptic subproblems.

As mentioned above, usually the exact solution to a partial differential equation
cannot be computed explicitly. In those cases a numerical scheme for the constructive
approximation of the solution is required. For the vertical method of lines we refer to
Hanke-Bourgeois [97], Johnson [105], Thomée [155], as well as to Gyöngy [90],
Gyöngy, Krylov [91], Gyöngy, Millet [92], Hall [96] for detailed information.
Our method of choice is Rothe’s method, or the horizontal method of lines as it
starts with a discretization first in time, and then in space. It has also been studied
in, e.g., Breckner, Grecksch [15], Grecksch, Tudor [84] in the stochastic
setting and in, e.g. Lang [121], Lubich, Ostermann [126] in the deterministic
setting. With this approach the parabolic equation is interpreted as an abstract Cauchy
problem, i.e., as an ordinary deterministic or stochastic differential equation in a
suitable function space. Then, in time direction, one can apply an ODE/SDE-solver.
Since the equation under consideration is usually stiff this solver must be based on
an implicit discretization scheme. Linearly-implicit one-step methods are of primary
interest because their realization only requires to solve a system of linear elliptic stage
equations per time step. To solve the elliptic stage equations, well-established adaptive
numerical schemes based, e.g., on wavelets or finite elements, can be used. We refer
to Cohen et al. [29, 30], Dahlke et al. [51] for suitable wavelet methods, and to
Babuška [5], Babuška, Rheinboldt [6], Bank, Weiser [8], Bornemann et al.
[14], Eriksson [74], Eriksson, Johnson [75, 76], Eriksson et al. [77], Hansbo,
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Johnson [98], Verfürth [166, 167] for the finite element case. Note that all references
are indicative and are by no means complete.

To the best of our knowledge, the most far reaching results concerning a rigorous
convergence analysis of Rothe’s method have been obtained in Lang [121], where finite
element discretization in space is used. In the stochastic setting Rothe’s method with
unperturbed or exact evaluation of the elliptic subproblems, has been considered in
Breckner, Grecksch [15], Grecksch, Tudor [84], and explicit convergence rates
have been established inCox, van Neerven [37],Gyöngy, Nualart [93], Printems
[137]. First results concerning the combination with adaptive space discretization
methods based on wavelets have been shown in Kovács et al. [115], where additive
noise is considered, a splitting method is applied, and adaptivity is only used for the
deterministic part of the equation. At this point, let us remark that the use of spatially
adaptive schemes is useful especially for stochastic equations, where singularities appear
naturally near the boundary due to the irregular behavior of the noise, cf. Cioica
et al. [25] and the references therein.

In Section 5.1, we start with the observation that at an abstract level, Rothe’s
method can be reformulated as the consecutive application of two types of operators, the
inverse of a (linear) elliptic differential operator L−1

τ,i and certain (nonlinear) evaluation
operators Rτ,k,i, i.e.,

L−1
τ,i : G → H and Rτ,k,i : H× · · · × H  

i

→ G,

where H and G are suitable Hilbert spaces, τ denotes the time step size, k denotes
the current time step, and i = 1, . . . , S denotes the current stage. Then, an abstract
S-stage scheme to compute an approximation (uk)k to a mapping u : [0, T ] → H can
be defined as

uk+1 :=
S
i=1

wk,i, u0 := u(0),

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1)


εk,i
, i = 1, . . . , S.

Here, [ · ]ε stands for any numerical scheme that, for any prescribed tolerance ε, yields
an approximation of the evaluation of both operators, which is necessary since the
mapping u is understood to be the solution of a partial differential equation and
therefore the inverses L−1

τ,i are not given explicitly in most cases. In the presence of
spatial discretization errors, we investigate how the tolerances εk,i in each time step
must be tuned in order to preserve the asymptotic temporal convergence order δ of the
time stepping. We derive sufficient conditions for convergence in the case of perturbed
or inexact operator evaluations and obtain conditions on the tolerances which guarantee
the overall convergence with corresponding convergence order δ, see Theorems 5.21
and 5.26, i.e., by choosing

0 < εk,i ≤
1

S
Ca τ

1+δ,

we get u(T )− uKH ≤ Cb τ
δ

with specified constants Ca and Cb. Moreover, we derive abstract complexity estimates.
Furthermore, in a Gel’fand triple setting (V, U, V ∗), we consider u : (0, T ] → V to be a
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solution to initial value problems of the form

u′(t) = F (t, u(t)), u(0) = u0, t ∈ [0, T ],

where F : [0, T ]×V → V ∗ is a nonlinear right-hand side and u0 ∈ V is some initial value.
We substantiate our analysis and show that any linearly-implicit 1-step S-stage scheme
of W-type can be written as abstract Rothe methods. See Observation 5.33 for the
case H = V and G = V ∗ and Observation 5.41 for the case H = G = U . By combining
our analysis with the convergence results for the unperturbed schemes, which, e.g.,
are outlined in Lubich, Ostermann [126], we are therefore able to provide rigorous
convergence proofs for spatially adaptive versions of W-methods. In the examples,
special emphasis is placed on the semi-linear case

u′(t) = Au(t) + f(t, u(t)), u(0) = u0, t ∈ [0, T ],

where in practical applications usually A is a differential operator and f a linear or
nonlinear drift term.

In Section 5.2, we show that also semi-linear parabolic SPDEs can be treated, if
the linearly-implicit Euler scheme is the method of choice. We consider a separable
real Hilbert space U and the U -valued SDE

du(t) = Au(t)dt+ F (u(t))dt+B(u(t))dW (t), u(0) = u0, t ∈ [0, T ], (1.4)

driven by a Q-Wiener process W over the sequence space ℓ2 with respect to a normal
filtration (Ft)t∈[0,T ] on a complete probability space (Ω,F ,P). Here, du(t) denotes the
stochastic differential of Itō type with respect to time t ∈ [0, T ]. Furthermore,

A : D(A) ⊂ U → U

is a densely defined, strictly negative definite, self-adjoint, linear operator such that
zero belongs to the resolvent set, and A−1 is compact on U . The drift term

F : D((−A)ϱ) → D((−A)ϱ−ϱF )

and the diffusion term

B : D((−A)ϱ) → L(ℓ2, D((−A)ϱ−ϱB))

are Lipschitz continuous maps for suitable constants ϱ, ϱF , and ϱB. To put the focus
on the stochastic forcing term, we sometimes restrict F to the linear case where it is
independent of u, i.e., F (u) ≡ F or even set F ≡ 0. In practical applications usually
B(u(t))dW (t) describes additive or multiplicative noise. This setting is based on the
one considered in Printems [137] where the convergence of semi-discretizations in
time is investigated. However, we allow the spatial regularity of the whole setting to be
‘shifted’ in terms of the additional parameter ϱ.

We start with a detailed description of the considered class of semi-linear parabolic
SPDEs and show the existence of a unique mild solution, see Proposition 5.52. We call
a mild solution to Eq. (1.4) a predictable process u : Ω× [0, T ] → D((−A)ϱ) with

sup
t∈[0,T ]

E[∥u(t)∥2D((−A)ϱ)] <∞
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and such that for every t ∈ [0, T ] the equality

u(t) = etAu0 +

 t

0

e(t−s)AF (u(s))ds+

 t

0

e(t−s)AB(u(s))dW (s) (1.5)

P-almost surely holds in D((−A)ϱ). The first integral in (1.5) is a D((−A)ϱ)-valued
Bochner integral for P-almost every ω ∈ Ω and the second integral is a D((−A)ϱ)-valued
stochastic integral.

Furthermore, in Observation 5.57 we show that the stochastic analogue of the
linearly-implicit Euler scheme fits into the abstract setting of Section 5.1. Based on
an error estimate for the inexact scheme, see Proposition 5.65, we derive sufficient
conditions for convergence with corresponding convergence order in the case of inexact
operator evaluations in Theorem 5.63.

Our analysis so far holds for any spatially adaptive numerical scheme that provides
an approximation of the unknown solution up to any prescribed tolerance. In the finite
element setting, such strategies have been derived in, e.g., Binev et al. [10], Dörfler
[72], Stevenson [151]. However, we are in particular interested in spatially adaptive
schemes based on wavelets due to the strong analytical properties of wavelets, which
can be used to design adaptive numerical schemes that are guaranteed to converge with
optimal order, i.e., with the same order as best N -term wavelet approximation, see,
e.g., Cohen et al. [29, 30], Gantumur et al. [81]. These relationships pave a way
to rigorous complexity estimates in the wavelet case. Indeed, as pointed out above, the
convergence order of best N -term wavelet approximation depends on the smoothness of
the object one wants to approximate in specific scales of Besov spaces, cf. (1.1). So, the
overall complexity can be determined by combining our abstract analysis with estimates
for the Besov smoothness of the solutions to the elliptic subproblems in each time
step. In Section 5.3, we therefore present a detailed analysis of Rothe’s method, where
adaptive wavelet discretizations are applied to the elliptic subproblems. In the first part,
see Theorem 5.71, we concentrate on the case, where the solutions of the stage equations
are approximated by using best N -term wavelet approximation and, in the second
part, see Theorem 5.73, we consider an implementable and asymptotically optimal
numerical wavelet solver for the stage equations. In particular for the linearly-implicit
Euler scheme applied to the classical heat equation, we determine upper bounds for
the overall number of degrees of freedom that are needed to approximate the solution
up to a prescribed tolerance. See Theorem 5.78 where we assume that best N -term
wavelet approximation for the spatial approximation of the stage equations is applied,
and see Theorem 5.79 where an implementable and asymptotically optimal numerical
wavelet solver is employed.





Chapter 2

Preliminaries

We provide the mathematical foundation on which the subject and results of this
dissertation are based upon.

In Section 2.1 we begin with a few words about the structure of the motivating
equations as well as the existence of solutions. In Section 2.2 we state the definitions
and important results concerning the considered function spaces. Sections 2.3 and 2.4
provide an overview of wavelets and the applied numerical approximation methods
which are based on wavelets. A nomenclature of frequently used notations as well as
the index can be found at the end of this dissertation.

2.1 Stochastic partial differential equations

A few words about the structure of the motivating equations as well as the existence of
solutions are in order.

We apply our analysis to semi-linear second order stochastic partial differential
equations of the parabolic type on a bounded (Lipschitz) domain O ⊂ Rd over a finite
time horizon [0, T ] which are driven by an infinite-dimensional Wiener process W . We
formulate such equations as an abstract evolution problem in an infinite-dimensional
state space U :

dX(t) = AX(t)dt+ F (X(t))dt+B(X(t))dW (t), t ∈ (0, T ],

X(0) = X0 ∈ U.
(2.1)

We in particular investigate the case, where A is an unbounded linear operator, like
the Laplace operator with Dirichlet boundary conditions, and where the drift term
F as well as the diffusion term B are globally Lipschitz continuous mappings. The
case where B is independent of X, B(X) ≡ B, refers to additive noise BdW , while
B(X)dW is called multiplicative noise.

Several approaches to solve the problem (2.1) are frequently studied in the literature.
The analytically strong formulation of a solution to (2.1) is given by a D(A)-valued
predictable process X which satisfies

X(t) = X0 +

 t

0


AX(s) + F (X(s))


ds+

 t

0

B(X(s))dW (s), P-a.s.,

13
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for each t ∈ [0, T ]. The analytically weak formulationof a solution to (2.1) is given by
an U -valued predictable process X which satisfies

⟨X(t), η⟩ = ⟨X0, η⟩+
 t

0

⟨X(s), A∗η⟩+⟨F (X(s)), η⟩ds+
 t

0

⟨η,B(X(s))dW (s)⟩, P-a.s.,

for all η ∈ D(A∗) and each t ∈ [0, T ]. The mild formulation is based on the semi-group
approach of Da Prato, Zabczyk [40]. It is given by an U -valued predictable process
X which satisfies

X(t) = eAtX0 +

 t

0

eA(t−s)F (X(s))ds+

 t

0

eA(t−s)B(X(s))dW (s), P-a.s.,

for each t ∈ [0, T ]. Here, {etA}t≥0 is the semi-group generated by A. Of course, the above
formulations only make sense if, in particular, the appearing integrals are well-defined.
We refer to Appendix A.2 for the definition of the Bochner integral and Appendix A.5
for details on the stochastic integral.

Under various conditions on (2.1) existence and uniqueness results for these formu-
lations have been obtained in the literature. For instance, existence proofs of a unique
solution in the mild formulation are given, e.g., in Da Prato, Zabczyk [40, Theorem
5.4] and Jentzen, Kloeden [102, Theorem 5.1], while Prévôt, Röckner [135]
and Rozovskii [141] consider a more general variational formulation. Its relation to
above formulations as well as the corresponding uniqueness and existence results can
be found, e.g., in Prévôt, Röckner [135, Appendix F]. We also refer to Chow
[19], Grecksch, Tudor [84], Hairer [95], Krylov [118], Krylov, Rozovskii
[119], Walsh [170] for further information.

2.2 Smoothness and function spaces

We state the definitions and important properties of the considered smoothness spaces,
which are mainly of Sobolev and Besov type.

In this dissertation, the following smoothness scales are of particular importance.
Let f : O → R be a measurable function, where O ⊆ Rd is a domain, i.e., an open and
connected set. The order of differentiability of a continuous function f is the maximal
number m ∈ N0 such that all partial derivatives ∂αf , α ∈ Nd

0, |α| := α1 + · · ·+αd ≤ m,
are bounded and continuous. The space of all such functions is denoted by Cm(O) and
it can be shown it is a Banach space with respect to the norm

∥f∥Cm(O) := max
|α|≤m

sup
x∈O

|∂αf(x)|,

cf., e.g., Adams, Fournier [2, §1.26ff]. Furthermore, C∞(O) :=
∞
m=0 Cm(O) denotes

the space of infinitely often continuously differentiable functions and C0(O) =: C(O).
The compactly supported functions in C(O) and C∞(O) are denoted by C0(O) and
C∞
0 (O), respectively. A function f is by definition compactly supported if supp(f) :=

clos{x ∈ O : f(x) ̸= 0} is a compact set in O.
Smoothness scales of Sobolev type are taking the integrability of a function into

account. For each 1 ≤ p <∞ one can define the space Lp(O) of p-integrable functions,
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cf. Appendix A.2, as the completion of the space C0(O) with respect to the norm

∥f∥Lp(O) :=


O
|f(x)|p dx

1/p

,

where dx denotes the Lebesgue measure, see, e.g., Adams, Fournier [2, Theorem
2.19]. Then, one can also compare smoothness by asking for the maximal number
m ∈ N0 such that all generalized derivatives Dαf up to the order m are p-integrable.
The definition of generalized derivative is given in Appendix A.3. The space consisting
of all functions f ∈ Lp(O) for which


|α|≤m ∥Dαf(x)∥Lp(O) < ∞ is known as the

classical Sobolev space Wm
p (O). It is also a complete space with respect to the norm

∥f∥Wm
p (O) := |f |Wm

p (O) + ∥f∥Lp(O),

where
|f |Wm

p (O) :=

|α|=m

∥Dαf(x)∥Lp(O)

defines the Sobolev semi-norm. We refer to Adams, Fournier [2] for details.
Smoothness scales of Besov type can be defined based on the behavior of the

modulus of smoothness. The k-th order Lp-modulus of smoothness , k ∈ N, of a function
f is defined as

ωk(t, f)p := sup
|h1+...+hd|<t

∥∆k
hf∥Lp(O), t > 0,

where

∆k
hf(x) :=

k
i=0

1O(x+ ih)
k
j=0


k

j


(−1)k−jf(x+ jh), x ∈ Rd,

denotes its k-th difference with step size h ∈ Rd. In this setting, one can compare the
smoothness of a function f depending on how fast ωk(f, t)p goes to zero as t→ 0. For
example, Besov spaces of smoothness s > 0 contain those functions for which

2jsωk(f, 2−j)p

j≥0

∈ ℓq,

i.e., ωk(f, t)p goes to zero like O(ts) as t→ 0, see, e.g., Cohen [28, Chapter 3.2].

2.2.1 Besov and Sobolev spaces

Let
0 < p, q ≤ ∞ and d(1/p− 1)+ < s <∞,

as well as k > s, where d(1/p− 1)+ := min{0, d(1/p− 1)}. The Besov space Bs
q(Lp(O))

is defined as the set of all functions f ∈ Lp(O) such that the term

|f |Bs
q(Lp(O)) :=


 ∞

0


t−s ωk(t, f)p

q dt
t

1/q

: 0 < q <∞,

sup
t>0

t−s ωk(t, f)p : q = ∞,

is finite. A quasi-norm on Bs
q(Lp(O)) is given by

∥f∥Bs
q(Lp(O)) := |f |Bs

q(Lp(O)) + ∥f∥Lp(O), (2.2)
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which is independent of the order k > s in the sense of equivalent quasi-norms, see,
e.g., DeVore, Sharpley [68].

Aside of the inner description above, Besov spaces B̄s
q(Lp(Rd)) for 0 < p, q ≤ ∞

and s ∈ R can also be defined as the set of all f ∈ S ′(Rd) such that the quasi-norm

∥f∥φ :=




∞
j=0


2js ∥F−1(φjFf)∥Lp(Rd)

q1/q

: 0 < q <∞,

sup
j≥0

2js ∥F−1(φjFf)∥Lp(Rd) : q = ∞,

(2.3)

is finite. Here, we require a fixed test function φ ∈ D(Rd) with φ ≥ 0 and φ(0) ̸= 0,
since then every f ∈ S ′(Rd) can be decomposed as

f =
∞
j=0

F−1(φjFf),

where φ0 := φ and φj(x) := φ(2−jx)−φ(2−j+1x), j ∈ N. Moreover, ∥·∥φ is independent
of the choice of φ in the sense of equivalent quasi-norms, in particular φ can be chosen
such that {φj}j forms a resolution of unity, see, e.g., Triebel [158, Sections 2.3.1,
2.3.2] for details. Based on this approach, spaces on domains are usually defined by
restriction, e.g.,

B̄s
q(Lp(O)) :=


f ∈ D′(O) : ∃g ∈ B̄s

q(Lp(Rd)) with g|O = f


together with the quasi-norm ∥f∥φ,O := inf{∥g∥φ : g ∈ B̄s
q(Lp(Rd)), g|O = f}. The

definitions of test functions, D′(O), S ′(Rd), and of the Fourier transform are given in
Appendix A.3.

As it turns out, for 0 < p, q <∞ and s > d(1/p− 1)+ both definitions coincide on
Rd and, by employing bounded extension operators which exist for Lipschitz domains
and Besov spaces, see Rychkov [144], the two approaches also yield the same space
for bounded Lipschitz domains, see also Cohen [28, Remark 3.9.1] and the references
therein. We refer to Triebel [158, Theorem 2.5.12] for a proof on the whole space
and Dispa [70, Theorem 3.18] for a proof on bounded Lipschitz domains. A domain
O ⊂ Rd is by definition a Lipschitz domain, cf. Triebel [162, Definition 1.103], if each
point on the boundary ∂O has a neighborhood whose intersection with the boundary
(after relabeling and reorienting the coordinate axes if necessary) is the graph of a
Lipschitz function.

Remark 2.1. A proof of the completeness of Bs
q(Lp(Rd)) can be found in Triebel

[158, Theorem 2.3.3(i)] and in Triebel [158, Proposition 3.2.3(i)] for Bs
q(Lp(O)) on

any domain O ⊂ Rd, since the completeness part of the proof only requires O to be a
domain.

Remark 2.2. For general information on Besov spaces, we also refer to the monographs
Meyer [129], Nikol’skij [130], Peetre [134], Runst, Sickel [143].

The Besov spaces Bs
p(Lp(O)), 1 < p <∞, s ∈ R+ \ N, coincide on certain domains

with the following fractional Sobolev spaces W s
p (O), which extend the classical Sobolev

spaces Wm
p (O), m ∈ N0, to the whole smoothness scale s ≥ 0: Let s := m + σ with
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σ ∈ (0, 1) and 1 ≤ p <∞. The Sobolev(-Slobodeckij) space W s
p (O) is defined as the set

of all functions f ∈ Lp(O) such that the term

|f |pW s
p (O) :=


|α|=m


O


O

|Dαf(x)−Dαf(y)|p

|x− y|d+σp
dxdy

is finite. A norm on W s
p (O) is given by

∥f∥W s
p (O) :=


∥f∥pWm

p (O) + |f |pW s
p (O)

1/p
. (2.4)

The equivalence of (2.2) and (2.4), where 1 < p <∞ and s ∈ R+ \ N, has been shown
in, e.g., Triebel [159, Section 2.5.1 & Remark 4.4.2/2] for O = Rd and for bounded
Lipschitz domains. Note that the classical Sobolev spaces Wm

p (O), m ∈ N0, with p ≠ 2
are not Besov spaces, cf. DeVore [65, Section 4.5].

Remark 2.3. A proof that (W s
p (O), ∥ · ∥W s

p (O)) is a Banach space and a Hilbert space
for p = 2, can be found in, e.g., Dobrowolski [71, Section 6.10].

Remark 2.4. Sobolev spaces of fractional smoothness can also be introduced by means
of the Fourier transform. For example, the Sobolev space Hs,p(Rd), 1 ≤ p <∞, s ∈ R,
of Bessel potentials is defined as

Hs,p(Rd) :=

f ∈ S ′(Rd) : ∥f∥Hs,p(Rd) := ∥F−1(1 + | · |2)s/2 Ff∥Lp(Rd) <∞


,

where on domains O ⊆ Rd it is defined by restriction, i.e.,

∥f∥Hs,p(O) := inf{∥g∥Hs,p(Rd) : g ∈ Hs,p(Rd), g|O = f},

cf. Adams, Fournier [2, §7.63]. For O = Rd or a Lipschitz domain, it has been
shown that Hs,2(O) coincides with W s

2 (O), s > 0, and that Hm,p(O), m ∈ N, coincides
with Wm

p (O). However, Hs,p(O) and W s
p (O) differ for p ≠ 2 and s ∈ R+ \ N, yet still

Bs
1(Lp(O)) ⊂ Hs,p(O) ⊂ Bs

∞(Lp(O)). We refer to Triebel [158, Remark 2.2.2/3] and
Triebel [160] for details.

In our approach, Besov and Sobolev spaces with negative smoothness are defined
by duality. Therefore, let

1 < p, p′, q, q′ <∞,
1

p
+

1

p′
=

1

q
+

1

q′
= 1, and s > 0.

We define
B−s
q (Lp(O)) :=


Bs
q′(Lp′(O))

∗
= L


Bs
q′(Lp′(O)), R


, (2.5)

which is equipped with the canonical dual norm

∥f∥B−s
q (Lp(O)) := sup


|fg| : g ∈ Bs

q′(Lp′(O)), ∥g∥Bs
q′ (Lp′ (O)) = 1


,

cf. (A.1) in Appendix A.1.
Since D(O) is in general not dense in W s

p (O), the dual space of W s
p (O) can in those

cases not be identified with a space of distributions, cf. Grisvard [88, Section 1.3.2].
Instead, the dual space of the closure of D(O) with respect to ∥ · ∥W s

p (O), which is

denoted by W̊ s
p (O), is used to extend the Sobolev spaces to negative smoothness, i.e.,

W−s
p (O) :=


W̊ s
p′(O)

∗
= L


W̊ s
p′(O), R


, s > 0, (2.6)

which is equipped with the canonical dual norm.
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Remark 2.5. We have that (W̊ s
p (O), ∥ · ∥W s

p (O)) is a Banach space, since W̊ s
p (O) is a

closed subspace of W s
p (O).

In the Hilbert space case, p = 2, it is customary to use the abbreviations

Hs(O) := W s
2 (O) and Hs

0(O) := W̊ s
2 (O).

A direct consequence of the characterization of Besov spaces by means of the Fourier
transform, i.e., using (2.3), is that Hs(Rd) and Bs

2(L2(Rd)) coincide for all s ≥ 0 in the
sense of equivalent norms, see, e.g., Triebel [159, Theorems 2.3.2(d), 2.3.3(b)]. We
refer to Triebel [159, Proposition 4.2.4, Theorem 4.6.1(b)] for a proof that

Hs(O) = Bs
2(L2(O)), s ≥ 0, (2.7)

also holds in the sense of equivalent norms for domains O ⊂ Rd of cone-type and in
particular for bounded Lipschitz domains, since they are of cone-type, cf. Adams,
Fournier [2, §4.11].

Here, we frequently apply the following embedding results of Besov spaces, where
A1 ↩→ A2 denotes that A1 is continuously embedded in A2, i.e., there exists a constant
c > 0 such that for all a ∈ A1 we have ∥a∥A2 ≤ c∥a∥A1 .

Theorem 2.6. Let O ⊆ Rd be a domain and ε > 0.
(i) Let 0 < p ≤ ∞, 0 < q1 ≤ q2 ≤ ∞, and s ∈ R. Then

Bs
q1
(Lp(O)) ↩→ Bs

q2
(Lp(O)).

(ii) Let 0 < p, q1, q2 ≤ ∞ and s ∈ R. Then

Bs+ε
q2

(Lp(O)) ↩→ Bs
q1
(Lp(O)).

(iii) Let O be bounded, 0 < p1 ≤ p2 ≤ ∞, 0 < q ≤ ∞, and s ∈ R. Then

Bs
q(Lp2(O)) ↩→ Bs

q(Lp1(O)).

(iv) Let O be bounded, 0 < p1 ≤ p2 <∞, and s ∈ R. Then

Bs+ε
p2

(Lp2(O)) ↩→ Bs
p1
(Lp1(O)).

(v) Let O be bounded, 0 < p1 < p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞, and s1, s2 ∈ R. Then

Bs1
q1
(Lp1(O)) ↩→ Bs2

q2
(Lp2(O)) if

1

p1
=
s1 − s2
d

+
1

p2
.

(vi) Let O be a bounded Lipschitz domain or O = Rd. Let 1 < p <∞, s > 0, and

1

τ
=
s

d
+

1

p
.

Then
Bs
τ (Lτ (O)) ↩→ Lp(O).

(vii) Let O be a bounded Lipschitz domain or O = Rd. Let 0 < p, q ≤ ∞ and
s > d(1/p− 1)+. Then

Bs
q(Lp(O)) ↩→ Lu(O) for some u > 1.
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Proof. The embeddings (i) and (ii) follow from the monotonicity of the ℓq spaces
and the arguments given in Triebel [158, Proposition 2.3.2/2]. An application of
Hölders inequality yields (iii) and a combination of (ii) and (iii) yields (iv). For the
embedding (v) we refer to Triebel [162, Section 1.11] and the references therein. The
embedding (vi) is given in Triebel [162, Theorem 1.73] for the case O = Rd. On
bounded domains, (vi), see, e.g., Triebel [162, Section 1.11.5], is shown by using a
bounded extension operator, see e.g., Rychkov [144] for bounded Lipschitz domains.
The embedding (vii) is given in Triebel [162, Proposition 4.6]. □

Remark 2.7. The embedding relations (i) and (ii) of Theorem 2.6 for Bs
q(Lp(O))

show that s can be understood as primary smoothness parameter, while q is considered
as fine tuning parameter.

Moreover, the following characterizations of Besov spaces in terms of interpolation
spaces hold. See Appendix A.1.4 for the definition of the considered interpolation
spaces. Let O ⊂ Rd be a bounded Lipschitz domain or O = Rd. Let 1 ≤ p ≤ ∞ and
r ∈ N. We have

(Lp(O),W r
p (O))θ,q = Bθr

q (Lp(O)), θ ∈ (0, 1), 0 < q ≤ ∞,

in the sense of equivalent norms. For s1 < s2, and 0 < q1, q2 ≤ ∞ we have

(Bs1
q1
(Lp(O)), Bs2

q2
(Lp(O)))θ,q = B(1−θ)s1+θs2

q (Lp(O)), θ ∈ (0, 1), 0 < q ≤ ∞,

in the sense of equivalent norms, and

(Lp(O), Bs2
q2
(Lp(O)))θ,q = Bθs2

q (Lp(O)), θ ∈ (0, 1), 0 < q ≤ ∞,

in the sense of equivalent norms. We refer to DeVore [65, Section 4.6] and Bergh,
Löfström [9] for details.

A type diagram for function spaces is given in Figure 2.1, which in this context is
often referred to as DeVore-Triebel diagram: It illustrates function spaces of “s degrees
of smoothness in Lp” in a coordinate system with respect to the parameters. On the
x-axis, the inverse 1/p of the integrability parameter is plotted, while the smoothness
parameter s is plotted on the y-axis. This way, the x-axis represents the spaces with
smoothness zero and the dashed line 1/2 →→ s represents the Sobolev spaces Hs(O)
with smoothness s. The shaded area represents the defined range of parameter pairs
(1/p̄, s̄) of the Besov spaces B s̄

q(Lp̄(O)), where the fine tuning parameter q is usually
omitted. The arrows indicate the directions of the principal embeddings on bounded
Lipschitz domains, cf. Theorem 2.6. In particular, the rays with slope d indicate the
so-called Sobolev embedding lines: While keeping 1/p− s/d fixed, one can enlarge the
function space by trading smoothness for integrability.

Remark 2.8. For our analysis, we are going to employ wavelet multiscale character-
izations of the considered Besov spaces, cf. Section 2.3 below. Therefore, we do not
consider Besov spaces for the parameters 0 < p < 1 and s < d(1/p − 1), i.e., which
are outside of the shaded area in Figure 2.1, since it is not clear whether they allow a
wavelet characterization of the type we require for our analysis. We refer to Cohen
[28, Remark 3.7.4] for details.
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1
p

L1LpL2

0

s

Besov spaces
Bs
τ (Lτ ),

1
τ
= s

d
+ 1

p

1
τ

Sobolev spaces
Hs = Bs

2(L2) B s̄
q(Lp̄)

embeddings
(v), (ii), (iv)

Figure 2.1: DeVore-Triebel diagram: any function space of “s degrees of smoothness in
Lp” is represented by the point (1/p, s)

2.2.2 Anisotropic Besov spaces

Let us now consider the anisotropic setting. First, we fix an anisotropy

a = (a1, . . . , ad) ∈ Rd
+, with

d
i=1

1

ai
= d. (2.8)

Let {e1, . . . , ed} denote the canonical basis of Rd. For a function f : Rd → R let

∆k
hf(x) := (∆k1

h1e1
◦ . . . ◦∆kd

hded
)f(x), x ∈ Rd,

be the mixed difference of order k = (k1, . . . , kd) ∈ Nd and step h = (h1, . . . , hd) ∈ Rd.
For p ∈ (0,∞) the mixed modulus of smoothness with respect to a is defined by

ωk
a(t, f)p := sup

|h|a<t
∥∆k

hf∥Lp(O), t > 0,

where

|h|a :=
d
j=1

|hj|aj , h ∈ Rd,

is the anisotropic pseudo-distance of the step h related to the anisotropy a.
Now, let

0 < p, q <∞ and d(1/p− 1)+ < s <∞,

as well as N ∋ K > max{s1, ..., sd} with si := sai, i = 1, ..., d. The anisotropic Besov
space Bs,a

q (Lp(Rd)) is the set of all functions f ∈ Lp(Rd) such that the term

|f |Bs,a
q (Lp(Rd)) :=


|k|=K

 ∞

0


t−s ωk

a(t, f)p
q dt

t

1/q

is finite. A quasi-norm on Bs,a
q (Lp(Rd)) is given by

∥f∥Bs,a
q (Lp(Rd)) := |f |Bs,a

q (Lp(Rd)) + ∥f∥Lp(Rd),
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which is independent of the choice of K in the sense of equivalent quasi-norms, cf.
Triebel [162, Theorem 5.8]. Observe that, if a = 1 we are in the isotropic case.

In this setting, anisotropic Besov spaces on domains O ⊂ Rd are defined by
restriction, i.e.,

Bs,a
q (Lp(O)) :=


f ∈ Lp(O) : ∃g ∈ Bs,a

q (Lp(Rd)), g|O = f

,

together with the quasi-norm

∥f∥Bs,a
q (Lp(O)) := inf{∥g∥Bs,a

q (Lp(Rd)) : g ∈ Bs,a
q (Lp(Rd)), g|O = f}.

Remark 2.9. The above definition of anisotropic Besov spaces is equivalent to the
definitions used in Garrigós et al. [82, 83], see [82, Proposition 2.2].

Remark 2.10. The space Bs,a
2 (L2(Rd)) coincides with the anisotropic Sobolev space

of Bessel potentials

Hs,2,a(Rd) := {f : F−1(1 + |ξi|2)sai/2 Ff ∈ L2(Rd), i = 1, . . . , d}.

In the case a = (sa1, . . . , sad) ∈ Nd, the space Bs,a
2 (L2(Rd)) coincides with the classical

anisotropic Sobolev space

W s,a
2 (Rd) :=


f ∈ L2(Rd) :

d
i=1

∂saif∂xsaii


L2(Rd)

<∞


.

Aside of Garrigós et al. [82, 83], we also refer to Triebel [162, Chapter 5] for
details on anisotropic Besov spaces.

2.2.3 Tensor spaces of generalized dominating mixed deriva-
tives

Let the domain O ⊂ Rd be an n-fold product of component domains Om ⊂ Rdm ,
m = 1, ..., n, n ≥ 2, with

n
m=1 dm = d. On the component domains, let H̄s(Om)

be either the Sobolev space Hs(Om), or a closed subspace of it, in which boundary
conditions are incorporated, e.g., Hs

0(Om), cf. Section 2.2.1.
Let t = (t1, . . . , tn) ∈ [0,∞)n and ℓ ∈ [0,∞). The tensor spaceHt,ℓ(O) of generalized

dominating mixed derivatives is defined as

Ht,ℓ(O) :=
n
i=1

n
m=1

H̄ tm+δm,iℓ(Om),

where δm,i is the Kronecker delta. That is, Ht,ℓ(O) ⊂ L2(O) is the set of all functions
f = f1 ⊗ · · · ⊗ fn for which

∥f∥Ht,ℓ(O) :=
n
i=1

n
m=1

∥fm∥Hs(Om), with s = tm + δm,iℓ,

is finite.

Remark 2.11. The spaces Ht,ℓ(O) are generalizations of spaces with dominating
mixed derivatives Ht,0(O) as introduced in Lizorkin, Nikol’skij [125], see also
Griebel, Knapek [85] and Schwab, Stevenson [146]. Also note that, since the
Lebesgue measure is a product measure, H0,ℓ(O) is isomorphic to the standard Sobolev
space Hℓ(O) on bounded domains.
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2.3 The wavelet setting

In general, we employ biorthogonal wavelet bases on a domain O ⊆ Rd that characterize
certain function spaces by the decay properties of the coefficients in their wavelet
decompositions. The considered function spaces are defined in Section 2.2. For our
analysis, we have wavelets in mind which are constructed by means of a multiresolution
analysis and in the multivariate case they are given as tensor products of univariate
wavelet bases.

2.3.1 Wavelet multiscale decomposition and the characteriza-
tion of Besov spaces

We start our exposition by explaining how biorthogonal wavelet bases are constructed
from a multiresolution analysis for L2(Rd).

Let φ : R → R and φ : R → R be two compactly supported refinable functions, i.e.,

φ =

k∈Z

hkφ(2 · −k) and φ =

k∈Z

hk φ(2 · −k)
with a finite number of non-zero coefficients (hk)k∈Z and (hk)k∈Z. Furthermore, let φ
and φ be dual to each other, that is

R
φ(x− k)φ(x− l) dx = δk,l, k, l ∈ Z,

where δk,l denotes the Kronecker delta. This way, the multivariate functions

ϕ(x) := φ(x1) · · ·φ(xd) and ϕ(x) := φ(x1) · · · φ(xd), x = (x1, . . . , xd) ∈ Rd,

are also dual to each other, i.e.,
Rd

ϕ(x− k)ϕ(x− l) dx = δk,l, k, l ∈ Zd.

From the existence of a compactly supported dual function ϕ, we have that the set
{ϕ( · − k) : k ∈ Zd} is a Riesz basis for the space

V0 := closL2(Rd)


span{ϕ( · − k) : k ∈ Zd}


,

cf. Dahlke et al. [45]. The definition of a Riesz basis is given in Appendix A.1.1.
Observe that each dilated space

Vj := {g(2j ·) : g ∈ V0},

for a fixed j ∈ Z, is spanned by the functions ϕj,k, k ∈ Zd, where

ηj,k := 2jd/2η(2j · −k), j ∈ Z, k ∈ Zd,

are the scaled and shifted dilates of η ∈ L2(Rd) such that ∥ηj,k∥L2(Rd) = ∥η∥L2(Rd) for
all j ∈ Z, k ∈ Zd. The elements g ∈ Vj can therefore be decomposed as

g =

k∈Zd

⟨g, ϕj,k⟩ϕj,k,
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where ⟨g1, g2⟩ :=

Rd g1(x)g2(x) dx denotes the inner product of L2(Rd). Furthermore,

j∈Z Vj is dense in L2(Rd), since ϕ is refinable and thus

Vj ⊂ Vj+1, j ∈ Z, (2.9)

see de Bor et al. [63]. Going back to Mallat [127], such a nested sequence (Vj)j∈Z
is called multiresolution analysis . By (2.9), we obtain that

{ϕj,k : k ∈ Zd}

forms a Riesz basis for Vj: Any gj ∈ Vj can be written as gj = 2jd/2g0(2
j · ) with

g0 =


k∈Zd ckϕ( · − k) ∈ V0, i.e., gj =


k∈Zd ck ϕj,k, and since ∥gj∥L2 = ∥g0∥L2 the
constants in the Riesz basis property (A.3) are independent of j. In this setting, the
projectors

Pj : L2(Rd) → Vj

f →→

k∈Zd

⟨f, ϕj,k⟩ϕj,k, j ∈ Z, (2.10)

are uniformly bounded on L2(Rd) with

lim
j→∞

∥f − Pjf∥L2(Rd) = 0, f ∈ L2(Rd),

see Cohen [28, Sections 2.3, 2.12] for details.

Remark 2.12. In general, a dual φ is not uniquely determined for a given compactly
supported refinable function φ. However, under the assumptions on φ being refinable
and compactly supported, the dual spaces Vj, spanned by ϕj,k, k ∈ Zd, also form a
multiresolution analysis, see Cohen [28, Section 2.2].

A wavelet multiscale decomposition allows for a successive update of a decomposition
in Vj to obtain a decomposition in Vj+1. Therefore, one considers the operators

Qj := Pj+1 − Pj, j ∈ Z,

which are also uniformly bounded on L2(Rd). Observe that Qj maps L2(Rd) onto some
complement space Wj of Vj in Vj+1, which represents the detail that needs to be added
to Vj to obtain Vj+1. These, so called wavelet spaces, have the following properties:

Wj = {g(2j ·) : g ∈ W0}, j ∈ Z,

and
W0 = closL2(Rd)


span{ψe( · − k) : e = 1, . . . , 2d − 1, k ∈ Zd}


,

for suitable 2d − 1 functions ψe. Moreover, there exist 2d − 1 dual functions ψe such
that

⟨ψe(· − k), ψe′(· − k′)⟩ = δe,e′δk,k′ , e, e′ = 1, . . . , 2d − 1, k, k′ ∈ Zd.

For instance, one may choose

ψe(x) := ψe1(x1) · · ·ψed(xd), (e1, . . . , ed) ∈ {0, 1}d \ {0}, x = (x1, . . . , xd) ∈ Rd,

with
ψ0 := φ and ψ1 :=


k∈Z

(−1)k h1−k φ(2 · −k),
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and ψe analogously with

ψ0 := φ and ψ1 :=

k∈Z

(−1)k h1−k φ(2 · −k),
see Cohen [28, Sections 2.6, 2.9]. Under the assumption that φ, φ ∈ Hε(Rd) for some
ε > 0, it is possible to obtain a pair of biorthogonal wavelet Riesz bases

Ψ := {ϕ0,k : k ∈ Zd} ∪ {ψe,j,k : e = 1, . . . , 2d − 1, j ≥ 0, k ∈ Zd}

and Ψ := {ϕ0,k : k ∈ Zd} ∪ { ψe,j,k : e = 1, . . . , 2d − 1, j ≥ 0, k ∈ Zd}

for L2(Rd), see Cohen [28, Section 3.8]. Note that the basis functions are assumed to
be L2-normalized. Every f ∈ L2(Rd) can therefore be written in form of the wavelet
multiscale decomposition

f =

k∈Zd

⟨f, ϕ0,k⟩ϕ0,k +
2d−1
e=1


j≥0


k∈Zd

⟨f, ψe,j,k⟩ψe,j,k.
As we see, wavelet indices encode several types of information: the scale or level j, the
spatial location, e.g., 2−jk for d = 1, and also the type e of the wavelet. In asymptotic
analysis, an explicit dependence on the type of the wavelets can be ignored, whenever it
only produces additional constants. Therefore, we are also using the following notation:
We set ψ0,0,k := ϕ0,k, ψ0,0,k := ϕ0,k, and ∇ := ∪j≥0∇j, where ∇j denotes the set of all
indices on level j encoding type and spatial location. Furthermore, we abbreviate the
wavelet bases by

Ψ = {ψλ : λ ∈ ∇} and Ψ = { ψλ : λ ∈ ∇}

with λ = (j, k), |λ| = j, and ∇ = {(j, k) : j ≥ 0, k ∈ ∇j}. This way, we can write

f =

j≥0


k∈∇j

⟨f, ψj,k⟩ψj,k =
λ∈∇

⟨f, ψλ⟩ψλ, (2.11)

as well as

∥f∥2L2(Rd) ≍

λ∈∇

|⟨f, ψλ⟩|2 ≍
λ∈∇

|⟨f, ψλ⟩|2 (2.12)

for the Riesz bases properties, cf. (A.3), where constants are independent of λ.

Remark 2.13. For details on the construction of wavelet bases in the biorthogonal
setting we refer to Cohen [28], Cohen et al. [33], Daubechies [62], Lemarié-
Rieusset [123], Mallat [128], Meyer [129]. In particular, for the adaption of
compactly supported wavelet bases to bounded domains O ⊂ Rd and boundary
conditions we refer to Cohen [28, Section 2.12]. Note that this might require to adjust
the starting level to j ≥ j0, j0 ∈ Z, in (2.11). Here, we just like to point out that for
a wide class of bounded domains, e.g., coordinatewise Lipschitz domains, compactly
supported wavelet bases can be constructed such that the index set ∇j is finite, see
Dahlke et al. [45, Section 3.5].
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In order to characterize Besov spaces Bs
q(Lp(Rd)) by means of wavelet multiscale

decompositions both wavelet bases Ψ, Ψ need to satisfy certain locality, smoothness,
and vanishing moment conditions. For instance, let r ∈ N, M > 0, and suppose that
for all e = 1, . . . , 2d − 1, we have

suppϕ, suppψe ⊂ [−M,M ]d, (2.13)

ϕ, ψe ∈ Cr(Rd), (2.14)
xα ψe(x) dx = 0 for all α ∈ Nd

0 with |α| =
d

i=1 αi ≤ r, (2.15)

as well as (2.13), (2.14), and (2.15) with ϕ and ψe replaced by ϕ and ψe for possibly
different parameters r ∈ N and M > 0. To shorten the notation, we set

ψe,j,k,p := 2jd(1/p−1/2)ψe,j,k and ψe,j,k,p′ := 2jd(1/p
′−1/2) ψe,j,k,

for the Lp-normalized wavelets and the corresponding duals with p′ := p/(p − 1) if
p ∈ (0,∞), p ̸= 1, and p′ := ∞, 1/p′ := 0 if p = 1.

Theorem 2.14. Let 0 < p, q <∞ and s > d(1/p− 1)+. Choose r ∈ N such that r > s
and construct a dual pair of wavelet Riesz bases with the properties (2.13), (2.14), and
(2.15). Then a locally integrable function f : Rd → R is in the Besov space Bs

q(Lp(Rd)),
if and only if

f =

k∈Zd

⟨f, ϕ0,k⟩ϕ0,k +
2d−1
e=1


j≥0


k∈Zd

⟨f, ψe,j,k,p′⟩ψe,j,k,p (2.16)

(convergence in D′(Rd)) and
k∈Zd

|⟨f, ϕ0,k⟩|p
1/p

+

2d−1
e=1


j≥0

2jsq


k∈Zd

|⟨f, ψe,j,k,p′⟩|pq/p
1/q

<∞. (2.17)

Moreover, (2.17) is an equivalent (quasi-)norm for Bs
q(Lp(Rd)).

A proof of this theorem for p ≥ 1 can be found in Meyer [129, Chapter 6, §10]. For
the general case see, e.g., Kyriazis [120] or Cohen [28, Theorem 3.7.7]. Moreover, the
adaption of Theorem 2.14 to bounded (Lipschitz) domains and to boundary conditions
are discussed in Cohen [28, Sections 3.9, 3.10]. The characterization of the dual spaces
(2.5), i.e., the case of negative smoothness, relies only on the ability to characterize the
primal space by the dual decomposition. Therefore, it is also possible to obtain the
norm equivalence

∥ · ∥B−s
q (Lp(Rd)) ≍


k∈Zd

|⟨ · , ϕ0,k⟩|p
1/p

+

2d−1
e=1


j≥0

2−jsq


k∈Zd

|⟨ · , ψe,j,k,p′⟩|p
q/p

1/q

for 1 < p, q <∞ and 0 < s < r, see Cohen [28, Theorem 3.8.1].

