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Chapter I

General introduction





General introduction

In  natural  ecosystems  species  interaction  play  an

important  role  for  the  dynamics  and  structure  of

communities.  Species  are  continually  exposed  to  a

variety  of  interacting  species,  both  above-  and

belowground (Ehrlich & Raven, 1964; Thomson 2009).

These  interactions  may  have  both  detrimental  (e.g.

herbivores,  pathogens)  as  well  as  beneficial  (e.g.

symbionts) for plant performance. The separate effects

of single interacting organisms on plant physiology and

performance are known to have important consequences

on the performance of plants as well as the dynamics of

populations  and  communities  of  plants  (for  root

symbionts see Smith & Read 2007, van de Heijden &

Sanders  2002).  However,  several  types  of  interaction

usually  simultaneously  affect  plant  growth  and

physiology  under  natural  conditions.  By  altering  the

plant’s  quality  and  quantity  these  interactors  further

affect  each  other,  resulting  in  potentially  complex

feedback loops (Wardle  et al., 2004). Recent evidence

accumulated  that  the  underlying  genetic  and

physiological pathways induced by and involved in the

different above- and below-ground interactions overlap

substantially  (Schenk  et  al. 2008).  However,  our

knowledge  of  such  interacting  effects  and  the

underlying  genetic  and  physiological  mechanisms

within plants as the central partner and the ecological

consequences is still very sketchy (Gehring & Whitham

2002).  Moreover,  these  interacting  effects  can  not  be

expected to be predictable from the separate effects of

single  interactors.  Consequently,  an  understanding  of

the separate and simultaneous influences of these effects

on the plant and their reciprocal interactions is needed. 

Interactions  between  mycorrhizal  fungi  and

herbivores

Amongst the most ubiquitous partners are mycorrhizal

fungi and herbivorous insects which are associated with

virtually  all  trees.  The  separate  effects  of  these  two

groups  of  organisms  on  plant  physiology  and

performance are known to have important consequences

for the performance of plants as well as the dynamics of

populations  and  communities  of  plants  (e.g.,

mycorrhiza:  Smith  &  Read  2007,  van  de  Heijden  &

Sanders  2002;  herbivores:  Crawley  1997).  Moreover,

insect  herbivores and mycorrhizal  fungi are known to
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Chapter I

affect  each other, resulting in feedback effects  on plant

performance. Firstly, by providing nutrients mycorrhizal

fungi  may increase  the  vigor  and nutritional  quality  of

host  plants  with  positive  effects  on  the  performance of

insect herbivores as well as positive effects on the ability

of  the  plant  to  tolerate  herbivory (Gehring & Whitham

1994a,  Borowicz  1997,  Halldorsson  et  al. 2000).

Secondly, the resource supply by mycorrhizal fungi may

allow  plants  to  increase  the  investment  into  resistance

against generalist insect herbivores (Jones & Last 1991,

Gange & West, 1994; Bi et al., 2007; Yao et al., 2007). In

turn,  herbivory  may  importantly  feed  back  on  the

interactions  between  plants  and  mycorrhiza.  Herbivory

may have a negative effect on mycorrhizal fungi because

defoliation  by  herbivores  decreases  photosynthesis  and

therefore  the  allocation of  resources  to  the  mycorrhizal

fungi (Smith & Read, 1997; Gehring & Whitham, 2002).

Ectomycorrhizal fungi may use between 10 to 50 % of the

photosynthesis  products  of  host  plants  (Simard  et  al.,

2002; Hobbie & Hobbie, 2006) and therefore EM fungi

may react very sensitively to herbivory induced changes

in C-allocation (Markkola et al., 2004; Stark & Kytöviita,

2005). After feeding by herbivores, Frost & Hunter (2008)

investigated  a  by  63%  decreased  allocation  of  carbon

belowground in  red  oak  and an  increased  allocation  to

new foliage.  Similarly, herbivory  by  caterpillars  of  the

moth  Lymantria dispar decreased C-allocation to the

root  system  (Babst  et  al.  2008).  Further,  herbivory

affects  the  balance  between  the  important  C-pools

starch and soluble sugars in leaf tissue (Babst  et al.,

2005)  and  roots  of  trees  (Kosola  et  al.,  2002).