Remark 2.15. In particular, the special case

∥ · ∥2Hs(Rd) ≍

λ∈∇

22s|λ||⟨ · , ψλ⟩|2
extends the stability properties (2.12) to the scale of Sobolev spaces within −r < s < r.
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Remark 2.16. We also refer to DeVore et al. [66], Frazier, Jawerth [80],
Meyer [129], Runst, Sickel [143], Triebel [162] for further information on the fact
that wavelets are able to characterize smoothness spaces such as Besov and Sobolev
spaces.

Remark 2.17. In Cohen et al. [33] it has been shown that compactly supported
dual pairs φ, φ exist with order of polynomial reproduction n, n ∈ N, respectively, as
long as n+ n is even. Therefore, the biorthogonal setting allows to construct wavelets
with an arbitrarily high number of vanishing moments, see Dahlke et al. [45].

2.3.2 Linear and nonlinear approximation

The goal of approximation is to describe the elements of a possibly infinitely dimensional
(quasi-)normed space by elements of finite dimensional normed spaces or a finite number
of building blocks, cf. DeVore [65]. Let (X, ∥ · ∥X) be the (quasi-)normed space of
elements we wish to approximate and let Xn ⊂ X, n ∈ N0, be closed subspaces,
called approximation spaces, from which the approximating elements are derived. The
approximation error of an element f ∈ X that is going to arise is, e.g., given by

En(f, (Xn))X := dist(f,Xn)X := inf
g∈Xn

∥f − g∥X , (2.18)

or some similar term. Now, the task is to design approximation procedures f →→ fn,
fn ∈ Xn, that avoid to solve the minimization problem (2.18) directly, which in general
can be quite demanding. Preferably, such approximation procedures should still be
near-optimal or asymptotically optimal, i.e.,

∥f − fn∥X ⪯ En(f, (Xn))X , f ∈ X, (2.19)

with a constant independent of f and n. In practical applications, the performance of
any numerical approximation scheme is not just determined by (2.19), but also by its
computational cost. A numerical approximation scheme is efficient, if its computational
cost is proportional to the number n, and it is asymptotically optimal if it realizes
(2.19) while staying efficient.

Depending on the properties of the employed approximation spacesXn, there are two
distinct types of approximation procedures, cf. DeVore [65]. In linear approximation
one is interested in the approximation properties of finite dimensional linear spaces
Xn and the number n of parameters that describe the approximation is usually the
dimension of Xn or closely related to it. In nonlinear approximation the Xn are usually
nonlinear spaces and the number n relates to the maximal number of free parameters
or building blocks, like the number of discretization knots or the number of elements in
a decomposition of fn. In the latter case, n is also referred to as the number of degrees
of freedom for the approximation.

In either case, the spaces Xn, which are allowed so far, are way too general for
the scope of this exposition. Therefore, following DeVore [65, Section 4.1], we only
consider spaces Xn that satisfy the properties:

(A1) X0 := {0}, Xn ⊂ Xn+1,

(A2) each f ∈ X has a best approximation from Xn,
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(A3) aXn = Xn, a ∈ R \ {0},

(A4) Xn +Xn ⊆ Xcn for some constant c ∈ N,

(A5) limn→∞En(f, (Xn))X = 0 for all f ∈ X.

While items (A1) and (A2) may be modified to suit a different setting, items (A3)–(A5)
are characteristic to the considered approximation theory.

Given suitable spaces Xn, the elements of X can be described by the approximation
rate, i.e., the rate at which the approximation error decreases. For every α > 0 and
0 < q ≤ ∞, the approximation class Aα

q (X, (Xn)) consist of all the elements f ∈ X
such that

|f |Aα
q (X,(Xn)) :=




∞
n=1

1

n


nαEn(f, (Xn))X

q1/q

: 0 < q <∞,

sup
n≥1

nαEn(f, (Xn))X : q = ∞,

is finite. We obtain a (quasi-)norm on this class by ∥f∥Aα
q (X,(Xn)) := |f |Aα

q (X,(Xn))+∥f∥X
and we have the set relation

Aα
q1
(X, (Xn)) ⊆ Aα

q2
(X, (Xn)) for 0 < q1 ≤ q2 ≤ ∞.

Since Aα
∞(X, (Xn)) contains exactly the f ∈ X for which En(f, (Xn))X = O(n−α), all

elements in Aα
q (X, (Xn)) exhibit approximation order α > 0, i.e.,

En(f, (Xn))X ⪯ n−α, f ∈ Aα
q (X, (Xn)),

where 0 < q ≤ ∞ is some fine tuning parameter. Note that, since (En(f, (Xn))X)n∈N is
a monotone sequence due to (A1) and (A5), we also have the norm equivalence

| · |Aα
q (X,(X2j

)) ≍




∞
j=0


2jαE2j(f, (X2j))X

q1/q

: 0 < q <∞,

sup
j≥0

2jαE2j(f, (X2j))X : q = ∞.

The aim is now to actually characterize Aα
q (X, (Xn)) by some analytic conditions

that are known to us, e.g., in terms of function spaces and smoothness scales. This
way, the approximation rates that can be achieved for a given sequence (Xn)n∈N
are determined by the related smoothness scales. A main tool in this direction is
to employ direct (or Jackson type) and inverse (or Bernstein type) inequalities to
obtain a characterization in terms of interpolation spaces. See Appendix A.1.4 for their
definition. Given a number r > 0 and a (possibly quasi-)semi-normed linear space
(Y, | · |Y ) which is continuously embedded in X, i.e., Y ↩→ X and ∥ · ∥X ⪯ | · |Y , suppose
that for all n ∈ N the following two inequalities hold

Jackson inequality : En(f, (Xn))X ⪯ n−r |f |Y , f ∈ Y, and

Bernstein inequality : |g|Y ⪯ nr ∥g∥X , g ∈ Xn.
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Then for all 0 < q ≤ ∞ the following relation between approximation classes and
interpolation spaces can be shown

Aγ
q (X, (Xn)) = (X, Y )γ/r,q, 0 < γ < r, (2.20)

in the sense of equivalent norms, see DeVore [65, Theorem 1]. We also refer to Cohen
[28, Theorems 3.5.2, 4.2.1]. By this approach, in order to characterize Aα

q (X, (Xn))
for certain Xn, one has to find a suitable space Y for which the above Jackson and
Bernstein inequalities hold, as well as a characterization of the interpolation spaces in
(2.20) in terms of function spaces and smoothness scales.

In the context of linear approximation, we are interested in the characterization of
the approximation classes Aα

q (X, (Xn)) related to multiresolution spaces (Vj)j≥0. That
is, the approximation spaces Xn are dilates of a shift-invariant space which is generated
by a compactly supported function, where the underlying discretization steps or mesh
size h = n−1/d tends uniformly to zero. For instance,

Xn = Vj, j ≥ 0, with n = dim(Vj) ≍ 2jd

for the multiresolution spaces described in Section 2.3.1.
The proofs of the following norm equivalences corresponding to linear approximation

can be found in Cohen [28, Theorem 3.6.1, Corollary 3.6.1].

Theorem 2.18. Let 1 ≤ p, q ≤ ∞. Let φ ∈ Lp(Rd) and φ ∈ Lp′(Rd) with p′ := p/(p−1)
if p ∈ (1,∞) and p′ := ∞, 1/p′ := 0 if p = 1. Suppose φ ∈ Bs1

q1
(Lp(Rd)) for some

s1 > 0 and 1 ≤ q1 ≤ ∞. Then

As
q(Lp(Rd), (Vj)) = Bs

q(Lp(Rd)), 0 < s < min{n, s1},

in the sense of equivalent norms, where n− 1 is the order of polynomial reproduction
in the Vj spaces. Furthermore, let 1 ≤ q2 ≤ ∞, then

As−ν
q (Bν

q2
(Lp(Rd)), (Vj)) = Bs

q(Lp(Rd)), 0 < ν < s < min{n, s1},

in the sense of equivalent norms.

Remark 2.19. For the approximation properties of the multiresolution spaces Vj
considered in Section 2.3.1, which are traced back to the smoothness of φ and polynomial
reproduction properties, we refer to Cohen [28, Sections 2.7, 2.8]. In particular, the
projectors Pjf , j ∈ Z, defined in (2.10), are uniformly stable approximations to f in
Vj providing an optimal error estimate since ∥f − Pjf∥L2(Rd) ≍ infg∈Vj ∥f − g∥L2(Rd).

Remark 2.20. The adaption of Theorem 2.18, and of Theorem 2.21, to bounded
domains and to boundary conditions is discussed in Cohen [28, Sections 3.9, 3.10].

Given a basis decomposition of a function, e.g., (2.11), one can ask for the approx-
imation properties of approximations which are only allowed to have up to N ∈ N0

terms in their decomposition. Therefore, in the context of wavelet decompositions let

SN :=

 
λ∈Λ⊂∇

cλψλ : |Λ| ≤ N


, N ∈ N0,

be the corresponding N -term approximation spaces, i.e., Xn = SN . Note that (SN )N∈N
is a sequence of nonlinear approximation spaces, since in particular SN1 +SN2 = SN1+N2 .
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Figure 2.2: Linear and nonlinear wavelet approximation

One option to obtain a N -term approximation fN to f =


λ∈∇ cλψλ is thresholding,
i.e., the choice

fN :=


λ∈ΛN (f,X)

cλψλ,

where ΛN(f,X) ⊂ ∇ is a set containing N indices referring to contributions ∥cλψλ∥X
that are largest in the decomposition of f . A remarkable property of wavelet bases is
that fN is an asymptotically optimal approximation to f in SN , i.e.,

∥f − fN∥X ⪯ EN(f, (SN))X ,

not just for X = L2(Rd), but also for certain Besov spaces and Lp(Rd), 1 < p < ∞,
cf. Cohen [28, Section 4.1]. The proofs of the following norm equivalences for best
N-term wavelet approximation can be found in Cohen [28, Theorems 4.2.2, 4.3.3].

Theorem 2.21. Let 0 < p <∞. Suppose Bs
τ (Lτ (Rd)) with

1

τ
=
s− ν

d
+

1

p
(2.21)

admits a wavelet characterization of the type (2.17) within ν ≤ s ≤ s1 for some s1 > 0,
s1 > ν. Then

As−ν
τ (Bν

p (Lp(Rd)), (SN)) = Bs
τ (Lτ (Rd))

in the sense of equivalent (quasi-)norms. Furthermore, for 1 < p <∞ and ν = 0, we
have

As
τ (Lp(Rd), (SN)) = Bs

τ (Lτ (Rd))

in the sense of equivalent (quasi-)norms.

Figure 2.2 illustrates linear approximation and N -term wavelet approximation in
a DeVore-Triebel diagram. The vertical line, representing Besov spaces Bs0

q (Lp(Rd))
within ν ≤ s0 ≤ s, refers to linear approximation in Bν

q2
(Lp(Rd)) due to Theorem 2.18.

Therefore, 1/p →→ s is called linear approximation line. The line with slope d is generally
called nonlinear approximation line. It represents the Besov spaces Bs

τ (Lτ (Rd)), in the
scale (2.21) and, due to Theorem 2.21, it refers to best N -term wavelet approximation
in Bν

p (Lp(Rd)). The shaded area indicates that embeddings into Bν
p (Lp(Rd)) hold, cf.

Theorem 2.6. Note that for bounded domains of the type considered below, Section
2.3.3, the situation is the same.
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Remark 2.22. Theorem 2.18 essentially states that the approximation order which
can be achieved by uniform linear schemes depends on the regularity of the object under
consideration in the same scale of smoothness spaces, while according to Theorem 2.21
the approximation order which can be achieved by nonlinear approximation depends
on the regularity in the scale (2.21) of Besov spaces.

Remark 2.23. On account that thresholding yields an asymptotically optimal ap-
proximation in SN , the scale (2.21) relates to the sparsity of the underlying wavelet
decomposition, i.e., the Bν

p (Lp(Rd)) norm is concentrated on a small number of wavelet
coefficients. If a function has isolated singularities it usually has a sparse wavelet
decomposition, due to the polynomial reproduction properties of the multiscale spaces.
Therefore, also its smoothness in the scale (2.21) is usually higher than on 1/p →→ s, cf.
Cohen [28, Chapter 4].

2.3.3 Assumptions on the underlying wavelet basis

We assume that the domain O ⊆ Rd under consideration enables us to construct
compactly supported dual wavelet bases Ψ = {ψλ : λ ∈ ∇} and Ψ = { ψλ : λ ∈ ∇},
where

λ = (j, k), ∇ = {(j, k) : j ≥ 0, k ∈ ∇j}, and |λ| = j,

for L2(O) with the following properties:

(W1) Ψ is a Riesz basis for L2(O).

(W2) The wavelets are local in the sense that

diam(suppψλ) ≍ 2−|λ|, ψλ ∈ Ψ.

(W3) The cardinalities of the index sets ∇j satisfy

#∇j ≍ 2jd, j ∈ N0.

(W4) The wavelets satisfy the cancellation property

|⟨v, ψλ⟩L2(O)| ⪯ 2−|λ|( d
2
+m̄)|v|W m̄(L∞(suppψλ)), ψλ ∈ Ψ, v ∈ L2(O),

for |λ| > 0 with some parameter m̄ = m̄(Ψ) ∈ N.

(W5) The dual wavelet basis Ψ = { ψλ : λ ∈ ∇} to Ψ also fulfills (W1)–(W4) and is
biorthogonal to Ψ, i.e.,

⟨ψλ, ψλ′⟩L2(O) = δλ,λ′ , ψλ ∈ Ψ, ψλ ∈ Ψ.
(W6) The biorthogonal wavelet bases Ψ, Ψ induce a characterization of the Besov

spaces Bs
q(Lp(O)) — within −s2 < s < s1, where s1, s2 > 0 are bounds which

are determined by the smoothness and the approximation properties of Ψ andΨ — of the form

∥ · ∥Bs
q(Lp(O)) ≍

 ∞
j=0

2jq(s+d(
1
2
− 1

p
))


k∈∇j

|⟨ · , ψj,k⟩L2(O)|
p

q/p


1/q
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for d(1/p− 1)+ < s < s1. For −s2 < s < 0 and 1 < p, q <∞ it is of the form

∥ · ∥Bs
q(Lp(O)) ≍

 ∞
j=0

2jq(s+d(
1
2
− 1

p
))


k∈∇j

|⟨ · , ψj,k⟩L2(O)|
p

q/p


1/q

.

Remark 2.24. Suitable constructions of wavelets on domains satisfying (W1)–(W6)
can be found in, e.g., Canuto et al. [17, 18], Cohen et al. [33], Dahmen,
Schneider [58, 59, 60], and Primbs [136]. In general, we refer to Cohen [28] for a
detailed discussion.

Remark 2.25. Properties (W1) and (W2) imply numerical stability in a sense that
a change of a coefficient in a decomposition only induces a local change of the same
order in the underlying function. The finiteness of the index sets on each level in (W3)
is a beneficial consequence of (W2) and the form is chosen according to the scaling of
the underlying multiresolution analysis. Property (W4) is a Jackson type inequality
and induces the approximation capability of the wavelets. Since the construction of
orthogonal wavelet bases is not necessary in our context, we only assume the more
general property (W5). Lastly, (W6) requires a Bernstein type inequality to hold and
therefore complements the set of properties required to characterize approximation
spaces by smoothness.

Remark 2.26. In the previous section, Theorem 2.21 follows by proving Jackson-
and Bernstein type inequalities together with a characterization of the corresponding
interpolation spaces in terms of Besov spaces. Suitable Jackson and Bernstein inequali-
ties can be shown by exploiting the existence of wavelet bases that provide equivalent
weighted sequence norms for the Besov spaces in terms of wavelet coefficients. In our
analysis below and under the assumptions (W1)–(W6), we are in particular going to use
that f ∈ Bs

τ (Lτ (O)) in the scale (2.21) implies the validity of the Jackson inequality

EN(f, (SN))Bν
p (Lp(O)) ⪯ ∥f∥Bs

τ (Lτ (O))N
−(s−ν)/d (2.22)

with a constant that does not depend on f or N . Error estimates of the form (2.22) in
Sobolev spaces trace back to DeVore et al. [66]. In particular for approximation in
Hν(O), the estimate (2.22) with p = 2 can be derived from DeVore [65, Section 7.7].
In the context of elliptic problems we also refer to Dahlke et al. [45, 53], Hackbusch
[94] for further information. Results of this type also hold for negative ν, see, e.g.,
Dahlke et al. [54] and the discussion in Cohen [28, Section 3.8].

Remark 2.27. In the context of elliptic boundary value problems, cf. Chapter 4,
Sobolev and Besov spaces involving boundary conditions come into play. The most
prominent example is the Sobolev space H1

0 (O) which is used to describe Dirichlet
boundary conditions for second order elliptic differential operators. In this case, the
dual space is slightly differently defined as H−1(O) := (H1

0 (O))∗, cf. (2.6). In many
cases, it is possible to find a boundary adapted wavelet basis that characterizes H1

0 (O)
in the sense of (W6), while the dual basis gives rise to similar norm equivalences
for the dual spaces, see, e.g., Dahmen, Schneider [60, Theorem 3.4.3]. Moreover,
these biorthogonal wavelet bases very often also exist for much more general boundary
conditions. Again, we refer to Dahmen, Schneider [60] for further information.
Once such a wavelet basis is available, the analysis that depends on (W6) can also be
generalized to this case.
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2.3.4 The anisotropic wavelet setting

In order to characterize a given anisotropic Besov space Bs,a
q (Lp(Rd)), cf. Section 2.2.2,

the anisotropy has to be built into the wavelet basis. Therefore, we employ suitable
M-scaling functions ϕ : Rd → R, which satisfy

ϕ( · ) = | det(M)|1/2

k∈Zd

hk ϕ(M · −k) (2.23)

with a finite number of non-zero coefficients hk ∈ R. Here, M is an anisotropic integer
scaling matrix of the form

M := diag(λ1/a1 , . . . , λ1/ad), for some λ > 1, (2.24)

where a = (a1, . . . , ad) ∈ Rd
+ is the given anisotropy, cf. (2.8). Since

d
i=1

1
ai

= d, we
have

λd = |det(M)| =: m.

We assume to have an M-scaling function ϕ at hand, which satisfies the following
properties:

(M1) ϕ ∈ Hs(Rd) for s > d/2,

(M2) ϕ is compactly supported and

Rd ϕ(x) dx = 1,

(M3) ϕ is a refinable function in the sense of (2.23),

(M4) {ϕ(· − k)}k∈Zd is a Riesz basis of the space it spans,

(M5) ϕ ∈ Bs0,a
q (Lp(R)) ∩HL,a(Rd) for some s0 > 0 and N ∋ L > d/2.

(M6) There exists an M-scaling function ϕ, which also satisfies (M1)–(M5) with
potentially different constants, that is biorthogonal to ϕ, i.e., {ϕ(· − k)}k∈Zd and

{ϕ(· − k)}k∈Zd satisfy
Rd

ϕ(x)ϕ(x− k) dx = δ0,k for all k ∈ Zd.

Remark 2.28. The existence of nontrivial scaling functions satisfying (M1)–(M6) is
of course not obvious, nevertheless a lot of examples exist. We refer to Garrigós,
Tabacco [83], Hochmuth [101] for a detailed discussion. Moreover, matrices of the
form (2.24) are the only ones compatible with the anisotropy for the type of multiscale
decomposition we wish to apply. For instance, it is necessary that M is integer-valued
in order for (M2) to hold, see Auscher [4]. Again, we refer to Garrigós, Tabacco
[83, Section 3.1-3.3] for a detailed discussion.

Remark 2.29. By the Sobolev embedding theorem (M1) and (M2) imply ϕ and ϕ to
be continuous and that they are contained in Lp(Rd) for all 1 ≤ p ≤ ∞. Therefore,
with 1 ≤ p < ∞ and 1/p + 1/p′ = 1, where p′ = ∞, if p = 1, we have, in particular,

ϕ ∈ Lp(Rd) and ϕ ∈ Lp′(Rd). Assumption (M3) is necessary for ϕ to even qualify as
generator function for a multiresolution analysis, while (M4) ensures that a wavelet basis
constructed with these scaling functions really characterizes anisotropic Besov spaces,
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see Cohen et al. [36, Theorem 2.1, Proposition 2.1] and Garrigós, Tabacco

[83, Theorem 1.2, Proposition 3.3]. The anisotropic smoothness of ϕ and ϕ in (M5)
directly affects the range of smoothness that can be characterized later, cf. Theorem
2.31 below. Lastly, to only consider orthogonal wavelet bases turns out to be a too
strong restriction, therefore the more general case (M6) leading to biorthogonal wavelet
bases is considered.

Let ϕ be an M-scaling function satisfying (M1)–(M6), and let 1 ≤ p < ∞ and
1/p+ 1/p′ = 1, where p′ = ∞, if p = 1. We set

⟨f1, f2⟩ :=

Rd

f1(x)f2(x) dx, f1 ∈ Lp(Rd), f2 ∈ Lp′(Rd).

Since, in particular, ϕ, ϕ ∈ L∞
c (Rd) they generate multiresolution analyses (V

(p)
j )j∈Z

and (V (p′)
j )j∈Z by

V
(p)
j := clos span

Lp(Rd)


ϕ
(p)
j,k := |det(M)|j/pϕ(Mj · − k) : k ∈ Zd


, j ∈ Z,

and V (p′)
j := clos span

Lp′ (Rd)

ϕ(p′)
j,k := |det(M)|j/p′ ϕ(Mj · − k) : k ∈ Zd


, j ∈ Z,

see Garrigós, Tabacco [83, Section 3.1]. Moreover, (V
(p)
j )j∈Z and (V (p′)

j )j∈Z are
biorthogonal, that is

⟨ϕ(p)
j,k ,
ϕ(p′)
j,k′ ⟩ = δk,k′ , j ∈ Z.

Remark 2.30. Here, a multiresolution analysis (V
(q)
j )j∈Z, 1 ≤ q ≤ ∞, is a sequence

of closed linear subspaces of Lq(Rd) with the following properties: The spaces are

nested, i.e., V
(q)
j ⊂ V

(q)
j+1 for all j ∈ Z. We have


j∈Z V

(q)
j is dense in Lq(Rd) and

j∈Z V
(q)
j = {0}. There exists a function ϕ ∈ V

(q)
0 such that {ϕ( · −k)}k∈Zd is a q-stable

basis of V
(q)
0 , i.e., span{ϕ( · − k) : k ∈ Zd} = V

(q)
0 and

k∈Zd

ak ϕ( · − k)


Lq(Rd)

≍

k∈Zd

|ak|q
1/q

.

Finally, we have f( · ) ∈ V
(q)
j if and only if f(M · ) ∈ V

(q)
j+1 for all j ∈ Z. Note, in the case

q = ∞ the space L∞(Rd) is replaced by C0(Rd), the space of continuous functions with
compact support, and ℓ∞(Zd) is replaced by c0(Zd), the space of sequences converging
to zero.

Wavelets come into play as basis functions for the complement spaces W
(p)
j andW (p′)

j to the multiresolution analyses, which are defined by

W
(p)
j :=


f ∈ V

(p)
j+1 : ⟨f, f⟩ = 0 for all f ∈ V (p′)

j


, j ∈ Z,

and W (p′)
j is defined analogously. In this way, one obtains a decomposition of the form

Lp(Rd) = V
(p)
0 ⊕


∞
j=0

W
(p)
j


, 1 ≤ p <∞.
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Now, the remarkable result is, that there exist families of compactly supported functions
{ψ1, . . . , ψm−1} and { ψ1, . . . , ψm−1}, m = |det(M)|, such that

ψ
(p)
e,j,k


e,j,k

:=

ψe(M

j · − k) : e = 1, ...,m− 1, j ∈ Z, k ∈ Zd

, (2.25)

and analogously for { ψ(p′)
e,j,k}e,j,k, are uniformly p, p′-stable bases of W

(p)
j and W (p′)

j ,
respectively, see Garrigós, Tabacco [83, Section 3.2] for details. Accordingly, a pair
of dual anisotropic wavelet bases for Lp(Rd), 1 ≤ p <∞, are given by

ϕ
(p)
0,k : k ∈ Zd


∪

ψ

(p)
e,j,k : e = 1, . . . ,m− 1, j ∈ N0, k ∈ Zd


and ϕ(p′)

0,k : k ∈ Zd

∪
ψ(p′)

e,j,k : e = 1, . . . ,m− 1, j ∈ N0, k ∈ Zd

,

which are biorthogonal, that is ⟨ψ(p)
e,j,k,

ψ(p′)
e,j′,k′⟩ = δk,k′δj,j′ . In particular, we obtain the

anisotropic multiscale wavelet decomposition

f =

k∈Zd

⟨f, ϕ(p′)
0,k ⟩ϕ

(p)
0,k +

∞
j=0

m−1
e=1


k∈Zd

⟨f, ψ(p′)
e,j,k⟩ψ

(p)
e,j,k, f ∈ Lp(Rd).

The following theorem states the wavelet characterization of the anisotropic Besov
space Bs,a

q (Lp(Rd)). Part 1 is cited from Garrigós, Tabacco [83, Theorem 5.3] and
considers the case 1 ≤ p, q < ∞, while Part 2 considers the quasi-Banach case and
is taken from Garrigós et al. [82, Theorem 6.2]. Since the biorthogonal setting
described above is restricted to Lp-spaces with p ≥ 1, only anisotropic quasi-Banach
spaces which are embedded in some Lp-space with p ≥ 1 can be characterized in this
way. In Garrigós et al. [82], it has been shown that Bs,a

τ (Lτ (Rd)) ↩→ Lp(Rd) for
every finite p such that τ ≤ p ≤ p(s, τ), where

p(s, τ) :=


(1/τ − s/d)−1 : s < d/τ,

∞ : otherwise.
(2.26)

This explains the restrictions in Part 2.

Theorem 2.31. Part 1 [83, Theorem 5.3]. Suppose (M1)–(M6) are satisfied and let
1 ≤ p, q <∞. If 0 < s < min{s0, L/a1, . . . , L/ad}, then

Bs,a
q (Lp(Rd))

=

f ∈ Lp(Rd) :

k∈Zd

|⟨f, ϕ(p′)
0,k ⟩|

p +
∞
j=0

m
sq
d
j


m−1
e=1


k∈Zd

|⟨f, ψ(p′)
e,j,k⟩|

p

q/p

<∞

 .

Moreover, the following norm equivalence holds:

∥ · ∥Bs,a
q (Lp(Rd)) ≍


k∈Zd

|⟨ · , ϕ(p′)
0,k ⟩|

p

1/p

+

 ∞
j=0

m
sq
d
j


m−1
e=1


k∈Zd

|⟨ · , ψ(p′)
e,j,k⟩|

p

q/p
1/q

.

(2.27)
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Part 2 [82]. Suppose (M1)–(M6) are satisfied. Let 0 < τ < 1, d(1/τ − 1)+ < s <
min{s0, L/a1, . . . , L/ad}, and p(s, τ) be defined by (2.26). Then, for any 1 < p < ∞
with p ≤ p(s, τ) we have Bs,a

τ (Lτ (Rd)) ↩→ Lp(Rd) and

Bs,a
τ (Lτ (Rd))

=


f ∈ Lp(Rd) :


k∈Zd

|⟨f, ϕ(p′)
0,k ⟩|

τ +
∞
j=0

m
sτ
d
j

m−1
e=1


k∈Zd

|⟨f, ψ(p′)
e,j,k⟩|

τ <∞


.

Moreover, the following quasi-norm equivalence holds:

∥ · ∥Bs,a
τ (Lτ (Rd)) ≍


k∈Zd

|⟨ · , ϕ(p′)
0,k ⟩|

p

1/τ

+


∞
j=0

m
sτ
d
j

m−1
e=1


k∈Zd

|⟨ · , ψ(p′)
e,j,k⟩|

τ

1/τ

. (2.28)

Remark 2.32. In Triebel [161] a wavelet characterization for the anisotropic Besov
spaces in the general case 0 < p, q <∞, s ∈ R is discussed, where orthogonal wavelet
bases, e.g., Daubechies type wavelets, cf. Daubechies [62], are employed. The (more
general) biorthogonal case is not considered.

In Chapter 3 it is our goal to construct random functions on bounded (Lipschitz)
domains O ⊂ Rd with the aid of wavelet characterizations of Besov spaces. The analysis
in Section 3.1 for the isotropic case is particularly designed for bounded domains
and the cardinality of ∇j, cf. (W3), is going to play a central role. In Section 3.2 we
aim to construct random functions on bounded domains taking values in anisotropic
Besov spaces with the aid of the wavelet characterization as outlined in Theorem 2.31.
However, here we are facing a nontrivial problem. As it is, Theorem 2.31 is concerned
with function spaces on the whole Euclidean d-plane, and a generalization to bounded
domains is at least not obvious, since this would require the construction of specific
boundary-adapted anisotropic wavelet bases on domains. To our best knowledge no
result in this direction has been reported so far. Still, in order to obtain an analogous
assumption to (W3) for the anisotropic case, we proceed in the following way:

Let O ⊂ Rd be a bounded Lipschitz domain, then there exists a cube □ ⊃ O such
that

ϕ
(p)
0,k ∩ O ≠ ∅ and ψ

(p)
e,j,k ∩ O ≠ ∅

implies suppϕ
(p)
0,k ⊂⊂ □ and suppψ

(p)
e,j,k ⊂⊂ □. Based on this cube □ we define the sets

∇0 := {k ∈ Zd : suppϕ
(p)
0,k ⊂⊂ □},

∇e,j := {k ∈ M−jZd : suppψe,j,k ⊂⊂ □}
(2.29)

for e = 1, . . . ,m− 1 and j ∈ N0.

(M7) We assume to have compactly-supported wavelets at hand such that ∇0 is a
finite set and the sets ∇e,j in (2.29) fulfill

#∇e,j ≍ mj = | det(M)|j.

Remark 2.33. Assumption (M7) on the cardinality of ∇e,j slightly varies from (W3)
for the isotropic setting. It is motivated by the following observation. If we start with a
tensor wavelet construction on the whole Euclidean plane, then, since M is a diagonal
matrix, the relevant grid points can be computed coordinate-wise and are of the order
λj/ai , i = 1, . . . , d. By observing

d
i=1 λ

j/ai = | det(M)|j (M7) is satisfied in this case.
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2.3.5 The tensor wavelet characterization

In the spirit of the previous sections, we employ a wavelet characterization of the
space under consideration. Here, note that, the domain O ⊂ Rd, d > 1 is assumed to
be an n-fold product of component domains Om ⊂ Rdm , m = 1, . . . , n, n ≥ 2, withn

m=1 dm = d.

(T1) We assume that all domains Om, m = 1, . . . , n, allow the construction of a

wavelet basis (ψ
(m)
λm

)λm∈Λm , which is sufficiently smooth and has sufficiently many
vanishing moments, such that for all ℓ′ ∈ [tm, tm + ℓ] the scaled wavelets

{2−|λm|ℓ′ψ
(m)
λm

: λm ∈ Λm}

are Riesz bases for Hℓ′(Om).

Similar to the previous sections, the wavelet indices λm ∈ Λm, m = 1, . . . , n, are of
the form λm = (jm, km), where |λm| = jm ∈ N0 is the scale of the wavelet and km ∈ ∇jm

encodes the shift and type of the wavelet. The set ∇jm is finite, if the wavelets are
compactly supported. Note that, in case of the domain being an n-fold with n < d the
respective km are then vectors of dimension dm > 1. For the remaining part, we impose
the following assumption which is the natural generalization of (W3):

(T2) We assume to have suitable compactly supported wavelets at hand for which

#∇jm ≍ 2jmdm .

A tensor wavelet basis on the domain O is defined as the collection of all functions
(ψλ)λ∈Λ of the form

ψλ :=
n

m=1

ψ
(m)
λm

with λ := (λ1, . . . , λn), |λ| := (|λ1|, . . . , |λn|), and Λ :=
n

m=1 Λm.

Remark 2.34. In comparison to standard isotropic wavelets, tensor wavelets are in
a certain sense the wavelet version of the sparse grid approach, see, e.g., Bungartz,
Griebel [16] for a detailed discussion on sparse grids. The application of (adaptive)
tensor product approximation schemes gives rise to convergence rates that only depend
on the component domains. We refer to, e.g., Schwab, Stevenson [146] and the
references therein for further information. In particular, if all the component domains
are one-dimensional one obtains dimensional independent convergence rates.

The wavelet characterization for Ht,ℓ(O) is now given by the following statement,
which has been shown in Griebel, Knapek [85], Griebel, Oswald [86].

Theorem 2.35 [85, 86]. Suppose (T1) is satisfied. Then
2−t|λ| − ℓ∥|λ|∥∞ ψλ : λ ∈ Λ


is a Riesz basis for Ht,ℓ(O). In particular, for every f =


λ∈Λ aλ(f)ψλ the following

two statements are equivalent:

i) f ∈ Ht,ℓ(O),
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ii)

λ∈Λ

|aλ(f)|2 22t|λ|+2ℓ∥|λ|∥∞ <∞.

Remark 2.36. The proof of Theorem 2.35 requires, for every coordinate direction,
a set of sufficiently smooth wavelets {ψ(m)

λm
: λm ∈ Λm} such that for all ℓ′ within a

region including the range [tm, tm + ℓ], the scaled wavelets {2−|λm|ℓ′ψ
(m)
λm

: λm ∈ Λm}
are Riesz bases for the spaces Hℓ′(Om). Suitable (compactly supported) wavelet bases
satisfying (T1) and (T2) can, e.g., be found in [17, 33, 58–60, 136], cf. Remark 2.24.

2.4 Adaptive wavelet methods for operator equa-

tions

We briefly review the class of adaptive wavelet methods that we have in mind for the
spatial numerical discretization in our approach of Rothe’s method.

2.4.1 Operator equations in wavelet coordinates

We begin with an explanation of how operator equations are discretized with respect
to a given wavelet basis at hand of an elliptic operator equation

AU = X, (2.30)

where A is a boundedly invertible operator from some Hilbert space V into its normed
dual V ∗, i.e.,

∥Av∥V ∗ ≍ ∥v∥V , v ∈ V.

Consequently, we are in a Gel’fand triple setting (V, U, V ∗), cf. Appendix A.1.3, and
consider the case where

a(v, w) = ⟨−Av,w⟩V ∗×V

is a symmetric, bounded, and elliptic bilinear form on V in the sense of (A.6). In this
setting the bilinear form induces a norm on V , the energy norm, by

∥ · ∥a := a(·, ·)1/2. (2.31)

It is equivalent to the Sobolev norm, i.e.,

cenergy∥ · ∥Hν(O) ≤ ∥ · ∥a ≤ Cenergy∥ · ∥Hν(O). (2.32)

In case of boundary conditions, i.e., V = H1
0 (O), and whenever we have a wavelet

Riesz basis
Ψ = {ψλ : λ ∈ ∇}

of L2(O) fulfilling certain assumptions, e.g., (W2)–(W6) as given in Section 2.3.3, the
equation (2.30) has an equivalent reformulation

AU = X, (2.33)

in wavelet coordinates. That is, we define A = (Aλ,µ)λ,µ and X = (Xλ)λ for all µ, λ ∈ ∇
by

Aλ,µ := 2−(|µ|+|λ|)a(ψµ, ψλ), ψµ, ψλ ∈ Ψ,



38 Chapter 2. Preliminaries

and
Xλ := 2−|λ|⟨X,ψλ⟩H−1(O)×H1

0 (O), ψλ ∈ Ψ.

Here, equivalent reformulation means the following: For each solution U ∈ ℓ2(∇) to
(2.33), the associated wavelet decomposition

U =

λ∈∇

2−|λ| Uλψλ ∈ V,

solves (2.30). Conversely, the unique decomposition coefficients

Uλ = 2|λ|⟨ ψλ, U⟩H−1(O)×H1
0 (O),

of a solution U ∈ V to (2.30) satisfy (2.33).

Remark 2.37. In Chapter 4, we analyze elliptic operator equations with random right
hand sides defined on a probability space (Ω,F ,P). In this case, we consider

AU(ω) = X(ω), ω ∈ Ω,

and have in mind the ω-wise application of well-established adaptive numerical wavelet
schemes, as, e.g., published in Cohen et al. [29, 30], Dahlke et al. [51].

2.4.2 Adaptive wavelet frame methods

On, e.g., polygonal domains in R2, wavelet frames are much easier to construct than
bases, see Dahlke et al. [50], Stevenson [150]. The definition of a frame, which is
a possibly redundant system allowing for stable analysis and synthesis operations, is
given in Appendix A.1.1. Fortunately, an equivalence between (2.30) and its discrete
formulation (2.33) still holds if the underlying wavelet Riesz basis is replaced by a
wavelet frame. In the case of frames, each solution U ∈ ℓ2(∇) to (2.33) still expands
into a solution U ∈ V to (2.30). However, uniqueness of the decomposition coefficients
U of U can only be expected to hold within the range of A, being a proper subset of
ℓ2(∇). Note that the chosen wavelet frame is still required to fulfill assumptions as,
e.g., (W2)–(W6) of Section 2.3.3, i.e., removing only (W1) completely, see Dahlke
et al. [49] for details.

Therefore, we can employ overlapping domain decomposition methods and a class
of adaptive wavelet methods that also work with frames. Let M ∈ N be a finite number
and Ψ =

M
i=1Ψi be a finite union of wavelet bases Ψi for L2(Oi), subordinate to an

overlapping partition of the domain O into patches Oi, i = 1, . . . ,M . The properties
(W2)–(W6), given in Section 2.3.3, are assumed to hold for each basis Ψi in a patchwise
sense. In that case, the main diagonal blocks Ai,i of A are invertible, so that the
following abstract Gauss-Seidel iteration

U(n+1) = U(n) +R(X−AU(n)), n = 0, 1, . . . (2.34)

with the preconditioner
R = (Aj,j)

−1
j≤i

makes sense. The convergence properties of the iteration (2.34) and, in particular, of
fully adaptive variants involving inexact operator evaluations and inexact applications
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of the preconditioner R have been analyzed in Stevenson, Werner [154] and
Werner [174]. In order to turn the abstract iteration (2.34) into an implementable
scheme, all infinite-dimensional quantities have to be replaced by computable ones. Such
realizations involve the inexact evaluation of the right-hand side X and of the various
biinfinite matrix-vector products Ai,jv, both enabled by the compression properties of
the wavelet system Ψ. We refer to Cohen [28], Cohen et al. [29], Stevenson [150]
for details and properties of the corresponding numerical subroutines.

A full convergence and cost analysis of the resulting wavelet frame domain decom-
position algorithm is available in case that a particular set of quadrature rules is used
in the overlapping regions of the domain decomposition, see Stevenson, Werner
[153], and under the assumption that the local subproblems Ai,iv = g are solved with
a suitable adaptive wavelet scheme, e.g., the wavelet-Galerkin methods from Cohen
et al. [29] and Gantumur et al. [81]. We postpone their discussion to Section 5.3.3
below. By the properties of the aforementioned numerical subroutines and the findings
of Stevenson, Werner [153, 154], an implementable numerical routine

SOLVE[ε] → Uε

with the following key properties exists:

� For each ε > 0, SOLVE outputs a finitely supported sequenceUε with guaranteed
accuracy

∥U−Uε∥ℓ2(∇) ≤ ε (convergence).

� Whenever the best N -term wavelet approximation of U with respect to Ψ con-
verges at a rate s > 0 in H1(O), i.e.,

U ∈ As
∞(H1(O), (SN)),

then the outputs Uε realize the same work/accuracy ratio, as ε→ 0, i.e.,

# suppUε ⪯ ε−1/s∥U∥1/sAs
∞(H1(O),(SN )) (convergence rates).

� The associated computational cost asymptotically scales in the same way,

#flopsε ⪯ ε−1/s∥U∥1/sAs
∞(H1(O),(SN )) (linear cost).

Generalizations of these properties towards the average case setting are straightforward.
The results given in Section 4.1 provide upper bounds for ∥U∥As

∞(H1(O),(SN )) for certain
values of s in terms of suitable Besov norms of the right-hand side X, and the latter
norms may be chosen to have arbitrarily high moments, cf. Section 3.1.

Remark 2.38. In Section 4.2 we apply domain decomposition methods based on
wavelet frames to solve the Poisson equation with random right-hand side and zero-
Dirichlet boundary conditions on the L-shaped domain.





Chapter 3

A class of random functions

We analyze the regularity of a class of random functions in certain smoothness spaces
and state linear and nonlinear approximation results. The random functions are defined
in terms of wavelet decompositions according to a stochastic model that provides an
explicit regularity control of their realizations and, in particular, induces sparsity of the
wavelet coefficients. Therefore, we expect this stochastic model to be an interesting tool
to generate test functions in numerical experiments. See Section 1.3 for the complete
introduction.

In Section 3.1 we analyze the Besov regularity of such random functions and state
error bounds for linear and nonlinear approximations. In Sections 3.2 and 3.3 we extend
the regularity results to anisotropic Besov spaces and tensor wavelet decompositions.

The results of this chapter have been partly worked out by the author and collabo-
rators in [24] and [48].

3.1 A class of random functions in Besov spaces

We analyze the regularity of a class of random functions in Bs
q(Lp(O)) for the range of

parameters 0 < p, q <∞ and s > d(1/p− 1)+, as well as 1 < p, q <∞ and s < 0, see
Theorem 3.10, on bounded domains O ⊂ Rd, d ≥ 1, which allow biorthogonal wavelet
bases Ψ, Ψ that can characterize the Besov space. See Section 2.2.1 for the definition
of Bs

q(Lp(O)) and Section 2.3.3 for the assumptions (W1)–(W6) on the wavelets.
Furthermore, we study different approximations with respect to appropriate norms and
state error bounds, where we always consider the average error (E[∥X − X∥2])1/2 for

any approximation X of a random function X. In particular, the construction of the
average nonlinear approximation of these random functions can be done at an average
computational cost of linear order, which is crucial in computational practice. Moreover,
we complement the discussion of the stochastic model with illustrating realizations and
moments of Besov norms of X.

3.1.1 The stochastic model

Let
α, γ ∈ R, β ∈ [0, 1],

ρj := min

1, C12

−βjd , and σ2
j :=


C2j

γd2−αjd : j > j0,

1 : j = 0,

(3.1)

41
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where j0 ∈ N0 and C1, C2 > 0. The stochastic model is based on a family of independent
random variables (Yj,k, Zj,k) for j ≥ j0 and k ∈ ∇j on a probability space (Ω,F ,P):
The Yj,k are Bernoulli distributed with parameter ρj and the Zj,k are standard normally
distributed, i.e.,

Zj,k ∼ N (0, 1), and P(Yj,k = 1) = 1− P(Yj,k = 0) = ρj. (3.2)

Given biorthogonal wavelet bases Ψ, Ψ which satisfy the assumptions (W1)–(W6), we
define the random functions

X :=
∞
j=j0


k∈∇j

σj Yj,k Zj,k ψ
∗
j,k, (3.3)

where {ψ∗
j,k}j≥j0,k∈∇j

is either the basis Ψ = {ψj,k}j,k or Ψ = { ψj,k}j,k, respectively. Let
us emphasize that only within a range −s2 < s < s1, which depends on the employed
wavelet bases, Besov spaces may be characterized by the decay properties of the wavelet
coefficients. However, since it is possible to construct wavelet bases for any desired finite
range, we are not going to explicitly mention this range further on. The parameters j0,
C1, and C2 allow us to scale the stochastic model to the employed wavelet basis, which
come in handy for the numerical experiments in Section 3.1.4.

Remark 3.1. Using (W3), i.e., #∇j ≍ 2jd, we have

E

 ∞
j=j0


k∈∇j

σ2
jY

2
j,kZ

2
j,k

 =
∞
j=j0

#∇jσ
2
jρj ≍

∞
j=j0

jγd2−(α+β−1)jd <∞,

if α + β > 1 or α + β ≥ 1 and γd < −1, and together with (W1), i.e., the Riesz
basis property, we can conclude that (3.3) converges P-almost surely in L2(O). In this
case we have E[⟨ξ,X⟩L2(O)] = 0, ξ ∈ L2(O), i.e., X is a mean zero random function.
Moreover,

E

⟨ξ,X⟩L2(O)⟨ζ,X⟩L2(O)


=

∞
j=j0

σ2
jρj


k∈∇j

⟨ξ, ψj,k⟩L2(O)⟨ζ, ψj,k⟩L2(O), ξ, ζ ∈ L2(O).

Using the dual basis we obtain

Qξ =
∞
j=j0

σ2
jρj


k∈∇j

⟨ξ, ψj,k⟩L2(O)ψj,k, ξ ∈ L2(O),

for the covariance operator Q associated with X.

Remark 3.2. Let s ∈ R and suppose X ∈ Hs(O) P-a.s. Since Hs(O) is a Hilbert
space and {2−jsψj,k : j ≥ j0, k ∈ ∇j} is a Riesz basis for Hs(O), we know that there
exists an orthonormal basis {ej,k}j,k of Hs(O) with 2−jsψj,k = Φblbej,k for a bounded
linear bijection Φblb : Hs(O) → Hs(O), using Gram-Schmidt. Therefore, we have
E[⟨ξ,Φ−1

blbX⟩Hs(O)] = 0, ξ ∈ Hs(O), and since

E

⟨ξ,Φ−1

blbX⟩Hs(O)⟨ζ,Φ
−1
blbX⟩Hs(O)


=

∞
j=j0

22jsσ2
jρj


k∈∇j

⟨ξ, ej,k⟩Hs(O)⟨ζ, ej,k⟩Hs(O),
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ξ, ζ ∈ Hs(O), we obtain for the covariance operator Q associated with Φ−1
blbX

Qξ = ∞
j=j0

22jsσ2
jρj


k∈∇j

⟨ξ, ej,k⟩Hs(O)ej,k, ξ ∈ Hs(O).