Therefore, herbivory is an important trigger of the C-

allocation  patterns  within  plants  with  possibly

important  consequences  on  feedbacks  with  other

associated  organisms.  However,  the  importance  of

herbivory induced changes in allocation patterns for

plant-mycorrhiza  symbioses  remained  unexplored

until  now. However, evidence accumulated that  this

stimulation of plant resistance is not only due to the

well-known  effects  of  the  mycorrhiza  on  plant

nutrition,  but  also  to  changes  in  the  pathways  of

signals  that  trigger  the  defence  systems  (Bi  et  al.,

2007; Yao et al., 2007; Pozo & Azcón- Aguilar, 2007).

Thus, the ability of the plant to use these additional

resources made available by mycorrhization for anti-

herbivore  defence  determines  the  direction  of  the

effects  on  herbivore  performance.  Kempel et  al.

(2009)  demonstrated  a  central  role  of  defence

induction  for  the  outcome  of  mycorrhiza-herbivore

interactions  what  highlights  the  importance  of

signalling pathways within the plant for this tri-partite

relationship. 
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General introduction

In addition, soil detritivores  alter plant  nutrient

supply  and  therefore  plant  growth  performance  and

vitality.  For  instance  Collembola  recycle  plant  litter

thereby  increasing  nutrient  availability  of  plants,  but

they  also  alter  plant  growth  via  changing  plant  –

microbial interactions, in particular that between plants

and  fungi  (Chamberlain  et  al.,  2006).  Furthermore,

Collembola affect plant  performance not only through

provisioning of nutrients but also influence their growth

and  survivability  by  a  number  of  other  indirect

mechanisms  like  grazing  on  rhizosphere

microorganisms  and  modifying  the  soil  structure

(Scheu,  2001;  Gormsen  et  al.,  2004;  Friberg  et  al.,

2005).

Mycorrhization and plant defenses

Coevolutions of plants and insects has brought to light a

magnitude  of  strategies  to  cope  with  herbivory.

Undoubtedly,  physiological  and  ecological  constraints

play key roles in the evolution of plant growth patterns,

especially  in  relation  to  defenses  against  herbivory

(Herms and Mattson, 1992). Direct defenses, in contrast

to  indirect  defenses,  are  plant  traits  (e.g.  secondary

metabolites,  silica,  thorns,  trichomes  etc.)  that  by

themselves  affect  herbivore  performance  and  are

generally categorized by their mode of action (Baldwin

et al., 2001). Morandi (1996) reviewed the stimulation

of  secondary  compounds  like  e.g.  flavonoide  and

isoflavonoide by arbuscular mycorrhizal fungi. Further,

the  impact  of  secondary  metabolites  on  insect

herbivores has been shown by Gange and  West (1994),

who found increased levels of aucubin and catalpol in

plants  of  Plantago  laureolata inoculated  with  an

arbuscular  mycorrhizal  fungus.  Furthermore,

mycorrhizal  colonisation  also  increases  phenolic

contents in Cynara cardunculus (Ceccarelli et al., 2010)

Further,  indirect  defense  mechanisms  are  an

effective  way  of  reducing  herbivory  (Baldwin  et  al.,

2001).  Often  this  involves  the  induced  release  of

volatile  organic  compounds  (VOCs)  in  response  to

herbivore attack. These volatiles can serve in tri-trophic

systems  to  attract  enemies  of  herbivores,  such  as

parasitic wasps and flies or predatory mites, which can

protect  the  signalling  plant  from  further  damage

(Kessler & Baldwin, 2001; Rosta  s & Turlings, 2008).

Amongst the most common volatile signals in indirect

defense  are  metabolites  of  the  lipoxygenase  (LOX)

pathway, metabolites of the shikimic acid pathway, and

products  of  the  terpenoid  pathway  (monoterpenes,

sesquiterpenes,  homoterpenes;  Pichersky  &

Gershenzon, 2002). There are a few studies suggesting a

connection of mycorrhizal symbiosis and the production

of VOCs as indirect defense. For instance, Gange et al.
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(2003) found lower infection rates of a leaf mining insect

in Leucanthemum vulgare by a parasitoid wasp when the

host plant was in symbiosis with arbuscular mycorrhizal

fungi,  which  might  be  caused  by  an  enhanced  VOC

emission in mycorrhizal plants. Further evidence for other

forms of symbiosis was raised by Ballhorn et al. (2012).

The  authors  measured  the  release  of  jasmonic  acid

induced volatiles of rhizobia-colonized and rhizobia-free

lima bean plants and found differences in the composition

of the volatile blend of plants.

Recent  developments  in genomics allow for  the

first  time  to  analyse  the  genetic  basis  of  biotic

interactions.  The use of DNA microarrays, for instance,

provided information on the patterns of gene expression

caused by biotic interactions and their consequences for

plant  metabolism  and  defense  (Colebatch  et  al., 2002,

Michel et al., 2006; Cartieaux et al., 2008). These patterns

are the first step for the identification of genes involved in

biotic  interactions  of  e.g.  mycorrhizal  fungi  and

herbivores  (Wullschleger  et  al., 2007).  The  first

generation of  microarray experiments demonstrated that

herbivores  influence  the  transcription  of  hundreds  of

genes  (Baldwin  et  al.,  2001;  Hermsmeier  et  al.,  2001;

Roda  & Baldwin  2003;  Schmidt  et  al.,  2005),  perhaps

leading to an entire metabolic reorganization of the plant

(Hui et al., 2003). Of course, interactions between plants

and  mycorrhizal  fungi  lead  also  to  changes  in  the

expression  of  genes  in  the  host  plant  (Wiemken  &

Boller, 2002). Some of these genes are relevant for the

allocation of resources as well as reactions to stress

and defense (Herrmann & Buscot, 2007).

The role of plant growth stages

Major trees of boreal, temperate regions, e.g. Quercus

robur,  Castanea  sativa,  Picea  abies,  Fraxinus

excelsior and  Abies alba,  grow with mycorrhiza and

show  a  determinate  pattern  of  rhythmic  growth

(Herrmann,  1998).  Further,  each  growth  unit  is

characterized  by  an  acrotonic  lateral  branching,  in

which the most apical of the axillary buds give rise to

vigorous ramifications (Harmer, 1990). Variations in

seasonal climate in close connection with the tree age

allows up to 5 growth units within a vegetation period

(Gruber,  1987).  In  trees  older  than  10  years,  the

number  of  growth  flushes  is  mostly  reduced to  the

regular spring flush and one additional lammas shoot

(“Johannistrieb”)  in  July (Adams & Bastien,  1994).

Those trees develop this rhythmicity in nature, as well

as under controlled culture conditions (i.e. 25° C and

long  day  illumination),  uninfluenced  by  changes  in

nutrient supply which indicates a endogenous control

of plant growth (Lavarenne, 1966; Champagnat et al.,

1986). 
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These growth flushes, accompanied by rhythmic

allocation  of  nutrients,  play  an  important  role  in  the

physiology and ecology of the plant.  Such patterns of

rhythmic growth could have a crucial impact on plant

response  to  herbivore  feeding.  For  example,  plants

attacked during root flush might be more vulnerable to

herbivores  than  those  attacked  during  shoot  flush

because nutrients are allocated towards the root system

during root flush. On the other hand, as the leaf surface

area is reduced by herbivory, the amount of C deposited

in fine roots can be reduced (Frost, 2008), which in turn

might  influence  the  interaction  between  mycorrhizal

fungi and host plants.

Harmer  (1990)  showed  that  the  alternating

growth flushes in shoot and roots, typical for the oak de-

velopment,  only  appear  in  seedlings  older  than  two

years.  A number  of  experiments  demonstrated further

that  there  is  considerable  intraspecific  variability  of

herbivory  related  traits  in  trees  (Ruhnke  et  al.,  2006,

Ruhnke  et al., 2009). For  Quercus robur  it was shown

that the intensity of herbivory for different polyphagous

species and performance parameters of insect herbivores

differed between single oak individuals (Ruhnke et al.,

2006). This genetic variability can be further expected

to have influences on interactions with other associated

organisms  (Schädler  et  al., 2010).  Microcuttings

provide genetically uniform material and therefore pre-

vent confounding effects of oak genotypes on herbivore

performance.  The use of micropropagated oaks (Quer-

cus robur; further on referred to as microcuttings) there-

fore suits the needs for an experimental platform with a

considerable size, expression of rhythmic growth, genet-

ically uniformity and  are produceable in great number

to satisfy the needs of collaborating working groups of

the TrophinOak project in which also the present studies

of this dissertation participates (for further information

see: http://www.ufz.de/trophinoak/) 

Aims of the thesis

The present dissertation is devoted to shed light

on the interactions between ectomycorrhizal fungi and

leaf consuming insects in  oak with a focus on changes

in allocation patterns  and the underling genetic  basis.