Remark 3.3. Observe that in this stochastic model the parameter α determines
the exponential growth/decay of the wavelet coefficients on increasing wavelet scales,
whereas the influence of γ is polynomial. The sparsity of the decomposition (3.3)
depends monotonically on the parameter β. For β = 0, i.e., with no sparsity present,
(3.3) coincides with the Karhunen-Loève decomposition of the (in this case) Gaussian
random function X provided the wavelets form an orthonormal basis of L2(O).

Remark 3.4. Essentially, this stochastic model was introduced and analyzed in
the context of Bayesian non-parametric regression in Abramovich et al. [1] and
generalized in Bochkina [12] in the case O = [0, 1] for Besov parameters p, q ≥ 1 and
s > 0.

We continue by stating necessary properties. The proofs can be found in the
Appendix B. We set

Sj,p :=

k∈∇j

Yj,k|Zj,k|p, j ≥ j0, 0 < p <∞ (3.4)

for an independent family of random variables (Yj,k, Zj,k)j≥j0,k∈∇j
as defined by (3.2).

Note, (Sj,p)j≥j0 forms an independent sequence for every fixed 0 < p < ∞. Also,
with νp denoting the p-th absolute moment of the standard normal distribution, i.e.,
νp := 2p/2 Γ((p+ 1)/2)/π1/2, we have

E[Sj,p] = #∇jρjνp. (3.5)

Lemma 3.5. Let (Xi)i∈N be a family of independent, non-negative random variables.
Then

∞
i=1Xi <∞, P-a.s., if and only if

∞
i=1 E


Xi

1+Xi


<∞.

Proof. See Appendix B.1. □

Lemma 3.6. Let n ∈ N, p ∈ [0, 1], and Xn,p ∼ Bin(n, p). For all n there exists a
constant c = c(n) > 0 such that for all r > 0 and p

E[Xr
n,p] ≤ c (1 + (np)r).

Proof. See Appendix B.2. □

Lemma 3.7. Let β ∈ [0, 1). Then

lim
j→∞

Sj,p
#∇jρj

= νp

holds with probability one. Further, for every r > 0

sup
j≥j0

E [Srj,p]

(#∇jρj)r
<∞.
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Proof. See Appendix B.3. □

Lemma 3.8. Let β = 1 and

lim
j→∞

#∇j 2
−jd = C0 for some C0 > 0. (3.6)

Let µp denote the distribution of |Zj,k|p, and let Sp be a compound Poisson distributed
random variable with intensity measure C0µp. Then (Sj,p)j≥j0 converges in distribution
to Sp, and for every r > 0

sup
j≥j0

E [Srj,p] <∞. (3.7)

Proof. See Appendix B.4. □

Remark 3.9. Note that we only assumed (W3), i.e., #∇j ≍ 2jd, instead of (3.6) so
far. For β = 1 the upper bound (3.7) remains valid in the general case. In all known
constructions of wavelet bases on bounded domains, see, e.g., [17, 33, 58–60, 136], as
are stated in Remark 2.24, and also for wavelet frames, see, e.g., Dahlke et al.
[50], Stevenson [150], the number #∇j of wavelets per level j > 0 is a constant
multiple of 2jd. For those kinds of bases, (3.6) clearly holds.

3.1.2 Regularity theorem

The following theorem states the conditions on the parameters α, β, γ in (3.1) of the
stochastic model which guarantee that a random function X, defined by (3.3), almost
surely has a certain smoothness in Bs

q(Lp(O)).

Theorem 3.10. Let Ψ, Ψ be dual wavelet bases for which (W1)–(W6) holds. Let X
be a random function, defined by (3.3) with respect to Ψ in the case s > d(1/p− 1)+,

0 < p, q < ∞, and with respect to the dual basis Ψ in the case s < 0, 1 < p, q < ∞.
Then X is P-almost surely contained in Bs

q(Lp(O)), if and only if

s < d


α− 1

2
+
β

p


(3.8)

or

s ≤ d


α− 1

2
+
β

p


and qγd < −2. (3.9)

In both cases
E

∥X∥qBs

q(Lp(O))


<∞. (3.10)

Proof. Using the wavelet characterization (W6) and Sj,p, which is defined in (3.4), we
have X ∈ Bs

q(Lp(O)) P-almost surely if and only if

∥X∥qBs
q(Lp(O)) ≍

∞
j=j0

2j(s+d(1/2−1/p))q σqj S
q/p
j,p <∞, P-a.s.

Thus, using the abbreviation aj := 2j(s+d(1/2−1/p))q σqj , we have to show when

∞
j=j0

aj S
q/p
j,p <∞, P-a.s. (3.11)
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It is enough to show that (3.11) is equivalent to

∞
j=j0

aj (#∇jρj)
q/p <∞, (3.12)

because inserting (W3), i.e., #∇j ≍ 2jd, and (3.1) into (3.12) yields

∞
j=j0

aj (#∇jρj)
q/p ≍

∞
j=j0

jqγd/2 2qjd(s/d−(α−1)/2−β/p),

and we see that (3.12) holds if and only if the conditions (3.8) or (3.9) are satisfied.
We continue to show the equivalence of (3.11) and (3.12). In the case 0 ≤ β < 1 it

follows from Lemma 3.7. In the case β = 1 observe that (3.12) with (W3) reduces to

∞
j=j0

aj <∞, (3.13)

while (3.11) is, due to Lemma 3.5, equivalent to

∞
j=j0

E


aj S

q/p
j,p

1 + aj S
q/p
j,p


<∞. (3.14)

The equivalence of (3.13) and (3.14) is shown in two parts. To show that (3.13) implies
(3.14), we use Lemma 3.8 to conclude

∞
j=j0

E


aj S

q/p
j,p

1 + aj S
q/p
j,p


≤

∞
j=j0

aj E[S
q/p
j,p ] <∞, if

∞
j=j0

aj <∞.

The second part, i.e., (3.14) implies (3.13), is shown by contradiction. We assume (3.14)
and

∞
j=j0

aj = ∞ to hold. Now, by (3.6) we obtain that cp := infj≥0 P(Sj,p ≥ 1) > 0,
and, using the specific form of aj, we can conclude

∞
j=j0

E


aj S

q/p
j,p

1 + aj S
q/p
j,p


≥ cp

∞
j=j0

aj
1 + aj

= ∞,

which contradicts the assumption (3.14). All together, the equivalence of (3.11) and
(3.12) is proven.

It remains to show (3.10). We use the wavelet characterization (W6), Lemma 3.7,
Lemma 3.8, and (3.12) to derive

E

∥X∥qBs

q(Lp(O))


⪯

∞
j=j0

ajE[S
q/p
j,p ] ⪯

∞
j=j0

aj(#∇jρj)
q/p <∞. □

Remark 3.11. In the case X ∈ Hs(O), s ∈ R, one can compute the moment in (3.10)
explicitly, i.e.,

E

∥X∥2Hs(O)


≍ E


∞
j=j0

22js σ2
j Sj,2


≍

∞
j=j0

22js σ2
j E [Sj,2]
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≍
∞
j=j0

22js σ2
j #∇j 2

−jdβ ≍
∞
j=j0

2−jd(α+β−1−2s/d) jγd,

which is finite if and only if α + β > 1 + 2s/d or α + β ≥ 1 + 2s/d and γd < −1.

As a special case of Theorem 3.10 we emphasize the regularity of X in Bs
τ (Lτ (O)),

where
1

τ
=
s− ν

d
+

1

p
, 1 < p <∞, and ν < s, (3.15)

since this scale is related with nonlinear wavelet approximation in Bν
p (Lp(O)), cf. (2.21)

in Section 2.3.2. Furthermore, in the next section and in Section 4.1 average errors are
defined by second moments, and therefore we also consider the second moments of the
norm in Bs

τ (Lτ (O)).

Corollary 3.12. Let β ∈ [0, 1), 1 < p < ∞, and −d/p < ν < d((α − 1)/2 + β/p).
Then

X ∈ Bs
τ (Lτ (O)) for all s < s∗

in the scale (3.15) holds with probability one, where

s∗ :=
d

1− β


α− 1

2
+
β

p


− βν

1− β
. (3.16)

Moreover, we have
E∥X∥2Bs

τ (Lτ (O)) <∞. (3.17)

Proof. Using Theorem 3.10 we have to show that

s∗ = d


α− 1

2
+
β

τ ∗


. (3.18)

Inserting (3.15) with s = s∗ and τ = τ ∗ into (3.16) yields (3.18). To show (3.17), observe
that actually X ∈ Bs+δ

2 (Lτ (O)) holds with probability one if δ > 0 is sufficiently small,
and X ∈ Bs+δ

2 (Lτ (O)) is continuously embedded in X ∈ Bs
τ (Lτ (O)), cf. Theorem 2.6

(i), (ii). The moment bound (3.10) therefore implies

E

∥X∥2Bs

τ (Lτ (O))


⪯ E


∥X∥2

Bs+δ
2 (Lτ (O))


<∞,

which completes the proof. □

Remark 3.13. Corollary 3.12 implies that by choosing β closer to one, an arbitrary
high regularity in the nonlinear approximation scale (3.15) can be achieved, provided
that the underlying wavelet basis is sufficiently smooth. This is obviously not possible
in the L2-Sobolev scale, see Theorem 3.10 with p = q = 2.

Remark 3.14. The lower bound on ν in Corollary 3.12 is caused by the fact that we
must ensure the fundamental condition s > d(1/τ − 1), which guarantees the existence
of a wavelet characterization, cf. Remark 2.8. See Figure 3.1 for an illustration.

3.1.3 Linear and nonlinear approximation results

We state error bounds to linear uniform and nonlinear approximations of X, first with
respect to the L2-norm and, subsequently, we extend our studies and state error bound
with respect to Besov norms.
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1
p

L1

Lp

s

s∗

ν

−d
p

Bs
τ (Lτ ),

1
τ
= s−ν

d
+ 1

p

Figure 3.1: Setting for Corollary 3.12 illustrated in a DeVore-Triebel diagram

Error bounds with respect to the L2-norm

Here, we have to consider

α + β > 1, or α + β ≥ 1 and γd < −1, α, γ ∈ R, β ∈ [0, 1], (3.19)

in order to ensure X ∈ L2(O) P-a.s., cf. Remark 3.1.
For linear approximation one considers the best approximation from linear subspaces

of dimension at most N , which is given by the orthogonal projection on these subspaces,
cf. Section 2.3.2. The corresponding linear approximation error of X with respect to
L2(O) is given by

elinN (X) := inf

E [∥X − X∥2L2(O)]

1/2
with the infimum taken over all measurable mappings X : Ω → L2(O) such that

dim(span( X(Ω))) ≤ N.

Theorem 3.15. Let α, β, γ in (3.19) be fixed and let X be defined by (3.3). The linear
approximation error with respect to L2(O) satisfies

elinN (X) ≍ (log2N)
γd
2 N−α+β−1

2 .

Proof. To prove the upper bound, we truncate the decomposition (3.3) of X at some
level j1 ≥ j0 and we obtain a uniform linear approximation

Xj1 :=

j1
j=j0


k∈∇j

σjYj,kZj,k ψj,k, (3.20)

which satisfies

E

∥X − Xj1∥2L2(O)


≍

∞
j=j1+1

#∇jσ
2
jρj ≍

∞
j=j1+1

jγd2−(α+β−1)jd ≍ jγd1 2−(α+β−1)j1d.

(3.21)
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Since dim(span( Xj1(Ω))) ≍
j1

j=j0
#∇j ≍ 2j1d, we get the upper bound as claimed.

To prove the lower bound we use the fact that ψj,k = Φblbej,k for an orthonormal
basis (ej,k)j,k in L2(O) and a bounded linear bijection Φblb : L2(O) → L2(O), cf.
Remark 3.2. This implies

elinN (X) ≍ elinN (Φ−1
blbX).

Furthermore, elinN (Φ−1
blbX) depends on Φ−1

blbX only via its covariance operator Q which,
as we also know from Remark 3.2, is given by

Qξ = ∞
j=j0

σ2
jρj


k∈∇j

⟨ξ, ej,k⟩L2(O) ej,k. (3.22)

Consequently, the functions ej,k form an orthonormal basis of eigenfunctions of Q
with associated eigenvalues σ2

jρj. Due to a theorem by Micchelli and Wahba, see, e.g.,
Ritter [139, Proposition III.24], we can conclude

elinN (Φ−1
blbX) =


∞

j=j1+1

#∇jσ
2
jρj

1/2

with N =

j1
j=j0

#∇j. (3.23)

Inserting (W3), i.e., #∇j ≍ 2jd, and (3.1) into (3.23) implies the asserted lower
bound. □

The best N -term wavelet approximation imposes a restriction only on

η(g) := #


λ : λ ∈ ∇, g =


λ∈∇

cλ ψλ, cλ ̸= 0


, (3.24)

the number of non-zero wavelet coefficients of g. Therefore, the corresponding error of
best N-term wavelet approximation for X with respect to L2(O) is given by

ebestN (X) := inf

E [∥X − X∥2L2(O)]

1/2
with the infimum taken over all measurable mappings X : Ω → L2(O) such that

η( X(ω)) ≤ N P-a.s.

For deterministic functions x on O the error of best N -term wavelet approximation
with respect to the L2-norm is defined by

edetN (x) := inf

∥x− x∥L2(O) : x ∈ L2(O), η(x) ≤ N


, (3.25)

cf. Section 2.3.2. Clearly, we have

ebestN (X) =

E [edetN (X)2]

1/2
.

Theorem 3.16. Let α, β, γ in (3.19) be fixed and let X be defined by (3.3). For every
ε > 0, the error of best N-term wavelet approximation with respect to L2(O) satisfies

ebestN (X) ⪯


N−1/ε : if β = 1,

N−α+β−1
2(1−β)

+ε : otherwise.
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Proof. The case β = 1 is a direct consequence of the definition of X. For β < 1, let
s and τ satisfy (3.15) with ν = 0 and p = 2, i.e., 1/τ = s/d + 1/2. By Remark 2.26
in Section 2.3.3 we have that x ∈ Bs

τ (Lτ (O)) implies edetN (x) ⪯ ∥x∥Bs
τ (Lτ (O))N

−s/d and
therefore it remains to apply Corollary 3.12. □

For random functions it is also reasonable to impose a constraint on the average
number of non-zero wavelet coefficients only, and to study the error of best average
N-term wavelet approximation

eavgN (X) := inf

E [∥X − X∥2L2(O)]

1/2
with the infimum taken over all measurable mappings X : Ω → L2(O) such that

E [η( X)] ≤ N.

Theorem 3.17. Let α, β, γ in (3.19) be fixed and let X be defined by (3.3). The error
of best average N-term wavelet approximation with respect to L2(O) satisfies

eavgN (X) ⪯


N

γd
2 2−

αdN
2 : if β = 1,

(log2N)
γd
2 N−α+β−1

2(1−β) : otherwise.

Proof. Let Nj1 := E[η( Xj1)] for Xj1 as in (3.20). Clearly

Nj1 =

j1
j=j0

#∇jρj ≍
j1
j=j0

2(1−β)jd ≍


j1 : if β = 1

2(1−β)j1d : otherwise.

In particular, 2j1d ≍ N
1/(1−β)
j1

if β ∈ [0, 1). Now, observe the error bound (3.21). □

The asymptotic behavior of the linear approximation error elinN (X) is determined

by the decay of the eigenvalues σ2
jρj of the covariance operator Q, see (3.22), i.e., it is

essentially determined by the sum α+ β. According to Theorem 3.10, the sum α+ β
also determines the regularity of X in the scale of Sobolev spaces Hs(O).

For β ∈ (0, 1] nonlinear approximation is superior to linear approximation. More
precisely, the following holds true. By definition, eavgN (X) ≤ ebestN (X), and for β > 0
the convergence of ebestN (X) to zero is faster than that of elinN (X). For β ∈ (0, 1) the
upper bounds for eavgN (X) and ebestN (X) slightly differ, and any dependence of ebestN (X)
on the parameter γ is swallowed by the term N ε in the upper bound. For linear and
best average N -term approximation we have

eavg
N1−β(X) ⪯ elinN (X) if β ∈ (0, 1) and eavgc log2N

(X) ⪯ elinN (X) if β = 1

with a suitably chosen constant c > 0.

Remark 3.18. We stress that for β ∈ (0, 1] the simulation of the approximationXj1 , which achieves the upper bound in Theorem 3.17, is possible at an average
computational cost of order Nj1 . Let us briefly sketch the method of simulation. Set
nj := #∇j. For each level j we first simulate a binomial distribution with parameters
nj and ρj , which is possible at an average cost of order at most njρj . Conditional on a
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realization L(ω) of this step, the locations of the non-zero coefficients on level j are
uniformly distributed on the set of all subsets of {0, . . . , nj} of cardinality L(ω). Thus,
in the second step, we employ acceptance-rejection to collect the elements of such a
random subset sequentially. If L(ω) ≤ nj/2, then all acceptance probabilities are at
least 1/2, and otherwise we switch to complements to obtain the same bound for the
acceptance probability. In this way, the average cost of the second step is of order njρj ,
too. In the last step we simulate the values of the non-zero coefficients. In total, the
average computational cost for each level j is of order njρj.

Remark 3.19. For Theorems 3.15 and 3.17 we only need the Riesz basis property
(W1) and the property (W3), i.e., #∇j ≍ 2jd, of the basis Ψ, and (W3) enters only via
the asymptotic behavior of the parameters ρj and σj. After a lexicographic reordering
of the indices (j, k) the two assumptions essentially amount to

X =
∞
n=1

σnYnZnψn

with any Riesz basis {ψn}n∈N for L2(O), and σn ≍ (log2 n)
γd/2n−α/2 as well as indepen-

dent random variables Yn and Zn, where Zn is N (0, 1)-distributed and Yn is Bernoulli
distributed with parameter ρn ≍ n−β. Therefore, Theorems 3.15 and 3.17 remain valid
beyond the wavelet setting. For instance, let ρn = 1, which corresponds to β = 0.
Classical examples for Gaussian random functions on O = [0, 1]d are the Brownian
sheet, which corresponds to α = 2 and γ = 2(d− 1)/d, and Lévy’s Brownian motion,
which corresponds to α = (d+ 1)/d and γ = 0. Theorem 3.15 is due to Papageor-
giou, Wasilkowski [132], Woźniakowski [175] for the Brownian sheet and due
to Wasilkowski [173] for Lévy’s Brownian motion. See Ritter [139, Chapter VI]
for further results and references on approximation of Gaussian random functions.
Therefore, for β > 0 our stochastic model provides sparse variants of general Gaussian
random function.

Error bounds with respect to Besov norms

We extend above findings and state error bounds for linear and nonlinear approximation
schemes for the considered random functions with respect to the norms of the Besov
spaces Bν

p (Lp(O)) with ν ∈ R and 1 < p <∞.
We define the linear approximation error of X with respect to Bν

p (Lp(O)) by

elinN,p,ν(X) := inf

E[∥X − X∥pBν

p (Lp(O))]
1/p

with the infimum taken over all measurable mappings X such that

dim(span( X(O))) ≤ N.

Theorem 3.20. Let β ∈ [0, 1), m > 0. For a fixed approximation space Bν
p (Lp(O)),

ν ∈ R, 1 < p <∞, let X be given by (3.3) with

ν +m < d((α− 1)/2 + β/p) =: ν +m∗, (3.26)

i.e., X ∈ Bν+m
p (Lp(O)) for all m < m∗. The linear approximation error with respect to

Bν
p (Lp(O)) satisfies

elinN,p,ν(X) ⪯ (log2N)
γd
2 N−(α−1

2
+β

p
− ν

d
). (3.27)



3.1. A class of random functions in Besov spaces 51

Proof. Again, as a specific linear approximation, we consider a uniform approximation
of the form Xj1 =

j1
j=j0


k∈∇j

σjYj,kZj,kψj,k

for some j1 ≥ j0, where in particular N ≍ 2j1d. With Sj,p as defined in (3.4) and with
(3.5), we obtain

E[∥X − Xj1∥
p
Bν

p (Lp(O))] ≍ E


∞

j=j1+1

2jp(ν+d(
1
2
− 1

p
))σpjSj,p



= E


∞

j=j1+1

2jp((ν+m
∗)+d( 1

2
− 1

p
))2−jpm

∗
σpjSj,p



=
∞

j=j1+1

2jpd((ν+m
∗)+d( 1

2
− 1

p
))2−jpm

∗
σpj#∇jρj.

Inserting (W3), i.e., #∇j ≍ 2jd, (3.1), and (3.26) we get

E[∥X − Xj1∥
p
Bν

p (Lp(O))] ≍
∞

j=j1+1

2jpd(
α−1
2

+β
p
+ 1

2
− 1

p)2−jpm
∗
j

γdp
2 2−

αjdp
2 2jd2−βjd

=
∞

j=j1+1

j
γdp
2 2−jpm

∗

≍ j
γdp
2

1 2−j1pm
∗

≍ (log2N)
γdp
2 N−p(α−1

2
+β

p
− ν

d),

which yields (3.27). □

Remark 3.21. In the setting of Theorem 3.20, with a slightly coarser error estimation,
for all m < m∗ we get

E[∥X − Xj1∥
p
Bν

p (Lp(O))] ⪯ 2−j1pm E


∞
j=j0

2jp((ν+m)+d( 1
2
− 1

p
))σpjSj,p


⪯ N−pm/d E


∥X∥p

Bν+m
p (Lp(O))


.

Since we have E[∥X∥p
Bν+m

p (Lp(O))
] < ∞, m < m∗, by (3.10), we derive that the linear

approximation error satisfies

elinN,p,ν(X) ⪯ N−m/d

E[∥X∥p

Bν+m
p (Lp(O))

]
1/p

. (3.28)

From (3.28), we observe that, similar to the well-known deterministic setting, see
Section 2.3.2, the approximation order which can be achieved by uniform linear schemes
depends on the regularity of the object under consideration in the same scale of
smoothness spaces.
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The following theorem is a generalization of Theorem 3.15. It states the error bounds
for linear wavelet approximation with respect to Hν .

Theorem 3.22. Let β ∈ [0, 1) and m > 0. For a fixed approximation space Hν(O),
ν ∈ R, let X be given by (3.3) with ν + m < d(α − 1 + β)/2 =: ν + m∗, that is,
X ∈ Hν+m(O) for all m < m∗. The linear approximation error with respect to Hν(O)
satisfies

elinN,2,ν(X) ≍ (log2N)
γd
2 N−(α−1+β

2
− ν

d).

Proof. The upper bound is proven in Theorem 3.20, where p = 2. The lower bound
is analogously shown as in the proof of Theorem 3.15. Given {ej,k}j,k and Φblb as in
Remark 3.2, we know that

elinN,2,ν(X) ≍ elinN,2,ν(Φ
−1
blbX).

We also know from Remark 3.2 that the covariance operator Q of Φ−1
blbX is given by

Qξ = ∞
j=j0

22jνσ2
jρj


k∈∇j

⟨ξ, ej,k⟩Hν(O)ej,k,

which means, that the functions ej,k form an orthonormal basis of eigenfunctions ofQ with associated eigenvalues 22jνσ2
jρj. Using methods, e.g. shown in Ritter [139,

Chapter III], we get

elinN,2,ν(Φ
−1
blbX) =


∞

j=j1+1

#∇j2
2jνσ2

jρj

1/2

with N =

j1
j=j0

#∇j. (3.29)

Inserting (W3), i.e., #∇j ≍ 2jd, and (3.1) into (3.29) yields the claim. □

We define the average nonlinear approximation error of X : Ω → Bs
τ (Lτ (O)) with

respect to Bν
p (Lp(O)) in the scale (3.15), i.e.,

1

τ
=
s− ν

d
+

1

p
, 1 < p <∞, and ν < s,

cf. Corollary 3.12, by

eavgN,p,ν(X) := inf

E[∥X − X∥pBν

p (Lp(O))]
1/p

with the infimum taken over all measurable mappings X such that E[η( X)] ≤ N . Again,
η(g) denotes the number of nonzero wavelet coefficients of g, see (3.24).

Theorem 3.23. Let β ∈ [0, 1). For a fixed approximation space Bν
p (Lp(O)), ν ∈ R,

1 < p < ∞, let X be given by (3.3) with −d/p ≤ ν < d((α − 1)/2 + β/p), that is,
X ∈ Bs

τ (Lτ (O)) in the scale (3.15) for all s < s∗, where s∗ is given by (3.16). Then
the average nonlinear approximation error with respect to Bν

p (Lp(O)) satisfies

eavgN,p,ν(X) ⪯ (log2N)
γd
2 N− 1

1−β (
α−1
2

+β
p
− ν

d). (3.30)



3.1. A class of random functions in Besov spaces 53

Proof. As a specific nonlinear approximation of X we consider

Xj1,N :=

j1
j=j0


k∈∇j

σjYj,kZj,kψj,k

for some j1 ≥ j0, where only the non-zero coefficients N := E[η( Xj1,N)] are retained.
We have

N =

j1
j=j0

#∇jρj ≍ 2(1−β)j1d.

With Sj,p being defined in (3.4) and with (3.5), we use (3.15), where s = s∗ and τ = τ ∗,
to obtain

E[∥X − Xj1,N∥
p
Bν

p (Lp(O))] ≍ E


∞

j=j1+1

2jp(ν+d(
1
2
− 1

p
)) σpjSj,p



= E


∞

j=j1+1

2jp(s
∗+d( 1

2
− 1

τ∗ )) σpjSj,p



=
∞

j=j1+1

2jp(s
∗+d( 1

2
− 1

τ∗ )) σpj#∇jρj.

Inserting (W3), i.e., #∇j ≍ 2jd, (3.1), (3.18), and (3.15), where s = s∗ and τ = τ ∗, we
get

E[∥X − Xj1,N∥
p
Bν

p (Lp(O))] ≍
∞

j=j1+1

2jpd(
α−1
2

+ β
τ∗+

1
2
− 1

τ∗ ) j
γdp
2 2−

αjdp
2 2jd2−βjd

=
∞

j=j1+1

j
γdp
2 2−jp(1−β)(s

∗−ν)

≍ j
γdp
2

1 2−j1p(1−β)(s
∗−ν)

≍ (log2N)
γdp
2 N− p

1−β (
α−1
2

+β
p
− ν

d),

which yields (3.30). □

An analogous statement to Remark 3.21 also holds for the average nonlinear
approximation error.

Remark 3.24. Let ε > 0 and s := s∗−ε with s∗ being defined in (3.16). In the setting
of Theorem 3.23, with a slightly coarser error estimation, we get

E[∥X − Xj1,N∥
p
Bν

p (Lp(O))] ≍ E


∞

j=j1+1

2j(p−τ)(s+d(
1
2
− 1

τ
))σp−τj 2jτ(s+d(

1
2
− 1

τ
)) στj Sj,p



≍ E


∞

j=j1+1

2j(p−τ)(s+d(
1
2
− 1

τ
−α

2
))j

γd
2
(p−τ) 2jτ(s+d(

1
2
− 1

τ
)) στj Sj,p


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⪯ E


∞

j=j1+1

2j(p−τ)(s+d(
1
2
− 1

τ
−α

2
))+δj 2jτ(s+d(

1
2
− 1

τ
)) στj Sj,p


,

for any δ > 0. Inserting s = s∗ − ε and δ := p(s − ν)(1 − β)(ετ)/d, as well as using
(3.18), (3.15), and also (3.15) with s = s∗ and τ = τ ∗, which yields 1/τ ∗ = 1/τ + ε/d,
we get

E[∥X − Xj1,N∥
p
Bν

p (Lp(O))] ⪯ E


∞

j=j1+1

2j(p−τ)(s
∗−ε+d( 1

2
− 1

τ
−α

2
))+δj 2jτ(s+d(

1
2
− 1

τ
)) στj Sj,p



≍ E


∞

j=j1+1

2j((p−τ)d(β−1)( 1
τ
+ ε

d)+δ) 2jτ(s+d(
1
2
− 1

τ
)) στj Sj,p



≍ E


∞

j=j1+1

2j(p(s−ν)τ(β−1)( 1
τ
+ ε

d)+δ) 2jτ(s+d(
1
2
− 1

τ
)) στj Sj,p



≍ E


∞

j=j1+1

2−jp(1−β)(s−ν) 2jτ(s+d(
1
2
− 1

τ
)) στj Sj,p



≍ 2−j1p(1−β)(s−ν) E


∞

j=j+1

2jτ(s+d(
1
2
− 1

τ
)) στj Sj,p



⪯ 2−j1p(1−β)(s−ν) E


∞
j=0

2jτ(s+d(
1
2
− 1

τ
)) στj Sj,p


⪯ N−p s−ν

d E

∥X∥τBs

τ (Lτ (O))


with E[Sj,p] = #∇jρjνp = #∇jρjντ

νp
ντ

= E[Sj,τ ]
νp
ντ
. Since we have E[∥X∥τBs

τ (Lτ (O))] <∞
for s < s∗, by (3.10), we see that the average nonlinear approximation error satisfies

eavgN,p,ν(X) ⪯ N− s−ν
d


E[∥X∥τBs

τ (Lτ (O))]
1/p

. (3.31)

From (3.31) we observe that, similar to the deterministic setting, the approximation
order which can be achieved by nonlinear approximation does not depend on the
regularity in the same scale of smoothness spaces of the object under consideration,
but on the regularity in the corresponding scale (3.15) of Besov spaces.

For the case p = 2, i.e., for nonlinear wavelet approximation with respect to Hν ,
also a lower bound for the average nonlinear approximation error can be derived.

Theorem 3.25. Let β ∈ [0, 1). For a fixed approximation space Hν(O), ν ∈ R, let X
be given by (3.3) with −d/2 ≤ ν < d(α − 1 + β)/2, i.e., X ∈ Bs

τ (Lτ (O)) in the scale
(3.15) for all s < s∗, where s∗ is given by (3.16) with p = 2. Then the average nonlinear
approximation error in Hν(O) satisfies

eavgN,2,ν(X) ⪰ (log2N)
γd
2 N− 1

1−β
(α−1+β

2
− ν

d
). (3.32)

Proof. Let X be defined by (3.3). For every level j, we define the number of scaled
coefficients of X larger than a threshold δj > 0 as

M(j, δj) := #

2jνσjYj,k|Zj,k| : 2jνσjYj,k|Zj,k| > δj, k ∈ ∇j


. (3.33)
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We set Yj,β :=


k∈∇j
Yj,k and obtain Yj,β ∼ Bin(2jd, 2−βjd). Since the (Yj,k)j,k are

discrete and (Zj,l)j,l are identically distributed we can compute

E [M(j, δj)] =
2jd
l=0

E

M(j, δj)
 
k∈∇j

Yj,k = l

 P


k∈∇j

Yj,k = l


=

2jd
l=0

lP

2jνσj|Zj,l| > δj


P (Yj,β = l)

= E[Yj,β] P(2
jνσj|Zj,k| > δj)

= 2jd(1−β) 2


1− Φcdf


δj

2jνσj


,

where Φcdf denotes the cumulative distribution function of the standard normal distri-
bution. Now, we choose

δj := 2jνσj (3.34)

and we obtain E[M(j, 2jνσj)] = c1 2
jd(1−β) with c1 := 2(1−Φcdf(1)). For a given N ∈ N0

we set j1 := min{j : N ≤ 2
jd
2 } and determine a level j2, such that

E

M(j2, 2

j2νσj2)

≥ c1N

2. (3.35)

This holds for

j2 =


j1

1− β


. (3.36)

Up to this point we have shown that, for X and any given N ∈ N0, we can find a level
j2, which contains on average at least c1N

2 coefficients, that are larger than δj2 .
Let XN :=

∞
j=j0


k∈∇j

cj,kψj,k :=

λ∈∇

cλψλ

with E[#∇] = E[η( XN)] ≤ N be any approximation of

X =
∞
j=j0


k∈∇j

σjYj,kZj,kψj,k :=

λ∈∇

dλψλ.

We set |λ| := j. Then, by using the norm equivalence from (W6), we obtain

E[∥X − XN∥2Hν(O)] = E


λ∈∇

dλψλ −

λ∈∇

cλψλ

2
Hν(O)


= E

 
λ∈∇\∇

dλψλ +

λ∈∇

(dλ − cλ)ψλ

2
Hν(O)


≍ E

 
λ∈∇\∇

22|λ|ν |dλ|2 +

λ∈∇

22|λ|ν |dλ − cλ|2
 .
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If we omit the second sum and by (3.33) and (3.34), we get

E[∥X − XN∥2Hν(O)] ⪰ E

 
λ∈∇\∇

22|λ|ν |dλ|2


⪰ E

 
λ∈∇j2

\∇
22|λ|ν |dλ|2


≥ E

 
k∈∇j2

\∇
22j2ν |dj2,k|2


≥ E


#

k ∈ ∇j2 \ ∇ : 22j2ν |dj2,k|2 > δ2j2


· δ2j2

≥ E

M(j2, 2

j2νσj2)−#∇ · 22j2νσ2
j2

=

E[M(j2, 2

j2νσj2)]− E[#∇]

· 22j2νσ2

j2
,

so that, by inserting (3.1), (3.35), (3.36), E[#∇] ≤ N ≤ 2
j1d
2 , we can conclude

E[∥X − XN∥2Hν(O)] ⪰

2j1d − 2

j1d
2


22j2νjγd2 2−αj2d

⪰ jγd1 2j1d+
2j1ν
1−β

−αj1d
1−β

≍ (log2N)γdN− 1
1−β

(α−1+β− 2ν
d
),

which yields (3.32). □

Remark 3.26. For the proof of Theorem 3.25 it is essential to be able to compute
the expected value of M(j, δj), i.e., the average number of coefficients on level j which
are larger than the threshold δj . This random variable can be derived solely due to the
structure of X. Since the threshold δj = 2jνjγd/22−αjd/2 decays with increasing level j,
cf. (3.34), the growth of E[M(j, δj)] is in compliance with Theorem 3.10.

Remark 3.27. Observe that the upper bound in Theorem 3.23 for p = 2 coincides
with the lower bound in Theorem 3.25.

3.1.4 Realizations and moments of Besov norms of X

We illustrate the impact of the parameters α, γ, and β ∈ [0, 1) on individual realizations
of X, defined in (3.3), as well as on the sparsity and decay of its wavelet coefficients
in the case O = (0, 1). The parameter α influences decay, while β induces sparsity
patterns in the wavelet coefficients. By providing a polynomial scaling, the parameter
γ allows to emphasize or convey any singularities within finitely many coefficients.

The numerical experiments were performed by using a stable biorthogonal spline
wavelet basis as constructed in Primbs [136]. The primal wavelets consist of cardinal
splines of order m = 3, i.e., they are piecewise quadratic polynomials, and the condition
(W4) is satisfied with m = 5. The wavelet basis satisfies (W6) along the nonlinear
approximation line with s1 = 3, while s1 = 2.5 along the linear approximation line,
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see Section 2.3.2. Moreover, j0 = 2 and #∇j0 = 10, while #∇j = 2j for j > j0. In
parameters (3.1) of the stochastic model for X we set

C1 = 2βj0 , C2 = 2αj0 ,

which means that sparsity is only induced at levels j > j0 and the coefficients at level
j0 are standard normally distributed. This ensures that we keep the entire polynomial
part of X.

In any simulation, only a finite number of coefficients can be handled. Therefore,
we truncate the wavelet decomposition in a suitable way, i.e.,

Xj1 :=

j1
j=j0


k∈∇j

σjYj,kZj,k ψj,k, (3.37)

is the truncation of X at level j1, cf. (3.20).

Theorems 3.17 and 3.23 provide error bounds for the approximation of X by Xj1 in
terms of the expected number of non-zero coefficients. An efficient way of simulatingXj1 is presented in Remark 3.18. Specifically, we choose

α ∈ {2.0, 1.8, 1.5, 1.2} and β = 2− α,

which is motivated as follows. At first, α = 2 and β = 0 corresponds to the smoothness
of a Brownian motion, see Remark 3.19, and secondly, according to Theorems 3.15 and
3.17 for our choice of α and β the order of linear approximation is kept constant while
the order of best average N -term approximation increases with β. The two underlying
scales of Besov spaces Bs

τ (Lτ (O)) are the linear approximation scale, where τ = 2, and
the nonlinear approximation scale, where 1/τ = s + 1/2, cf. (3.15) with ν = 0 and
p = 2 for L2-approximation.

We set

Vj1 := max
j≤j1

max
k∈∇j

σjYj,k|Zj,k|

in order to normalize the absolute values of the coefficients. The left column in Figure
3.2 shows realizations of the normalized absolute values σjYj,k|Zj,k|/Vj1 of all coefficients
up to level

j1 = 12.

It exhibits that the parameter β induces sparsity patterns, for larger values of β more
coefficients are zero and the wavelet decomposition of X is sparser. Figure 3.2 also
illustrates the corresponding sample functions. We observe that for β = 0 the sample
function is irregular everywhere, and by increasing β the irregularities become more
and more isolated. This does not affect the L2-Sobolev smoothness, while on the other
hand it is well known that piecewise smooth functions with isolated singularities have
a higher Besov smoothness on the nonlinear approximation scale, cf. Remark 2.23.
According to Theorem 3.10 and Corollary 3.12, X belongs to a space on the linear
approximation scale with probability one if and only if

s <
1

2
, (3.38)
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while X belongs to a space on the nonlinear approximation scale with probability one
if and only if

s <
1

2(1− β)
. (3.39)

Hence, these upper bounds reflect the orders of convergence for linear and best average
N -term approximation, respectively.

Moments of Besov norms or of equivalent norms on sequence spaces appear in
the constants in the error bounds that are derived in this section, see, e.g., Remarks
3.21 and 3.24 where this has been worked out. Here, we consider O = (0, 1), and the
moments of X along the linear and nonlinear approximation scale. We set

bj(s, τ) := 2j(s+( 1
2
− 1

τ
))τ .

By (W6) we get

∥X∥τBs
τ (Lτ (O)) ≍

∞
j=j0

bj(s, τ)σ
τ
j


k∈∇j

Yj,k|Zj,k|τ .

Denoting with ντ the absolute moment of order τ of the standard normal distribution,
i.e., ντ := 2τ/2 Γ((τ + 1)/2)/π1/2, we obtain E[∥X∥τBs

τ (Lτ (O))] ≍M(s, τ) with

M(s, τ) = ντ

∞
j=j0

bj(s, τ)#∇jσ
τ
j ρj.

Figure 3.5 contains the graphs of M along the linear and nonlinear approximation
scales, i.e., s →→M(s, 2) and s →→M(s, 1/(s+ 1/2)), for the selected values of α and β,
while γ = 0. Note that the upper bounds (3.38) and (3.39), respectively, also provide
the location of the singularities of M along the two scales.

The effect of truncation in Figure 3.5 (a) at level j1 = 20, (b) at level j1 = 78 and
finite sample size is illustrated in Figure 3.5, as well, by presenting sample means of
the right-hand side in

∥ Xj1∥τBs
τ (Lτ (O)) ≍

j1
j=j0

bj(s, τ) · στj

k∈∇j

Yj,k|Zj,k|τ .

Specifically, for each scale and each choice of α and β we consider 4 different values of
s and use 1000 independent samples. Moreover, for each choice of the parameters α
and β, the truncation level j1 is chosen according to Table 3.1 so that the expected
number

j1
j=j0

#∇j ρj of non-zero coefficients is approximately 106 in all cases. We
observe the strongest impact of truncation for the nonlinear approximation scales and
small values of β. We add that confidence intervals for the level 0.95 are of length less
than 10 in all cases.

Likewise we proceed for (E[∥X∥2Bs
τ (Lτ (O))])

1/2 along the linear and nonlinear approx-

imation scales. Figure 3.6 shows the results after truncation (a) at level j1 = 20, (b) at
level j1 = 78, sampling, and applying the norm equivalence. It is worth noting that
the sampled Besov norms are smaller than the sampled L2-Sobolev norms. We add
that confidence intervals for the level 0.95 are of length less than one percent of the
estimate in all cases.
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Figure 3.2: Xj1(ω), γ = 0. Left: absolute values of normalized coefficients. Right:
respective sample function
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(b) α = 2.0, β = 0.0, γ = 10.0
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(d) α = 1.8, β = 0.2, γ = 10.0
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(f) α = 1.5, β = 0.5, γ = 10.0
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(h) α = 1.2, β = 0.8, γ = 10.0

Figure 3.3: Xj1(ω). Left: absolute values of normalized coefficients. Right: respective
sample function.
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(c) α = 1.8, β = 0.2, γ = −10.0
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(f) α = 1.5, β = 0.5, γ = −10.0
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Figure 3.4: Xj1(ω). Left: absolute values of normalized coefficients. Right: respective
sample function
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(b) α = 1.8, β = 0.2
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(d) α = 1.2, β = 0.8

Figure 3.5: E[∥X∥τBs
τ (Lτ (O))] along the linear and nonlinear approximation scales

α 2.0 1.8 1.5 1.2
j1 20 24 36 78

Table 3.1: Truncation levels in Figures 3.5 and 3.6
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τ (Lτ (O))])

1/2 along the linear and nonlinear approximation scales
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3.2 A class of random functions in anisotropic Be-

sov spaces

We analyze the regularity of a class of random functions in anisotropic Besov spaces.
We introduce the random functions based on a similar stochastic model as considered
in the previous section and we derive conditions, see Theorem 3.28, under which such
a random function almost surely has a certain smoothness in Bs,a

q (Lp(O)), where
0 < p, q < ∞, s > d(1/p − 1)+, and a = (a1, . . . , ad) ∈ Rd

+ is a given anisotropy.
See Section 2.2.2 for the definition of anisotropic Besov spaces Bs,a

q (Lp(O)) and Section
2.3.4 for the construction of an anisotropic wavelet basis. In particular, the employed
wavelet characterization by Garrigós et al. [82, 83] is stated in Theorem 2.31.

3.2.1 The stochastic model in the anisotropic case

Let Ψ and Ψ be a dual pair of anisotropic wavelet bases, such that the smoothness range
that can be characterized is large enough for all further considerations. Furthermore,
we assume Ψ and Ψ to satisfy (M7), i.e., #∇e,j ≍ mj, which is based on our approach
to treat bounded domains, cf. (2.29) in Section 2.3.4.

In the anisotropic case, the random functions are defined by

X :=

k∈∇0

σ0 Y0,k Z0,k ϕ
(p)
0,k +

∞
j=0

m−1
e=1


k∈∇e,j

σj Ye,j,k Ze,j,k ψ
(p)
e,j,k, (3.40)

where (Ye,j,k, Ze,j,k)e,j,k, e = 1, ...,m − 1, j ∈ N0, k ∈ ∇e,j, is an independent family
of random variables on a probability space (Ω,F ,P). As before, the stochastic model
depends on

α, γ ∈ R, β ∈ [0, 1]. (3.41)

The variables Ye,j,k are Bernoulli distributed with parameter

ρj := 2−βjd, where P(Ye,j,k = 1) = ρj and P(Ye,j,k = 0) = 1− ρj.

The variables Ze,j,k are N (0, 1)-distributed, and we set

σ2
j := jγd2−αjd, j ∈ N, and σ0 := 1.

3.2.2 Regularity theorem in the anisotropic case

We state conditions on the parameters (3.41) under which a random function X almost
surely belongs to a given anisotropic Besov space Bs,a

q (Lp(O)).

Theorem 3.28. Let the assumptions of Theorem 2.31 and (M7) be satisfied, i.e., in
particular the wavelet characterizations (2.27) and (2.28) hold. Let X be a random
function as defined in (3.40). Then X|O is P-almost surely contained in Bs,a

q (Lp(O)),
for s > d(1/p− 1)+ and either 1 ≤ p, q <∞ or 0 < p = q < 1, if

s <
d2

log2m


α

2
+
β

p


− d

p
(3.42)
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or

s ≤ d2

log2m


α

2
+
β

p


− d

p
and qγd < −2. (3.43)

In both cases
E[∥X|O∥qBs,a

q (Lp(O))
] <∞. (3.44)

Proof. Since

∥f∥Bs,a
q (Lp(O)) := inf


∥g∥Bs,a

q (Lp(Rd)) : g ∈ Bs,a
q (Lp(Rd)), g|O = f


,

it is sufficient to show that X as defined by (3.40) is P-a.s. contained in Bs,a
q (Lp(Rd)).

Using Theorem 2.31 and that the support of X is contained in the cube □ by (2.29),
we have X ∈ Bs,a

q (Lp(Rd)) P-a.s. if and only if


k∈∇0

|⟨X, ϕ(p′)
0,k ⟩|

p

1/p

+
∞
j=0

m
sq
d
j

m−1
e=1


k∈∇e,j

|⟨X, ψ(p′)
e,j,k⟩|

p

q/p

<∞ P-a.s.