Although the genetics of oak have attracted increased

attention  in  recent  years,  no  whole  genome,  nor

transcriptome sequence is  available today (Barreneche

et al., 1998; Ueno et al., 2010; Kremer et al., 2012). 

Accordingly,  the  second  chapter  of  this

dissertation is devoted to the technical preparation of a

comprehensive reference transcriptome. We treated  Q.

robur microcuttings  with  seven  trophic  interactions

(mycorrhizal  fungus,  leaf  herbivore,  leaf  pathogen,

7



Chapter I

mycorrhizal helper bacterium, rhizosphere consumer, root

pathogen and root feeding nematode to obtain as big as

possible  numbers  of  expressed genes.  In  preparation of

the sequencing using two technically different approaches

(454 pyrosequencing and Illumina RNA-Seq) and resulted

in the OakContigDF159.1 reference transcriptome.

In the third chapter of  the present  dissertation I

study the effects of leaf herbivory caused by a generalist

herbivore  caterpillar,  mycorrhizal  symbiosis  with  an

ectomycorrhizal  fungus  and  of  endogenous  rhythmic

growth  in  a  multifactorial  experiment.  Aim  of  this

experiment  is  the  investigation  of  the  genetic  and

physiological basis of mediating effects of a mycorrhizal

fungus on oak-herbivore interaction. Using the reference

library OakContigDF159.1 I measured gene expression of

single  genes,  as  well  of  “gene  families”  using  Gene

Ontology categories and physiological pathways using the

approach  of  the  Kyoto  Encyclopedia  of  Genes  and

Genomes. Further I apply a nutrient tracer analyses using

stable isotopes of carbon and nitrogen.

The  fourth  chapter  aims  to  shed  more  light  on

more complex interaction patterns  of above-ground and

below-ground trophic partners. This is the first study of a

combined  investigation   the  collembolan  species

Protaphorura  armata to  the  well  established system of

oak, mycorrhiza and leaf herbivore, I investigate changes

in  nutrient  allocation  in  reaction  to  the  trophic

interaction. 

The  overall  aim  of  this  thesis  is  to  use

Quercus robur and the mycorrhizal fungus Piloderma

croceum to  quantify  the  interacting  effects  of

mycorrhization  and  insect  herbivory  on  plant

performance.  Besides  the  initial  construction  of  a

reference  transcriptome,   I   performed  several

experiments  to  explore  (1)  the  separate  and  joint

effects of insect herbivory and mycorrhiza on patterns

of gene expression and plant growth, (2) changes in

patterns of carbon and nitrogen allocation within the

plant and triggered by the interplay of mycorrhization

and  insect  herbivory  and  its  consequences  for

herbivore and plant performance, and (3) the separate

and  joint  effects  of  mycorrhiza  and  Collembola  on

plants and herbivorous insects.
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OakContigDF159.1, a reference library for studying differential gene

expression in Quercus robur during controlled biotic interactions: use for

quantitative transcriptomic profiling of oak roots in ectomycorrhizal

symbiosis

with:

Mika T. Tarkka, Sylvie Herrmann, Tesfaye Wubet, Lasse Feldhahn, Sabine Recht, Florence Kurth, Sarah

Mailänder, Markus Bönn, Maren Neef, Oguzhan Angay, Marcel Graf, Hazel Marboreke, Frank Fleischmann,

Thorsten E. E. Grams, Liliane Ruess, Martin Schädler, Roland Brandl, Stefan Scheu, Silvia D. Schrey, Ivo

Grosse, François Buscot
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OakContigDF159.1, a reference library for studying differential gene expression in   Quercus robur

INTRODUCTION

Oaks  (Quercus  spp.)  are  key  trees  in  many  of  the

vegetation  types  found  in  the  temperate  and

Mediterranean  biomes  of  the  Holarctic  (Iverson  &

Prasad,  2001).  The  oak  genus  includes  species  and

lineages  with  specific  adaptations  to  a  wide range  of

climates  and habitats  (Ellenberg,  2010).  For  instance,

the  pedunculate  oak,  Quercus  robur L.,  is  widely

distributed across Europe in predominantly humid areas,

and  prefers  compact,  calcareous  and  hydromorphic

grounds (Levy et al., 1992). 