Observe that the first sum in this formula is finite, since by (M7) the set ∇0 is assumed
to be finite. Therefore we are left to show that the second sum is also finite. Inserting
(3.40) and using the abbreviation

Se,j,p :=

k∈∇e,j

Ye,j,k|Ze,j,k|p,

yields

∞
j=0

m
sq
d
j


m−1
e=1


k∈Zd

|⟨X, ψ(p′)
e,j,k⟩|

p

q/p

≍
∞
j=0

m
sq
d
jσqj


m−1
e=1

Se,j,p

q/p

.

So, with aj := m
sq
d
jσqj , we have to show when

∞
j=0

aj


m−1
e=1

Se,j,p

q/p

<∞, P-a.s. (3.45)

Analogously to the corresponding steps in the proof of Theorem 3.10 it can be shown
that (3.45) is equivalent to

∞
j=0

aj


m−1
e=1

#∇e,jρj

q/p

<∞. (3.46)

Inserting (M7) and the stochastic model into (3.46) yields

∞
j=0

aj


m−1
e=1

#∇e,jρj

q/p

≍
∞
j=0

aj

(m− 1)mjρj

q/p
≍

∞
j=0

(m− 1)q/p j
γqd
2 2jqR,
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with R := ( s
d
log2m − αd

2
+ 1

p
log2m − βd

p
). Therefore, (3.46) holds if and only if the

conditions (3.42) or (3.43) are satisfied.
It remains to prove (3.44). Note, since (3.42) or (3.43) are satisfied, we have that

(3.46) holds. Using the norm equivalences (2.27) and (2.28), as well as Lemma 3.7 and
Lemma 3.8, with ∇j :=

m−1
e=1 ∇e,j and Sj,p :=

m−1
e=1 Se,j,p instead of (3.4), we can

conclude

E[∥X∥q
Bs,a

q (Lp(Rd))
] ⪯

∞
j=0

ajE

m−1
e=1

Se,j,p

q/p
 ⪯

∞
j=0

aj


m−1
e=1

#∇e,jρj

q/p

<∞. □

Remark 3.29. Due to our approach (2.29) to handle bounded domains, we are only
able to state sufficient conditions in Theorem 3.28.

Remark 3.30. For p = 2 and in the isotropic case, i.e., a = 1, λ = 2, and log2m = d,
the statements (3.42) and (3.43) of Theorem 3.28 coincide with (3.8) and (3.9) of
Theorem 3.10. For p ̸= 2 and in the isotropic case, note that the wavelets in (2.25) are
normalized in Lp(Rd) and a renormalization of these wavelets to L2(Rd) produces the
additional factor md(1/2−1/p). Therefore, the statements (3.42) and (3.43) coincide with
(3.8) and (3.9) also in this case.

3.3 A class of random tensor wavelet decomposi-

tions

We study a class of random tensor wavelet decompositions that we also introduce
based on the stochastic model of the previous sections. We derive conditions, see
Theorem 3.31, under which such a random tensor decomposition almost surely has a
certain smoothness in the tensor space Ht,ℓ(O), t ∈ [0,∞)n, ℓ ∈ [0,∞), of generalized
dominating mixed derivatives. See Section 2.2.3 for the definition of Ht,ℓ(O) and Section
2.3.5 for the tensor wavelet setting. In particular, the employed wavelet characterization
by Griebel et al. [85, 86] is stated in Theorem 2.35.

3.3.1 The stochastic model for random tensor decompositions

The aim is to derive random tensor decompositions of the form

X :=

λ∈Λ

aλ(X)
n

m=1

ψ
(m)
λm
, where aλ(X) =


λm∈Λm

aλm(X), (3.47)

which have a prescribed smoothness in Ht,ℓ(O). Here, the sequence (aλm(X))λm∈Λm

of random variables aλm : Ω → R is based on a stochastic model, which is similar
to the stochastic models of the previous sections. Given αm, γm ∈ R, and βm ∈ [0, 1],
m = 1, . . . , n, and a probability space (Ω,F ,P), we set

aλm := ajm,km := σjmY
(m)
jm,km

Z
(m)
jm,km

, jm ∈ N0, km ∈ ∇jm , m = 1, . . . , n, (3.48)

where Z
(m)
jm,km

∼ N (0, 1) are standard-normally distributed,

σ2
jm := jγmdmm 2−αmjmdm , σjm := 1 for jm = 0, (3.49)
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and Y
(m)
jm,km

are Bernoulli distributed random variables with parameter

ρjm := 2−βmjmdm and P(Y
(m)
jm,km

= 1) = 1− P(Y
(m)
jm,km

= 0) = ρjm . (3.50)

Also, we assume the family of random variables (Y
(m)
jm,km

, Z
(m)
jm,km

)m,jm,km to be indepen-
dent.

3.3.2 Regularity theorem in the tensor case

We state conditions on the parameters αm, βm, γm, m = 1, . . . , n, such that the de-
composition (3.47) with (3.48) is almost surely contained in a given tensor space
Ht,ℓ(O).

Theorem 3.31. Let the assumptions of Theorem 2.35 and (T2) be satisfied. Let X be
a random tensor decomposition of the form (3.47) with (3.48). Then

i) X is contained in Ht,ℓ(O), t = (t1, . . . , tn), P-almost surely if and only if

tm + ℓ < dm


αm + βm − 1

2


, γm = 0, m = 1, . . . , n. (3.51)

ii) X is contained in Ht,ℓ(O), t = (t1, . . . , tn), P-almost surely if

tm + ℓ ≤ dm


αm + βm − 1

2


, γmdm < −1, m = 1, . . . , n. (3.52)

In both cases
E[∥X∥2Ht,ℓ(O)] <∞. (3.53)

Proof. In order to prove (3.51) and (3.52), according to Theorem 2.35, we check under
which conditions on αm, βm, and γm, m = 1, . . . , n, we have

λ∈Λ

|aλ(X)|2 22t|λ|+2ℓ∥|λ|∥∞ <∞, P-a.s. (3.54)

Step 1. Inserting (3.48) into (3.54) and using the abbreviations

Sjm,2 :=


km∈∇jm

Y
(m)
jm,km

|Z(m)
jm,km

|2, m = 1, . . . , n, (3.55)

as well as āj := 22tj+2ℓ∥j∥∞ σ2
j1
· · ·σ2

jn , where j = (j1, . . . , jn), yields that we have to
check when 

j∈Nn
0

āj

n
m=1

Sjm,2 <∞, P-a.s. (3.56)

Applying Lemma 3.7 and Lemma 3.8, we obtain that (3.56) is equivalent to


j∈Nn

0

āj

n
m=1

#∇jmρjm <∞, (3.57)
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which is shown analogously to the corresponding steps in the proof of Theorem 3.10.
Step 2. We first prove the claim for the case n = 2, which illustrates the key ideas

of the proof. Moreover, we restrict this case to γ1 = γ2 = 0 in (3.49) of the stochastic
model. The general case is proven in Step 4.

With n = 2 we have t = (t1, t2), Λ = Λ1 × Λ2, and |λ| = (|λ1|, |λ2|) = (j1, j2) for
λ ∈ Λ, as well as aλ = aλ1aλ2 in (3.47). Furthermore, we have λm = (jm, km) with
jm ∈ N0 and km ∈ ∇jm , where ∇jm are finite sets with #∇jm ≍ 2jmdm , m = 1, 2, cf.
(T2). Hence, we have to check under which conditions
λ∈Λ

|aλ|2 22t|λ|+2ℓ∥|λ|∥∞ =

λ1∈Λ1


λ2∈Λ2

|aλ1 |2|aλ2 |2 22(t1|λ1|, t2|λ2|)+ 2ℓ∥(|λ1|, |λ2|)∥∞

=

j1∈N0


k1∈∇j1


j2∈N0


k2∈∇j2

|aj1,k1 |2|aj2,k2|2 22t1j1+2t2j2 +2ℓ∥(j1, j2)∥∞

<∞, P-a.s.

That is, inserting (3.48) and the abbreviation (3.55) we have to show under which
conditions on αm, βm, γm, m = 1, 2, we get

j1∈N0

22t1j1σ2
j1
Sj1,2


j2∈N0

22t2j2 +2ℓ∥(j1, j2)∥∞σ2
j2
Sj2,2 <∞, P-a.s. (3.58)

Applying Lemma 3.7 and Lemma 3.8, (3.58) is equivalent to
j1∈N0

22t1j1σ2
j1
#∇j1ρj1


j2∈N0

22t2j2 +2ℓ∥(j1, j2)∥∞σ2
j2
#∇j2ρj2 <∞.

Using (T2) and (3.49) with γ1 = γ2 = 0, as well as (3.50) we continue with the
calculation

j1∈N0

22t1j1σ2
j1
#∇j1ρj1


j2∈N0

22t2j2 +2ℓ∥(j1, j2)∥∞σ2
j2
#∇j2ρj2

≍

j1∈N0

2j1(2t1−d1(α1+β1−1))

j2∈N0

2j2(2t2−d2(α2+β2−1))+ 2ℓ∥(j1, j2)∥∞

=

j1∈N0

2j1(2t1−d1(α1+β1−1))
j2<j1

2j2(2t2−d2(α2+β2−1))+2ℓj1 +

j2≥j1

2j2(2t2−d2(α2+β2−1)+2ℓ)



=:

j1∈N0

Aj1


j2<j1

Bj1,j2 +

j2≥j1

Cj1,j2


=:

j1∈N0

Aj1


Bj1 + Cj1


. (3.59)

Now, observe that


j2≥j1 Cj1,j2 <∞ if and only if

t2 + ℓ < d2


α2 + β2 − 1

2


. (3.60)

Applying the geometric series formula we obtain
j2≥j1

Cj1,j2 ≍ 2j1(2t2−d2(α2+β2−1)+2ℓ)
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and hence, we have
j1∈N0

Aj1Cj1 ≍

j1∈N0

2j1(2t1−d1(α1+β1−1)) 2j1(2t2−d2(α2+β2−1)+2ℓ),

which is finite if and only if

t1 + t2 + ℓ < d1


α1 + β1 − 1

2


+ d2


α2 + β2 − 1

2


. (3.61)

To show


j1∈N0
Aj1Bj1 <∞ in (3.59), we again apply the geometric series formula on

j2<j1
Bj1,j2 , and we are left to determine when

j1∈N0

2j1(2t1−d1(α1+β1−1)+2ℓ) − 2j1(2t1−d1(α1+β1−1)+2t2−d2(α2+β2−1)+2ℓ) <∞. (3.62)

Summing the difference in formula (3.62) separately, we see that (3.62) is finite if and
only if (3.61) and

t1 + ℓ < d1


α1 + β1 − 1

2


(3.63)

hold, or the exponents are both zero or equal. The latter cases yield the condition
t2 = d2(α2 + β2 − 1)/2 which contradicts (3.60). Observe that (3.60) and (3.63) imply
(3.61).

Step 3. In order to generalize Step 2 to the case n > 2 and to show (3.51), we iterate
the ideas of Step 2. In particular, observe that the conditions on αm, βm, m = 1, . . . , n,
such that (3.57) holds are determined by splitting the appearing sums iteratively as in
(3.59). Proceeding with analogous arguments leads to the conditions (3.51).

Step 4. Now, we show (3.52). Using (T2) and inserting (3.49) and (3.50) into (3.57)
yields that we have to determine when

j1∈N0

jγ1d11 2j1(2t1−d1(α1+β1−1)) · · ·

jn∈N0

jγndnn 2jn(2tn−dn(αn+βn−1))+ 2ℓ∥(j1,...jn)∥∞ <∞.

We proceed with the same idea as in Step 3 by iteratively splitting these sums. Then,
using that γndn < −1 the sum over jn, where jn = ∥(j1, . . . , jn)∥∞, converges also
if we choose the parameters αn, βn such that tn + ℓ = dn(αn + βn − 1)/2 holds.
Using that jγndnn ≤ 1 in all other places it appears, we proceed to the sum where
jn−1 = ∥(j1, . . . , jn)∥∞. Analogously, using γn−1dn−1 < −1 this sum converges if we
have tn−1 + ℓ = dn−1(αn−1 + βn−1 − 1)/2. Repeating these arguments yields (3.52).

Finally we prove (3.53) provided that (3.57) is satisfied. Using the Riesz basis
property in Theorem 2.35, as well as Lemma 3.7 and Lemma 3.8 together with the
independence of the Sjm,2, m = 1, . . . , n, we have

E[∥X∥2Ht,ℓ(O)] ⪯

j∈Nn

0

ajE


n

m=1

Sjm,2


⪯

j∈Nn

0

aj

n
m=1

#∇jmρjm <∞. □

Remark 3.32. Observe that, in the case t = 0, where H0,ℓ(O) is isomorphic to the
standard Sobolev space, for p = q = 2 the conditions (3.51) and (3.52) of Theorem 3.31
coincide with (3.8) and (3.9) of Theorem 3.10.





Chapter 4

Application to the stochastic
Poisson equation

We consider the stochastic Poisson equation, where the right-hand side is a random
function which is given by the stochastic model that is analyzed in Section 3.1. In order
to obtain approximations to the realizations of the solution, we employ asymptotically
optimal adaptive wavelet algorithms as they asymptotically realize the approximation
rate of best N -term wavelet approximation. Since the related convergence analysis of
these adaptive wavelet algorithms relies on the energy norm, which is equivalent to the
norm in H1, we approximate the realizations of the solutions in H1. See Section 1.4 for
the complete introduction.

In Section 4.1, we analyze best N -term wavelet approximation for the considered
class of stochastic Poisson equations under different assumptions on the bounded
domain O ⊂ Rd, see Theorems 4.1, 4.5, and 4.6. These asymptotic results are matched
by numerical experiments in Section 4.2.

The results of this chapter have been partly worked out by the author and collabo-
rators in [24].

4.1 Best N-term wavelet approximation

First, we consider the Poisson equation on bounded Lipschitz domains O ⊂ Rd,

−∆U(ω) = X(ω) in O,
U(ω) = 0 on ∂O,

(4.1)

with ω ∈ Ω and a random right-hand side X : Ω → L2(O) ⊂ H−1(O) that is defined
as the class of random functions in Section 3.1: Let

α, γ ∈ R, β ∈ [0, 1],

ρj := min

1, C12

−βjd , and σ2
j :=


C2j

γd2−αjd : j > j0,

1 : j = 0,

(4.2)

where j0 ∈ N0 and C1, C2 > 0. Furthermore, let (Zj,k, Yj,k) for j ≥ j0 and k ∈ ∇j be
an independent family of random variables on a probability space (Ω,F ,P), where

Zj,k ∼ N (0, 1), and P(Yj,k = 1) = 1− P(Yj,k = 0) = ρj. (4.3)

71
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Given biorthogonal wavelet bases Ψ, Ψ which satisfy the underlying assumptions
(W1)–(W6) stated in Section 2.3.3, we define the random functions

X :=
∞
j=j0


k∈∇j

σj Yj,k Zj,k ψj,k, (4.4)

cf. (3.3). Here, X is given as decomposition in the dual wavelet basis Ψ, since this way
the approximation to the solution U of (4.1) is a decomposition with respect to Ψ.

In order to analyze best N -term wavelet approximations of the random function

U : Ω → H1(O)

in H1(O), we introduce the deterministic error of best N -term wavelet approximation
with respect to H1(O) by

edetN,H1(O)(u) := inf

∥u− u∥H1(O) : u ∈ H1(O), η(u) ≤ N


,

cf. Section 2.3.2. Again,

η(g) := #


λ ∈ ∇ : g =


λ∈∇

cλ ψλ, cλ ̸= 0



denotes the number of non-zero wavelet coefficients of g. The quantity edetN,H1(O)(U(ω)),

where U(ω), ω ∈ Ω, is the exact solution of (4.1), serves as benchmark for the
performance of the adaptive algorithms. In the stochastic setting, we investigate the
error

ebestN,H1(O)(U) := inf

E [∥U − U∥2H1(O)]

1/2
,

with the infimum taken over all measurable mappings U : Ω → H1(O) such that

η( X(ω)) ≤ N P-a.s.

Clearly, we have

ebestN,H1(O)(U) =

E [edetN,H1(O)(U)

2]
1/2

.

Theorem 4.1. Suppose that d ∈ {2, 3} and that the right-hand side X in (4.1) is of
the form (4.4) with α + β > 1− 4/d. We set

ϱ := min


1

2(d− 1)
,
α + β − 1

6
+

2

3d


.

Then, for every ε > 0, the error of the best N -term wavelet approximation with respect
to H1(O) satisfies

ebestN,H1(O)(U) ⪯ N−ϱ+ε.

Proof. Let r > 1. By Remark 2.26 in Section 2.3.3 we have

edetN,H1(O)(u) ⪯ ∥u∥Br
τ (Lτ (O))N

−(r−1)/d, (4.5)
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for all d ≥ 1 in the scale
1

τ
=
r − 1

d
+

1

2
.

The next step is to control the norm of a solution u in the Besov space Br
τ (Lτ (O)) in

terms of the regularity of the right-hand side x of the Poisson equation. Let

−1

2
< r∗ <

4− d

2(d− 1)
,

and assume that x ∈ Hr∗(O). We may apply the results from Dahlke et al.
[45], Dahlke, DeVore [47] to conclude that u ∈ Br−δ

τ (Lτ (O)) for sufficiently small
δ > 0, where

r =
r∗ + 5

3
and

1

τ
=
r − δ − 1

d
+

1

2
.

Moreover,

∥u∥Br−δ
τ (Lτ (O)) ⪯ ∥x∥Br∗

2 (L2(O))

and we can use (4.5), with r replaced by r − δ, to derive

edetN,H1(O)(u) ⪯ ∥x∥Br∗
2 (L2(O))N

−(r∗+2−3δ)/(3d).

If, in addition, r∗/d < (α + β − 1)/2, then

eN,H1(O)(U) ⪯ N−(r∗+2−3δ)/(3d)

follows from the regularity result of Theorem 3.10. □

Remark 4.2. In Theorem 4.1, we have concentrated on nonlinear approximations in
H1(O), which is the most important one from the numerical point of view, as we have
briefly outlined in the introductory Section 1.4. In the deterministic setting, similar
results for approximations in other norms, e.g., in L2 or even weaker norms, also exist,
see, e.g., Dahlke et al. [54] for details.

Remark 4.3. The convergence order of nonadaptive uniform methods does not depend
on the Besov regularity of the exact solution but on its Sobolev smoothness, see Remark
2.26. However, on a Lipschitz domain, due to singularities at the boundary, the best
one can expect is U ∈ H3/2(O), even for very smooth right-hand sides, see Grisvard
[89], Jerison, Kenig [104]. Therefore, an uniform approximation scheme can only
give at best the order N−1/(2d). In our setting, see Theorem 4.1, we have

ϱ >
1

2d
,

so that for the problem (4.1) optimal adaptive wavelet schemes are always superior
when compared with uniform schemes.

Remark 4.4. With increasing values of α and β the smoothness of X increases, see
the regularity result of Theorem 3.10. On a general Lipschitz domain, however, this
does not necessarily increase the Besov regularity of the corresponding solution. This
is reflected by the fact that the upper bound in Theorem 4.1 is at most of order
N−1/(2(d−1)).
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For more specific domains better results are available. For instance, suppose O is a
simply connected polygonal domain in R2. Then, it is well known that if the right-hand
side X in (4.1) is contained in Hr−1(O) for some r ≥ 0, the solution U can be uniquely
decomposed into a regular part UR and a singular part US, i.e., U = UR + US, where
UR ∈ Hr+1(O) and US belongs to a finite-dimensional space that only depends on the
shape of the domain. This result has been established by Grisvard [87], see also [88,
Chapter 4, 5], or [89, Section 2.7] for details.

Theorem 4.5. Suppose that O is a simply connected polygonal domain in R2 and that
the right-hand side X in (4.1) is of the form (4.4) with α + β > 1/2. We set

ϱ =
α + β

2
.

Then, for every ε > 0, the error of the best N -term wavelet approximation with respect
to H1(O) satisfies

ebestN,H1(O)(U) ⪯ N−ϱ+ε.

Proof. We apply the results from Grisvard [87, 88, 89]. Let us denote the segments
of ∂O by Γ1, . . . ,ΓM , M ∈ N, with open sets Γℓ, ℓ = 1, . . . ,M , numbered in positive
orientation. Furthermore, let Υℓ denote the endpoint of Γℓ and let χℓ denote the measure
of the interior angle at Υℓ, ℓ = 1, . . . ,M . We introduce polar coordinates (κℓ, θℓ) in the
vicinity of each vertex Υℓ, and for n ∈ N and ℓ = 1, . . . ,M we introduce the functions

Sℓ,n(κℓ, θℓ) := ζℓ(κℓ)κ
λℓ,n
ℓ sin(nπθℓ/χℓ),

when λℓ,n = nπ/χℓ is not an integer, and

Sℓ,n(κℓ, θℓ) := ζℓ(κℓ)κ
λℓ,n
ℓ [log κℓ sin(nπθℓ/χℓ) + θℓ cos(nπθℓ/χℓ)]

otherwise. Here ζℓ denotes a suitable C∞ truncation function.
Consider the solution u = uR + uS of the Poisson equation with the right-hand side

x ∈ Hr−1(O), and assume that

r ̸∈ {λℓ,n : n ∈ N, ℓ = 1, . . . ,M}.

Then one has uR ∈ Hr+1(O) and uS ∈ Sspan for Sspan := span{Sℓ,n : 0 < λn,l < r}. We
have to estimate the Besov regularity of both, uS and uR, in the scale

1

τ
=
s

2
,

which is (3.15) with d = 2, p = 2, and ν = 1, i.e., the regularity in this scale is related
with nonlinear wavelet approximation in H1(O). Classical embeddings of Besov spaces
imply that uR ∈ Bs

τ (Lτ (O)) for every s < r+1. Moreover, it has been shown in Dahlke
[42] that Sspan ⊂ Bs

τ (Lτ (O)) for every s > 0. We conclude that uS ∈ Bs
τ (Lτ (O)) for

every s < r + 1.
To estimate u, we argue as follows. Let γℓ be the trace operator with respect to

the segment Γℓ, ℓ = 1, . . . ,M . Grisvard [88, Theorem 5.1.3.5] has shown that the
Laplacian ∆ maps the direct sum

H =

u ∈ Hr+1(O) : γℓu = 0, ℓ = 1, . . . ,M


+ Sspan
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onto Hr−1(O). Note that (H, ∥ · ∥H) is a Banach space where

∥u∥H = ∥uR∥Hr+1(O) +
M
ℓ=1


0<λℓ,n<r

|cℓ,n| and uS =
M
ℓ=1


0<λℓ,n<r

cℓ,n Sℓ,n.

It has been shown in Dahlke et al. [52] that the solution operator ∆−1 is continuous
as a mapping from Hr−1(O) onto H. Therefore

∥u∥Bs
τ (Lτ (O)) ⪯ ∥uR∥Hr+1(O) +

M
ℓ=1


0<λℓ,n<t

|cℓ,n| = ∥u∥H ⪯ ∥x∥Hr−1(O)

for every s < r + 1.
Finally, by Theorem 3.10, X ∈ Hr−1(O) with probability one and E[∥X∥2Hr−1(O)] is

finite if 1/2 < r < α + β. Now the upper bound for ebestN,H1(O)(U) follows by proceeding
as in the proof of Theorem 4.1. □

In case O is a C∞-domain, no singularities induced by the shape of the domain can
occur. However, similar to Corollary 3.12, it is a remarkable fact that for β close to
one an arbitrarily high order of convergence can be realized.

Theorem 4.6. Suppose that O is a bounded C∞-domain in Rd and that the right-hand
side X in (4.1) is of the form (4.4) with α/2 + β > 1/2. Moreover, we assume that
β < 1 and we set

ϱ =
1

1− β


α− 1

2
+ β


+

1

d
.

Then, for every ε > 0, the error of the best N -term wavelet approximation with respect
to H1(O) satisfies

ebestN,H1(O)(U) ⪯ N−ϱ+ε.

Proof. An application of Corollary 3.12 with p = 2 and ν = −d/2+ δd for a sufficiently
small δ > 0, yields X ∈ Bs

τ (Lτ (O)) in the scale

1

τ
=
s

d
+ 1− δ (4.6)

with probability one and E[∥X∥2Bs
τ (Lτ (O))] is finite for all

−d
2
< s <

d

1− β


α− 1

2
+ β(1− δ)


= s∗.

If α/2 + β > 1/2 + δ, we have s∗ > δd and we can argue as follows. Since the problem
is regular, the solution u of the Poisson equation with right-hand side x ∈ Bs

τ (Lτ (O)),
s > δ > 0 satisfies u ∈ Bs+2

τ (Lτ (O)) with

∥u∥Bs+2
τ (Lτ (O)) ⪯ ∥x∥Bs

τ (Lτ (O)),

see Runst, Sickel [143, Chapter 3] or Triebel [157, Theorem 4.3]. By the embedding
of Besov spaces given in Theorem 2.6 (iv), we obtain

∥u∥Bs+2
τ∗ (Lτ∗ (O)) ⪯ ∥u∥Bs−δ+2

τ (Lτ (O))



76 Chapter 4. Application to the stochastic Poisson equation

for the approximation scale

1

τ ∗
=

(s+ 2)− 1

d
+

1

2
.

An application of (4.5) yields

edetN,H1(O)(u) ⪯ ∥u∥Bs+2
τ∗ (Lτ∗ (O))N

−(s+1)/d.

Therefore, we conclude that

ebestN,H1(O)(U) ⪯ N−(s+1)/d.

Let δ tend to zero to obtain the result as claimed. □

Remark 4.7. For β = 1 the estimate from Theorem 4.6 is valid for arbitrarily large ϱ,
provided that the primal and dual wavelet bases are sufficiently smooth, so that they
can characterize the considered Besov spaces.

4.2 Numerical experiments using adaptive wavelet

methods

We employ an asymptotically optimal and efficient adaptive wavelet algorithm and
present numerical experiments on [0, 1] to complement our analysis of Section 4.1. We
focus on the impact of the primary parameters α ∈ R and β ∈ [0, 1) of the stochastic
model and set γ = 0. On O = [0, 1] the considered class of Poisson equations is given
by

−U ′′(·, ω) = X(·, ω) in (0, 1),

U(0, ω) = U(1, ω) = 0,
(4.7)

where ω ∈ Ω and X as in (4.4). The numerical experiments were performed by using a
stable biorthogonal spline wavelet basis as constructed in Primbs [136]. The primal
wavelets consist of cardinal splines of order m = 3, i.e., they are piecewise quadratic
polynomials, and the condition (W4) is satisfied with m = 5. The wavelet basis satisfies
(W6) along the nonlinear approximation line with s1 = 3, while s1 = 2.5 along the
linear approximation line, see Section 2.3.2. Moreover, j0 = 2 and #∇j0 = 10, while
#∇j = 2j for j > j0. In the stochastic model (4.2) for the right-hand side X we set

C1 = 2βj0 , C2 = 2αj0 ,

which means that sparsity is only induced at levels j > j0 and the coefficients at level
j0 are standard normally distributed. This ensures that we keep the entire polynomial
part of X.

In the last several years, much effort has been spent to design adaptive numerical
algorithms based on wavelets. For elliptic problems, adaptive wavelet schemes have
been derived that are guaranteed to converge with optimal order in the sense that
they realize the approximation order of best N -term wavelet approximation Cohen
et al. [29, 30], Dahlke et al. [45], Gantumur et al. [81]. Moreover, it has been
possible to generalize the algorithms also to the case of wavelet frames Dahlke et al.
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[50], Stevenson [150]. In this subsection we apply these algorithms to the numerical
treatment of (4.7).

The aim is to investigate if for this model problem adaptive wavelet algorithms are
superior when compared with uniform schemes. As we know the order of convergence of
linear uniform approximation methods in L2 is determined by the L2-Sobolev regularity
of the exact solution whereas the order of convergence of adaptive schemes is determined
by the Besov smoothness, cf. (4.5) and Section 2.3.2.

We therefore study an example where the Sobolev smoothness of the right-hand
side X stays fixed while the Besov regularity changes. This is achieved by choosing
parameter values α and β such that the sum α + β, which determines the L2-Sobolev
regularity, is kept constant, cf. Section 3.1.4. Then, letting β tend to one increases the
Besov smoothness significantly, see Corollary 3.12. Since the problem is completely
regular, these interrelations immediately carry over to the exact solution, see Triebel
[157, Theorem 4.3].

The numerical experiment is carried out and evaluated as follows. On input δ > 0
the adaptive wavelet scheme computes an N -term wavelet approximation U(·, ω) to
U(·, ω), whose error with respect to the H1-norm is at most δ. The number N , N ∈ N,
of terms depends on δ as well as on ω via the right-hand side X(·, ω), and only a finite

number of wavelet coefficients of X(·, ω) are used to compute U(·, ω). We determine
U(·, ω) in a master computation with a very high accuracy and then use the norm
equivalence (W6) for the space H1(O). The master computation employs a uniform
approximation with truncation level j1 = 11 for the right-hand side. To get a reliable
estimate for the average number E[η(U)] of non-zero wavelet coefficients of U and for

the error (E[∥U − U∥2H1(O)])
1/2 we use 1000 independent samples of truncated right-

hand sides. This procedure is carried out for 18 different values of δ; the results are
presented together with a regression line, whose slope yields an estimate for the order
of convergence. For the uniform approximation we proceed with only one difference,
instead of δ, a fixed truncation level for the approximation of the left-hand side is used,
and therefore no estimate is needed for the number of non-zero coefficients. As for the
adaptive scheme we use 1000 independent samples for six different truncation levels,
j = 4, . . . , 9. We add that confidence intervals for the level 0.95 are of length less than
three percent of the estimate in all cases.

In the first experiment we choose

α = 0.9, β = 0.2, (4.8)

i.e., the right-hand side is contained in Hs(O) only for s < 0.05. Consequently, the
solution is contained in Hs(O) with s < 2.05. An optimal uniform approximation
scheme with respect to the H1-norm yields the approximation order 1.05− ε for every
ε > 0. This is observed in Figure 4.1(a), where the empirical order of convergence
for the uniform approximation is 1.113. For the relatively small value of β = 0.2, the
Besov smoothness, and therefore the order of best N -term approximation, is not much
higher. In fact, by inserting the parameters into Theorem 4.6 with d = 1, we get the
approximation order ϱ− ε with ϱ = 19/16 = 1.1875. This is also reflected in Figure
4.1(a), where the empirical order of convergence for the adaptive wavelet scheme is
1.164. In both cases the numerical results match very well the asymptotic error analysis,
and both methods exhibit almost the same order of convergence. Anyhow, even in this
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(b) α = 0.4, β = 0.7

Figure 4.1: Error and (expected) number of non-zero coefficients

case adaptivity slightly pays off for the same regularity parameter, since the Besov
norm is smaller than the Sobolev norm, which yields smaller constants.

The picture changes for higher values of β. As a second test case, we choose

α = 0.4, β = 0.7. (4.9)

Then, the Besov regularity is considerably higher. In fact, from Theorem 4.6 with d = 1
we would expect the convergence rate ϱ− ε with ϱ = 7/3, provided that the wavelet
basis indeed characterizes the corresponding Besov spaces. It is well known that a
tensor product spline wavelet basis of order m in dimension d has this very property
for Bs

τ (Lτ ) with 1/τ = s− 1/2 and s < s1 = m/d, see Cohen [28, Theorem 3.7.7]. In
our case, s1 = 3, so ϱ = 2 is the best we can expect. From Figure 4.1(b), we observe
that the empirical order of convergence is slightly lower, namely 1.425. The reason is
that the Besov smoothness of the solution is only induced by the right-hand side which,
in a Galerkin approach, is expanded in the dual wavelet basis. Estimating the Hölder
regularity of the dual wavelet basis Ψ, see Villemoes [169], it turns out that this
wavelet basis is only contained in W s(L∞) for s < 0.55. Therefore, by using classical
embeddings of Besov spaces, it is only ensured that this wavelet basis characterizes
Besov spaces Bs

τ (Lτ ), with the same smoothness parameter. Consequently, the solution
U is only contained in the spaces Bs

τ (Lτ ) with 1/τ = s− 1/2 and s < 2.55 which gives
an approximation order ϱ− ε with ϱ = 1.55. This is matched very well in Figure 4.1(b).
For uniform approximation the empirical order of convergence is 1.115 and thus does
not differ from the result in the first experiment.

Both of the numerical experiments (4.8) and (4.9) already indicate that adaptivity
really pays off for the problem (4.7). Nevertheless, we still observe a bottleneck. So
far, we only discussed random right-hand sides with realizations being in smoothness
spaces with positive smoothness parameters. Then, in the univariate case, the solution
immediately possesses Sobolev smoothness larger than two, so that uniform schemes
already perform quite well. The picture changes for right-hand sides with negative
smoothness. Indeed, choosing X ∈ H−1+ε(O) yields U ∈ H1+ε(O) for ε > 0, and the
convergence order of uniform schemes in H1(O) is only ε. Then, by choosing X in the
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α = −0.87, β = 0.97

Figure 4.2: Error and (expected) number of non-zero coefficients

Besov spaces as in Theorem 4.6, adaptive schemes still show the same approximation
order as before, so that a difference in the performance of uniform and adaptive
algorithms is even more noticeable. Since Theorem 3.10 also holds for negative values
of α, we can choose

α = −48/55, β = 107/110,

and the corresponding right-hand side X is contained in H−0.45(O). In this case, a
uniform scheme has approximation order 0.55 − ε, which is reflected in Figure 4.2
an empirical order 0.619. Moreover, by Theorem 4.6, adaptive schemes still obtain
approximation order 1.55 − ε. Indeed, Figure 4.2 shows almost exactly this order,
namely 1.476.

Our sample problem in the two-dimensional case is the Poisson equation (4.1) with
zero-Dirichlet boundary conditions on the L-shaped domain

O = (−1, 1)2 \ [0, 1)2.

Here we are going to apply domain decomposition methods based on wavelet frames as
discussed in Section 2.4.2. We consider the right-hand side X = x+ X, where x is a
known deterministic function and X is generated by the stochastic model (4.2), (4.3),
and (4.4), but based on frame decompositions. This means that we add a noise term
to a deterministic right-hand side. Specifically, we consider perturbed versions of the
well-known equation that is defined by the exact solution

u(r, θ) = ζ(r)r2/3 sin


2

3
θ


,

where (r, θ) are polar coordinates with respect to the re-entrant corner, see Figure 4.3
(a,b). Then, u is one of the singularity functions as introduced in the proof of Theorem
4.5. It has a relatively low Sobolev regularity while its Besov smoothness is arbitrary
high, see again the proof of Theorem 4.5 for details. For functions of this type we expect
that adaptivity pays off. In Figure 4.3 (c,d) we show two solutions to realisations of X
for the parameter combination α = 1 together with β = 0.1 and its sparse counterpart
β = 0.9.
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(a) exact solution (b) exact right-hand side

(c) α = 1.0, β = 0.1 (d) α = 1.0, β = 0.9

Figure 4.3: (a,b) exact equation; (c,d) solutions to perturbed right-hand sides



Chapter 5

On the convergence of the inexact
linearly implicit Euler scheme

We investigate the error propagation and analyze the convergence of Rothe’s method
for evolution equations of the parabolic type with focus on linearly implicit one-
step methods. We use uniform discretizations in time and non-uniform (adaptive)
discretizations in space. The space discretization methods are assumed to converge
up to a given tolerance ε when applied to the resulting elliptic subproblems. Typical
examples are adaptive finite element or wavelet methods. We investigate how the
tolerances ε in each time step have to be tuned so that the overall scheme converges
with the same order as in the case of exact evaluations of the elliptic subproblems. See
Section 1.5 for the complete introduction.

In Section 5.1, we take an abstract point of view on Rothe’s method and derive
sufficient conditions for convergence in the case of inexact operator evaluations, see
Theorems 5.21 and 5.26. In Section 5.2, we show that also stochastic evolution equations
can be treated if the linearly-implicit Euler scheme is the method of choice, which we
apply to a class of semi-linear parabolic SPDEs of the form

du(t) = Au(t)dt+ f(u(t))dt+B(u(t))dW (t), u(0) = u0, t ∈ [0, T ],

see Observation 5.57 and Theorem 5.63. Note that formally both equations are special
cases of the general problem

du(t) = F (t, u(t))dt+B(u(t))dW (t), u(0) = u0, t ∈ [0, T ], (5.1)

where B ≡ 0 indicates the deterministic case. Finally, in Section 5.3 we substantiate
our analysis further and combine the analysis presented in Section 5.1 with complexity
estimates for optimal adaptive wavelet solvers in order to obtain complexity estimates
for spatially adaptive Rothe methods, see Theorems 5.71, 5.73, 5.78, and 5.79.

The results of this chapter have been partly worked out by the author and collabo-
rators in [22] and [23], see also [21].

5.1 Abstract description of Rothe’s method

We state the abstract setting of Rothe’s method and derive sufficient conditions for
convergence in the case of inexact operator evaluations.

81
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5.1.1 Motivation

We begin with an example that motivates our perspective on the analysis of Rothe’s
method. To introduce our abstract setting, let us consider the heat equation

u′(t) = ∆u(t) + f(t, u(t)) on O, t ∈ (0, T ],

u(0) = u0 on O,
u = 0 on ∂O, t ∈ (0, T ],

 (5.2)

where O ⊂ Rd, d ≥ 1, denotes a bounded Lipschitz domain. We discretize this equation
by means of a linearly-implicit Euler scheme with uniform time steps. Let K ∈ N be
the number of subdivisions of the time interval [0, T ], while the step size is denoted
by τ := T/K, and the k-th point in time is denoted by tk := τk, k ∈ {0, . . . , K}. The
linearly-implicit Euler scheme, starting at u0, is given by

uk+1 − uk
τ

= ∆uk+1 + f(tk, uk),

i.e.,
(I − τ∆)uk+1 = uk + τf(tk, uk), (5.3)

for k = 0, . . . , K − 1. If we assume that the elliptic problem

Lτv := (I − τ∆)v = w on O, v|∂O = 0,

can be solved exactly, then one step of the scheme (5.3) can be written as

uk+1 = L−1
τ Rτ,k(uk), (5.4)

where
Rτ,k(v) := v + τf(tk, v)

and Lτ is a boundedly invertible operator between suitable Hilbert spaces. That is, we
can look at this equation in a Gel’fand triple setting (H1

0 (O), L2(O), H−1(O)) with Lτ
as an operator from H1

0 (O) to H−1(O). Recall that H1
0 (O) denotes the Sobolev space

with Dirichlet boundary conditions, H−1(O) its normed dual, and L2(O) the Lebesgue
space of quadratic integrable functions, cf. Section 2.2.1. We may also consider (5.4)
in L2(O), since H1

0 (O) is embedded in L2(O) and L2(O) is embedded in H−1(O),
provided that Rτ,k : L2(O) → L2(O) is well defined.

Having the above simple example in mind, we observe that the fundamental form of
(5.4) essentially remains the same even if we introduce more sophisticated discretizations
in time, e.g., as outlined below and in Section 5.1.4.

5.1.2 Setting and assumptions

In many applications not only one-stage approximation methods, such as the linearly-
implicit Euler scheme, are used, but also more sophisticated S-stage schemes. The
reason is, S-stage schemes can lead to higher temporal convergence orders, see Section
5.1.4 for further details. Therefore, in this section we state a scheme with the same
form as in (5.4) that provides an abstract interpretation of linearly-implicit S-stage
schemes, where S ∈ N.
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As above, we begin with a uniform discretization of the time interval [0, T ] with
K ∈ N subdivisions, step size τ := T/K, and tk := kτ for k ∈ {0, . . . , K}. Taking an
abstract point of view, we introduce separable real Hilbert spaces H, G, and consider
a mapping u : [0, T ] → H. Furthermore, let Lτ,i be a family of, possibly unbounded,
linear operators which have bounded inverses

L−1
τ,i : G → H,

and let
Rτ,k,i : H× · · · × H  

i

→ G (5.5)

be a family of (nonlinear) evaluation operators for k ∈ {0, . . . , K − 1} and i = 1, . . . , S.
As the norm on the Cartesian product in (5.5) we set

(v1, . . . , vi)H×···×H :=
i
l=1

∥vl∥H.

Remark 5.1. The mapping u : [0, T ] → H is understood to be implicitly given as a
solution of a (deterministic or stochastic) parabolic partial differential equation of the
form (5.1).

Remark 5.2. In most cases the operators L−1
τ,i are not given explicitly and, for this

reason, we need an efficient numerical scheme for their evaluation. The situation is
completely different with the Rτ,k,i, which are usually given explicitly and do not require
the solution of operator equations for their evaluation. Concrete examples of these
operators are presented and studied in Section 5.1.4 below.

Remark 5.3. In a Gel’fand triple setting (V, U, V ∗) typical choices for the spaces H
and G are H = V , G = V ∗ or H = G = U . However, also a more general setting such as

V ⊆ H ⊆ U ⊆ V ∗ ⊆ G

is possible. Observe that our motivating example from Section 5.1.1 fits in this setting
with H1

0 (O) = H ⊆ L2(O) and G = H−1(O).

Starting from the given value u0 := u(0) ∈ H, we define the abstract exact S-stage
scheme iteratively by

uk+1 :=
S
i=1

wk,i,

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1), i = 1, . . . , S,

 (5.6)

for k = 0, . . . , K − 1. One step of this iteration can be described as an application of
the operator

Eτ,k,k+1 : H → H,

v →→
S
i=1

wk,i(v),

wk,i(v) := L−1
τ,iRτ,k,i


v, wk,1(v), . . . , wk,i−1(v)


, i = 1, . . . , S.

 (5.7)
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If we define the family of operators

Eτ,j,k :=


Eτ,k−1,k ◦ . . . ◦ Eτ,j,j+1, j < k

I, j = k,
(5.8)

where I denotes the identity mapping, then the output of the exact S-stage scheme
(5.6) is given by the sequence

uk = Eτ,0,k(u0), k = 0, . . . , K. (5.9)

The convergence analysis which we present relies on a crucial technical assumption
on the operators defined in (5.8).

Assumption 5.4. For all 0 ≤ j, k ≤ K the operators

Eτ,j,k : H → H are globally Lipschitz continuous

with Lipschitz constants CLip
τ,j,k.

Remark 5.5. Assumption 5.4 is relatively mild, as it is usually fulfilled in the appli-
cations we have in mind. Concrete examples are given at the end of this section, as
well as in Section 5.1.4 below.

We call the sequence (5.9) the output of the exact S-stage scheme, since the operators
involved in the definition of Eτ,0,k are evaluated exactly. In practical applications this
is very often not possible; the operators L−1

τ,i and Rτ,k,i can only be evaluated up to a
prescribed accuracy. Therefore, as a start, we make the following assumption.

Assumption 5.6. For all τ , k ∈ {0, . . . , K − 1}, and for any prescribed tolerance

εk > 0 and arbitrary v ∈ H, we have an approximation Eτ,k,k+1(v) of Eτ,k,k+1(v) at
hand, such that Eτ,k,k+1(v)− Eτ,k,k+1(v)


H ≤ εk

with a known upper bound Mτ,k(εk, v) < ∞ for the degrees of freedom needed to
achieve the prescribed tolerance εk.

Remark 5.7. In this abstract setting the term degrees of freedom is a bit vague,
since the precise meaning of this term depends on the concrete form of the applied
approximation scheme. For instance, in the finite element and the wavelet setting, the
degrees of freedom refer to the number of basis functions, which are needed for the
approximant to achieve the tolerance, cf. Section 2.3.2.

For simplicity, we make the following assumption.

Assumption 5.8. The initial value is given exactly, i.e.,

u0 := u(0).

Remark 5.9. The case where Assumption 5.8 does not hold, i.e., u0 ̸= u(0), can be
handled in a similar way. However, this only increases notational complexity.

Given an approximation scheme satisfying Assumption 5.6 and using Assumption
5.8, the abstract inexact variant of (5.6) is defined by

u0 := u(0),uk+1 := Eτ,k,k+1(uk) for k = 0, . . . , K − 1.


(5.10)
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In Theorem 5.21 below we show how to tune the tolerances (εk)k=0,...,K−1 in such a
way that the abstract inexact scheme (5.10) has the same qualitative properties as the
exact scheme (5.6). As in (5.8), we define

Eτ,j,k := Eτ,k−1,k ◦ . . . ◦ Eτ,j,j+1, j < k

I, j = k.

Consequently, the output of the inexact S-stage scheme (5.10) is given by

uk = Eτ,0,ku(0), k = 0, . . . , K.

Now, we are faced with the following problems. In practice, the Lipschitz constants
CLip
τ,j,k of Eτ,j,k, given in Assumption 5.4, might be hard to estimate directly and

are only available in very specific situations. As we shall see in Section 5.3, the
individual operators L−1

τ,iRτ,k,i, i = 1, . . . , S, are much easier to handle. Moreover, a
direct approximation scheme for Eτ,k,k+1, as required by Assumption 5.6, might also
be hard to get directly. Nevertheless, very often, one has convergent numerical schemes
for the individual operators L−1

τ,iRτ,k,i. Therefore, with these observations in mind, we
are now going to state the corresponding assumptions for these individual operators
and specify Assumption 5.4 in the following way.

Assumption 5.10. For k = 0, . . . , K − 1 and i = 1, . . . , S the operators

L−1
τ,iRτ,k,i : H× · · · × H  

i

→ H

are globally Lipschitz continuous with Lipschitz constants CLip
τ,k,(i).