Being  long-lived  and  widely  distributed  trees,

oaks harbour large communities of microorganisms and

invertebrates,  which  interact  with  their  host  and  with

each  other  (Brändle  &  Brandl,  2001;  Jumpponen  &

Jones,  2009).  Most  of  the  fine  roots  of  oaks  form

ectomycorrhizas  (EMs)  with  soil  fungi,  a  form  of

mutualistic  symbiosis  which  facilitates  nutrient

acquisition (Richard et al., 2005; Herrmann & Buscot,

2007).  Oaks  are  also  often  infected  by  a  series  of

parasites which are believed to be partly responsible for

the  decline  of  this  tree  species  during  recent  decades

(Thomas  et  al.,  2002).  For  instance,  the  pathogen

species Phytophthora ramorum is the causative agent of

sudden  oak  death  in  North  America  and  Europe

(Grünwald et al., 2012), and infection by the epiphytic

pathogenic fungus  Microsphaera alphitoides leads to a

decrease  in  the  total  leaf  Chl  content  and net  carbon

assimilation rate (Brüggemann & Schnitzler, 2001; Hajji

et al., 2009). Oaks also host species-rich assemblages of

herbivores and mites (Brändle & Brandl, 2001), which

may decrease their growth rate and even cause mortality

(Marquis & Whelan, 1994). 
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SUMMARY

Oaks  (Quercus  spp.),  which  are  major  forest  trees  in  the  northern  hemisphere,  host  many  biotic
interactions, but molecular investigation of these interactions is limited by fragmentary genome data.
To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM)
symbioses.  We  synthesized  seven  beneficial  and  detrimental  biotic  interactions  between
microorganisms and animals and a clone (DF159) of  Quercus robur. Sixteen 454 and eight Illumina
cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq
transcriptomic analysis of oak EMs with  Piloderma croceum. Using the Mimicking Intelligent Read
Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712
contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways.
This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes
encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing
up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report
of remorin expression in EMs, the extensive coverage provided by the study permitted detection of
differential  regulation  within  large  gene  families  (nitrogen,  phosphorus  and  sugar  transporters,
aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with
other trees.
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The  genetics  of  the  pedunculate  oak  and  of  the

closely  related  sessile  oak  (Quercus  petraea)  have

attracted  increased  attention  during  recent  years

(Barreneche et al., 1998; Ueno et al., 2010; Kremer et al.,

2012).  These  two  sympatric  oak  species  have  become

model systems for comparative analyses of physiological

differentiation  and  speciation  in  forest  trees  (Epron  &

Dreyer, 1993; Abadie et al., 2012). As a first step towards

genomic  analyses  of  both  pedunculate  and  sessile  oak,

Ueno et al. (2010) developed a combined Q. robur and Q.

petraea cDNA contig assembly, based on large collections

of  expressed  sequence  tags  (ESTs).  These  collections,

however, consisted mainly of leaf ESTs from the sessile

oak,  and included only a limited number of ESTs from

oak tissues involved in biotic interactions. 

Based on an experimental system using genetically

identical  microcuttings  from  pedunculate  oak  clone

DF159  (Herrmann  et  al.,  1998),  the  joint  experimental

platform  TrophinOak,  ‘Multitrophic  Interactions  with

Oaks’,  has  recently  been  established  in  order  to  study

interactions  among  Q.  robur, microorganisms  and

invertebrates  in  a  soil-based  culture  system  under

controlled  conditions  (www.trophinoak.de).  Seven

representative  interacting  organisms  are  part  of  the

platform and were used in the experiments presented in

this paper (see Table 1): 

– The ectomycorrhizal fungus  Piloderma croceum J.

Erikss.  &  Hjortst.  strain  729  (DSM-4924)  was

selected  for  mycorrhizal  syntheses.  Mycorrhizal

interaction between Q. robur and P. croceum has been

intensively studied (Krüger et al., 2004; Herrmann &

Buscot, 2007). 