Remark 5.11. Note that, on the one hand, Assumption 5.4 is slightly more general
than Assumption 5.10, since it is easy to see that a composition of non-Lipschitz
continuous operators can be Lipschitz continuous. On the other hand, Assumption 5.10
implies Assumption 5.4. This is a consequence of the fact, that, if we introduce the
constants

C ′
τ,k,(i) :=

S
l=i+1

(1 + CLip
τ,k,(l)) (5.11)

for k = 0, . . . , K − 1 and i = 0, . . . , S, we can estimate the Lipschitz constants CLip
τ,j,k of

Eτ,j,k as follows:

CLip
τ,j,k ≤

k−1
r=j


C ′
τ,r,(0) − 1


, 0 ≤ j ≤ k ≤ K. (5.12)

This is worked out in detail in the proof of Theorem 5.24 below.

The analogue to Assumption 5.6 is given by the following assumption.

Assumption 5.12. For all τ , k ∈ {0, . . . , K − 1}, i ∈ {1, . . . , S}, there exists a
numerical scheme that, for any prescribed tolerance εk,i > 0 and arbitrary v0, . . . , vi−1 ∈
H, yields an approximation [v]εk,i of

v := L−1
τ,iRτ,k,i(v0, . . . , vi−1),
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such that v − [v]εk,i

H ≤ εk,i

with a known upper bound Mτ,k,i(εk,i, v) < ∞ for the degrees of freedom needed to
achieve the prescribed accuracy εk,i.

Remark 5.13. We do not specify the numerical scheme [ · ]ε at this point. It might be
based on, e.g., a spectral method, an (adaptive) finite element scheme, or an adaptive
wavelet solver. The latter case are discussed in detail in Section 5.3. There, Mτ,k,i(ε, v)
is an upper bound for the number of elements of the spatial wavelet system that is
needed to achieve the desired tolerance.

For any numerical scheme satisfying Assumption 5.12, and given tolerances εk,i > 0,
k = 0, . . . , K − 1, i = 1, . . . , S, the corresponding inexact variant of (5.6) is defined by

u0 := u(0),

uk+1 :=
S
i=1

wk,i,
wk,i := L−1

τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1)

εk,i
, i = 1, . . . , S,

 (5.13)

for k = 0, . . . , K − 1. Note that (5.13) is consistent with (5.10), since it corresponds to
the specific choice

Eτ,k,k+1 : H → H,

v →→
S
i=1

wk,i(v),
wk,i(v) := L−1

τ,iRτ,k,i(v, wk,1(v), . . . , wk,i−1(v))

εk,i
, i = 1, . . . , S.


(5.14)

In Theorem 5.26 below we show how to tune the tolerances in the scheme (5.13) in
such a way that the approximation of u in H has the same qualitative properties as
the exact scheme (5.6).

Remark 5.14. For Eτ,k,k+1 as in (5.14) and arbitrary v ∈ H, the estimate

Eτ,k,k+1(v)− Eτ,k,k+1(v)

H ≤

S
i=1

C ′
τ,k,(i)εk,i (5.15)

holds with C ′
τ,k,(i) given by (5.11). Thus, for any prescribed tolerance εk, if Assumptions

5.10 and 5.12 are fulfilled, we can choose εk,i, i = 1, . . . , S, in such a way that the error

we make by applying Eτ,k,k+1 from (5.14) instead of Eτ,k,k+1 is bounded by εk, uniformly
in H. In this sense Assumption 5.12 implies Assumption 5.6. Detailed arguments for
the validity of estimate (5.15) are given in the proof of Theorem 5.24.

5.1.3 Controlling the error of the inexact schemes

We want to use the schemes described in the previous section to compute approximations
to a solution u : [0, T ] → H of a parabolic partial differential equation. The analysis
presented in this section is based on the assumption that the exact scheme (5.6)
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converges to u with a given approximation order δ. We then state conditions how to
tune the tolerances in the inexact schemes (5.10) and (5.13), so that they also converge
to u and inherit the approximation order δ of the exact scheme, see Theorem 5.21 and
Theorem 5.26. We start with a natural assumption.

Assumption 5.15. There exists a unique solution u : [0, T ] → H to the problem
under consideration, i.e., to (5.1).

Remark 5.16. Of course, the type of such solutions depends on the form of the specific
parabolic partial differential equation. We avoid, on purpose, a detailed discussion of
this aspect in this section and postpone further information to Remark 5.38.

The analysis presented in this section is based on the following central assumption.

Assumption 5.17. The exact scheme (5.6) converges to u(T ) with order δ > 0, i.e.,
for some constant Cexact > 0,u(T )− Eτ,0,K(u(0))


H ≤ Cexact τ

δ,

where the constant may depend on f , T , and u0, but not on τ .

Remark 5.18. Error estimates as in Assumption 5.17 are quite natural and hold very
often, see Section 5.1.4 and the references therein, in particular, Lubich, Ostermann
[126, Theorem 6.2], which we quote as Theorem 5.37 below.

At first, we give an estimate for the error propagation of the abstract inexact scheme
(5.10) measured in the norm of H.

Theorem 5.19. Suppose that Assumptions 5.4, 5.6, 5.8, and 5.15 hold. Let (uk)
K
k=0,

K ∈ N, be the output of the exact scheme (5.6), and let (uk)Kk=0 be the output of the
scheme (5.10) with given tolerances εk, k = 0, . . . , K − 1. Then, for all 0 ≤ k ≤ K,

∥u(tk)− uk∥H ≤ ∥u(tk)− uk∥H +
k−1
j=0

CLip
τ,j+1,k εj.

Proof. The triangle inequality yields

∥u(tk)− uk∥H ≤
u(tk)− uk


H + ∥uk − uk∥H,

so it remains to estimate the second term. Using u0 = u0 and writing uk − uk as a
telescopic sum, we get

uk − uk = Eτ,0,k(u0)− Eτ,1,k E0,1(u0)
+

Eτ,1,k E0,1(u0)− Eτ,2,k E0,2(u0)
. . .

+

Eτ,k−1,k

E0,k−1(u0)− E0,k(u0)
=

k−1
j=0


Eτ,j,k E0,j(u0)− Eτ,j+1,k

E0,j+1(u0)

.

Another application of the triangle inequality yields

∥uk − uk∥H ≤
k−1
j=0

Eτ,j,k E0,j(u0)− Eτ,j+1,k
E0,j+1(u0)


H.
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Due to the Lipschitz continuity of Eτ,j,k, cf. Assumption 5.4, each term in the sum can
be estimated from above byEτ,j,k E0,j(u0)− Eτ,j+1,k

E0,j+1(u0)

H

=
Eτ,j+1,kEτ,j,j+1

E0,j(u0)− Eτ,j+1,k
E0,j+1(u0)


H

≤ CLip
τ,j+1,k

Eτ,j,j+1
E0,j(u0)− E0,j+1(u0)


H. (5.16)

With E0,j(u0) = uj and using Assumption 5.6, we observeEτ,j,j+1
E0,j(u0)− E0,j+1(u0)


H =

Eτ,j,j+1(uj)− Ej,j+1(uj)H ≤ εj. □

Remark 5.20. In the description of our abstract setting we have chosen the spaces
H and G to be the same in all time steps. However, at the expense of a slightly more
involved notation, the result of Theorem 5.19 stays true with H replaced by variable
spaces Hk, k = 0, . . . , K−1, as long as we can guarantee the Lipschitz continuity of the
mappings Eτ,j,k : Hj → Hk with corresponding Lipschitz constants CLip

τ,j,k, 1 ≤ j ≤ k.

Based on Theorem 5.19 we are now able to state the conditions on the toler-
ances (εk)k=0,...,K−1 such that the abstract inexact scheme (5.10) also exhibits the
approximation order δ.

Theorem 5.21. Suppose that Assumptions 5.4, 5.6, 5.8, and 5.15 hold. Let Assumption
5.17 hold for some δ > 0. If we consider the case of inexact operator evaluations as
described in (5.10) and choose

0 < εk ≤ (CLip
τ,k+1,K)

−1 τ 1+δ,

k = 0, . . . , K − 1, then we getu(T )− Eτ,0,K(u(0))H ≤ (Cexact + T ) τ δ.

Proof. Applying Theorem 5.19, Assumption 5.17 and K = T/τ , we obtain

u(tK)− uKH ≤
u(tK)− uK


H +

K−1
k=0

CLip
τ,k+1,K εk

≤ Cexact τ
δ +

K−1
k=0

CLip
τ,k+1,K (CLip

τ,k+1,K)
−1 τ 1+δ

= Cexact τ
δ +Kτ 1+δ = (Cexact + T ) τ δ. □

One of the final goals of our analysis is to provide upper estimates for the overall
complexity of the resulting scheme. As a first step, in this direction, we provide a quite
abstract version, which is a direct consequence of Theorem 5.21.

Corollary 5.22. Suppose that the assumptions of Theorem 5.21 are satisfied. Choose

εk := (CLip
τ,k+1,K)

−1 τ 1+δ,

for k = 0, . . . , K − 1, then the realization of Eτ,0,K(u0) requires at most

Mτ,T (δ, (εk)) :=
K−1
k=0

Mτ,k(εk, Eτ,k,k+1(uk))
degrees of freedom.
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Remark 5.23. At this point, without specifying an approximation scheme and there-
fore without a concrete knowledge of Mτ,k(ε, ·), Corollary 5.22 might not look very
deep. Nevertheless, it is filled with content in Section 5.3, where we discuss the specific
case of adaptive wavelet solvers for which concrete estimates for Mτ,k(ε, ·) are available.

The next step is to play the same game for the inexact scheme (5.13). We start
again by controlling the error propagation.

Theorem 5.24. Suppose that Assumptions 5.8, 5.10, 5.12, and 5.15 hold. Let (uk)
K
k=0,

K ∈ N, be the output of the exact scheme (5.6), and let (uk)Kk=0 be the output of the
inexact scheme (5.13) with prescribed tolerances εk,i, k = 0, . . . , K − 1, i = 1, . . . , S.
Then, for all 0 ≤ k ≤ K,

u(tk)− ukH ≤
u(tk)− uk


H +

k−1
j=0


k−1
l=j+1

(C ′
τ,l,(0) − 1)


S
i=1

C ′
τ,j,(i)εj,i.

Proof. We just have to repeat the proof of Theorem 5.19 with the special choice (5.14)

for Eτ,k,k+1, and to include two modifications. First, instead of the exact Lipschitz
constants Cτ,j+1,k in (5.16), we can use their estimates (5.12) announced in Remark
5.11. Second, in the last step of the proof of Theorem 5.19, we may estimate the error
we make when using Eτ,j,j+1 instead of Eτ,j,j+1 as in (5.15) of Remark 5.14. Thus, to
finish the proof we have to show that the estimates (5.12) and (5.15) hold.

We start with (5.12). Note that it is enough to show that

CLip
τ,k,k+1 ≤ C ′

τ,k,(0) − 1, 0 ≤ k ≤ K − 1, (5.17)

since, obviously,

CLip
τ,j,k ≤

k−1
r=j

CLip
τ,r,r+1, 0 ≤ j ≤ k ≤ K.

Thus, let us prove that (5.17) is true, if Assumption 5.10 holds. To this end, we fix
k ∈ {0, . . . , K−1} as well as arbitrary u, v ∈ H. Using (5.7) and the triangle inequality,
we obtain

Eτ,k,k+1(u)− Eτ,k,k+1(v)

H ≤

S
i=1

∥wk,i(u)− wk,i(v)∥H. (5.18)

Applying Assumption 5.10, we get for each i ∈ {1, . . . , S}:

wk,i(u)− wk,i(v)

H ≤ CLip

τ,k,(i)


∥u− v∥H +

i−1
l=1

wk,l(u)− wk,l(v)

H


.

Hence, for r = 0, . . . , S − 1, we have

r+1
i=1

wk,i(u)− wk,i(v)

H ≤


1 + CLip

τ,k,(r+1)

 r
i=1

wk,i(u)− wk,i(v)

H

+ CLip
τ,k,(r+1)∥u− v∥H.

(5.19)
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By induction, it is easy to show that er+1 ≤ arer + br and e0 = 0 imply

er ≤
r
j=1

bj−1

r
l=j+1

al−1. (5.20)

In our situation, this fact leads to the estimate

S
i=1

wk,i(u)− wk,i(v)

H ≤

S
i=1

CLip
τ,k,(i)∥u− v∥H

S
l=i+1


1 + CLip

τ,k,(l)


,

since (5.19) holds for r = 0, . . . , S − 1. Furthermore, we can use the equality

S
i=1

CLip
τ,k,(i)

S
l=i+1

(1 + CLip
τ,k,(l)) =

S
i=1

(1 + CLip
τ,k,(i))− 1 = C ′

τ,k,(0) − 1

to obtain
S
i=1

wk,i(u)− wk,i(v)

H ≤


C ′
τ,k,(0) − 1


∥u− v∥H.

Together with (5.18), this proves (5.17).

Now, we show the estimate (5.15). Fix k ∈ {0, . . . , K − 1} and let Eτ,k,k+1 be given
by (5.14) with the prescribed tolerances εk,i, i = 1, . . . , S, from our assertion. Then,
for arbitrary v ∈ H, we have

Eτ,k,k+1(v)− Eτ,k,k+1(v)

H ≤

S
i=1

wk,i(v)− wk,i(v)H. (5.21)

Using the triangle inequality and Assumption 5.10 we obtain, for each i = 1, . . . , S,wk,i(v)− wk,i(v)H
=
L−1

τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))

−

L−1
τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))


εk,i


H

≤
L−1

τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))− L−1
τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))


H

+
L−1

τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))

−

L−1
τ,iRτ,k,i(v, wk,1(v), ..., wk,i−1(v))


εk,i


H

≤ CLip
τ,k,(i)

i−1
l=1

wk,l(v)− wk,l(v)H + εk,i.

Thus, for r = 0, . . . , S − 1,

r+1
i=1

wk,i(v)− wk,i(v)H ≤

1 + CLip

τ,k,(r+1)

 r
i=1

wk,i(v)− wk,i(v)H + εk,i.



5.1. Abstract description of Rothe’s method 91

Arguing as above, cf. (5.20), we get

S
i=1

wk,i(v)− wk,i(v)H ≤
S
i=1

εk,i

S
l=i+1

(1 + CLip
τ,k,(l)) =

S
i=1

C ′
τ,k,(i)εk,i.

Together with (5.21), this proves (5.15). □

Remark 5.25. By construction, Theorem 5.24 is slightly weaker than Theorem 5.19,
but from the practical point of view Theorem 5.24 is more realistic. As already outlined
in Section 5.1.2, in many cases, estimates for the Lipschitz constants according to
Assumption 5.10 and convergent numerical schemes according to Assumption 5.12 are
available.

Based on Theorem 5.24, we are able to state the conditions on the tolerances εk,i,
k = 0, . . . , K − 1, i = 1, . . . , S, such that the scheme (5.13) converges with the desired
order. We set

C ′′
τ,k :=

K−1
l=k+1


C ′
τ,l,(0) − 1


(5.22)

for k = 0, . . . , K − 1, where C ′
τ,l,(0) is given by (5.11).

Theorem 5.26. Suppose that Assumptions 5.8, 5.10, 5.12, and 5.15 hold. Let Assump-
tion 5.17 hold for some δ > 0. If we consider the case of inexact operator evaluations
as described in (5.13) and choose

0 < εk,i ≤
1

S


C ′′
τ,kC

′
τ,k,(i)

−1

τ 1+δ, (5.23)

then we get u(T )− uKH ≤ (Cexact + T ) τ δ. (5.24)

Proof. Applying Theorem 5.24, Assumption 5.17, and choosing εk,i as in (5.23), we
obtain u(tK)− uKH ≤

u(tK)− uK

H +

K−1
k=0

S
i=1

C ′′
τ,kC

′
τ,k,(i) εk,i

= (Cexact + T ) τ δ. □

Remark 5.27. Let us take a closer look at condition (5.23). The number of factors in
C ′′
τ,k is proportional to K − k, so that the tolerances are allowed to grow with k (if all

factors in C ′′
τ,k are greater than or equal to 1). In this case, this means that the stage

equations at earlier time steps have to be solved with higher accuracy compared to
those towards the end of the iteration. Furthermore, the number of factors in C ′

τ,k,(i) is
proportional to S − i, but independent of k. Consequently, also the early stages have
to be solved with higher accuracy compared to the later ones.

Remark 5.28. In Theorem 5.26, (5.23) is a specific choice for the tolerances εk,i,
k = 0, . . . , K − 1, i = 1, . . . , S. Essentially, it is an equilibrium strategy. However, also
alternative choices are possible. Indeed, an inspection of the proof shows that any
choice of εk,i satisfying

S
i=1

C ′
τ,k,(i)εk,i ≤ (C ′′

τ,k)
−1 τ 1+δ

would also be sufficient.
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Remark 5.29. In practical applications, it would be natural to use the additional
flexibility for the choice of εk,i as outlined in Remark 5.28 to minimize the overall
number of degrees of freedom of the method, given by

Mτ,T (δ) :=Mτ,T (δ, (εk,i)k,i) :=
K−1
k=0

S
i=1

Mτ,k,i(εk,i, wk,i), (5.25)

where for k = 0, . . . , K − 1, i = 1, . . . , S,

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1), (5.26)

and Mτ,k,i(εk,i, wk,i) as in Assumption 5.12. We omit the dependency on (εk,i)k,i when-
ever the tolerances are clear from the context. This leads to the abstract minimization
problem

min
(εk,i)k,i

K−1
k=0

S
i=1

Mτ,k,i(εk,i, wk,i) subject to
K−1
k=0

S
i=1

C ′′
τ,kC

′
τ,k,(i) εk,i ≤ Tτ δ.

We conclude this section with first applications of Theorem 5.21.

Example 5.30. Let us continue the example from the very beginning of this section
and consider Eq. (5.2) in the Gel’fand triple (H1

0 (O), L2(O), H−1(O)). We want to
interpret the linearly-implicit Euler scheme as an abstract one-stage method with
H = G = L2(O). To this end, let

∆D
O : D(∆D

O) ⊆ L2(O) → L2(O),

denote the Dirichlet Laplacian with domain

D(∆D
O) :=


u ∈ H1

0 (O) : ∆u :=
d
i=1

∂2

∂x2i
u ∈ L2(O)


,

which is defined as variational operator, see (A.8) in Appendix A.1.3, starting with the
symmetric, bounded, and elliptic bilinear form, cf. (A.6),

a : H1
0 (O)×H1

0 (O) → R

(u, v) →→ a(u, v) :=


O
⟨∇u,∇v⟩ dx.

(5.27)

In this example, we pick a smooth initial value u0 ∈ D(∆D
O), and consider a

continuously differentiable function

f : [0, T ]× L2(O) → L2(O),

which is Lipschitz continuous in the second variable, uniformly in t ∈ [0, T ]. We denote
the Lipschitz constant by C Lip,f . Observe that Assumption 5.15 is satisfied, since ∆D

O
generates a strongly continuous contraction semi-group on L2(O), cf. Appendix A.1.3,
and therefore Eq. (5.2) has a unique classical solution, see, e.g., Pazy [133, Theorems
6.1.5 and 6.1.7]. Thus, there exists a unique continuous function u : [0, T ] → L2(O),
continuously differentiable in (0, T ], taking only values in D(∆D

O), and fulfilling

u(0) = u0, as well as u′(t) = ∆D
Ou(t) + f(t, u(t)), for t ∈ (0, T ).
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In this setting, we can state the exact linearly-implicit Euler scheme (5.3) in the
form of an abstract one-stage scheme as follows: With H = G = L2(O) and τ = T/K,
we define the operators

L−1
τ,1 : L2(O) → L2(O)

v →→ L−1
τ,1v := (I − τ∆D

O)
−1v,

as well as

Rτ,k,1 : L2(O) → L2(O)

v →→ Rτ,k,1(v) := v + τf(tk, v),

for k = 0, . . . , K − 1. Then the exact linearly-implicit Euler scheme fits perfectly into
the abstract exact scheme (5.6) with S = 1.

Under our assumptions on the initial value u0 and the forcing term f , this scheme
converges to the exact solution of Eq. (5.2) with order δ = 1, i.e., there exists a constant
Cexact > 0, such that u(T )− uK


L2(O)

≤ Cexactτ
1,

see for instance Crouzeix, Thomée [39]. Therefore, Assumption 5.17 is satisfied.
Assumption 5.4 can be verified by the following argument: It is well known that

for any τ > 0, the operator L−1
τ,1 defined above is bounded with norm less than or

equal to one, cf. Appendix A.1.3. Because of the Lipschitz continuity of f , for each
k ∈ {0, . . . , K − 1}, the composition

Eτ,k,k+1 := L−1
τ,1Rτ,k,1 : L2(O) → L2(O)

is Lipschitz continuous with Lipschitz constant

CLip
τ,k,k+1 ≤ 1 + τC Lip,f .

Thus, if we define Eτ,j,k : L2(O) → L2(O) for 0 ≤ j ≤ k ≤ K as in (5.8), these
operators are Lipschitz continuous with Lipschitz constants

CLip
τ,j,k ≤ (1 + τC Lip,f )k−j,

i.e., Assumption 5.4 is fulfilled. Furthermore, these constants can be estimated uniformly
for all j, k and τ , since

1 ≤ CLip
τ,j,k ≤ (1 + τC Lip,f )K ≤ exp(TC Lip,f ).

Now, let us assume that we have an approximation Eτ,k,k+1(v), v ∈ L2(O), such that
Assumption 5.6 is satisfied. Then, we can apply the results from above to choose the
tolerances (εk)

K−1
k=0 , so that the output (uk)Kk=0 of the inexact scheme (5.10) converges

to the exact solution with the same order δ = 1. Indeed, if we choose

εk ≤
τ 2

exp(TC Lip,f )
for k = 0, . . . , K − 1,

we can conclude from Theorem 5.21 that the inexact linearly-implicit Euler-scheme
(5.10) converges to the exact solution of Eq. (5.2) with order δ = 1, i.e.,

∥u(T )− uK∥L2(O) ≤ (Cexact + T ) τ 1,

for all K ∈ N.
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Example 5.31. In the situation from Example 5.30, let us consider a specific form of
f : (0, T ]× L2(O) → L2(O), namely

(t, v) →→ f(t, v) := f̄(v),

where f̄ : R → R is continuously differentiable with bounded, strictly negative derivative,
i.e., there exists a constant B̄ > 0, so that

−B̄ <
d

dx
f̄(x) < 0 for all x ∈ R.

Then, for arbitrary v1, v2 ∈ L2(O) we get for any k = 0, . . . , K − 1,L−1
τ,1Rτ,k,1(v1)− L−1

τ,1Rτ,k,1(v2)

L2(O)

≤
Rτ,k,1(v1)−Rτ,k,1(v2)


L2(O)

=
v1 + τ f̄(v1)− (v2 + τ f̄(v2))


L2(O)

≤ sup
x∈R

1 + τ
d

dx
f̄(x)

∥v1 − v2∥L2(O).

Thus, if τ < 2/B̄, we have a contraction. For K ∈ N big enough, and εk ≤ τ 2,
k = 0, . . . , K − 1, we can argue as in Example 5.30 to show thatu(T )− uKL2(O)

≤ (Cexact + T ) τ 1,

i.e., the inexact linearly-implicit Euler scheme (5.10) again converges to the exact
solution of Eq. (5.2) with order δ = 1, but, in this example, for much larger values of
εk, thus, with far fewer degrees of freedom.

5.1.4 Applicability of linearly-implicit 1-step S-stage schemes

We substantiate our abstract convergence analysis to the case when Rothe’s method is
induced by a linearly-implicit S-stage time integrator. We want to compute solutions
u : (0, T ] → V to initial value problems of the form

u′(t) = F (t, u(t)), u(0) = u0, t ∈ [0, T ], (5.28)

where F : [0, T ] × V → V ∗ is a nonlinear right-hand side and u0 ∈ V is some initial
value. Consequently, we consider the Gel’fand triple setting (V, U, V ∗). Typical examples
are, for instance, semi-linear equations, i.e.,

F (t, u(t)) := Au(t) + f(t, u(t)).

In practical applications usually A is a differential operator and f a linear or nonlinear
drift term.

Essentially this section consists of two parts. First, we show that linearly-implicit
S-stage schemes fit nicely into the abstract setting as outlined in Section 5.1 with
H = V and G = V ∗, see Observation 5.33. In the second part, see Observation 5.41, we
analyze the case H = G = U , since error estimates for the discretization in time are
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often formulated in the norm of U and then a higher order of convergence might be
achieved, cf. Theorem 5.37.

In their general form, linearly-implicit S-stage methods are given by

uk+1 = uk + τ
S
i=1

miyk,i, k = 0, 1, . . . , K − 1, (5.29)

with S linear stage equations

(I − τγi,iJ)yk,i = F

tk + aiτ, uk + τ

i−1
j=1

ai,jyk,j


+

i−1
j=1

ci,jyk,j + τγig, (5.30)

and

ai :=
i−1
j=1

ai,j

j
l=1

γj,l
γj,j

, γi :=
i
l=1

γi,l,

for i = 1, . . . , S. By J and g we denote (approximations of) the partial derivatives
Fu(tk, uk) and Ft(tk, uk), respectively. This particular choice for ai ensures that J does
not enter the right-hand side of (5.30). The parameters ai,j, ci,j, γi,j and mi ̸= 0 have
to be suitably chosen according to the desired properties of the scheme.

Remark 5.32. If J = Fu(tk, uk) and g = Ft(tk, uk) are the exact derivatives, the
corresponding scheme is also known as a method of Rosenbrock type. However, this
specific choice of J and g is not needed to derive a convergent time discretization
scheme. In the larger class of W–methods, J and g are allowed to be approximations
to the exact Jacobians. Often one chooses g = 0, which is done at the price of a
significantly lower order of convergence and a substantially more complicated stability
analysis.

First, we consider the case H = V , G = V ∗. The scheme (5.29) immediately fits
into the abstract setting of Section 5.1, as long as we interpret the term uk as the
solution to an additional 0th stage equation given by the identity operator I on V .
Now, if we define

Lτ,i : V → V ∗,

v →→ (I − τγi,iJ)v
(5.31)

and use the right-hand side of the stage equations (5.30) to define the operators

Rτ,k,i : V × · · · × V → V ∗, (5.32)

(v0, . . . , vi−1) →→ τmi


F

tk + aiτ, v0 +

i−1
j=1

ai,j
mj

vj

+

i−1
j=1

ci,j
τmj

vj + τγig

,

for k = 0, . . . , K − 1 and i = 1, . . . , S, then the scheme (5.29) is related to the abstract
Rothe method (5.6) as follows.

Observation 5.33. For k = 0, . . . , K−1 and i = 1, . . . , S let Lτ,i and Rτ,k,i be defined
by (5.31) and (5.32), respectively, and set L−1

τ,0Rτ,k,0 := IV→V . Then the linearly-implicit
S-stage scheme (5.29) is an abstract (S + 1)-stage scheme in the sense of (5.6) with



96 Chapter 5. Convergence of the inexact linearly implicit Euler scheme

H = V , G = V ∗. We have

uk+1 :=
S
i=0

wk,i,

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1), i = 0, . . . , S,

for k = 0, . . . , K − 1.

Remark 5.34. Of course, since the operators Rτ,k,i are derived from the right-hand
side F , it might happen that they contain, e.g., nontrivial partial differential operators.
Nevertheless, even in this case these differential operators are only applied to the
current iterate and do not require the numerical solution of an operator equation, and
that is why the operators Rτ,k,i can still be interpreted as evaluation operators.

Let us now look at an example, where a simple one-stage scheme of the form (5.29)
with H = V and G = V ∗ is translated into a scheme with H = G = U .

Example 5.35. Let O ⊆ Rd be a bounded Lipschitz domain. Consider the heat
equation (5.2) in the Gel’fand triple (H1

0 (O), L2(O), H−1(O)) with

∆D
Ou+ f(t, u) =: F (t, u)

and F : [0, T ]×H1
0 (O) → H−1(O), where we assume again that f fulfills the conditions

from Example 5.30. The scheme (5.29) with

S = 1, γ1,1 = m1 = 1, J = ∆D
O : H1

0 (O) → H−1(O), and g = 0

leads to

uk+1 = uk + τ

I − τ∆D

O
−1

∆D
Ouk + f(tk, uk)


, k = 0, . . . , K − 1,

which fits perfectly into the setting of Section 5.1. It can be rewritten as a 2-stage
scheme of the form (5.6) with H = V and G = V ∗, cf. Observation 5.33. However, since
the Dirichlet-Laplacian is not bounded on L2(O), it can not be understood directly as
an S-stage scheme of the form (5.6) with H = G = L2(O), but a short computation
shows that it can be rewritten as

uk+1 =

I − τ∆D

O
−1

uk + τf(tk, uk)

, k = 0, . . . , K − 1.

Thus, if we start with u0 ∈ D(∆D
O), and consider the Dirichlet Laplacian as an

unbounded operator on L2(O), this scheme can be interpreted as an abstract one-stage
scheme of the form (5.6) with H = G = U , see Example 5.30. It is worth noting that
this result stays true for a wider class of operators A instead of ∆D

O, see Crouzeix,
Thomée [39] for details.

The next step is to discuss the case H = G = U in detail, where we restrict the
discussion to the case of semi-linear problems (5.28) with a right-hand side of the form

F : [0, T ]× V → V ∗, F (t, u) := A(t)u+ f(t, u), (5.33)

where A(t) is given for all t ∈ (0, T ) in the sense of Appendix A.1.3. Furthermore, we
focus on W -methods with the specific choice

J(tk) := A(tk), g := 0, (5.34)
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in (5.30). We restrict our analysis to these methods for the following reasons. First, the
linearly-implicit Euler scheme, which is the most important example, is a W -method
and not a Rosenbrock method. Second, the choice of J in (5.34) avoids the evaluation
of the Jacobian in each time step, which might be numerically costly.

In our setting, the overall convergence rate that can be expected is limited by the
convergence rate of the exact scheme, cf. Theorem 5.26 and Assumption 5.17. Therefore,
to obtain a reasonable result, it is clearly necessary to discuss the approximation prop-
erties of the exact S-stage scheme. To the best of our knowledge, the most far reaching
results concerning the convergence of S-stage W -methods for evolution problems have
been derived by Lubich, Ostermann [126]. For the reader’s convenience, we discuss
their results as far as it is needed for our purposes. To do so, we need the following
definitions and assumptions.

The method (5.29) is called A(θ)-stable if the related stability function

R(z) := 1 + zm⊤

I− (ci,j)

S
i,j=1 − z


diag(γi,i) + (ai,j)

S
i,j=1

−1

1,

where 1⊤ := (1, . . . , 1)⊤ and m⊤ := (m1, . . . ,mS)
⊤, fulfills

|R(z)| ≤ 1 for all z ∈ C with | arg(z)| ≥ π − θ.

If, additionally, the limit |R(∞)| := lim|z|→∞ |R(z)| < 1, then the method is called
strongly A(θ)-stable.

We say that the scheme (5.29) is of order p ∈ N, if the error of the method, when
applied to ordinary differential equations defined on open subsets of Rd with sufficiently
smooth right-hand sides, satisfies

∥u(tk)− uk∥Rd ≤ Cord τ
p,

uniformly on bounded time intervals.

Assumption 5.36. Let Coffset ≥ 0 and denote J(t) := A(t) + CoffsetI.

(i) For both instances G(t) := Fu(t, u(t)) and G(t) := J(t) it holds that G(t) : V →
V ∗, t ∈ [0, T ], is a uniformly bounded family of linear operators in L(V, V ∗). Each
G(t) is boundedly invertible and the family G(t)−1, t ∈ [0, T ], is uniformly bounded in
L(V ∗, V ).

(ii) There exist constants ϕ < π/2, C sect
i > 0, i = 1, 2 such that for all t ∈ [0, T ]

and z ∈ C with | arg(z)| ≤ π − ϕ the operators zI − Fu(t, u(t)) and zI − J(t) are
invertible, and their resolvents are bounded on V , i.e.,(zI − Fu(t, u(t)))

−1

L(V, V )

≤ C sect
1

|z|
,
(zI − J(t))−1


L(V, V )

≤ C sect
2

|z|
.

(iii) The mapping t →→ Fu(t, u(t)) ∈ L(V, V ∗) is sufficiently often differentiable on
[0, T ] and fulfills the Lipschitz conditionFu(t, u(t))− Fu(t

′, u(t′))

L(V, V ∗)

≤ CF
u |t− t′| for 0 ≤ t ≤ t′ ≤ T.

(iv) The following bounds hold uniformly for v varying in bounded subsets of V
and 0 ≤ t ≤ T :Ftu(t, v)wV ∗ ≤ CF

tu∥w∥V ,
Fuu(t, v)[w1, w2]


V ∗ ≤ CF

uu∥w1∥V ∥w2∥V .
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(v) There exists a splitting

fu(t, u(t)) =: S
(l)
k + S

(r)
k (5.35)

and constants µ < 1, β ≥ µ (positive), C
(l)
k (sufficiently small) as well as C

(r)
k,µ, Ck,β,

C
(l)
k , and C

(r)
k,β, such that

∥S(l)
k ∥L(V, V ∗) ≤ C

(l)
k ,S(r)

k
J−µ(tk)


L(V ∗, V ∗)

≤ C
(r)
k,µ, Jβ(tk)(Fu(tk, u(tk)))−βL(V, V )

≤ Ck,β, Jβ(tk)S(l)
k
J−β(tk)


L(V, V ∗)

≤ C
(l)
k ,S(r)

k
J−β(tk)


L(V ∗, V ∗)

≤ C
(r)
k,β.

With above definitions and assumptions at hand, we quote Lubich, Ostermann
[126] concerning the convergence of exactly evaluated S-stage W -methods.

Theorem 5.37 [126, Theorem 6.2]. Suppose that the solution u of Eq. (5.28), together
with (5.33), is unique and has sufficiently regular temporal derivatives. Let Assumption
5.36 hold. Suppose that the scheme (5.29) is a W -method of order p ≥ 2 that is strongly
A(θ)-stable with θ > ϕ and ϕ < π/2, cf. 5.36(ii). Let β ∈ [0, 1] be as in 5.36(v) such that
D(A(t)β) is independent of t (with uniformly equivalent norms), Aβu′ ∈ L2(0, T ;V ).
Then the error provided by the numerical solution uk, k = 0, . . . , K is bounded in τ ≤ τ0
by 

τ
K
k=0

∥uk − u(tk)∥2V
1/2

+ max
0≤k≤K

∥uk − u(tk)∥U

≤ C conv
1 τ 1+β


C conv

2 + C conv
1 C

(l)
k


C

(l)
k

 T

0

Aβu′(t)2
V
dt

1/2

+ C conv
1 τ 2

 T

0

Aβu′(t)2
V
dt+

 T

0

∥u′′(t)∥2V dt+

 T

0

∥u′′′(t)∥2V ∗ dt

1/2

.

(5.36)
The constants C conv

1 , C conv
2 , and τ0 depend on the concrete choice of the W -method,

the constants in the assumptions, and on T . The maximal time step size τ0 depends in
addition on the size of the integral terms in (5.36).

Remark 5.38. As in Theorem 5.37, and throughout this section, we assume that
a unique solution exists, i.e., Assumption 5.15 holds. This is the starting point for
our convergence analysis of inexact S-stage schemes. Thus, we do not discuss the
solvability and uniqueness theory for PDEs in detail. However, since in the forthcoming
examples we use the results from Lubich, Ostermann [126], let us briefly recall
which solution concept is used in the following standard situation: Consider a linear
operator A : V → V ∗ fulfilling the conditions from Appendix A.1.3, and assume that
F in (5.28) has the form F (t, u) := Au+ f(t). Then, a weak formulation of Eq. (5.28)
is: find

u ∈ C([0, T ];U) ∩ L2(0, T ;V ),
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such that

d

dt
⟨u(t), v⟩U = ⟨Au(t), v⟩V ∗×V + ⟨f(t), v⟩U for all v ∈ V, t ∈ (0, T ].

Before we continue our analysis, let us present a well-known W -method which
fulfills the assumptions of Theorem 5.37.

Example 5.39. For S = 2, we present the following scheme taken from Verwer
et al. [168], which is a strongly A(θ)-stable (θ = π/2) W -method of order p = 2. It is
sometimes called ROS2 in the literature and is given by

uk+1 = uk +
3

2
τyk,1 +

1

2
τyk,2,

where

yk,1 =


I − τ

1

2 +
√
2
A(tk)

−1 
A(tk)uk + f(tk, uk)


,

yk,2 =


I − τ

1

2 +
√
2
A(tk)

−1 
A(tk + τ)(uk + τyk,1) + f(tk + τ, uk + τyk,1)− 2yk,1


.

It fits into the setting of (5.29) with

m1 = 3/2, m2 = 1/2, γ1,1 = γ2,2 = (2 +
√
2)−1, a2,1 = 1, and c2,1 = −2.

For the remainder of this section, we restrict the setting of (5.33) to the special
case

F : [0, T ]× V → V ∗, F (t, u) := Au+ f(t), (5.37)

where A : V → V ∗ is given in the sense of Appendix A.1.3, and f : [0, T ] → U is a
continuously differentiable function. In this case, as already mentioned in Example 5.30,
Eq. (5.1.4) has a unique classical solution, provided u0 ∈ D(A;U), see e.g., Pazy [133,
Corollary 2.5]. It is worth noting that this unique solution is a also a weak solution in
the sense of Lubich, Ostermann [126], as addressed in Remark 5.38.

Using the abstract results from Section 5.1, we analyze the inexact S-stage method
corresponding to the W -method with

J := A and g := 0. (5.38)

Furthermore, we restrict the discussion to the case S = 2. This is not a major restriction
for the following reason. According to Theorem 5.37, the maximal convergence order of
W -methods is bounded by δ = 1+ β, where β ∈ [0, 1]. In Example 5.42 below, we show
that an F of the form (5.37) fulfills Assumption 5.36(v) with β = 1. If we additionally
impose the asserted regularity assumptions with β = 1, cf. (5.44) in Example 5.42,
then we can apply Theorem 5.37 with β = 1 to the ROS2-method given in Example
5.39 (which is a 2-stage method), and get the optimal order in this context.

The structure (5.37) of the right-hand side F in Eq. (5.1.4), allows the following
reformulation of the W -method with (J, g) as in (5.38).
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Lemma 5.40. Consider the S-stage W -method given by (5.29) with S = 2 and F and
(J, g) as in (5.37) and (5.38), respectively. Then, if γi,i ̸= 0, for i = 1, 2, we have

uk+1 =


1− m1

γ1,1
− m2

γ2,2


1− a2,1

γ1,1


uk +


τm1 − τm2

a2,1
γ2,2


vk,1 + τm2vk,2,

where

vk,1 = L−1
τ,1


1

τγ1,1
uk + f(tk)


,

vk,2 = L−1
τ,2


1

τγ2,2


1− a2,1

γ1,1


− c2,1
τγ1,1


uk +


a2,1
γ2,2

+ c2,1


vk,1 + f(tk + a2τ)


.

Proof. See Appendix B.5. □

As an immediate consequence of Lemma 5.40, we obtain the following observation.

Observation 5.41. If γi,i ≠ 0, for i = 1, 2, and m1γ2,2 ̸= m2a2,1, then the scheme
under consideration perfectly fits into the setting of Section 5.1 with H = G = U . It
can be written in the form of the abstract Rothe method (5.6). More precisely, we have

uk+1 =
2
i=0

wk,i,

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1), i = 0, 1, 2,

 (5.39)

with
L−1
τ,i : U → U,

v →→

I − τγi,iA

−1
v, for i = 1, 2,

(5.40)

as well as the evaluation operators

Rτ,k,1 : U → U,

v →→

m1

γ1,1
− m2a2,1
γ2,2γ1,1


v + τ


m1 −m2

a2,1
γ2,2


f(tk),

(5.41)

and
Rτ,k,2 : U × U → U,

(v0, v1) →→

m2

γ2,2


1− a2,1

γ1,1


− c2,1m2

γ1,1


v0

+
m2a2,1 +m2γ2,2c2,1
m1γ2,2 −m2a2,1

v1 + τm2f(tk + a2τ).

(5.42)

Furthermore, a 0th step given by

L−1
τ,0Rτ,k,0 : U → U,

v →→

1− m1

γ1,1
− m2

γ2,2


1− a2,1

γ1,1


v.

(5.43)

An easy computation, together with the fact that L−1
τ,1 and L−1

τ,2 are contractions on U ,
cf. Appendix A.1.3, yield the Lipschitz constant

CLip
τ,k,(1) =

m1

γ1,1
− m2a2,1
γ2,2γ1,1


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of L−1
τ,1Rτ,k,1. Simultaneously, the Lipschitz constant of L−1

τ,2Rτ,k,2 can be estimated as
follows:

CLip
τ,k,(2) ≤ max

m2

γ2,2


1− a2,1

γ1,1


− m2c2,1

γ1,1

 , m2a2,1 +m2γ2,2c2,1
m1γ2,2 −m2a2,1

 .
Note that both constants are independent of k and τ .

Example 5.42. As a first step towards the case of inexact operator evaluations we
need to check Assumption 5.36 for the applicability of Theorem 5.37 in the current
setting (5.37), (5.38). We begin by choosing Coffset = 0. As a consequence it holds thatJ = Fu(t, u(t)) = A, independently of t. Assumption 5.36(i) holds by the assumptions
on A, see Appendix A.1.3. This, together with the ellipticity assumption, given in
(A.6), already implies Assumption 5.36(ii), see Kato [108]. Further, A = Fu(t, v) is
independent of (t, v), and as a consequence Assumptions 5.36(iii) and (iv) hold with
CF
u = CF

tu = CF
uu = 0. Finally, since J is the exact Jacobian, it is possible to choose

S
(l)
k = S

(r)
k = 0 in (5.35), such that Assumption 5.36(v) holds with C

(l)
k = C

(r)
k,µ =

C
(r)
k,β = 0, Ck,β = 1 and β = 1. Concerning the W -method (5.29) we assume it to be of

order p ≥ 2 and strongly A(θ)-stable with θ > ϕ, where ϕ is as in Assumption 5.36(ii).
Therefore, e.g., the ROS2 method from Example 5.39 could be employed. If for the
solution of Eq. (5.1.4) with F as in (5.37) the regularity assumptions

Au′, u′′ ∈ L2(0, T ;V ), u′′′ ∈ L2(0, T ;V
∗) (5.44)

hold, then we can apply Theorem 5.37. Using C
(l)
k = 0 and β = 1, the convergence

result (5.36) reads as
τ

K
k=0

∥uk − u(tk)∥2V
1/2

+ max
0≤k≤K

∥uk − u(tk)∥U

≤ C conv
1 τ 2

 T

0

∥Au′(t)∥2V dt+

 T

0

∥u′′(t)∥2V dt+

 T

0

∥u′′′(t)∥2V ∗ dt

1/2

.

That means, the error measured in the norm ∥ · ∥U is of order δ = 2.

Example 5.43. We employ the method ROS2 from Example 5.39 to our general
convergence results of Theorem 5.26 for the case of inexact solution of the stage
equations. First, we present the method in its reformulation on H = G = U , as given
in Observation 5.41. Inserting the coefficients

m1 =
3

2
, m2 =

1

2
, γ1,1 = γ2,2 = (2 +

√
2)−1, a2,1 = 1, and c2,1 = −2

into (5.39), (5.40), (5.41), (5.42), and (5.43) yields

uk+1 =
2
i=0

wk,i,

wk,i := L−1
τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1), i = 0, 1, 2,

where the 0th stage vanishes, i.e., L−1
τ,0Rτ,k,0 ≡ 0,

L−1
τ,1 = L−1

τ,2 : U → U,

v →→

I − τ

1

2 +
√
2
A

−1

v,
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and the evaluation operators are given by

Rτ,k,1 : U → U,

v →→ −
√
2

2
v + τ

1−
√
2

2
f(tk),

and
Rτ,k,2 : U × U → U,

(v0, v1) →→ −
√
2

2
v0 +

√
2

1−
√
2
v1 + τ

1

2
f(tk + τ).

This scheme fits perfectly into the abstract Rothe method (5.6) with S = 2. By
Observation 5.41, we get the following estimates of the Lipschitz constants of L−1

τ,iRτ,k,i,
i = 1, 2:

CLip
τ,k,(1) =

√
2

2
, and CLip

τ,k,(2) ≤ max

√
2

2
,

−
√
2

1−
√
2


≤

√
2

2
.

As in Example 5.42, we assume that the exact solution u satisfies (5.44). Furthermore,
we assume we have a numerical scheme at hand, such that Assumption 5.12 is satisfied.
Then, by Theorem 5.37 and Theorem 5.26, if we choose the tolerances εk,i, for k =
0, . . . , K − 1 and i = 1, 2, so that they satisfy

0 < εk,i ≤
1

2
τ 3

1

2
+
√
2

K−k−1 2
l=i+1


1 +

√
2

2


,

the corresponding inexact 2-stage scheme (5.13) converges with order δ = 2. The
computational cost can be estimated by

K−1
k=0


Mτ,k,1(εk,1, wk,1) +Mτ,k,2(εk,2, wk,2)

with Mτ,k,i(·, ·) as in Assumption 5.12 and wk,i as in Remark 5.29.

Remark 5.44. For methods of Rosenbrock type, i.e., under the assumption that we
use exact Jacobians J and g, a result similar to Theorem 5.37 holds. In Lubich,
Ostermann [126, Theorem 5.2] it is shown that for methods of order p ≥ 3 and under
certain additional regularity assumptions on the exact solution u of Eq. (5.1.4) the
error can be bounded similar to (5.36) with rate τ 2+β, β ∈ [0, 1].

5.2 Application to stochastic evolution equations

We apply Rothe’s method to a class of semi-linear parabolic SPDEs and derive sufficient
conditions for convergence in the case of inexact operator evaluations. We use the
stochastic analogue of the linearly-implicit Euler scheme (5.3) in time, and the spatial
discretization in every time step is a (possibly nonlinear) black box-solver [ · ]ε, e.g., an
adaptive wavelet solver as described in Section 5.3.3. As before, we interpret parabolic
SPDEs as ordinary SDEs in a suitable function space U . We consider a separable real
Hilbert space U and the U -valued SDE

du(t) = Au(t)dt+ F (u(t))dt+B(u(t))dW (t), u(0) = u0, t ∈ [0, T ], (5.45)
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driven by a cylindrical Wiener process W = (W (t))t∈[0,T ] on the sequence space ℓ2.
Here, u = (u(t))t∈[0,T ] is a U -valued stochastic process,

A : D(A) ⊂ U → U

is a densely defined, strictly negative definite, self-adjoint, linear operator such that
zero belongs to the resolvent set, and A−1 is compact on U . The drift term

F : D((−A)ϱ) → D((−A)ϱ−ϱF )

and the diffusion term

B : D((−A)ϱ) → L(ℓ2, D((−A)ϱ−ϱB))

are Lipschitz continuous maps for suitable constants ϱ, ϱF , and ϱB. Details are given
in Section 5.2.1. Our setting is based on the one considered in Printems [137] where
the convergence of semi-discretizations in time is investigated. This is why, in contrast
to the previous sections, the forcing term F may not depend on the time variable t.
Compared with Printems [137] we allow the spatial regularity of the whole setting to
be ‘shifted’ in terms of the additional parameter ϱ. In concrete applications to parabolic
SPDEs, this leads to estimates of the discretization error in terms of the numerically
important energy norm, cf. Example 5.55, provided that the initial condition u0 and
the forcing terms F and B are sufficiently regular.

5.2.1 Setting and assumptions

Let us describe the setting for Eq. (5.45) systematically and in detail.

Assumption 5.45. The operator A : D(A) ⊂ U → U is linear, densely defined,
strictly negative definite, and self-adjoint. Zero belongs to the resolvent set of A and
the inverse A−1 : U → U is compact. There exists an ϱA > 0 such that (−A)−ϱA is a
trace class operator on U .

To simplify notation, the separable real Hilbert space U is always assumed to be
infinite-dimensional. It follows that A enjoys a spectral decomposition of the form

Av =

j∈N

λj⟨v, ej⟩Uej, v ∈ D(A),

where (ej)j∈N is an orthonormal basis of U consisting of eigenvectors of A with strictly
negative eigenvalues (λj)j∈N such that

0 > λ1 ≥ λ2 ≥ . . . ≥ λj → −∞, j → ∞.

For s ≥ 0 we set

D((−A)s) :=


v ∈ U :


j∈N

(−λj)s⟨v, ej⟩U 2 <∞


, (5.46)

(−A)sv :=

j∈N

(−λj)s⟨v, ej⟩Uej, v ∈ D((−A)s), (5.47)
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so that D((−A)s), endowed with the norm ∥ · ∥D((−A)s) := ∥(−A)s · ∥U , is a Hilbert
space. For s < 0 we define D((−A)s) as the completion of U with respect to the norm
∥ · ∥D((−A)s), defined on U by

∥v∥2D((−A)s) :=

j∈N

(−λj)s⟨v, ej⟩U 2.
Thus, D((−A)s) can be considered as a space of formal sums

v =

j∈N

v(j)ej such that

j∈N

(−λj)sv(j)2 <∞

with coefficients v(j) ∈ R. Generalizing (5.47), we obtain operators (−A)s, s ∈ R,
which map D((−A)r) isometrically onto D((−A)r−s) for all r ∈ R. Now, the trace class
condition in Assumption 5.45 can be reformulated as the requirement that there exists
an ϱA > 0 such that

Tr(−A)−ϱA =

j∈N

(−λj)−ϱA <∞. (5.48)

The Dirichlet-Laplacian from Example 5.30 fulfills Assumption 5.45.

Example 5.46. Let O ⊂ Rd be bounded and open, U := L2(O), and let A := ∆D
O be

the Dirichlet-Laplacian on O from Example 5.30, i.e.,

∆D
O : D(∆D

O) ⊆ L2(O) → L2(O)

with domain

D(∆D
O) :=


u ∈ H1

0 (O) : ∆u :=
d
i=1

∂2

∂x2i
u ∈ L2(O)


.

Note that this definition of the domain of the Dirichlet-Laplacian is consistent with
the definition of D((−∆D

O)
s) for s = 1 in (5.46), see e.g., Lindner [124, Remark 1.13]

for details. This linear operator fulfills Assumption 5.45 for all ϱA > d/2: It is densely
defined, self-adjoint, and strictly negative definite, since it has been introduced in
complete analogy to the variational operator A from Appendix A.1.3, starting with the
symmetric, bounded, and elliptic bilinear form (5.27). Furthermore, due to the Rellich-
Kondrachov theorem (see, e.g., Adams, Fournier [2, Chapter VI]), it possesses a
compact inverse (∆D

O)
−1 : L2(O) → L2(O). Moreover, Weyl’s law states that

−λj ≍ j2/d, j ∈ N,

see Birman, Solomyak [11], implying that (5.48) holds for all ϱA > d/2.

Concerning the forcing terms F and B of Eq. (5.45) we assume the following.

Assumption 5.47. For certain smoothness parameters

ϱ ≥ 0, ϱF < 1, and ϱB <
1− ϱA

2
(5.49)

(ϱA as in Assumption 5.45) F and B map D((−A)ϱ) to D((−A)ϱ−ϱF ) and D((−A)ϱ) to
L(ℓ2, D((−A)ϱ−ϱB)), respectively. Furthermore, they are globally Lipschitz continuous,
that is, there exist positive constants CLip

F and CLip
B such that

∥F (v)− F (w)∥D((−A)ϱ−ϱF ) ≤ CLip
F ∥v − w∥D((−A)ϱ)
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and

∥B(v)−B(w)∥L(ℓ2, D((−A)ϱ−ϱB )) ≤ CLip
B ∥v − w∥D((−A)ϱ)

for all v, w ∈ D((−A)ϱ).
Remark 5.48. The parameters ϱF and ϱB in Assumption 5.47 are allowed to be
negative.

Remark 5.49. Assumption 5.47 goes along the lines of Printems [137] (‘shifted’
by ϱ ≥ 0). The linear growth conditions [137, (3.5), (3.7)] follow from the (global)
Lipschitz continuity of the mappings F and B.

Finally, we describe the noise and the initial condition in Eq. (5.45). For the notion
of a normal filtration, see Appendix A.4.

Assumption 5.50. The noise W = (W (t))t∈[0,T ] is a cylindrical Wiener process on ℓ2
with respect to a normal filtration (Ft)t∈[0,T ]. The underlying probability space (Ω,F ,P)
is complete. For ϱ as in Assumption 5.47, the initial condition u0 in Eq. (5.45) belongs
to the space L2(Ω,F0,P;D((−A)ϱ)).

Let (eAt)t≥0 be the strongly continuous semi-group of contractions on U which is
generated by A. We call a mild solution to Eq. (5.45) a predictable process

u : Ω× [0, T ] → D((−A)ϱ)

with

sup
t∈[0,T ]

E

∥u(t)∥2D((−A)ϱ)


<∞ (5.50)

such that for every t ∈ [0, T ] the equality

u(t) = eAtu0 +

 t

0

eA(t−s)F (u(s))ds+

 t

0

eA(t−s)B(u(s))dW (s) (5.51)

holds P-almost surely in D((−A)ϱ). The first integral in (5.51) is a D((−A)ϱ)-valued
Bochner integral for P-almost every ω ∈ Ω, cf. Appendix A.2, while the second integral
is a D((−A)ϱ)-valued stochastic integral as defined in Appendix A.5.

Remark 5.51. Both integrals in (5.51) exist due to (5.50) and Assumptions 5.45, 5.47.
For example, considering the stochastic integral in (5.51), we know that it exists as an
element of L2(Ω,Ft,P;D((−A)ϱ)) if the integral t

0

E
eA(t−s)B(u(s))

2
LHS(ℓ2, D((−A)ϱ))


ds

is finite, where LHS(ℓ2, D((−A)ϱ)) denotes the space of Hilbert-Schmidt operators from
ℓ2 to D((−A)ϱ). The integrand of the last integral can be estimated from above by

Tr(−A)−ϱA
(−A)ϱB+ϱA/2eA(t−s)

2
L(D((−A)ϱ))E

(−A)−ϱBB(u(s))
2
L(ℓ2, D((−A)ϱ))


,

and we have (−A)ϱB+ϱA/2eA(t−s)
2
L(D((−A)ϱ)) ≤ C(t− s)−(2ϱB+ϱA)
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with 2ϱB + ϱA < 1. Moreover,

E
(−A)−ϱBB(u(s))

2
L(ℓ2, D((−A)ϱ))


≤ C


1 + sup

r∈[0,T ]
E

∥u(r)∥2D((−A)ϱ)


.

The last estimate follows from the global Lipschitz property of the mapping

B : D((−A)ϱ) → L(ℓ2, D((−A)ϱ−ϱB)).

Proposition 5.52. Let Assumptions 5.45, 5.47, and 5.50 be satisfied. Then, Eq. (5.45)
has a unique mild solution, i.e., there exists a unique (up to modifications) predictable
stochastic process u : Ω× [0, T ] → D((−A)ϱ) with supt∈[0,T ] E [∥u(t)∥2D((−A)ϱ)] <∞ such

that, for every t ∈ [0, T ], Eq. (5.51) holds P-almost surely.

Proof. For the case ϱ = 0 existence and uniqueness of a mild solution to Eq. (5.45)
has been given in Printems [137, Proposition 3.1]. The proof is a modification of the
proof of Da Prato, Zabczyk [40, Theorem 7.4] by using a contraction argument in
L∞([0, T ];L2(Ω;U)). For the general case ϱ ≥ 0 the existence and uniqueness can been
proven analogously, see Jentzen, Kloeden [102, Theorem 5.1]. Alternatively, the
case ϱ > 0 can be traced back to the case ϱ = 0. Suppose that Assumptions 5.45, 5.47,
and 5.50 hold for some ϱ > 0. We set

U := D((−A)ϱ), D( A) := D((−A)ϱ+1)

and consider the unbounded operator A on U given by

A : D( A) ⊂ U → U, v →→ Av := Av.

Note that A fulfills Assumption 5.45 with A, D(A), and U replaced by A, D( A) andU , respectively. Defining the spaces D((− A)s) analogously to the spaces D((−A)s),
we have D((−A)ϱ+s) = D((− A)s), s ∈ R, so that Assumptions 5.47 and 5.50 can be
reformulated with ϱ, D((−A)ϱ), D((−A)ϱ−ϱF ) and D((−A)ϱ−ϱB) replaced by ϱ := 0,

D((− A)ϱ), D((− A)ϱ−ϱF ) and D((− A)ϱ−ϱB), respectively. Thus, the equation

du(t) =
 Au(t) + F (u(t))


dt+B(u(t))dW (t), u(0) = u0, (5.52)

fits into the setting of [137], so that, by [137, Proposition 3.1], there exists a unique

mild solution u to Eq. (5.52). Since the operators eAt ∈ L(U) and e At ∈ L(U) coincide
on U ⊂ U , it is clear that any mild solution to Eq. (5.52) is a mild solution to Eq. (5.45)
and vice versa. □

Remark 5.53. If the initial condition u0 belongs to

Lp(Ω,F0,P;D((−A)ϱ)) ⊂ L2(Ω,F0,P;D((−A)ϱ))

for some p > 2, then the solution u even satisfies supt∈[0,T ] E [∥u(t)∥pD((−A)ϱ)] <∞. This
is a consequence of the Burkholder-Davis-Gundy inequalities, cf. Da Prato, Zabczyk
[40, Theorem 7.4] or Printems [137, Proposition 3.1]. Analogous improvements are
valid for the estimates in Propositions 5.60 and 5.65 below.
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In the following example we state concrete examples for stochastic PDEs that fit
into our setting.

Example 5.54. Let O ⊂ Rd be bounded and open, U := L2(O), and let A := ∆D
O be

the Dirichlet-Laplacian on O as described in Example 5.46. We consider examples for
stochastic PDEs in dimension d = 1 and d ≥ 2.

First, let O ⊂ R1 be one-dimensional and consider the problem

du(t, x) = ∆xu(t, x)dt+ g(u(t, x))dt+ h(u(t, x)) dW1(t, x),

(t, x) ∈ [0, T ]×O,
u(t, x) = 0, (t, x) ∈ [0, T ]× ∂O,
u(0, x) = u0(x), x ∈ O.

 (5.53)

where u0 ∈ L2(O), g : R → R is globally Lipschitz continuous, h : R → R is bounded
and globally Lipschitz continuous, and W1 = (W1(t))t∈[0,T ] is a Wiener process (with
respect to a normal filtration on a complete probability space) whose Cameron-Martin
space is some space of functions on O that is continuously embedded in L2(O), e.g.,
W1 is a cylindrical Wiener process on L2(O). Let (ψk)k∈N be an arbitrary orthonormal
basis of the Cameron-Martin space of W1 and set

F (v)(x) := g(v(x)), v ∈ L2(O), x ∈ O,
B(v)a


(x) := h(v(x))


k∈N

akψk(x), v ∈ L2(O), a = (ak)k∈N ∈ ℓ2, x ∈ O. (5.54)

Then, Eq. (5.45) is an abstract version of problem (5.53), and the mappings F and B are
globally Lipschitz continuous (and thus linearly growing) from D((−A)0) = L2(O) to
L2(O) and from D((−A)0) to L(ℓ2, L2(O)), respectively. It follows that Assumptions
5.45, 5.47, and 5.50 are satisfied for 1/2 < ϱA < 1 (compare Example 5.46) and
ϱ = ϱF = ϱB = 0.

Now, let O ⊂ Rd be d-dimensional, d ≥ 2, and consider the problem (5.53) where
u0 ∈ L2(O), g : R → R is globally Lipschitz continuous, h : R → R is constant (additive
noise), and W1 = (W1(t))t∈[0,T ] is a Wiener process whose Cameron-Martin space is
some space of functions on O that is continuously embedded in D((−A)−ϱB) for some
ϱB < 1/2− d/4. One easily sees that the mappings F and B, defined as in (5.54), are
globally Lipschitz continuous (and thus linearly growing) from D((−A)0) = L2(O)
to L2(O) and from D((−A)0) to L(ℓ2, D((−A)−ϱB)), respectively. It follows that
Assumptions 5.45, 5.47, and 5.50 are satisfied for ϱB < 1/2− d/4, d/2 < ϱA < 1− 2ϱB,
and ϱ = ϱF = 0. Alternatively, we could assume h to be sufficiently smooth and replace
h(u(t, x)) in problem (5.53) by, e.g., h

 
O k(x, y)u(y)dy


with a sufficiently smooth

kernel k : O ×O → R.
Example 5.55. As in Examples 5.46 and 5.54, let A := ∆D

O be the Dirichlet-Laplacian
on a bounded and open domain O ⊂ Rd. From the numerical point of view, we are
especially interested in stochastic PDEs of type (5.45) with ϱ = 1/2. In this case the
solution process takes values in the space D((−A)1/2) = H1

0 (O), and, in Proposition
5.60 and Theorem 5.63 below, we obtain estimates for the approximation error in terms
of the energy norm

∥v∥D((−∆D
O)1/2) = ⟨∇v,∇v⟩1/2L2(O), v ∈ H1

0 (O).
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The energy norm is crucial because error estimates for numerical solvers of elliptic
problems (which we want to apply in each time step) are usually expressed in terms
of this norm, cf. Section 5.3, where we consider adaptive wavelet solvers with optimal
convergence rates.

First, let O ⊂ R1 be one-dimensional, and consider the problem (5.53) where
u0 ∈ H1

0 (O), g : R → R is globally Lipschitz continuous, h : R → R is linear or
constant, and W1 = (W1(t))t∈[0,T ] is a Wiener process whose Cameron-Martin space
is some space of functions on O that is continuously embedded in D((−A)1/2−ϱB) for
some nonnegative ϱB < 1/4, so that W1 takes values in a bigger Hilbert space, say,
in D((−A)−1/4). (The embedding D((−A)1/2−ϱB) ↩→ D((−A)−1/4) is Hilbert-Schmidt
since (5.48) is fulfilled for ϱA > 1/2, compare Example 5.46.) Take an arbitrary
orthonormal basis {ψk}k∈N of the Cameron-Martin space of W1, and define F (v) and
B(v) for v ∈ H1

0 (O) analogously to (5.54), i.e.,

F (v)(x) := g(v(x)), v ∈ H1
0 (O), x ∈ O,

B(v)a

(x) := h(v(x))


k∈N

akψk(x), v ∈ H1
0 (O), a = (ak) ∈ ℓ2, x ∈ O. (5.55)

Then, Eq. (5.45) is an abstract version of problem (5.53), and the mappings

F : D((−A)1/2) = H1
0 (O) → D((−A)0) = L2(O)

and
B : D((−A)1/2) → L(ℓ2, D((−A)1/2−ϱB))

are globally Lipschitz continuous (and thus linearly growing). The mapping properties
of B follow from the inequalities

∥vw∥L2(O) ≤ ∥v∥H1
0 (O)∥w∥L2(O) and ∥vw∥H1

0 (O) ≤ C∥v∥H1
0 (O)∥w∥H1

0 (O),

which are a consequence of the Sobolev embeddingH1(O) ↩→ L∞(O) in dimension 1 and
interpolation since D((−A)1/2−ϱB) = [L2(O), D((−A)1/2)]1−2ϱB . Thus, Assumptions
5.45, 5.47, and 5.50 are fulfilled for ϱ = ϱF = 1/2, 0 ≤ ϱB < 1/4 and 1/2 < ϱA < 1−2ϱB.

Now, let O ⊂ Rd be d-dimensional, d ≥ 2, and consider problem (5.53) where
u0 ∈ H1

0 (O), g : R → R is globally Lipschitz continuous, h : R → R is constant, and
W1 = (W1(t))t∈[0,T ] is a Wiener process whose Cameron-Martin space is continuously
embedded in D((−A)1/2−ϱB) for some ϱB < 1/2− d/4. Then, the mappings F and B,
defined analogously to the one dimensional case, are globally Lipschitz continuous (and
thus linearly growing) from D((−A)1/2) = H1

0 (O) to D((−A)0) = L2(O) and from
D((−A)1/2) to L(ℓ2, D((−A)1/2−ϱB)) respectively. It follows that Assumptions 5.45,
5.47, and 5.50 are fulfilled for ϱ = ϱF = 1/2, ϱB < 1/2− d/4 and 1 < ϱA < 1− 2ϱB.

5.2.2 Semi-discretization in time

From now on, let Assumptions 5.45, 5.47, and 5.50 be satisfied.
For the time discretization of the (mild) solution u = (u(t))t∈[0,T ] to Eq. (5.45) we

use the stochastic analogue of the linearly-implicit Euler scheme (5.3), i.e., for K ∈ N
and

τ :=
T

K



5.2. Application to stochastic evolution equations 109

we consider discretizations (uk)
K
k=0 given by the initial condition u0 in Eq. (5.45) and

uk+1 = (I − τA)−1

uk + τF (uk) +

√
τB(uk)χk


,

k = 0, . . . , K − 1,


(5.56)

where

χk := χKk :=
1√
τ


W

tKk+1


−W


tKk

.

Note that each χk, k = 0, . . . , K − 1, is an Ftk+1
-measurable Gaussian white noise

on ℓ2, i.e., a linear isometry from ℓ2 to L2(Ω,Ftk+1
,P) such that for each a ∈ ℓ2 the

real valued random variable χk(a) is centered Gaussian with variance ∥a∥2ℓ2 . We write
χk(a) ∼ N (0, ∥a∥ℓ2) for short. Moreover, for each k = 0, . . . , K − 1, the sub-σ-algebra
of F generated by {χk(a) : a ∈ ℓ2} is independent of Ftk .

We explain in which way the scheme (5.56) has to be understood. Let G be
a separable real Hilbert space such that D((−A)ϱ−ϱB) is embedded into G via a
Hilbert-Schmidt embedding. Then, for all k = 0, . . . , K − 1 and for all Ftk-measurable,
D((−A)ϱ)-valued, square integrable random variables v ∈ L2(Ω,Ftk ,P;D((−A)ϱ)), the
term B(v)χk can be interpreted as an Ftk+1

-measurable, square integrable, G-valued
random variable in the sense

B(v)χk := L2(Ω,Ftk+1
,P;G)- lim

J→∞

J
j=1

χk(bj)B(v)bj (5.57)

where {bj}j∈N is an orthonormal basis of ℓ2. This definition is independent of the
specific choice of the orthonormal basis {bj}j∈N. Note that the stochastic independence
of {χk(a) : a ∈ ℓ2} and Ftk is important at this point. We have

E

∥B(v)χk∥2G


= E


∥B(v)∥2LHS(ℓ2, G)


, (5.58)

the last term being finite due to the Lipschitz continuity of B by Assumption 5.47
(see also Remark 5.49) and the fact that the embedding D((−A)ϱ−ϱB) ↩→ G is Hilbert-
Schmidt. Let us explicitly set

G := D((−A)ϱ−max{ϱF , ϱB+ϱA/2}).

The condition Tr(−A)−ϱA <∞ in Assumption 5.45 yields that the embedding

D((−A)ϱ−ϱB) ↩→ D((−A)ϱ−ϱB−ϱA/2)

is Hilbert-Schmidt, and the embedding

D((−A)ϱ−ϱB−ϱA/2) ↩→ D((−A)ϱ−max{ϱF , ϱB+ϱA/2})

is clearly continuous. Thus, we have indeed a Hilbert-Schmidt embedding

D((−A)ϱ−ϱB) ↩→ G.

For all k = 0, . . . , K − 1 and v ∈ L2(Ω,Ftk ,P;D((−A)ϱ)) we consider the term B(v)χk
as an element in the space

L2(Ω,Ftk+1
,P;G) = L2


Ω,Ftk+1

,P;D((−A)ϱ−max{ϱF , ϱB+ϱA/2})

.
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Next, due to the Lipschitz continuity of F by Assumption 5.47 (see also Remark 5.49),
we also know that for all v ∈ L2(Ω,Ftk ,P;D((−A)ϱ)) the term F (v) is an element
in L2(Ω,Ftk ,P;G). Finally, as a consequence of Lemma 5.58 below and the fact that
max{ϱF , ϱB + ϱA/2} < max{ϱF , 1/2} < 1 due to (5.49), the operator (I − τA)−1 is
continuous from G to D((−A)ϱ). It follows that the discretizations (uk)Kk=0 are uniquely
determined by (5.56) and that every uk belongs to the space L2(Ω,Ftk ,P;D((−A)ϱ)).
Remark 5.56. In practice, one has to truncate the noise decomposition (5.57) and
one may approximate B(v)χk ∈ L2(Ω,Ftk+1

,P;G) by a finite sum

J
j=1

χk(bj)B(v)bj ∈ L2(Ω,Ftk+1
,P;D((−A)ϱ−ϱB)), J ∈ N.

However, in Section 5.3 we are going to assume that the right hand sides of the elliptic
equations in each time step are given exactly, cf. Assumption 5.72(ii).

Now, we can embed the scheme (5.56) into the abstract setting of Section 5.1. For
measurability reasons the spaces H and G have to depend on the time step k, i.e., we
consider spaces H = Hk and G = Gk.
Observation 5.57. Let

Hk := L2(Ω,Ftk ,P;D((−A)ϱ)), k = 0, . . . , K,

Gk := L2(Ω,Ftk ,P;G), k = 1, . . . , K,

Rτ,k : Hk → Gk+1

v →→ Rτ,k(v) := v + τF (v) +
√
τB(v)χk, k = 0, . . . , K − 1,

L−1
τ : Gk → Hk

v →→ L−1
τ v := (I − τA)−1v, k = 1, . . . , K.


(5.59)

With these definitions at hand, the linearly-implicit Euler scheme (5.56) can be written in
the form of the abstract S-stage scheme (5.6) with S = 1, L−1

τ,1 := L−1
τ , and Rτ,k,1 := Rτ,k,

for k = 0, . . . , K − 1. We have

uk+1 = L−1
τ Rτ,k(uk), k = 0, . . . , K − 1. (5.60)

The fact that the spaces H = Hk and G = Gk depend on the time step k does not
cause any problems when using results from Section 5.1, as far as the corresponding
assumptions are fulfilled, see also Remark 5.20.

The following Lemma is helpful not only for the preceding argument but also for
estimates further down.

Lemma 5.58. Let τ > 0 and r ∈ R. The operator I − τA is a homeomorphism from
D((−A)r) to D((−A)r−1). For n ∈ N we have the following operator norm estimates
for (I − τA)−n, considered as an operator from D((−A)r−s) to D((−A)r), s ≤ 1:

∥(I − τA)−n∥L(D((−A)r−s), D((−A)r)) ≤


ss

1− s

n

(n−s)
(nτ)−s : 0 < s ≤ 1,

(−λ1)s(1− τλ1)
−n : s ≤ 0.

Proof. See [21, Lemma 4.13]. □
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Remark 5.59. Without additional assumptions on B or a truncation of the noise
decomposition (5.57), the operator Rτ,k cannot easily be traced back to a family of
operators

Rτ,k,ω : D((−A)ϱ) → G, ω ∈ Ω,

in the sense that for v ∈ Hk = L2(Ω,Ftk ,P;D((−A)ϱ)) the image Rτ,k(v) is determined
by

(Rτ,k(v))(ω) = Rτ,k,ω(v(ω)) for P-almost all ω ∈ Ω. (5.61)

However, this is possible, for instance, if the operator B(v) : ℓ2 → D((−A)ϱ−ϱB) for
all v ∈ D((−A)ϱ) has a continuous extension B(v) : U0 → D((−A)ϱ−ϱB) to a bigger
Hilbert space U0 such that ℓ2 is embedded into U0 via a Hilbert-Schmidt embedding.
Another instance where a representation of the form (5.61) is possible is the case where
the mapping B : D((−A)ϱ) → L(ℓ2, D((−A)ϱ−ϱB)) is constant, i.e., the case of additive
noise. We take a closer look at the latter case, writing B ∈ L(ℓ2, D((−A)ϱ−ϱB)) for
short. We fix a version of each of the P-almost surely determined, G-valued random
variables Bχk = BχKk , k = 0, . . . , K − 1, K ∈ N, and set

Rτ,k,ω(v) := v + F (v) + (Bχk)(ω), ω ∈ Ω, v ∈ D((−A)ϱ).

It is clear that (5.61) holds for all v ∈ L2(Ω,Ftk ,P;D((−A)ϱ)), and we have the
following alternative interpretation of the scheme (5.56) in the case of additive noise
within the abstract setting of Section 5.1.

H := D((−A)ϱ)),
G := G = D((−A)ϱ−max{ϱF , ϱB+ϱA/2}),

Rτ,k,ω : H → G
v →→ Rτ,k,ω(v) := v + τF (v) +

√
τ(Bχk)(ω),

L−1
τ : G → H

v →→ L−1
τ v := (I − τA)−1v,


(5.59ω)

k = 0, . . . , K − 1. With these definitions, the abstract scheme (5.6) in Section 5.1 with
S = 1 describes the stochastic scheme (5.56) in an ω-wise sense, ω ∈ Ω.

Now, we verify Assumption 5.17 for the scheme (5.56) in its abstract form (5.60),
see Remark 5.61 below. Therefore, we state an extension of the error estimate for the
linearly-implicit Euler scheme given in Printems [137].

Proposition 5.60. Let Assumptions 5.45, 5.47, and 5.50 be satisfied. Let (uk)
K
k=0

be the time discretization of the mild solution (u(t))t∈[0,T ] to Eq. (5.45), given by the
linearly-implicit Euler scheme (5.56). Then, for every

δ < min


1− ϱF ,

1− ϱA
2

− ϱB


,

we have for all 1 ≤ k ≤ K
E

∥u(tk)− uk∥2D((−A)ϱ)

 1/2
≤ C


τ δ +

1

k


E

∥u0∥2D((−A)ϱ)

 1/2
,

where the constant C > 0 depends only on δ, A, B, F , ϱA, ϱB, ϱF , and T .
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Proof. See [21, Proposition 4.15]. □

Remark 5.61. If k ≥ Kδ, δ > 0, then 1/k ≤ T−δτ δ, and we obtain
E

∥u(tk)− uk∥pD((−A)ϱ)

1/p
≤ Cexact τ

δ (5.62)

with a constant Cexact > 0 that depends only on δ, u0, A, B, F , ϱA, ϱB, ϱF , and T .
Since δ is always smaller than 1, it follows in particular that (5.62) holds for k = K.
Using the definitions in (5.59) and the notation introduced in Section 5.1 this means
that Assumption 5.17 is satisfied, i.e., we have

∥u(T )− Eτ,0,K(u0)∥HK
≤ Cexact τ

δ,

where the Euler scheme operator Eτ,0,K : H0 → HK is given by the composition

(L−1
τ Rτ,K−1) ◦ (L−1

τ Rτ,K−2) ◦ · · · ◦ (L−1
τ Rτ,0).

5.2.3 Discretization in time and space

So far we have verified the existence and uniqueness of a mild solution to Eq. (5.45)
as well as the convergence of the exactly evaluated Euler scheme (5.56) with rate
δ < min{1− ϱF , (1− ϱA)/2− ϱB}. We now turn to the corresponding inexact scheme
where the iterated stationary problems in (5.56), respectively (5.60), are solved only
approximately. As above, we are interested in how the tolerances for the spatial
approximation errors in each time step have to be chosen to achieve the same order of
convergence as for the exact scheme. Throughout this section we use the definitions
given in Observation 5.57 to interpret the setting described in the previous Sections
5.2.1 and 5.2.2 in terms of the abstract framework of Section 5.1.

As in Section 5.1, Assumption 5.12, we assume that we have a numerical scheme
[ · ]ε at hand which, for all w ∈ Hk, k = 0, . . . , K− 1, and for every prescribed tolerance
ε > 0, provides us with an approximation [v]ε of

v = L−1
τ Rτ,k(w)

such that

∥v − [v]ε∥Hk+1
=

E[∥v − [v]ε∥2D((−A)ϱ)]

1/2 ≤ ε.

We think of [v]ε as the result of an ω-wise application of some deterministic solver for
elliptic equations with error at most ε in D((−A)ϱ). For instance, an adaptive wavelet
solver as described in Section 5.3.3 with a proper evaluation of the nonlinearities F
and B, see, e.g., Cohen et al. [31], Dahmen et al. [61], Kappei [107], and an
adequate truncation of the noise.

Remark 5.62. Here, we concentrate on the convergence analysis and do not discuss
the number of degrees of freedom involved. However, all results from Section 5.1 that
do not involve assertions concerning the number of degrees of freedom remain valid in
the present setting with obvious modifications.
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Given prescribed tolerances εk, k = 0, . . . , K − 1, for the spatial approximation
errors in each time step, we consider the inexact version of the linearly-implicit Euler
scheme (5.60) u0 = u0,uk+1 = [L−1

τ Rτ,k(uk)]εk , k = 0, . . . , K − 1,


(5.63)

which is the analogue to scheme (5.13) from Section 5.1 with S = 1 and εk,1 := εk.
We already know from the considerations in Section 5.1 that sufficient conditions how
to tune the tolerances εk in the inexact scheme (5.63) to obtain the same order of
convergence as for the exact scheme (5.60) can be described in terms of the Lipschitz
constants CLip

τ,j,k of the operators

Eτ,j,k = (L−1
τ Rτ,k−1) ◦ (L−1

τ Rτ,k−2) ◦ · · · ◦ (L−1
τ Rτ,j) : Hj → Hk,

1 ≤ j ≤ k ≤ K, K ∈ N. In the present setting we are able to show that the constants
CLip
τ,j,k are bounded uniformly in j, k, and τ , see Lemma 5.64 below. Together with the

arguments in Section 5.1 and Proposition 5.60 this leads to the main result of this
section.

Theorem 5.63. Let Assumptions 5.45, 5.47, and 5.50 be satisfied. Let (u(t))t∈[0,T ] be
the unique mild solution to Eq. (5.45) and let

δ < min


1− ϱF ,

1− ϱA
2

− ϱB


.

If one chooses

εk ≤ τ 1+δ

for all k = 0, . . . , K − 1, K ∈ N, then the output uK of the inexact linearly-implicit
Euler scheme (5.63) converges to u(T ) with rate δ, i.e., we have

E[∥u(T )− uK∥2D((−A)ϱ)]
1/2 ≤ Cτ δ

with a constant C depending only on u0, δ, A, B, F , ϱA, ϱB, ϱF , and T .

The verification of Theorem 5.63 is based on the estimate of the Lipschitz constants
CLip
τ,j,k given in the following lemma.

Lemma 5.64. Let Assumptions 5.45, 5.47, and 5.50 be fulfilled. There exists a finite
constant C > 0, depending only on A, B, F , ϱA, ϱB, ϱF , and T , such that

CLip
τ,j,k ≤ C for all 1 ≤ j ≤ k ≤ K, K ∈ N.

Proof. See Appendix B.6. □

With this result at hand we obtain, as a next step towards the verification of
Theorem 5.63, the following error estimate for the inexact scheme.

Proposition 5.65. Let Assumptions 5.45, 5.47, and 5.50 be satisfied. Let
(u(t))t∈[0,T ] be the unique mild solution to Eq. (5.45). Let (uk)Kk=0 be the discretiza-
tion of (u(t))t∈[0,T ] in time and space given by the inexact linearly-implicit Euler scheme
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(5.63), where εk, k = 0, . . . , K−1, are prescribed tolerances for the spatial approximation
errors in each time step. Then, for every 1 ≤ k ≤ K, K ∈ N, and for every

δ < min


1− ϱF ,

1− ϱA
2

− ϱB


.

we have
E

∥u(tk)− uk∥2D((−A)ϱ)

 1/2
≤ C


τ δ +

1

k


E

∥u0∥2D((−A)ϱ)

 1/2
+

k−1
j=0

εj



with a constant C that depends only on δ, A, B, F , ϱA, ϱB, ϱF , and T .

Proof. Arguing as in the proof of Theorem 5.19, cf. Remark 5.20, we obtain the general
error estimate

E

∥u(tk)− uk∥2D((−A)ϱ)

 1/2
= ∥u(tk)− uk∥Hk

≤ ∥u(tk)− uk∥Hk
+

k−1
j=0

CLip
τ,j+1,kεj,

(5.64)

where (uk)
K
k=0 is the discretization of (u(t))t∈[0,T ] in time given by the exact linearly-

implicit Euler scheme (5.56), respectively (5.60). Note that the analogues to Assump-
tions 5.6 and 5.8 in Theorem 5.19 are fulfilled due to the construction of the inexact
scheme (5.63); the analogues to Assumptions 5.4 and 5.15 follow from Assumptions
5.45, 5.47, and 5.50 via Proposition 5.52 and Lemma 5.64. Alternatively, we could have
used a modified version of Theorem 5.24 with S = 1 and εj,1 := εj. The assertion of
the proposition follows directly from (5.64), Proposition 5.60, and Lemma 5.64. □

The proof of Theorem 5.63 is now straightforward, similar to the argumentation in
the proofs of Theorems 5.21 and 5.26.

Proof of Theorem 5.63. The assertion follows from Proposition 5.65 and the elementary
estimates

1

K
≤ 1

Kδ
= T−δτ δ and

K−1
j=0

εk ≤ Tτ δ. □

5.3 Spatial approximation by wavelet methods

We combine the analysis presented in Section 5.1 with complexity estimates for optimal
adaptive wavelet solvers in order to obtain complexity results for the inexact Rothe
method. In Section 5.1, we assumed, cf. Assumption 5.12, that we have a numerical solver
at hand which enables us to compute the solution of the subproblem arising at the k-th
time step and i-th stage up to a prescribed tolerance εk,i. In practice, this goal can be
achieved by employing adaptive discretization strategies with a posteriori error control
and guaranteed convergence properties. We conclude in Section 5.3.3 by discussing
adaptive strategies based on wavelets that are guaranteed to converge for a large range
of problems and are asymptotically optimal, i.e., cf. Section 2.3.2, they asymptotically
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realize the same convergence order as best N -term wavelet approximation and the
computational cost is proportional to the number of degrees of freedom N .

Again, we assume that the underlying domain O ⊆ Rd enables us to construct
biorthogonal wavelet bases Ψ = {ψµ : µ ∈ ∇} and Ψ = { ψµ : µ ∈ ∇}, which satisfy
the properties (W1)–(W6) stated in Section 2.3.3.

5.3.1 Complexity estimates using adaptive wavelet solvers

We derive estimates on the number of degrees of freedom within the wavelet setting,
which are needed to guarantee that the inexact scheme (5.13) converges with the
same order as the exact scheme (5.6). As it turns out, among other things, regularity
estimates for the exact solution in specific scales of Besov spaces are essential.

To keep the technicalities at a reasonable level, we focus our analysis on parabolic
evolution equations of the form

u′(t) = A(t)u(t) + f(t, u(t)), u(0) = u0, t ∈ (0, T ], (5.65)

in a Gel’fand triple setting (V, U, V ∗) with V = Hs
0(O), U = L2(O), and V ∗ = H−s(O)

for some s > 0, i.e., A : (0, T ]× V → V ∗ and f : (0, T ]× U → U . This way, we are in
the setting of Section 5.1 with H = Hν(O) for some smoothness parameter 0 ≤ ν ≤ s
and G ⊇ H−s(O). Recall that we assume 5.8 and 5.15, i.e., the initial value is given
exactly and (5.65) has a unique solution. Furthermore, we assume that an exact scheme
(5.6) is given which satisfies Assumption 5.10 on the global Lipschitz continuity of its
operators, as well as Assumption 5.17, i.e., it exhibits convergence order δ.

We split our analysis into two parts. In the first part, we concentrate on the (rather
theoretical) case, where the solutions of the stage equations are approximated by using
best N -term wavelet approximation; and the complexity estimate is given in Theorem
5.71. Unfortunately, best N -term wavelet approximation is not implementable in our
case, since the solutions to the subproblems are not known explicitly, so the N largest
wavelet coefficients cannot be extracted directly. Therefore, in the second part, we turn
our attention to the case where the stage equations are solved numerically by using an
implementable wavelet solver which is asymptotically optimal. In Theorem 5.73 we
show that the complexity estimate, derived in Theorem 5.71, immediately extends to
this case.

Now to the first part. We consider the inexact scheme (5.13) and apply best N -term
wavelet approximation in each stage as an approximation scheme in place of Assumption
5.12.

Remark 5.66. In the case that Ψ is an orthonormal wavelet basis, a best N -term
wavelet approximation to a function v can be derived by thresholding, i.e., selecting N
wavelet coefficients that are largest in absolute value in the wavelet decomposition of v.
In the biorthogonal case, thresholding yields a best N -term wavelet approximation up to
a constant, cf. Section 2.3.2. Therefore, in this sense best N -term wavelet approximation
is an approximation scheme that fulfills Assumption 5.12.

The error of best N -term wavelet approximation in Hν(O) is defined as

edetN,ν(v) := inf

v −
µ∈Λ

cµψµ


Hν(O)

: cµ ∈ R, Λ ⊂ ∇, #Λ = N


,
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cf. Section 2.3.2. Furthermore, recall that for v ∈ Bs
q(Lq(O)), where

1

q
=
s− ν

d
+

1

2
, 0 ≤ ν < s < s1, (5.66)

and under the assumptions (W1)–(W6), we have the estimate

edetN,Hν(O)(v) ≤ Cnlin ∥v∥Bs
q(Lq(O))N

− s−ν
d , (5.67)

with a constant Cnlin > 0, which does not depend on v or N , see Remark 2.26.
We apply Theorem 5.26 and derive an estimate for the number of degrees of freedom

needed to compute a solution up to a tolerance (Cexact + T ) τ δ.

Lemma 5.67. Suppose that (W1)–(W6) and Assumptions 5.8, 5.10, and 5.15 hold.
Let Assumption 5.17 hold for some δ > 0 and let the inexact scheme (5.13) be based
on best N-term wavelet approximation with the tolerances given by

εk,i :=

S C ′′

τ,kC
′
τ,k,(i)

−1
τ 1+δ (5.68)

with C ′
τ,k,(i) as in (5.11) and C ′′

τ,k as in (5.22). Let the exact solutions wk,i of the stage

equations in (5.13), be given by (5.26), and assume that all wk,i are contained in the
same Besov space Bs

q(Lq(O)) with (5.66). Then we have (5.24), i.e.,u(T )− uKHν(O)
≤ (Cexact + T ) τ δ,

and the number of the degrees of freedom Mτ,T (δ), given by (5.25), that are needed for
the computation of {uk}Kk=0 is bounded from above by

Mτ,T (δ) ≤
K−1
k=0

S
i=1


C

d
s−ν

nlin ∥ wk,i∥ d
s−ν

Bs
q(Lq(O))


S C ′′

τ,kC
′
τ,k,(i)

−1
τ 1+δ

− d
s−ν

,

with Cnlin as in (5.67), and where ⌈·⌉ denotes the upper Gauss-bracket.

Proof. We are in the setting of Theorem 5.26. By (5.67) we may, for each stage equation,
choose N ∈ N0 as the smallest possible integer, such that

edetN,Hν(O)( wk,i) ≤ Cnlin∥ wk,i∥Bs
q(Lq(O))N

− s−ν
d ≤ εk,i,

holds, that is

N =


Cnlin∥ wk,i∥Bs
q(Lq(O))

 d
s−ν

ε
− d

s−ν

k,i


.

Using (5.68) and summing over k and i completes the proof. □

Lemma 5.67 shows that we need estimates for the Besov norms of the exact solutionswk,i of the stage equations in (5.13). We can provide an estimate in the following setting.

Lemma 5.68. Suppose L−1
τ,i ∈ L(L2(O), Bs

q(Lq(O))) with (5.66), i = 1, . . . , S, and
assume that the operators Rτ,k,i : L2(O)×· · ·×L2(O) → L2(O) are Lipschitz continuous

with Lipschitz constants CLip,R
τ,k,(i) for all k = 0, . . . , K − 1, i = 1, . . . S. With C ′

τ,j,(i) as in

(5.11), we define

C Bes
k,i :=


i−1
l=1


1 + max{CLip

τ,k,(l), ∥L
−1
τ,lRτ,k,l(0, . . . , 0)∥L2(O)}


1 + ∥uk∥L2(O)


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+
i−1
l=1


1 + CLip

τ,k,(l)

 k−1
j=0

 k−1
n=j+1


C ′
τ,n,(0) − 1

 S
r=1

C ′
τ,j,(r)εj,r

+
i−1
j=1

εk,j

i−1
l=j+1


1 + CLip

τ,k,(l)


. (5.69)

Then all wk,i, as defined in (5.26), are contained in the same Besov space Bs
q(Lq(O))

with (5.66), and their norms can be estimated by

∥ wk,i∥Bs
q(Lq(O)) ≤ ∥L−1

τ,i ∥L(L2(O), Bs
q(Lq(O)))

×max

CLip,R
τ,k,(i), ∥Rτ,k,i(0, . . . , 0)∥L2(O)


C Bes
k,i .

(5.70)

Proof. The proof is similar to the one of Theorem 5.24. It is given in Appendix B.7. □

Remark 5.69. In Lemma 5.68, the assumption L−1
τ,i ∈ L(L2(O), Bs

q(Lq(O))) with
(5.66), and the Lipschitz continuity of Rτ,k,i imply Assumption 5.10 with H = Hν(O).
However, this Lipschitz constant may not be optimal.

Remark 5.70. If Rτ,k,i is bounded, then we can prove a similar result as in Lemma
5.68.

The combination of Lemma 5.67 and 5.68 yields the main result of the first part,
i.e., the complexity estimate for the case that best N -term wavelet approximations are
used for the solution of the stage equations.

Theorem 5.71. Let the assumptions of the Lemmas 5.67 and 5.68 be satisfied. With
C ′
τ,k,(i) as in (5.11) and C ′′

τ,k as in (5.22), we have

Mτ,T (δ)

≤
K−1
k=0

S
i=1


C

d
s−ν

nlin


max


CLip,R
τ,k,(i), ∥Rτ,k,i(0, . . . , 0)∥L2(O)


C Bes
k,i

 d
s−ν

×

∥L−1

τ,i ∥L(L2(O), Bs
q(Lq(O)))

 d
s−ν


S C ′′

τ,kC
′
τ,k,(i)

−1
τ 1+δ

− d
s−ν

.

(5.71)

As outlined above, the next step is to discuss the complexity of Rothe’s method
in the case that implementable numerical wavelet schemes instead of the best N -term
wavelet approximation are employed for the stage equations. We make the following
assumptions, cf. Assumption 5.12.

Assumption 5.72. (i) There exists an implementable asymptotically optimal numeri-
cal wavelet scheme for the stage equations arising in (5.13). That is, if the best N -term
wavelet approximation in Hν(O) converges with rate

N− s−ν
d , for some s > ν > 0,

then the scheme computes finite index sets Λl ⊂ ∇ and coefficients (cµ)µ∈Λl
withL−1

τ,i v −

µ∈Λl

cµψµ


Hν(O)

≤ C asym
τ,i,s,ν(L

−1
τ,i v) (#Λl)

− s−ν
d (5.72)
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for some constant C asym
τ,i,s,ν(L

−1
τ,i v). Further, for all ε > 0 there exists an l(ε) such thatL−1

τ,i v −

µ∈Λl

cµψµ


Hν(O)

≤ ε, l ≥ l(ε),

and such that

#Λl(ε) ≤ C asym
τ,i,s,ν(L

−1
τ,i v) ε

− d
s−ν .

(ii) The operators Rτ,k,i can be evaluated exactly.

In Section 5.3.3 below, we discuss a prototype of an adaptive wavelet method,
fulfilling Assumption 5.72(i), which has been derived in Cohen et al. [29]. It satisfies
an optimality estimate of the form (5.72) for the energy norm (2.31), Section 2.4.1.
However, since the energy norm is equivalent to some Sobolev norm ∥·∥Hν(O), cf. (2.32),
the estimate (5.72) also holds for this case. Moreover, it has been shown in Cohen
et al. [29] that the constant is of a specific form, which is similar to (5.67). Therefore,
we specify Assumption 5.72(i) in the following way.

Assumption 5.72. (iii) The constant C asym
τ,i,s,ν(L

−1
τ,i v) in (5.72) is of the form

C asym
τ,i,s,ν(L

−1
τ,i v) =

C asym
τ,i ∥L−1

τ,i v∥Bs
q(Lq(O)),

1

q
=
s− ν

d
+

1

2
,

with a constant C asym
τ,i independent of L−1

τ,i v.

In this setting we are immediately able to state our main result.

Theorem 5.73. Let the assumptions of the Lemmas 5.67 and 5.68 be satisfied. If
an optimal numerical wavelet scheme, that satisfies Assumption 5.72, is used for the
numerical solution of the stage equations, then the necessary number of degrees of
freedom can be estimated as in Theorem 5.71 with C asym

τ,i instead of Cnlin, i.e.,

Mτ,T (δ)

≤
K−1
k=0

S
i=1

 C asym
τ,i

 d
s−ν


max


CLip,R
τ,k,(i), ∥Rτ,k,i(0, . . . , 0)∥L2(O)


C Bes
k,i

 d
s−ν

×

∥L−1

τ,i ∥L(L2(O), Bs
q(Lq(O))

 d
s−ν


S C ′′

τ,kC
′
τ,k,(i)

−1
τ 1+δ

− d
s−ν

. (5.73)

Remark 5.74. The constant C asym
τ,i depends on the concrete design of the adaptive

method at hand. As an example this constant may depend on the design of the routines
APPLY, RHS, and COARSE, which are further discussed in Section 5.3.3 below.
Moreover, the value of C asym

τ,i depends on the equivalence constants of the energy norm
and the Sobolev norm in (2.32). Therefore this constant may grow as τ gets small.
However, this is an intrinsic problem and not caused by our approach.

At this point the question remains if and how the Besov norms of the exact
solutions of the stage equations wk,i, cf. (5.70) can be specified, and moreover how all
the constants involved in (5.71) and (5.73) can be estimated. Therefore, in the next
section we present a detailed study for the most important model problem, that is the
linearly-implicit Euler scheme applied to the heat equation.
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5.3.2 Complexity estimates for the heat equation

We conclude the discussion of Example 5.30, i.e., we substantiate the analysis further
and discuss regularity estimates for the heat equation. It turns out, that in this case
concrete Besov regularity estimates and an explicit estimate of the overall complexity
can be derived. Recall the heat equation

u′(t) = ∆u(t) + f(t, u(t)) on O, t ∈ (0, T ],

u(0) = u0 on O,
u = 0 on ∂O, t ∈ (0, T ],

on a bounded Lipschitz domain O ⊂ Rd, and consider the case H = G = U = L2(O).
The operators L−1

τ,1 and Rτ,k,1 are given by

L−1
τ,1 = (I − τ∆D

O)
−1 and Rτ,k,1 = I + τf(tk, ·). (5.74)

The first step is to estimate the Besov regularity of the solutions to the stage
equations. To this end, the mapping properties of L−1

τ,1 with respect to the adaptivity
scale of Besov spaces (5.66) have to be analyzed. Recall that for special cases bounds
for the Lipschitz constant of Rτ,k,1 : L2(O) → L2(O) have already been proven in
Section 5.1, i.e.,

CLip,R
τ,k,(1) ≤ 1 + τC Lip,f and CLip,R

τ,k,(1) ≤ sup
x∈R

1 + τ
d

dx
f̄(x)


are shown in Example 5.30 and Example 5.31, respectively. We set

C Lap
Bes,ε :=

(∆D
O)

−1

L(L2(O), B2−ε

1 (L1(O)))
(5.75)

and

C Lap
Sob :=

(∆D
O)

−1

L(L2(O), H3/2(O))

,

where (∆D
O)

−1 ∈ L(L2(O), B2−ε
1 (L1(O))) has been shown in Dahlke, DeVore [47],

see also Dahlke, Sickel [56, Corollary 1] for details. The fundamental result

(∆D
O)

−1 ∈ L(L2(O), H3/2(O))

has been shown in Jerison, Kenig [104, Theorem B].

Lemma 5.75. Let ε > 0. Then the operator (I − τ∆D
O)

−1 is contained in
L(L2(O), B2−ε

1 (L1(O))) and in L(L2(O), H3/2(O)). The respective operator norms
can be estimated by (I − τ∆D

O)
−1

L(L2(O), B2−ε

1 (L1(O)))
≤ 1

τ
C Lap

Bes,ε (5.76)

and (I − τ∆D
O)

−1

L(L2(O), H3/2(O))

≤ 1

τ
C Lap

Sob , (5.77)

respectively.
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Proof. We start by proving (5.76). The observation

(I − τ∆D
O)

−1 = (−τ∆D
O)

−1

I − (I − τ∆D

O)
−1


leads to(I − τ∆D
O)

−1

L(L2(O), B2−ε

1 (L1(O)))
≤ τ−1C Lap

Bes,ε

I − (I − τ∆D
O)

−1

L(L2(O))

;

and the last term can be bounded from above byI − (I − τ∆D
O)

−1
2
L(L2(O))

= sup
∥v∥L2(O)=1


k∈N

(1− (1− τλk)
−1)⟨v, ek⟩L2(O)

2
= sup

∥v∥L2(O)=1


k∈N

 −τλk
1− τλk

⟨v, ek⟩L2(O)

2
≤ sup

∥v∥L2(O)=1


k∈N

⟨v, ek⟩L2(O)

2
= 1.

The estimate (5.77) follows in a similar fashion. □

With Lemma 5.75 at hand, we are now ready to prove the desired mapping properties
for L−1

τ,1 : L2(O) → Bs
q(Lq(O)), where the scale (5.66) holds. We set

C Lap
inter(θ) := (C Lap

Sob )
1−θ (C Lap

Bes,ε)
θ, θ ∈ (0, 1). (5.78)

Lemma 5.76. Let ε > 0, d ≥ 2, ν ≥ 0. (i) For (2− ε)− d
2
< ν < 3

2
, that is

θ :=
3− 2ν

d− 1 + 2ε
∈ (0, 1), (5.79)

we have

(I − τ∆D
O)

−1 ∈ L(L2(O), Bs
q(Lq(O))) with s =

3d− 2ν + 4εν

2d− 2 + 4ε

and 1/q = (s− ν)/d+ 1/2. Its norm can be bounded in the following way(I − τ∆D
O)

−1

L(L2(O), Bs

q(Lq(O)))
≤ 1

τ
C Lap

inter(θ). (5.80)

(ii) For 0 ≤ ν ≤ (2− ε)− d
2
, we have

(I − τ∆D
O)

−1 ∈ L(L2(O), B2−ε
q (Lq(O))) with q =

2d

4− 2ε− 2ν + d
.

and its norm can be bounded by τ−1C Lap
Bes,ε as in (5.76).

Proof. (i) The proof is based on interpolation properties of Besov spaces. See Appendix
A.1.4 for the definition andBergh, Löfström [9] for details on interpolation properties
of Besov spaces. For real interpolation it holds that

Bs0
p0
(Lp0(O)), Bs1

p1
(Lp1(O))


θ̄,p

= Bs
p(Lp(O))
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Figure 5.1: DeVore-Triebel diagrams: Illustrating Lemma 5.76, d = 3

in the sense of equivalent (quasi-)norms, provided that the parameters satisfy

0 < θ̄ < 1, s = (1− θ̄)s0 + θ̄s1,
1

p
=

1− θ̄

p0
+

θ̄

p1
(5.81)

and s0, s1 ∈ R, 0 < p0, p1 <∞. Furthermore, if (5.81) holds, a linear operator T that
is contained in L(L2(O), Bs0

p0
(Lp0(O))) and L(L2(O), Bs1

p1
(Lp1(O))) is also an element

of L(L2(O), Bs
p(Lp(O))). Its norm can be estimated by

∥T ∥L(L2(O), Bs
p(Lp(O))) ≤ ∥T ∥1−θ̄L(L2(O), B

s0
p0

(Lp0 (O)))
∥T ∥θ̄L(L2(O), B

s1
p1

(Lp1 (O)))
.

Observe that H3/2(O) = B
3/2
2 (L2(O)) and that we can apply Lemma 5.75. We need

to determine the value for θ̄, such that the resulting interpolation space lies on the
nonlinear approximation line 1/p = (s− ν)/d+ 1/2. This is the case for

θ̄ =
3− 2ν

d− 1 + 2ε
,

cf. Figure 5.1(a).
(ii) See the proof of (5.76) in Lemma 5.75 together with the continuous embedding

of B2−ε
1 (L1(O)) ↩→ B2−ε

q (Lq(O)). In Figure 5.1(b) the upper bound is given by the
intersection of the lines s = (2− ε) and 1/p = (s− ν)/d+ 1/2. □

Remark 5.77. Our findings for the discretization of the heat equation by means of
the linearly-implicit Euler scheme carry over to discretizations with S > 1 stages. For
the case S = 2 the operators L−1

τ,i , Rτ,k,i, i = 1, 2, are provided by Observation 5.41 and
are similar to (5.74), e.g.,

L−1
τ,i = (I − τγi,i∆

D
O)

−1, i = 1, 2.

Lemma 5.76 can be reformulated with τγi,i replacing τ , and the Lipschitz continuity of
Rτ,k,i can be established directly as before.

We are now able to give specific bounds for the number of degrees of freedom needed
to compute the solution of the heat equation by means of the linearly-implicit Euler
scheme. Again, we split our analysis into two parts. First, we apply Theorem 5.26 to
the case when best N -term wavelet approximation (with respect to the Hν(O) norm,
ν ≥ 0) is used in each step of the inexact scheme (5.13).
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Theorem 5.78. Let the assumptions of the Lemmas 5.67, 5.68 and 5.76 hold. Let τ
be small enough such that

(1 + τCLip,f )−1τ
f(0)

L2(O)
≤ 1.

We set Csup,u := supt∈[0,T ] ∥u(t)∥L2(O) and

Cshort(τ) :=


CnlinC

Lap
Bes,ε (1 + τCLip,f ) : 0 ≤ ν ≤ (2− ε)− d

2
,

CnlinC
Lap
inter(θ) (1 + τCLip,f ) : (2− ε)− d

2
< ν < 3

2
, ν > 0,

where Cnlin, C
Lap
Bes,ε, C

Lap
inter, and θ are given by (5.67), (5.75), (5.78), and (5.79), respec-

tively. Let Cexact be given as in Assumption 5.17. In the setting of Example 5.30, if best
N-term wavelet approximation for the spatial approximation of the stage equations is
applied, then the number of degrees of freedom Mτ,T needed to compute a solution up to
a tolerance (Cexact + T ) τ can be estimated by

Mτ,T ≤ Tτ−1 +
1

2


2Cshort(τ)

 2
θ

T

2
θ
+1τ−( 2

θ
+1) + Clim(τ)τ

−( 6
θ
+1)

,

with

Clim(τ) :=

1 + Csup,u + Cexactτ

 2
θ τ

(1 + τCLip,f )
2
θ
Tτ−1 − 1

1− (1 + τCLip,f )−
2
θ

.

Furthermore,

lim
τ→0

Clim(τ) =
θ

2


1 + Csup,u

 2
θ (CLip,f )−1


exp


CLip,f 2

θ
T

− 1

.

Proof. We apply Theorem 5.71 with S = 1 and δ = 1. In the setting of Example 5.30
it holds that

CLip,R
τ,k,(1) = 1 + τCLip,f , C ′

τ,k,(1) = 1, C ′
τ,k,(0) = 2 + τCLip,f ,

independently of k. Thus (5.22) reads as C ′′
τ,k = (1 + τCLip,f )K−k−1 and (5.69) can be

simplified to
C Bes
k,1 = 1 + ∥uk∥L2(O) + k(CLip,R

τ,k,(1))
k−Kτ 2.

The norm of ∥uk∥L2(O) can be bounded as follows. By Assumption 5.17 we have

∥u(tk)− uk∥L2(O) ≤ Cexactτ

and as a consequence

∥uk∥L2(O) ≤
u(tk)− uk


L2(O)

+ ∥u(tk)∥L2(O) ≤ Cexactτ + Csup,u,

where Csup,u is finite since [0, T ] is compact and u is continuous. Using the bound (5.80)
of Lemma 5.76(i) in the estimate (5.71) we obtain

Mτ,T ≤
K−1
k=0


Cshort


(CLip,R

τ,k,(1))
K−kτ−3(1 + Csup,u + Cexactτ) + k

 2
θ



≤ K +
K−1
k=0


Cshort


(CLip,R

τ,k,(1))
K−kτ−3(1 + Csup,u + Cexactτ) + k

 2
θ
.
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An application of Jensen’s inequality and the geometric series formula yield

Mτ,T ≤ K + C
2
θ
short2

2
θ
−1

×
K−1
k=0


(CLip,R

τ,k,(1))
K−kτ−3(1 + Csup,u + Cexactτ)

 2
θ
+ k

2
θ


≤ K


1 +

1

2
(2CshortK)

2
θ


+ τ−

6
θ
1

2


2Cshort(1 + Csup,u + Cexactτ)

 2
θ (1 + τCLip,f )

2
θ
K − 1

1− (1 + τCLip,f )−
2
θ

.

The proof is finalized by the insertion of K = Tτ−1 and the observations

lim
τ→0

(1 + τCLip,f )
2
θ
Tτ−1 − 1 = exp


CLip,f 2

θ
T

− 1,

lim
τ→0

τ

1− (1 + τCLip,f )−
2
θ

=
1

2
θ
CLip,f

.

The case, where Lemma 5.76(ii) is applied to (5.71), is analogous. □

Now, we turn to the case when an optimal numerical wavelet scheme is used for
the numerical solution of the stage equations in (5.13). The wavelet schemes we have
in mind, cf. Section 5.3.3, are optimal with respect to the energy norm (2.31). In our
setting it is induced by Lτ and equivalent to the Sobolev norm H1(O). For this reason,
we now state the estimate for the number of degrees of freedom in the case of the
Sobolev norm H1(O), i.e., ν = 1.

Theorem 5.79. Let the assumptions of Theorem 5.78 hold, whereas we now employ
an implementable asymptotically optimal numerical scheme, such that Assumption 5.72
holds for ν = 1. Using C short(τ) := C asym

τ,1 C Lap
inter(θ) (1 + τCLip,f ), the number of degrees

of freedom needed to compute a solution up to a tolerance (Cexact+T ) τ can be estimated
by

Mτ,T ≤ Tτ−1 +
1

2


2 C short(τ)

 2
θ

T

2
θ
+1τ−( 2

θ
+1) + C lim(τ)τ

−( 6
θ
+1)

, (5.82)

with C lim(τ) :=

1 + Csup,u + Cexactτ

 2
θ τ

(1 + τCLip,f )
2
θ
Tτ−1 − 1

1− (1 + τCLip,f )−
2
θ

and

θ :=
1

d− 1 + 2ε
. (5.83)

Furthermore,

lim
τ→0

C lim(τ) =
θ

2


1 + Csup,u

 2
θ (CLip,f )−1


exp


CLip,f 2

θ
T


− 1


.

Remark 5.80. The calculations above shows that, among other things, the overall
complexity of the resulting scheme heavily depends on the Besov smoothness of the
exact solutions to the stage equations. Due to the Lipschitz character of the domain
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O, and since we are working in the L2-setting, this Besov regularity is limited by
s = 2. However, for more specific domains, e.g., polygonal domains in R2 and smoother
right-hand sides, much higher Besov smoothness can be achieved, see, e.g., Dahlke
[42], Dahlke et al. [52] for details.

Remark 5.81. Let us further discuss the asymptotic behavior of Mτ,T as τ tends to
zero. For simplicity, let us consider the case d = 2, then we can choose θ arbitrary close
to 1. Asymptotically optimal schemes are usually described in the energy norm induced
by the operator Lτ,1, with a constant analogous to (5.72) that is independent of Lτ,1,
see, e.g., Cohen et al. [29]. With the notation as (2.32), the following consideration
for the energy norm induced by Lτ,1

(I + τ∆D
O)u, u


L2(O)

≥ ⟨u, u⟩L2(O) + τ c2energy(∆
D
O) ∥u∥2H1(O),

implies cenergy(I + τ∆D
O) ≥ τ

1
2 cenergy(∆

D
O), so that we can conclude

C asym
τ,1 = C1 τ

− 1
2

with some constant C1 independent of τ . In this case (5.82) reads as

Mτ,T ≤ Tτ−1 +
1

2


2 C1C

Lap
inter(1 + τCLip,f )

2 
T 3τ−4 + C lim(τ)τ

−8+ε′

,

i.e., for small τ the last term is dominating and therefore the number of degrees of
freedom behaves as τ−8+ε′ .

5.3.3 Adaptive wavelet methods for elliptic problems

To complement our analysis, we summarize some basic ideas on how wavelets can be
used for the adaptive numerical treatment of elliptic operator equations. We consider
equations of the form

Au = f, (5.84)

where we assume A to be a boundedly invertible operator from some Hilbert space V
into its normed dual V ∗ in a Gel’fand triple setting (V, U, V ∗), cf. Section 2.4.1. In our
approach of the Rothe method, the operator A is one of the operators Lτ,i that arise in
the treatment of the elliptic stage equations. Therefore, in applications V is usually
one of the Sobolev spaces Hν(O) or Hν

0 (O).
Operator equations of the form (5.84) can be solved by a Galerkin scheme. One

defines an increasing sequence of finite dimensional approximation spaces

SΛl
:= span{ηµ : µ ∈ Λl},

where SΛl
⊂ SΛl+1

, and projects the problem onto these spaces, i.e.,

⟨AuΛl
, v⟩V ∗×V = ⟨f, v⟩V ∗×V for all v ∈ SΛl

.

To compute the current Galerkin approximation, one has to solve a linear system

GΛl
cΛl

= fΛl
,
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with GΛl
:= (⟨Aηµ′ , ηµ⟩V ∗×V )µ,µ′∈Λl

and (fΛ)µ := ⟨f, ηµ⟩V ∗×V , µ ∈ Λl.
Choosing the approximation spaces in an arbitrary way might result in a very

inefficient scheme. A natural idea is to use an adaptive scheme, i.e., an updating
strategy which essentially consists of the steps

solve − estimate − refine

GΛl
cΛl

= fΛl
∥u− uΛl

∥ = ? add functions
a posteriori if necessary.

error estimator

The second step is highly nontrivial since the exact solution u is unknown, so that
clever a posteriori error estimators are needed. An equally challenging task is to show
that the refinement strategy leads to a convergent scheme and to estimate its order of
convergence, if possible. It has been shown, see, e.g., Cohen et al. [29, 30], Dahlke
et al. [46], that both tasks can be solved if wavelets are used as basis functions for
the Galerkin scheme:

First, (5.84) is transformed into a discrete problem, cf. Section 2.4.1. From the
norm equivalences (W6) it is easy to see that (5.84) is equivalent to

Au = f,

where A := D−1⟨AΨ,Ψ⟩⊤V ∗×VD
−1, u := Dc, f := D−1⟨f,Ψ⟩⊤V ∗×V , and

D := (2−s|µ| δµ,µ′)µ,µ′∈∇. Computing a Galerkin approximation amounts to solving
the system

AΛuΛ = fΛ := f|Λ, AΛ := (2−s(|µ|+|ν|)⟨ψµ, Aψν⟩V ∗×V )µ,ν∈Λ.

Now, ellipticity and the norm equivalences (W6) yield

∥u− uΛ∥ℓ2(∇) ⪯ ∥A(u− uΛ)∥ℓ2(∇)

⪯ ∥f−A(uΛ)∥ℓ2(∇)

= ∥rΛ∥ℓ2(∇),

so that the ℓ2(∇)-norm of the residual rΛ serves as an a posteriori error estimator.
Each individual coefficient (rΛ)µ can be viewed as a local error indicator. Therefore, a
natural adaptive strategy would consist in catching the bulk of the residual, i.e., to
choose the new index set Λ such that

∥rΛ|Λ∥ℓ2(∇) ≥ ζ∥rΛ∥ℓ2(∇), for some ζ ∈ (0, 1).

However, such a scheme cannot be implemented since the residual involves infinitely
many coefficients. To transform this idea into an implementable scheme, the following
three subroutines can be utilized:

(S1) RHS[ε,g] → gε determines for g ∈ ℓ2(∇) a finitely supported gε ∈ ℓ2(∇) such
that

∥g − gε∥ℓ2(∇) ≤ ε.

(S2) APPLY[ε,G,v] → wε determines for G ∈ L(ℓ2(∇)) and for a finitely supported
v ∈ ℓ2(∇) a finitely supported wε ∈ ℓ2(∇) such that

∥Gv −wε∥ℓ2(∇) ≤ ε.
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(S3) COARSE[ε,v] → vε determines for a finitely supported v ∈ ℓ2(∇) a finitely
supported vε ∈ ℓ2(∇) with at most m significant coefficients, such that

∥v − vε∥ℓ2(∇) ≤ ε. (5.85)

Moreover, m ⪯ mmin holds, mmin being the minimal number of entries for which
(5.85) is valid.

Employing the key idea outlined above leads to the following adaptive algorithm.

Algorithm 5.82. SOLVE[ε,A, f ] → uε

Λ0 := ∅; rΛ0 := f ; ε0 := ∥f∥ℓ2(∇); j := 0; u0 := 0;
while εj > ε do

εj+1 := 2−(j+1)∥f∥ℓ2(∇); Λj,0 := Λj; uj,0 := uj;
for l = 1, . . . , L do

Compute Galerkin approximation uΛj,l−1
for Λj,l−1;

ComputerΛj,l−1
:= RHS[C tol

1 εj+1, f ]−APPLY[C tol
1 εj+1,A,uΛj,l−1

];
Compute smallest set Λj,l,
such that, ∥rΛj,l−1

|Λj,l
∥ℓ2(∇) ≥ 1

2
∥rΛj,l−1

∥ℓ2(∇);
end for
COARSE[C tol

2 εj+1,uΛj,L
] → (Λj+1,uj+1);

j := j + 1;
end while

In Cohen et al. [29], it has been shown that Algorithm 5.82 exactly fits into
the setting of Assumption 5.72(i). Let us denote by Λε ⊂ ∇ the final index set when
Algorithm 5.82 terminates (the method of updating εj ensures termination). Then
Algorithm 5.82 has the properties:

(P1) Algorithm 5.82 is guaranteed to converge for a huge class of problems, in particular
for the differential operators Lτ,i that we have in mind. Denoting with Hν(O)
the Sobolev space according to (2.32), we haveu− 

µ∈Λε

cµψµ


Hν(O)

≤ C(u)ε.

(P2) Algorithm 5.82 is asymptotically optimal in the sense of Assumption 5.72, i.e.,
with 1/q = (s− ν)/d+ 1/2, we haveu− 

µ∈Λε

cµψµ


Hν(O)

≤ Casym ∥u∥Bs
q(Lq(O))(#Λε)

−(s−ν)/d.

(P3) Additionally, the number of arithmetic operations in Algorithm 5.82 stays propor-
tional to the number of unknowns, i.e., the number of floating point operations
needed to compute uε is bounded by a constant times #suppuε.

Remark 5.83. In Algorithm 5.82, C tol
1 and C tol

2 denote some suitably chosen constants
whose concrete values depend on the problem under consideration. Also, the parameter
L has to be chosen in a suitable way. We refer again to Cohen et al. [29] for details.
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Remark 5.84. In the numerical realization of the three fundamental subroutines, the
routine COARSE consists of a thresholding step, whereas RHS essentially requires
the computation of a best N -term approximation. The most complicated building
block is APPLY. Let us just mention that its existence can be established for elliptic
operators with Schwartz kernels by using the cancellation property of wavelets. For
isotropic wavelets, we refer to Cohen et al. [29, 30], Stevenson [150], and to
Dijkema et al. [69] for the anisotropic case using L2-orthogonal wavelets.

Remark 5.85. In Gantumur et al. [81] it has been shown that a coarsing routine
is not necessary to proof optimality. However, since the implementation of a COARSE
routine is usually simple, it is often beneficial for the performance of numerical experi-
ments to remove small coefficients.





Appendix

A Fundamentals

This appendix outlines the fundamental structures useful to support the understanding
of the subject of this thesis. In order to provide a concise overview of the considered
setting we omit many details and instead refer to the relevant literature on the respective
topics.

Appendix A.1 states the specific functional analytical setting considered in this thesis.
In Appendix A.2 we give the definition of the employed spaces of integrable mappings.
An introduction to the concept of distributions generalizing the notion of functions
is given in Appendix A.3. Appendix A.4 states the fundamental probabilistic setting
and terms which are used, while Appendix A.5 gives an overview of the construction
of Hilbert space-valued stochastic integrals with respect to a fixed cylindrical Wiener
process.

A.1 Fundamental spaces

We state the specific functional analytical setting considered in this thesis.
Let (G, ∥ · ∥G) be a normed vector space over the field R. The algebraic dual space,

i.e., the set of all linear functionals x′ : G → R is denoted by G′. It itself is a vector
space over R when equipped with the arithmetic operations (x′+ y′)(x) := x′(x)+ y′(x)
and (cx′)(x) := x′(cx), where x′, y′ ∈ G′, x ∈ G, c ∈ R. The mapping

⟨·, ·⟩G′×G : G′ ×G→ R,
x′ × x →→ x′(x),

is called dual pairing. Let (G1, ∥·∥G1) and (G2, ∥·∥G2) be two normed vector spaces with
the underlying metric being induced by the norm. The adjoint operator T ′ : G′

2 → G′
1

of a linear operator T : G1 → G2 is uniquely given by

⟨T ′y′, x⟩G′
1×G1

= ⟨y′, Tx⟩G′
2×G2

, x ∈ G1, y
′ ∈ G′

2,

see, e.g., Rudin [142, Theorem 4.10]. The space L(G1, G2) of all linear and continuous
operators T : G1 → G2 is itself a normed vector space over R together with

∥T∥L(G1,G2) := sup
x∈G1, ∥x∥G1

≤1

∥Tx∥G2 , T ∈ L(G1, G2). (A.1)

The space L(G1,R) := G∗
1 is called topological dual space of G1, i.e., it consists of all

linear and continuous functionals on G1. In this case the adjoint of a T ∈ L(G1, G2) is
also denoted by T ∗ in place of T ′. For G1 = G2 = G, we write L(G) := L(G,G).

129
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A real Banach space (G, ∥ · ∥G) is a normed vector space over R, which is com-
plete with respect to the metric induced by the norm – usually the canonical metric
dist(x, y) = ∥x− y∥G, x, y ∈ G. It is called separabel if it contains a countable dense
subset. A real Hilbert space is an inner product vector space (U, ⟨·, ·⟩U ) over R which is
complete with respect to the metric induced by the inner product ⟨·, ·⟩U : U × U → R.
It is a Banach space with respect to the norm ∥ · ∥U :=


⟨·, ·⟩U , which resembles in

many ways the Euclidean norm in Rd, e.g., on can define orthogonality of two functions

f ⊥ g :⇐⇒ ⟨f, g⟩U = 0, f, g ∈ U,

see, e.g., Schilling [145] for more details on inner product and Hilbert spaces.

Remark. The space (L(G1, G2), ∥·∥L(G1,G2)) is a Banach space if (G2, ∥·∥G2) is a Banach
space, see, e.g., Rudin [142, Theorem 4.1]. Therefore, a topological dual space is always
a Banach space.

Remark. In the case that only the generalized triangle inequality holds, i.e.,

∥x1 + x2∥G ≤ C (∥x1∥G + ∥x2∥G) , x1, x2 ∈ G, for some C ≥ 1,

we call ∥ · ∥G a quasi-norm and speak of quasi-Banach spaces. In contrast to Banach
spaces, quasi-Banach spaces in general are not locally convex, the quasi-norm may not
be continuous, and the topological dual space may be empty. Nevertheless, certain
quasi-Banach spaces are essential in the study of nonlinear approximation methods.
Therefore, the quasi-Banach spaces considered in this thesis satisfy

∥x1 + x2∥µG ≤ ∥x1∥µG + ∥x2∥µG, x1, x2 ∈ G, for some µ > 0,

which implies the generalized triangle inequality, and are always embedded in some
Banach space in such a way that their dual spaces are rich enough.

Especially comprehensive is the study of the topological dual spaces of Hilbert
spaces (U, ⟨·, ·⟩U ), since U∗ can be identified with U by the Riesz isometric isomorphism

Φiso : U → U∗,

u →→ ⟨u, ·⟩U ,
(A.2)

i.e., in particular the dual pairing coincides with the inner product. We refer to, e.g.,
Yosida [177, Section III.6] for details.

A.1.1 Frames and Riesz bases of separable Hilbert spaces

A countable set {ek}k∈I ⊂ U is by definition a frame of a separable Hilbert space
(U, ⟨·, ·⟩U), if and only if there exist positive constants cs, Cs such that

cs∥u∥2U ≤

k∈I

|⟨u, ek⟩U |2 ≤ Cs∥u∥2U , u ∈ U.

A frame is called Riesz basis if its vectors are linearly independent. In this case

cs

k∈I

|ak|2 ≤

k∈I

akek

2
U
≤ Cs


k∈I

|ak|2 (A.3)
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holds for all sequences (ak)k∈I ∈ ℓ2(I) and clos(span ek) = U . Frames allow for stable
analysis and synthesis representations of vectors. An analysis representation of an
element u ∈ U is given by the frame analysis operator

Φframe : U → ℓ2(I),
u →→ (⟨u, ek⟩U)k∈I ,

resulting in a sequence of frame coefficients of u. The adjoint Φ∗
frame : ℓ2(I) → U of

Φframe, note (A.2), is the frame synthesis operator since

Φ∗
frame(ak)k∈I =


k∈I

akek, (ak)k∈I ∈ ℓ2(I).

The reconstruction of an element u ∈ U from its frame coefficients is computed with
the help of a dual frame {ek}k∈I . Such a dual frame can be defined by

ek := (Φ∗
frameΦframe)

−1ek, k ∈ I, (A.4)

so that we obtain the stable decompositions

u =

k∈I

⟨u, ek⟩ek =
k∈I

⟨u, ek⟩ek
of an u ∈ U , see Mallat [128, Theorem 5.5]. If {ek}k∈I is a Riesz basis, then its dual
frame {ek}k∈I , defined by (A.4), is also linearly independent and we have

⟨ek, ek′⟩U = δk,k′ ,

where δk,k′ is the Kronecker delta, i.e., these dual Riesz bases are biorthogonal families
of vectors. For a detailed discussion of frames, we refer to Mallat [128, Chapter 5].

A.1.2 Trace-class and Hilbert-Schmidt operators

Let (U1, ⟨·, ·⟩U1) and (U2, ⟨·, ·⟩U2) be two separable Hilbert spaces. We call a linear and
continuous operator T ∈ L(U1, U2) nuclear or of trace-classtrace-class operator if there
exist three sequences: (fn)n∈N ⊂ U1 which is orthonormal with respect to ⟨·, ·⟩U1 , i.e.,
for all n,m ∈ N we have ⟨fn, fm⟩U1 = δn,m, and (gn)n∈N ⊂ U2 which is orthonormal
with respect to ⟨·, ·⟩U2 , as well as (an)n∈N ⊂ R+ with

∞
n=1 |an| <∞ such that

T =
∞
n=1

an⟨fn, ·⟩U1 gn.

The trace of T is well-defined as Tr(T ) :=
∞

n=1 |an|. A trace-class operator is of
finite rank if there exists a finite number N ∈ N such that for all n ≥ N we have
an = 0. Let {en}n∈N be an orthonormal basis of U1. An operator T ∈ L(U1, U2) is called
Hilbert-Schmidt if

∞
n=1 ∥Ten∥2U2

<∞. The space of all Hilbert-Schmidt operators is
denoted by LHS(U1, U2) and

∥T∥HS :=


∞
n=1

∥Ten∥U2

1/2

(A.5)
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defines a norm on LHS(U1, U2), in particular since (A.5) is independent of the choice of
{en}n∈N. The space LHS(U1, U2) contains all trace-class operators and the space of all
finite rank operators is dense in LHS(U1, U2). An inner product on LHS(U1, U2) can be
defined by

⟨T1, T2⟩HS :=
∞
n=1

⟨T1en, T2en⟩U2 , T1, T2 ∈ LHS(U1, U2),

in particular, (LHS(U1, U2), ⟨·, ·⟩HS) is a separable Hilbert space. For details, see, e.g.,
Prévôt, Röckner [135, Appendix B].

A.1.3 Gel’fand triple and variational operators

Let (U, ⟨·, ·⟩U ) be a separable real Hilbert space and let V be a topological vector space
densely embedded in U via a continuous inclusion map j : V ↩→ U . We also write

V
j
↩→ U.

Then, the adjoint operator j∗ : U∗ ↩→ V ∗ of j embeds U∗ densely into the topological
dual V ∗. By the Riesz isomorphism Φiso : U → U∗, see (A.2), we can identify U with
its topological dual U∗. Thus, we obtain

V
j
↩→ U

Φiso≡ U∗ j∗

↩→ V ∗

and
⟨j∗Φisoj(v1), v2⟩V ∗×V = ⟨j(v1), j(v2)⟩U , for all v1, v2 ∈ V.

The triple (V, U, V ∗) is called Gel’fand triple or rigged Hilbert space.
Suppose (V, ⟨·, ·⟩V ) is itself a real and separable Hilbert space. Furthermore, let

a : V × V → R

be a symmetric, continuous (or bounded), and coercive (or elliptic) bilinear form on V ,
i.e., there exist positive constants Cbound and Cell such that for all u, v ∈ V we have

a(u, v) = a(v, u), |a(u, v)| ≤ Cbound∥u∥V ∥v∥V , and a(v, v) ≥ Cell∥v∥2V . (A.6)

Then, by the Lax-Milgram theorem, see, e.g., Yosida [177], the operator

A : V → V ∗

v →→ Av := −a(v, ·)
(A.7)

is boundedly invertible. In the Gel’fand triple setting, we can consider A : V → V ∗ as
an unbounded operator on the intermediate Hilbert space U . We set

D(A,U) := {v ∈ V : Av ∈ j∗Φiso(U)},

and define the unbounded variational operator to A by

Ā : j(D(A,U)) ⊆ U → U

u →→ Āu := Φ−1
isoj

∗−1Aj−1u.
(A.8)
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The operator Ā is densely defined, since U∗ is densely embedded in V ∗, the symmetry
of the bilinear form a(·, ·) implies that Ā is self-adjoint, and Ā is strictly negative
definite, because a(·, ·) is assumed to be coercive. Furthermore, since A : V → V ∗ is
boundedly invertible, the operator Ā−1 : U → U , defined by Ā−1 := jA−1j∗Φiso is the
bounded inverse of Ā, and Ā−1 is compact if the embedding j is compact.

Let τ > 0, a(·, ·), and A : V → V ∗ be given as above. We consider the bilinear form

aτ : V × V → R
(u, v) →→ aτ (u, v) := τ⟨j(u), j(v)⟩U + a(u, v),

which is also symmetric, continuous, and coercive in the sense of (A.6). For u, v ∈ V ,
the equalities

aτ (u, v) = τ⟨j∗Φisoj(u), v⟩V ∗×V − ⟨Au, v⟩V ∗×V

= ⟨(τj∗Φisoj − A)u, v⟩V ∗×V

hold and, by application of the Lax-Milgram theorem, we conclude that the operator

(τj∗Φisoj − A) : V → V ∗

is boundedly invertible. Therefore, the operator

(τI − Ā) : j(D(A,U)) ⊆ U → U

u →→ (τI − Ā)u := τu− Āu,

which coincides with Φ−1
isoj

∗−1(τj∗Φisoj − A)j−1 on j(D(A,U)), possesses a bounded
inverse

(τI − Ā)−1 = j(τj∗Φisoj − A)−1j∗Φiso : U → U.

Thus, the resolvent set ρ(Ā) of Ā contains all τ ≥ 0. In particular, for any τ > 0,
the range of the operator (τI − Ā) is the whole space U . Since, furthermore, Ā is
dissipative, the Lumer-Phillips theorem implies that Ā generates a strongly continuous
semi-group {eĀt}t≥0 of contractions on U , see, e.g., Pazy [133, Theorem 1.4.3]. Thus,
an application of the Hille-Yosida theorem (see, e.g., [133, Theorem 1.3.1]) shows that
the operator L−1

τ := (I− τĀ)−1 = τ(τI− Ā)−1 : U → U is a contraction for each τ > 0.
Note that with a slight abuse of notation, we sometimes write A instead of Ā.

A.1.4 The considered θ, q-interpolation spaces

Roughly speaking, interpolation determines intermediate spaces Z of two spaces X
and Y , for which all linear operators that map X and Y continuously into themselves
also map Z continuously into itself. Here, we consider the scale of real-valued θ, q-
interpolation spaces Z = (X, Y )θ,q based on the real method of Lions and Peetre, by
using Peetres K-functional. We assume that (X, ∥·∥X) is a (quasi-)normed vector space
and (Y, | · |Y ) a (quasi-)semi-normed vector space which is continuously embedded in
X, that is Y ↩→ X and ∥ · ∥X ⪯ | · |Y .

The K-functional K(f, t) is defined by

K(f, t) := K(f, t,X, Y ) := inf
g∈Y

∥f − g∥X + t|g|Y , f ∈ X, t > 0.
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The term t|g|Y can be understood as a penalty term to the approximation of f by
the function g from Y . In this setting, the θ, q-interpolation space (X, Y )θ,q, θ ∈ (0, 1),
q ∈ (0,∞), is defined as the set of all functions f ∈ X such that the term

|f |(X,Y )θ,q :=

 ∞

0


t−θK(f, t)

q dt
t

1/q

is finite. We refer to, e.g., Bergh, Löfström [9, Chapter 3] and DeVore, Lorentz
[67, Chapter 6] for a detailed discussion on the K-functional and interpolation spaces.

A.2 Spaces of integrable mappings

We consider integrability of measurable mappings defined on a σ-finite measure space
(X,A, µ) with values in a separable Banach space (G, ∥ · ∥G) over R. A mapping f is
called measurable if the preimage of every measurable set in G under f is an element
of A, where in this setting usually the strong Borel σ-algebra B(G) is considered, i.e.,
the smallest σ-algebra which contains all open subsets of G.

A mapping s : X → G is called simple or elementary if there exists a finite number
N ∈ N, as well as for n ∈ {1, . . . , N}, there exists bn ∈ G and mutually disjoint events
Xn ∈ A such that

s(x) =
N
n=1

bn1Xn(x), x ∈ X.

If µ(Xn) is finite whenever bn ̸= 0, then the simple mapping s is integrable, and its
integral is well-defined by 

X

s(x)µ(dx) :=
N
n=1

µ(Xn)bn.

Since we assume G to be separable, we have that for every measurable mapping
f : X → G there exists a sequence (si)i∈N of simple mappings with limi→∞ si(x) = f(x)
for µ-almost all x ∈ X. If additionally

lim
i→∞


X

∥si(x)− f(x)∥G µ(dx) = 0 (A.9)

for µ-almost all x ∈ X, then f is called Bochner integrable and its integral is well-defined
by 

A

f(x)µ(dx) := lim
i→∞


X

si(x)1A(x)µ(dx), A ∈ A.

Note, a measurable mapping f : X → G is Bochner integrable if and only if
X

∥f(x)∥G µ(dx) <∞.

The proofs can be found in Yosida [177, Section V.5] and we refer to Schilling [145,
Chapter 10] for details on the abstract Lebesgue integral used in, e.g., (A.9).
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Within the Lebesgue-Bochner spaces Lp(X,A, µ;G), 1 ≤ p < ∞, we collect all
µ-equivalence classes [f ] which contain a measurable mapping f : X → G such that

|f |Lp(X,A,µ;G) :=


X

∥f(x)∥pG µ(dx)
1/p

<∞. (A.10)

Two mappings f1, f2 : X → G are called equivalent or f1 ∼ f2 if they only differ on a
µ-null set, i.e., µ({x ∈ X : f1(x) ̸= f2(x)}) = 0.

The Lebesgue-Bochner space L∞(X,A, µ;G) denotes the space of all µ-equivalence
classes [f ] containing a measurable mapping f : X → G for which there exists a r ≥ 0
such that µ({x ∈ X : ∥f(x)∥G > r}) = 0. For this space we define

|f |L∞(X,A,µ;G) := inf {r ≥ 0 : µ({x ∈ X : ∥f(x)∥G > r}) = 0} . (A.11)

Note that, with respect to

∥[f ]∥Lp(X,A,µ;G) := inf

|g|Lp(X,A,µ;G) : g ∼ f


, 1 ≤ p ≤ ∞, (A.12)

the spaces (Lp(X,A, µ;G), ∥ · ∥Lp(X,A,µ;G)) are Banach spaces if (G, ∥ · ∥G) is a Banach
space, while for p = 2 and (G, ⟨·, ·⟩G) a Hilbert space, L2(X,A, µ;G) are also Hilbert
spaces with respect to the inner product

⟨f, g⟩L2(X,A,µ;G) :=


X

⟨f(x), g(x)⟩G µ(dx).

In this context of integrability, instead of the equivalence class [f ] it is common
to speak of the mapping f and write f ∈ Lp(X,A, µ;G), as well as ∥f∥Lp(X,A,µ;G),
in particular since ∥[f ]∥Lp(X,A,µ;G) = |f |Lp(X,A,µ;G). Furthermore, two elements f, g ∈
Lp(X,A, µ;G) can only be compared up to sets of measure zero, e.g., f ≤ g means
f(x) ≤ g(x) for all x outside a µ-null set. If (A.10) holds, f is called p-integrable and
if (A.11) is finite, f is called bounded.

Remark. In the case of G = R the above integral construction and (A.10) can readily
be extended to 0 < p < 1 turning (A.12) into a quasi-norm and Lp(X,A, µ;R) into a
quasi-Banach space. However, the situation is much more involved if G is a general
Banach space or quasi-Banach space, see Albiac, Ansorena [3] for details.

Example. If µ = λd|O is the Lebesgue measure on a Lebesgue-measurable set O ⊆ Rd

and G = R, then

Lp(O) := Lp(O,B(O), λd|O;R), 0 < p ≤ ∞,

are known as Lebesgue spaces. We refer to Schilling [145] for details on the Lebesgue
measure λd and the case 1 ≤ p ≤ ∞.

Example. Let I be a countable set and


i∈I δi be the counting measure, i.e., the sum
of the Dirac measures δi at the points i ∈ I. The spaces

ℓp(I) := Lp(I, 2I ,

i∈I

δi; R), 1 ≤ p ≤ ∞,

are called p-summable sequence spaces over I for p <∞, while ℓ∞(I) is the space of
bounded sequences, cf. Schilling [145, Example 12.12]. We set ℓp := ℓp(N).
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A.3 Distributions, generalized derivatives, and the Fourier
transform

We give an introduction to distributions which generalize the notion of functions and
the Fourier transform. In particular, the concept of generalized derivatives for locally
integrable functions is based on the integration by parts formula. For the proofs of the
following statements, we refer to Adams, Fournier [2] and in particular to Rudin
[142, Chapters 6, 7].

Let O ⊆ Rd be a domain and let D(O) be the set of all test functions on O, that is
the set of compactly supported infinitely often differentiable functions C∞

0 (O) equipped
with a final locally convex topology. A linear functional on D(O) which is continuous
with respect to this topology is called (Schwartz) distribution and D′(O) denotes the
space of all of these distributions.

Here, two properties of distributions are of special interest, namely differentiation
and the Fourier transform. The derivative DαT , α ∈ Nd

0, |α| := α1 + · · · + αd, of a
distribution T ∈ D′(O) is defined by

DαT (φ) := (−1)|α|T (Dαφ) for all φ ∈ D(O), (A.13)

where Dαφ is the classical derivative of φ. Of course, D0 is the identity mapping. It
turns out that DαT is a continuous linear functional on D(O) and DαT ∈ D′(O) for
any α ∈ Nd

0, T ∈ D′(O). Furthermore, Dα : D′(O) → D′(O) is a continuous operator.

The space of distributions contains and generalizes the space of all locally integrable
functions L1,loc(O), where a Lebesgue measurable function f : O → R is, by definition,
locally integrable if


K
|f | dx <∞ for all K compactly embedded in O. The topology

on D(O) is chosen in such a way that any f ∈ L1,loc(O) yields a regular distribution
Tf ∈ D′(O) whose value on the test functions is given by the Lebesgue integral, i.e.,

Tf (φ) =


O
fφ dx, φ ∈ D(O). (A.14)

Since two locally integrable functions yield the same element in D′(O) if and only if
they are equal almost everywhere, one can identify Tf with f . Note that not every
distribution is of the form (A.14), e.g., the Dirac distribution defined by δ(φ) := φ(0),
0 ∈ O, is not a regular distribution.

Above definitions (A.13) and (A.14) allow us to define generalized derivatives of
locally integrable functions. A locally integrable function fα ∈ L1,loc(O), α ∈ Nd

0, is
called generalized derivative of an f ∈ L1,loc(O) if

Tfα = DαTf in D′(O).

In this case fα is unique up to sets of measure zero. In particular, in the case the
derivative Dαf also exists in the classical sense and is locally integrable, it coincides
with the generalized derivative. This allows us to also use the notation Dαf to denote
the generalized derivative and ∂αf for the generalized partial derivative.

Remark. It has been shown that Lp(O) ⊂ L1,loc(O) for 1 ≤ p ≤ ∞ on any domain, see,
e.g., Adams, Fournier [2, Corollary 2.15].
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Now, we turn to the Fourier transform and its generalization to distributions. The
space for the Fourier transform F of complex-valued functions f , which is given by

Ff(ξ) :=


Rd

exp(−i⟨x, ξ⟩) f(x) dx, ξ ∈ Rd,

and its inverse

F−1f(x) := (2π)−d

Rd

exp(i⟨x, ξ⟩) f(ξ) dξ, x ∈ Rd,

is the Schwartz space of rapid decrease S(Rd). It consists of all functions φ : Rd → C
such that

sup
x∈Rd

|xβDαφ(x)| <∞ for all α, β ∈ Nd
0,

and it is the right space for F, since it has been shown that F : S(Rd) → S(Rd) is an
isomorphism with inverse F−1. The space S(Rd) is also equipped with a final locally
convex topology and D(Rd) is densely and continuously embedded in S(Rd), see, e.g.,
Rudin [142, Theorem 7.10]. Therefore, with ι : D(Rd) → S(Rd) the identity mapping
and L ∈ S ′(Rd), one obtains a so-called tempered distribution uL = L ◦ ι ∈ D′(Rd),
which, by identifying uL and L, implies that the space S ′(Rd) coincides with the set of
all tempered distributions, cf. Rudin [142, Definition 7.11].

It is possible to extend F to a map on S ′(Rd). Since (2π)dF−1 is the adjoint of F
with respect to the duality pairing, the Fourier transform F on S ′(Rd) can be defined
by

Ff(φ) := f

(2π)d F−1φ


for all f ∈ S ′(Rd), φ ∈ S(Rd).

Therefore, by continuity F extends to an isomorphism F : S ′(Rd) → S ′(Rd) with inverse
F−1.

Remark. Given the above setting for the Fourier transform, we restrict our analysis to
quasi-normed spaces of distributions which are continuously embedded in S ′(Rd), e.g.,
the spaces Lp(Rd) with 1 ≤ p ≤ ∞. Note that the Lp-spaces with 0 < p < 1 can not
be understood as subspaces of S ′(Rd), cf. Triebel [158, §2.2.3].

A.4 Probabilistic setting

We state the fundamental probabilistic setting and terms which are employed. For
details we refer to Hairer [95] and Prévôt, Röckner [135].

A.4.1 Probability space, random variable, and stochastic process

A probability space is a measure space (Ω,F ,P), where Ω is called sample space, the
σ-algebra F is the set of events, and P : F → [0, 1] is a probability measure, i.e., P is
countably additive on pairwise disjoint events and P(Ω) = 1. Note that, we assume
(Ω,F ,P) to be complete, i.e., all subsets of events with measure zero are also events.

Let (S,Σ) be a measurable space. An S-valued random variable is a mapping
Y : Ω → S which is (F ,Σ)-measurable, i.e., the preimage of every set of Σ under Y
is an element of F . The law or distribution of an S-valued random variable Y is the
push-forward measure Y∗P := P ◦ Y −1 of Y on (S,Σ).
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Two random variables Y : Ω → S, Z : Ω → S are independent if they generate
independent σ-algebras, i.e., any event, e.g., {ω ∈ Ω : Y (ω) = · } ∈ F , in terms of Y
is independent of any event defined in terms of Z.

An S-valued stochastic process X : Ω× T → S is a collection

X = {Xt}t∈T = {X(t)}t∈T ,
indexed by a measurable space (T ,Υ), of S-valued random variables X(t) : Ω → S. A
map X(ω, ·) : T → S, ω ∈ Ω, is called a path or realization of X. A stochastic process
Xmod : Ω× T → S is called a modification of X if

P ({ω ∈ Ω : Xmod(ω, t) = X(ω, t)}) = 1 for each t ∈ T .
In case X : Ω× T → S is also (F ⊗Υ,Σ)-measurable it is called product measurable.
A stochastic process X induces a (ST ,Υ⊗ Σ)-valued random variable

ΦX : Ω → {f : T → S} via (ΦX(ω))(t) := Xt(ω), ω ∈ Ω, t ∈ T ,
so that the law or distribution of the stochastic process X can be defined as the law of
ΦX , i.e., the push-forward measure (ΦX)∗P of P along ΦX on (ST ,Υ⊗ Σ).

A stochastic process is also called random function or random mapping depending
on S, in particular if the index set T is one-dimensional, e.g., T is a time interval
[0, T ] ⊂ R and Υ is the Borel σ-algebra B([0, T ]). For multivariate T with adequate
Borel measurability, also the terms random field or stochastic field are used, e.g., T is
a (spatial) domain O ⊆ Rd, d > 1, or T = [0, T ]×O. However, for the most part we
simply stick to the term random function.

Given an ordered index set, e.g., ([0, T ],≤), one can introduce a filtration on
(Ω,F ,P), which is an increasing family (Ft)t∈[0,T ] of sub-σ-algebras of F . Note, we
assume the filtration to be normal, i.e., F0 contains all events with measure zero and
Ft =


s>tFs for all t ∈ [0, T ]. A stochastic process X : Ω × [0, T ] → S is called

non-anticipating or adapted to a filtration (Ft)t∈[0,T ] if for all t ∈ [0, T ] the random
variable X(t) : Ω → S is also (Ft,Σ)-measurable. Given the σ-algebra

P[0,T ] := σ


(s, t]× Fs : 0 ≤ s < t ≤ T, Fs ∈ Fs


∪

{0} × F0 : F0 ∈ F0


,

a stochastic process X : Ω× [0, T ] → S is predictable if it is (P[0,T ],Σ)-measurable.
If the space S is, e.g., a separable Banach space (G, ∥ · ∥G) with Σ = B(G), we can

consider integrability of random variables, i.e., Y ∈ L1(Ω,F ,P;G), cf. Appendix A.2.
Here, we call the integral

E[Y ] :=


Ω

Y (ω)P(dω)

the expectation or expected value of Y . Given a sub-σ-algebra Fsub of F , then there
exists a unique (up to P-null sets) integrable random variable Z : Ω → G such that

A

Y (ω)P(dω) =


A

Z(ω)P(dω), for all A ∈ Fsub,

called conditional expectation of Y with respect to Fsub, see, e.g., Prévôt, Röckner
[135, Proposition 2.2.1] for the proof. It is denoted by Z = E[Y |Fsub]. In this setting, a
stochastic process X : Ω× [0, T ] → G is called Lp-martingale, p ∈ [1,∞), with respect
to the filtration (Ft)t∈[0,T ] if it is adapted to it and we have X(t) ∈ Lp(Ω,F ,P;G) for
all t ∈ [0, T ], as well as

E [X(t) | Fs] = X(s) P-a.s., for all s, t ∈ [0, T ] with s ≤ t.
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A.4.2 Gaussian measure

Let (G, ∥ · ∥G) be a separable (reflexive) Banach space equipped with the strong Borel
σ-algebra B(G). A Gaussian measure µ on G is a Borel measure such that for every
linear functional b : G → R the push-forward measure b∗µ = µ ◦ b−1 is a Gaussian
probability measure N (m,σ2) on (R,B(R), dx), i.e.,

∀b ∈ G∗ ∃mb ∈ R ∃σb ≥ 0 ∀A ∈ B(R) : (µ ◦ b−1)(A) =
1
2πσ2

b


A

e
− (x−mb)

2

2σb dx,

if σb > 0 and, if σb = 0, then µ ◦ b−1 = δmb
. Here, dx denotes the Lebesgue measure

and N (m,σ2) is also called normal distribution. A Gaussian measure is centered if
mb = 0 for every b ∈ G∗. It is common to consider the centered case and to use simple
translations to obtain the general case. With G being separable, µ is well-defined since
the one-dimensional projections b∗µ carry sufficient information to characterize it, see,
e.g., Hairer [95, Proposition 3.6]. Furthermore, since the mean m : G∗ → R of µ,
defined by

m(b) :=


G

b(x)µ(dx), b ∈ G∗,

is an element of G∗∗ it is common to require G to be reflexive, i.e., G = G∗∗. The
mapping Covµ : G∗ ×G∗ → R defined by

Covµ(b1, b2) :=


G

b1(x)b2(x) µ(dx), b1, b2 ∈ G∗,

of a centered Gaussian measure µ is called covariance operator of µ. Note, by definition
Covµ is bilinear and non-negative definite. The name is due to the fact that Covµ can
be understood as an operator C̄ovµ : G∗ → G∗∗ by C̄ovµ(b1)(b2) = Covµ(b1, b2).

In the Hilbert space case, above considerations can be summarized as follows. Let
(H, ⟨·, ·⟩H) be a separable Hilbert space. A finite measure µ on (H,B(H)) is Gaussian
if and only if 

H

ei⟨u,v⟩Hµ(dv) = ei⟨m,u⟩H− 1
2
⟨Qu,u⟩H , u ∈ H,

where m ∈ H is its mean and Q ∈ L(H) is its symmetric, non-negative covariance
operator of finite trace. Moreover, the measure µ is uniquely determined by m and Q.
It is denoted by µ = N (m,Q). We refer to Prévôt, Röckner [135, Theorem 2.1.2]
or Da Prato, Zabczyk [40] for details and the proof.

Suppose Ω is some space of G-valued continuous functions, where (G, ∥ · ∥G) is a
separable (reflexive) Banach space, e.g., Ω = C([0, T ], G), which permits a Gaussian
measure µ. Then the G-valued canonical stochastic process X = {X(t)}t, i.e.,

X(t)(ω) := ω(t), ω ∈ Ω,

is called Gaussian stochastic process.

Example. The canonical stochastic process B for the Gaussian measure on C([0, T ],R)
with B(0) = 0 and E[|B(t)−B(s)|2] = |t− s|, t, s ∈ [0, T ], is called Brownian motion
or standard one-dimensional Wiener process, cf. Hairer [95, Section 3.4]. For a
construction of such a process, we refer to Schilling [145, §24.29].
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Example (Wiener measure). Let

CW(R+,R) :=

f ∈ C(R+,R) : lim

t→∞
f(t)/(1 + t2) <∞


with ∥f∥CW := supt∈R |f(t)|/(1 + t2). Then there exists a Gaussian measure, called
Wiener measure, on CW with covariance function Cov(s, t) = min{s, t}, s, t ∈ R+, see
Hairer [95, Proposition 3.53].

Example (Cylindrical Wiener process). Let (H̄, ⟨·, ·⟩H̄) be a Hilbert space containing a
separable Hilbert space (H, ⟨·, ·⟩H) as a dense subset and such that the inclusion map
ι : H → H̄ is Hilbert-Schmidt. A Gaussian stochastic process W : Ω × [0, T ] → H̄,
such that

E [⟨u,W (s)⟩H̄⟨W (t), v⟩H̄ ] = min{s, t}⟨ιι∗u, v⟩H̄
for any two times s, t ∈ [0, T ] and any two elements u, v ∈ H̄, is called cylindrical
Wiener process over H. Since ι is Hilbert-Schmidt the law of W does not depend on H̄,
which justifies the denotation of W being a cylindrical Wiener process on H. Such a
process can be realized as the canonical stochastic process for some Gaussian measure
on CW(R+, H̄). Again, we refer to Hairer [95, Section 3.4] for details.

A.5 Cylindrical Wiener process and stochastic integration

We give an overview of the construction of Hilbert space-valued stochastic integrals
with respect to a fixed cylindrical Wiener process. Therefore, let [0, T ], T > 0, be
understood as the time horizon and let (Ω,F ,P) be a complete probability space with
a normal filtration (Ft)t∈[0,T ]. We start by summarizing the construction of a cylindrical
Wiener process and then proceed based on the Itō calculus for stochastic integration.
We refer to Hairer [95] and Prévôt, Röckner [135] for details.

A.5.1 Cylindrical Wiener process

Wiener processes have applications throughout the mathematical fields, as they represent
the integrals of Gaussian noise. It is a common and accepted driving process in numerical
modeling of stochastic equations.

Let (H, ⟨·, ·⟩H) be a separable real Hilbert space, and let Q ∈ L(H) be non-negative
definite, symmetric, and of finite trace. A stochastic process W : Ω × [0, T ] → H is
called a Q-Wiener process if

(Q1) W (0) = 0 and W has P-a.s. continuous paths t →→ W (t), t ∈ [0, T ],

(Q2) W has independent increments, i.e., {W (t1)− E(t2), . . . ,W (tn)−W (tn−1)} for
0 ≤ t1 < t2 < · · · < tn−1 < tn ≤ T is an independent family of random variables,

(Q3) the increments are Gaussian with P ◦ (W (t)−W (s))−1 = N (0, (t− s)Q) for all
0 ≤ s ≤ t ≤ T .

Note, a real-valued Wiener process is a Brownian motion {β(t)}t∈[0,T ] if, in particular,
P ◦ (β(t)− β(s))−1 = N (0, t− s), 0 ≤ s ≤ t ≤ T , cf. Appendix A.4.2.
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Let {ek}k∈N be an orthonormal basis of H consisting of eigenvectors of Q and
corresponding non-negative eigenvalues (λk)k∈N numbered in decreasing order,

Qek = λkek, λk ≥ 0, k ∈ N.

In this setting, we have the following representation. A stochastic process W is a
Q-Wiener process, if and only if

W (t) =
∞
k=1


λkβk(t)ek, t ∈ [0, T ], (A.15)

where βk : Ω× [0, T ] → R, k ∈ {n ∈ N : λn > 0} are independent Brownian motions on
(Ω,F ,P). Moreover, the series converges in L2(Ω,F ,P; C([0, T ], H)), and in particular,
for any Q as above there exists a Q-Wiener process, see Prévôt, Röckner [135,
Proposition 2.1.10]. Note that the convergence of (A.15) in L2(Ω;H) depends on Tr(Q)
being finite, i.e.,

E

 ∞
k=0


λkβk(t)ek

2
H


=

∞
k=0

λkE[βk(t)
2] = t

∞
k=0

λk = tTr(Q) <∞.

If Q is not of finite trace, e.g., the case where Q = Id is the identity operator, it is
also possible to construct a Q-Wiener process. To this end, let Q1/2(H) together with
the inner product

⟨u, v⟩Q1/2(H) := ⟨Q−1/2u,Q−1/2v⟩H , u, v ∈ Q1/2(H),

be a subspace of H — called Cameron-Martin space of H. Let (H̄, ⟨·, ·⟩H̄) be a larger
Hilbert space containing H as dense subset, and let the inclusion map

J : Q1/2(H) → H̄

be Hilbert-Schmidt. Note, Q−1/2 is the pseudo-inverse of Q1/2 if Q is not one-to-one.
For the definition and details on pseudo-inverse we refer to Prévôt, Röckner [135,
Appendix C].

Example. Let {ek}k∈N be an orthonormal basis of Q1/2(H) and let (ak)k∈N be a square-
summable sequence of positive real numbers. Then

J(ak) : Q
1/2(H) → H̄ := H

u →→
∞
k=1

ak⟨u, ek⟩Q1/2(H)ek

is one-to-one and Hilbert-Schmidt: Let u, v ∈ Q1/2(H) such that J(ak)(u) = J(ak)(v).
Then

J(ak)(u)− J(ak)(v) =
∞
k=1

ak⟨u− v, ek⟩Q1/2(H)ek = 0

implies u = v since ak > 0, k ∈ N, and {ek}k∈N is a basis, and so J(ak) is one-to-one.
Furthermore,

∞
i=1

∥J(ak)(ei)∥
2
H =

∞
i=1

 ∞
k=1

ak⟨ei, ek⟩Q1/2(H)ek

2
H
=

∞
k=1

∥akek∥2H =
∞
k=1

a2k <∞

since (ak)k∈N is square-summable, and so J(ak) is Hilbert-Schmidt.
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Now, Q̄ := JJ∗ ∈ L(H̄, H̄) is non-negative, symmetric, and has finite trace. The
series

W (t) =
∞
k=1

βk(t)Jek, t ∈ [0, T ],

defines a Q̄-Wiener process W : Ω× [0, T ] → H̄ which is a cylindrical Wiener process
on H, cf. Appendix A.4.2, since

J : Q1/2(H) → Q̄1/2(H̄)

is an isometry, see Prévôt, Röckner [135, Proposition 2.5.2].

A.5.2 Stochastic integration

Let (H, ⟨·, ·⟩H) and (U, ⟨·, ·⟩U) be two separable real Hilbert spaces, and let

W : Ω× [0, T ] → H̄

be a cylindrical Wiener process on H ⊂ H̄ with respect to the normal filtration
(Ft)t∈[0,T ]. We turn to the construction of the U -valued stochastic Itō integral t

0

Φ(s)dW (s), t ∈ [0, T ],

over certain LHS(H,U)-valued stochastic processes Φ.
Analogously to the construction of the integral in Appendix A.2, one first considers

a class E of elementary stochastic processes, where Φ : Ω × [0, T ] → LHS(H,U) is
elementary if there exists a finite number n ∈ N and 0 = t0 < · · · < tn = T such that

Φ(ω, t) =
n−1
k=0

Φk(ω)1(tk,tk−1](t), ω ∈ Ω, t ∈ [0, T ],

where Φk : Ω → LHS(H,U), 0 ≤ k ≤ n − 1, are Ftk-measurable with respect to the
strong Borel σ-algebra on the space of Hilbert-Schmidt operators LHS(H,U). Thus, Φ
is an L2(Ω× [0, T ],F ⊗ B([0, T ]),P⊗ dt; LHS(H,U))-valued stochastic process.

For elements Φ ∈ E one defines the stochastic integral Int with respect to W by

Int(Φ)(t) :=

 t

0

Φ(s)dW (s) :=
n−1
k=0

Φk(W ) (W (tk+1 ∧ t)−W (tk ∧ t)) , t ∈ [0, T ],

which is independent of the representation of Φ: Since Φk is Ftk-measurable we have
that Φk(W ) is independent ofW (tk+1)−W (tk) and the right-hand side in the definition
above makes sense. Furthermore, the value of Int is independent of the choice of H̄ on
which W can be realized, cf. Hairer [95, Chapter 3.4].

Since the following extension

E

∥Int(Φ)(T )∥2U


=

n−1
k=0

E[Tr(Φk(W )− Φ∗
k(W ))(tk+1 − tk)] = E

 T

0

Tr Φ(t)Φ∗(t)dt


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of the Itō isometry to the Hilbert space setting can be shown, it turns out that

Int : E → L2(Ω,F ,P;U)

is an isometry. Using this isometry, the completeness of L2(Ω,F ,P;U), and the ob-
servation that E is dense in the space Lpr

2 (Ω× [0, T ],P[0,T ],P⊗ dt; LHS(H,U)) of all
predictable LHS(H,U)-valued processes, see Hairer [95, Proposition 3.59], it can be
concluded that the stochastic integral Int can be uniquely defined for every process
Φ ∈ Lpr

2 (Ω× [0, T ],P[0,T ],P⊗ dt; LHS(H,U)), see Hairer [95, Corollary 3.60].

B Proofs

B.1 Proof of Lemma 3.5

On the one hand, let
∞

i=1Xi <∞, P-a.s., with 1A being the indicator function of A,
we have

∞
i=1

E


Xi

1 +Xi


≤

∞
i=1

E[Xi 1{Xi≤1}+1{Xi>1}] =
∞
i=1

E[Xi 1{Xi≤1}] +
∞
i=1

P (Xi > 1).

Both sums on the right-hand side are finite, due to Kolmogorov’s three-series theorem,

see, e.g., Shiryayev [148]. On the other hand, let
∞

i=1 E


Xi

1+Xi


<∞, then we get

∞
i=1

P (Xi > 1) = 2E


∞
i=1


1

2
1{Xi>1}


≤ 2

∞
i=1

E


Xi

1 +Xi

1{Xi>1}


≤ 2

∞
i=1

E


Xi

1 +Xi


<∞

and

∞
i=1

E

Xi 1{Xi≤1}


= 2E


∞
i=1


1

2
Xi 1{Xi≤1}


≤ 2

∞
i=1

E


Xi

1 +Xi

1{Xi≤1}


≤ 2

∞
i=1

E


Xi

1 +Xi


<∞.

This yields

∞
i=1

var(Xi 1{Xi≤1}) =
∞
i=1

E[X2
i 1{Xi≤1}]−

∞
i=1

E[Xi 1{Xi≤1}]
2

≤ 2
∞
i=1

E


Xi

1 +Xi


  

<∞

−
∞
i=1

E[Xi 1{Xi≤1}]
2

  
<∞

<∞

which is equivalent to
∞

i=1Xi < ∞,P-a.s., again due to Kolmogorov’s three-series
theorem. □
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B.2 Proof of Lemma 3.6

For r = s
t
with s, t ∈ N we have

E[Xr
n,p] = E[Xs/t

n,p] ≤ (E[Xs
n,p])

1/t

using Jensen’s inequality, see, e.g., Schilling [145, Theorem 12.14]. Furthermore, we
have E[Xs

1,p] = p ≤ 1, and for n ≥ 2

E[Xs
n,p] =

n
k=1

ks

n

k


pk(1− p)n−k

=
n−1
k=0

(k + 1)s−1n


n− 1

k


pk+1(1− p)n−1−k

= npE[1 +Xn−1,s]
s−1.

Inductively over s, we obtain

E[Xs
n,p] ≤ np (E[1] + E[Xn−1,s]

s−1) ≤ c(np+ (np)s) ≤ c(1 + (np)s),

for positive constants c and c = c(n) independent of p and s. For r ∈ Q this leads to

E[Xr
n,p] ≤ np (E[1] + E[Xn−1,s]

s−1)1/t ≤ c(np+ (np)s)1/t ≤ c(1 + (np)r)

and using the density of Q in R we get the result for all r ∈ R. □

B.3 Proof of Lemma 3.7

It is E[Sj,p] = #∇jρjνp and var(Sj,p) = #∇jρj(ν2p−ρjν2p). Using Chebyshev’s inequality,
see, e.g., Schilling [145], we get

P (|Sj,p/(#∇jρj)− νp| ≥ ε) ≤ ε−2(#∇jρj)
−1(ν2p − ρjν

2
p) ≤ c(ε−22−(1−β)jd).

Since β < 1, applying the Borel-Cantelli Lemma, see, e.g., Schilling [145], yields
almost sure convergence. Let r > 0 and yj,k ∈ {0, 1}. By the equivalence of moments of
Gaussian measures there exists a constant c1 > 0 such that

E


k∈∇j

|yj,kZj,k|p
r  ≤ c1

E


k∈∇j

|yj,kZj,k|p
r

= c1 ν
r
p


k∈∇j

yj,k

r

.

Since (Yj,k)k∈∇j
and (Zj,k)k∈∇j

are independent this yields E[Srj,p] ≤ c1(νp)
r E[Srj,0].

Using Lemma 3.6 there exists a constant c2 > 0 such that E[Srj,0] ≤ c2 (#∇jρj)
r. □

B.4 Proof of Lemma 3.8

Let Z be N (0, 1)-distributed. The characteristic function φSp of Sp is given by

φSp(t) = E[exp(itSp)] = exp(φ|Z|p(t)− 1).
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Furthermore, for the characteristic function φSj,p
of Sj,p,

φSj,p
(t) =


ρjφ|Z|p(t) + 1− ρj

#∇j

=


1 +

1

#∇j

ρj#∇j


φ|Z|p(t)− 1

#∇j

.

We use (3.6) to conclude that

lim
j→∞

φSj,p
(t) = φSp(t),

which yields the convergence in distribution as claimed. Suppose that p ≥ 1 and
r > 0. Then we take c1 > 0 such that zrp ≤ c1 exp(z) for every z ≥ 0 and we put
c2 = E[exp(|Z|)] to obtain

E[Srj,p] ≤ E[Srpj,1] ≤ c1 E[exp(Sj,1)] = c1(1 + ρj(c2 − 1))#∇j .

Note that the upper bound converges to c1 exp(c2 − 1). In the case 0 < p < 1 we have
Sj,p ≤ Sj,0 + Sj,1. Hence it remains to observe that supj≥j0 E[S

r
j,0] <∞, which follows

from Lemma 3.6. □

B.5 Proof of Lemma 5.40

By (5.37) and (5.38) the stage equations (5.30) read as

(I − τγ1,1A)wk,1 = Auk + f(tk),

(I − τγ2,2A)wk,2 = A(uk + τa2,1wk,1) + f(tk + a2τ) + c2,1wk,1.

We begin with an application of the following basic observation, that

I = (I − CA)−1(I − CA)

implies

(I − CA)−1A = − 1

C
I +

1

C
(I − CA)−1.

It follows that

wk,1 =


− 1

τγ1,1
I +

1

τγ1,1
(I − τγ1,1A)

−1


uk + (I − τγ1,1A)

−1f(tk)

= − 1

τγ1,1
uk + L−1

τ,1


1

τγ1,1
uk + f(tk)


.

We denote

vk,1 = L−1
τ,1


1

τγ1,1
uk + f(tk)


.
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A similar computation for the second stage equation yields

wk,2 =


− 1

τγ2,2
I +

1

τγ2,2
(I − τγ2,2A)

−1


(uk + τa2,1wk,1)

+ (I − τγ2,2A)
−1 (f(tk + a2τ) + c2,1wk,1)

= − 1

τγ2,2


1− a2,1

γ1,1


uk + τa2,1vk,1


+ L−1

τ,2


1

τγ2,2


1− a2,1

γ1,1


uk + τa2,1vk,1


+ f(tk + a2τ) + c2,1


− 1

τγ1,1
uk + vk,1


= − 1

τγ2,2


1− a2,1

γ1,1


uk −

a2,1
γ2,2

vk,1

+ L−1
τ,2


1

τγ2,2


1− a2,1

γ1,1


− c2,1
τγ1,1


uk

+


a2,1
γ2,2

+ c2,1


vk,1 + f(tk + a2τ)


.

We denote

vk,2 = L−1
τ,2


1

τγ2,2


1− a2,1

γ1,1


− c2,1
τγ1,1


uk +


a2,1
γ2,2

+ c2,1


vk,1 + f(tk + a2τ)


and arrive at

uk+1 = uk + τm1


− 1

τγ1,1
uk + vk,1


+ τm2


− 1

τγ2,2


1− a2,1

γ1,1


uk −

a2,1
γ2,2

vk,1 + vk,2


=


1− m1

γ1,1
− m2

γ2,2


1− a2,1

γ1,1


uk +


τm1 − τm2

a2,1
γ2,2


vk,1 + τm2vk,2,

which is the claim. □

B.6 Proof of Lemma 5.64

The proof is based on a Gronwall argument. Fix 1 ≤ j ≤ k ≤ K and observe that, by
induction over k,

Eτ,j,k(v) = L−(k−j)
τ v

+

k−j−1
i=0

L−(k−j)+i
τ


τF

Eτ,j,j+i(v)


+
√
τB

Eτ,j,j+i(v)


χj+i


for all v ∈ Hj. Therefore, for all v, w ∈ Hj, we have

∥Eτ,j,k(v)− Eτ,j,k(w)∥Hk

≤ ∥L−(k−j)
τ v − L−(k−j)

τ w∥Hk
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+

k−j−1
i=0

τ
L−(k−j)+i

τ


F

Eτ,j,j+i(v)


− F


Eτ,j,j+i(w)


Hk

+


k−j−1
i=0

√
τL−(k−j)+i

τ


B

Eτ,j,j+i(v)


−B


Eτ,j,j+i(w)


χj+i


Hk

=: (I) + (II) + (III). (B.1)

We estimate each of the terms (I), (II), and (III) separately.

By Lemma 5.58 and the trivial fact that ∥v − w∥Hk
= ∥v − w∥Hj

for all v, w ∈ Hj,
we have

(I) ≤
L−1

τ

k−j
L(D((−A)ϱ))∥v − w∥Hk

≤ (1− τλ1)
−(k−j)∥v − w∥Hk

≤ ∥v − w∥Hj
.

(B.2)

Concerning the term (II) in (B.1), let us first concentrate on the case ϱF ∈ (0, 1).
We use the Lipschitz condition on F in Assumption 5.47 and Lemma 5.58 to obtain

(II) ≤
k−j−1
i=0

τ
L−(k−j)+i

τ (−A)ϱF

L(D((−A)ϱ))

× CLip
F

Eτ,j,j+i(v)− Eτ,j,j+i(w)

Hj+i

≤
k−j−1
i=0

τ
ϱF

ϱF

(τ(k − j − i))ϱF
CLip
F CLip

τ,j,j+i ∥v − w∥Hj

≤ CLip
F

k−j−1
i=0

τ

(τ(k − j − i))ϱF
CLip
τ,j,j+i ∥v − w∥Hj

.

(B.3)

For the case that ϱF ≤ 0 we get with similar arguments

(II) ≤ CLip
F

k−j−1
i=0

τ(−λ1)ϱF
(1− τλ1)n

CLip
τ,j,j+i ∥v − w∥Hj

≤ CLip
F (−λ1)ϱF

k−j−1
i=0

τCLip
τ,j,j+i ∥v − w∥Hj

.

(B.4)

Let us now look at the term (III) in (B.1). Using the independence of the stochastic
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increments χj+i and Eq. (5.58), we get

(III)2=

k−j−1
i=0

τ E

L−(k−j)+i
τ


B

Eτ,j,j+i(v)


−B


Eτ,j,j+i(w)


χj+i

2
D((−A)ϱ)



≤
k−j−1
i=0

τ
L−(k−j)+i

τ

2
L(D((−A)ϱ−ϱB−ϱA/2), D((−A)ϱ))

× E

BEτ,j,j+i(v)−B

Eτ,j,j+i(w)


χj+i

2
D((−A)ϱ−ϱB−ϱA/2)


≤

k−j−1
i=0

τ
L−(k−j)+i

τ

2
L(D((−A)ϱ−ϱB−ϱA/2), D((−A)ϱ))

× E
BEτ,j,j+i(v)−B


Eτ,j,j+i(w)

2
LHS(ℓ2, D((−A)ϱ−ϱB−ϱA/2))


.

Concentrating first on the case ϱB + ϱA/2 > 0, we continue by using the Lipschitz
condition on B in Assumption 5.47 and Lemma 5.58 to obtain

(III)2 ≤
k−j−1
i=0

τ
(ϱB + ϱA/2)

2ϱB+ϱA

(τ(k − j − i))2ϱB+ϱA
Tr(−A)−ϱA

× (CLip
B )2 E


∥Eτ,j,j+i(v)− Eτ,j,j+i(w)∥2D((−A)ϱ)


≤ (CLip

B )2Tr(−A)−ϱA

×
k−j−1
i=0

τ

(τ(k − j − i))2ϱB+ϱA
(CLip

τ,j,j+i)
2∥v − w∥2Hj

.

(B.5)

In the case ϱB + ϱA/2 ≤ 0 the same arguments lead to

(III)2 ≤
k−j−1
i=0

τ
(−λ1)2ϱB+ϱA

(1− τλ1)2n
Tr(−A)−ϱA

× (CLip
B )2 E


∥Eτ,j,j+i(v)− Eτ,j,j+i(w)∥2D((−A)ϱ)


≤ (CLip

B )2Tr(−A)−ϱA(−λ1)2ϱB+ϱA

k−j−1
i=0

τ(CLip
τ,j,j+i)

2∥v − w∥2Hj
.

(B.6)

Now we have to consider four different cases.

Case 1. ϱF ∈ (0, 1) and ϱB + ϱA/2 ∈ (0, 1/2). The combination of (B.1), (B.2),
(B.3), and (B.5) yields

CLip
τ,j,k ≤ 1 + CLip

F

k−j−1
i=0

τ

(τ(k − j − i))ϱF
CLip
τ,j,j+i

+ CLip
B (Tr(−A)−ϱA)1/2


k−j−1
i=0

τ

(τ(k − j − i))2ϱB+ϱA
(CLip

τ,j,j+i)
2

1/2

.

(B.7)
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Note that inductively we obtain in particular the finiteness of all CLip
τ,j,j+i. Next, we

estimate the two sums over i on the right hand side of (B.7) via Hölder’s inequality.
Set

q :=
1

min{1− ϱF , (1− ϱA)/2− ϱB}
+ 2 > 2.

Hölder’s inequality with exponents q/(q − 1) and q yields

k−j−1
i=0

τ

(τ(k − j − i))ϱF
CLip
τ,j,j+i

≤


k−j−1
i=0

τ

(τ(k − j − i))
ϱF q

q−1

 q−1
q

k−j−1
i=0

τ(CLip
τ,j,j+i)

q

 1
q

≤


K
i=1

τ

(τi)
ϱF q

q−1

 q−1
q

k−j−1
i=0

τ(CLip
τ,j,j+i)

q

 1
q

≤
 T

0

t−
ϱF q

q−1dt

 q−1
q


k−j−1
i=0

τ(CLip
τ,j,j+i)

q

 1
q

,

(B.8)

where the integral in the last line is finite since ϱF q
q−1

= ϱF
1−1/q

< ϱF
1−(1−ϱF )

= 1. Similarly,

applying Hölder’s inequality with exponents q/(q − 2) and q/2,

k−j−1
i=0

τ

(τ(k − j − i))2ϱB+ϱA
(CLip

τ,j,j+i)
2

≤


k−j−1
i=0

τ

(τ(k − j − i))
(2ϱB+ϱA)q

q−2

 q−2
q

k−j−1
i=0

τ(CLip
τ,j,j+i)

q

 2
q

≤
 T

0

t−
(2ϱB+ϱA)q

q−2 dt

 q−2
q


k−j−1
i=0

τ(CLip
τ,j,j+i)

q

 2
q

.

(B.9)

The integral in the last line is finite since

(2ϱB + ϱA)q

q − 2
=

(2ϱB + ϱA)

1− 2/q
<

(2ϱB + ϱA)

1− (1− ϱA − 2ϱB)
= 1.

Combining (B.7), (B.8), (B.9) and using the equivalence of norms in R3, we obtain

(CLip
τ,j,k)

q ≤ C0


1 +

k−j−1
i=0

τ(CLip
τ,j,j+i)

q


, (B.10)

with a constant C0 that depends only on A, F , B, ϱA, ϱB, ϱF and T . Since (B.10) holds
for arbitrary K ∈ N and 1 ≤ j ≤ k ≤ K, we can apply a discrete version of Gronwall’s
lemma and obtain

(CLip
τ,j,k)

q ≤ e(k−j)τC0C0 ≤ eTC0C0.
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for all 1 ≤ j ≤ k ≤ K, K ∈ N and τ = T/K. It follows that the assertion of the
proposition holds in this first case with

C := (eTC0C0)
1/q.

Case 2. ϱF ≤ 0 and ϱB + ϱA/2 ≤ 0. A combination of (B.1) with (B.2), (B.4), and
(B.6) leads to

CLip
τ,j,k ≤ 1 + CLip

F (−λ1)ϱF
k−j−1
i=0

τCLip
τ,j,j+i

+ CLip
B (Tr(−A)−ϱA)1/2(−λ1)ϱB+ϱA/2

 k−j−1
i=0

τ(CLip
τ,j,j+i)

2
1/2

.

Applying Hölder’s inequality with exponent q2 := 2 to estimate the first sum over i on
the right hand side, we get

CLip
τ,j,k ≤ 1 + CLip

F (−λ1)ϱFT 1/2
 k−j−1

i=0

τ(CLip
τ,j,j+i)

2
1/2

+ CLip
B (Tr(−A)−ϱA)1/2(−λ1)ϱB+ϱA/2

 k−j−1
i=0

τ(CLip
τ,j,j+i)

2
1/2

,

which leads to

(CLip
τ,j,k)

2 ≤ C

1 +

k−j−1
i=0

τ(CLip
τ,j,j+i)

2

,

where the constant C ∈ (0,∞) depends only on A, F , B, ϱA, ϱB, ϱF and T . As in Case
1, an application of Gronwall’s lemma proves the assertion in this second case.

Case 3. ϱF ∈ (0, 1) and ϱB + ϱA/2 ≤ 0. In this situation, we combine (B.1) with
(B.2), (B.3) and (B.6) to get

CLip
τ,j,k ≤ 1 + CLip

F

k−j−1
i=0

τ

(τ(k − j − i))ϱF
CLip
τ,j,j+i

+ CLip
B (Tr(−A)−ϱA)1/2(−λ1)ϱB+ϱA/2

 k−j−1
i=0

τ(CLip
τ,j,j+i)

2
1/2

.

Setting

q3 :=
1

1− ϱF
+ 2

and following the line of argumentation from the first case with q3 instead of q we reach
our goal also in this situation.

Case 4. ϱF ≤ 0 and ϱB + ϱA/2 ∈ (0, 1/2). Combine (B.1), (B.2), (B.4) and (B.5)
to get

CLip
τ,j,k ≤ 1 + CLip

F (−λ1)ϱF
k−j−1
i=0

τCLip
τ,j,j+i

+ CLip
B (Tr(−A)−ϱA)1/2


k−j−1
i=0

τ

(τ(k − j − i))2ϱB+ϱA
(CLip

τ,j,j+i)
2

1/2

.
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Arguing as in the third case with

q4 :=
1

1/2− (ϱB + ϱA/2)
+ 2

instead of q3, we get the estimate we need to finish the proof. □

B.7 Proof of Lemma 5.68

We start with the estimate

∥ wk,i∥Bs
q(Lq(O)) =

L−1
τ,iRτ,k,i(uk, wk,1, ..., wk,i−1)


Bs

q(Lq(O))

≤ ∥L−1
τ,i ∥L(L2(O),Bs

q(Lq(O)))

Rτ,k,i(uk, wk,1, ..., wk,i−1)

L2(O)

.

The Lipschitz continuity of Rτ,k,i implies the linear growth propertyRτ,k,i(uk, wk,1, ..., wk,i−1)

L2(O)

≤ CLip,R
τ,k,(i)


∥uk∥L2(O) +

i−1
j=1

∥ wk,j∥L2(O)


+
Rτ,k,i(0, ..., 0)


L2(O)

≤ max

CLip,R
τ,k,(i),

Rτ,k,i(0, ..., 0)

L2(O)


1 + ∥uk∥L2(O) +

i−1
j=1

∥ wk,j∥L2(O)



≤ max

CLip,R
τ,k,(i),

Rτ,k,i(0, ..., 0)

L2(O)


1 + ∥uk∥L2(O) +

i−1
j=1

∥wk,j∥L2(O)

+∥uk − uk∥L2(O) +
i−1
j=1

∥wk,j − wk,j∥L2(O)


.

As before, the Lipschitz continuity of L−1
τ,iRτ,k,i implies

∥wk,i∥L2(O) =
L−1

τ,iRτ,k,i(uk, wk,1, . . . , wk,i−1)

L2(O)

≤ max

CLip
τ,k,(i),

L−1
τ,iRτ,k,i(0, ..., 0)


L2(O)


1 + ∥uk∥L2(O) +

i−1
j=1

∥wk,j∥L2(O)


.

By induction, we estimate

1 + ∥uk∥L2(O) +
i−1
j=1

∥wk,j∥L2(O)

≤
i−1
l=1


1 + max


CLip
τ,k,(l),

L−1
τ,lRτ,k,l(0, . . . , 0)


L2(O)

 
1 + ∥uk∥L2(O)


.

Note that

∥ wk,i − wk,i∥L2(O) ≤ ∥ wk,i − wk,i∥Hν(O) ≤ εk,i.
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This enables us to follow similar lines as in the proof of Theorem 5.24. We estimate

∥uk − uk∥L2(O) +
i−1
j=1

∥wk,j − wk,j∥L2(O)

≤ (1 + CLip
τ,k,(i−1))


∥uk − uk∥L2(O) +

i−2
j=1

∥wk,j − wk,j∥L2(O)


+
L−1

τ,i−1Rτ,k,i−1(uk, wk,1, . . . , wk,i−2)

−

L−1
τ,i−1Rτ,k,i−1(uk, wk,1, . . . , wk,i−2)


εk,i−1


L2(O)

≤ (1 + CLip
τ,k,(i−1))


∥uk − uk∥L2(O) +

i−2
j=1

∥wk,j − wk,j∥L2(O)


+ εk,i−1

and conclude by induction

∥uk − uk∥L2(O) +
i−1
j=1

∥wk,j − wk,j∥L2(O)

≤


i−1
l=1

(1 + CLip
τ,k,(l))


∥uk − uk∥L2(O) +

i−1
j=1

εk,j

i−1
l=j+1

(1 + CLip
τ,k,(l)).

The proof is finished by

∥uk − uk∥L2(O) ≤
k−1
j=0


k−1
l=j+1

(C ′
τ,l,(0) − 1)


S
i=1

C ′
τ,j,(i)εj,i,

which is shown as in Theorem 5.24. □
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Nomenclature

Z all integer numbers R all real numbers
N all positive integer numbers R+ all positive real numbers
N0 all nonnegative integer numbers C all complex numbers
Q all rational numbers

d dimension: d ∈ N
Rd Euclidean d-plane
O domain: open and connected subset of Rd

1M indicator function: 1M(x) = 1 if x ∈M and 1M(x) = 0 otherwise
A ⪯ B ∀A,B :M → [0,∞] ∃c = c(A,B) > 0 ∀m ∈M : A(m) ≤ cB(m)
A ⪰ B B ⪯ A
A ≍ B B ⪯ A and A ⪯ B
Bin(n, p) Binomial distribution with n trials and success probability p
Γ(t) Euler’s Gamma function: Γ(t) :=


R+
xt−1 e−x λ(dx), t > 0

δi,j Kronecker delta symbol: δi,j = 1 if i = j and δi,j = 0 otherwise
λd, dx Lebesgue measure
N (m,σ2) normal distribution with mean m and variance σ2

Φcdf Φcdf(t) = (2π)−1/2
 t
−∞ e−x

2/2 dx

supp(f) support: the complement of the largest open set on which f vanishes
Tr(T ) trace of T

(V, U, V ∗) Gel’fand triple, rigged Hilbert space
(X,A, µ) σ-finite measure space
(Ω,F ,P) complete probability space

Bs
q(Lp(O)) 2.2.1 Lp(O) A.2

Bs,a
q (Lp(O)) 2.2.2 Lp(X,A, µ;G) A.2

C∞
0 (O) 2.2 L(G1, G2) A.1

CW(R+,R) A.4.2 LHS(U1, U2) A.1.2
D(O), D′(O) A.3 ℓp A.2
Hs(O) 2.2.1 S(Rd), S ′(Rd) A.3
Hs,a(Rd) 2.2.2 Wm

p (O) 2.2
Ht,ℓ(O) 2.2.3 W s

p (O) 2.2.1

L1,loc(O) A.3 W̊ s
p (O) 2.2.1

167





Index

adaptive scheme, 125
anisotropic pseudo-distance, 20
anisotropy, 20
approximation, 26
approximation line/scale, 29
asymptotically optimal, 26

Besov space, 15
Besov space, anisotropic, 20
Brownian motion, 139

Cameron-Martin space, 141
covariance operator, 139

degrees of freedom, 26
DeVore-Triebel diagram, 19
difference operator, 15
difference operator, mixed, 20
distribution, 136
distribution, law, 137
dominating mixed derivatives, 21

energy norm, 37
expectation, 138

frame, 130

Galerkin scheme, 124
Gaussian measure, 139
Gel’fand triple, 132
generalized derivative, 136

Hilbert-Schmidt operator, 131

inequality, direct or Jackson type, 27
inequality, inverse or Bernstein type, 27
interpolation, 134
Itō isometry, 143

Lebesgue space, 135
Lipschitz domain, 16

modulus of smoothness, 15
modulus of smoothness, mixed, 20
multiresolution analysis, 23

noise, 13

random function, 138
residual, 125
Riesz basis, 130
Riesz isomorphism, 130

semi-group approach, 14
Sobolev space, 17
Sobolev space, anisotropic, 21
solution, strong, mild, weak, 13
stochastic integral, 142
stochastic process, 138

test functions, 136
thresholding, 29

variational operator, 132

wavelet basis, 24
wavelet decomposition, 24
Wiener process, 140
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