–  Formation  of  mycorrhiza  is  promoted  by

mycorrhization  helper  bacteria,  and  the  strain

Streptomyces sp.  AcH  505,  which  promotes

ectomycorrhiza formation and root branching (Maier

et al., 2004; Schrey et al., 2005), was selected. 

– Leaves of oak seedlings are particularly vulnerable

to  powdery  mildew  infections  (Edwards  &  Ayres,

1981),  and  Microsphaera alphitoides (syn.  Erysiphe

alphitoides),  the  causal  organism of  the  majority  of

powdery  mildew  infections  in  Q.  robur,  is  the

representative powdery mildew species in the project. 

– The involvement of  Phytophthora quercina in the

decline of oaks in Europe has been well documented

in  the  last  two  decades  (Jung  &  Blaschke,  1996;

Jönsson  et  al.,  2003),  and  this  root  pathogen  was

selected. 

–  Caterpillars  of  the  phytophagous  moth  Lymantria

dispar,  which  are  known  to  feed  preferentially  on

oaks, were selected for experimentation. Herbivory by

L.  dispar has  been  related  to  a  shift  in  carbon

14



OakContigDF159.1, a reference library for studying differential gene expression in   Quercus robur

allocation  towards  the  below-ground  parts  of  trees

(Babst et al., 2008).

–  The  nonspecific  plant  parasitic  nematode

Pratylenchus penetrans, which produces root lesions in

broadleaved trees, was chosen as a representative root

feeder (Viggars & Tarjan, 1949; Jaffee et al., 1982). 

–  Plant  rhizospheres  are  colonized  by  species  of  the

extremely widespread collembolan genus Protaphorura

(springtails).  The chosen representative,  Protaphorura

armata, lives  predominately  on  plant  resources,

presumably fine roots or root hairs (Endlweber  et al.,

2009).

Currently,  there  is  no  full  genome  sequence

available  for  any  oak  species.  Therefore,  one  key

objective  of  the  TrophinOak  project  is  to  generate  a

reference  transcriptome  library,  specific  to  the

pedunculate oak clone DF159, which is comprehensive

enough to enable RNA sequencing (RNA-Seq) analyses

of all  seven biotic interactions under investigation. To

meet  this  objective,  we  performed  a  series  of  454

sequencing runs on transcripts from roots and leaves of

DF159  microcuttings  interacting  with  the  seven

biotrophic  organisms  listed,  and  from  noninfected

control  tissues (Table 1).  Particular  care was taken to

obtain  the  most  diverse  possible  collections  of  reads,

and for this purpose, normalized cDNA libraries were

prepared for 454 pyrosequencing from roots and leaves

for each interaction type. In addition, to obtain a high

amount of coverage of each transcript, sequences with a

read length of 100 bp were obtained from paired-end

libraries (average insert size 400 bp) of root and shoot

tissues  using  Illumina  sequencing  technology.  Both

types  of  reads  were  combined  to  create  a  hybrid

transcriptome assembly. After  evaluating the coverage

of this library by in silico comparisons with genome-

sequenced  plant  species,  the  effect  of  mycorrhiza

formation with  P. croceum on the expression levels of

oak  genes  was  quantified  by  RNA-Seq  analysis.  Our

objective  was  to  gain  an  in-depth  insight  into  the

regulation  of  gene  expression  in  EM  oak  roots,  by

greatly increasing the number of transcripts known to be

differentially  expressed.  Previous  studies  on  the  oak

clone  DF159  had  identified  only  51  differentially

expressed transcripts in premycorrhizal roots and 75 in

EM, using subtractive suppressive hybridization (SSH;

Krüger  et al., 2004) and macroarrays (Frettinger  et al.,

2007), respectively.

Bruns & Shefferson (2004) have pointed out that

the EM symbiosis habit was acquired independently by

diverse  plant  lineages,  and  that  these  independent

acquisitions  may  have  relied  on  parallel  gains  of

morphologies  and  behaviours  in  plants  and  fungi.
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Whether the genetic background of these changes relies

on gains and losses of genes, as has been shown for EM

fungi  (Plett  & Martin,  2011),  has  not  been analysed in

plants,  and  gene  diversification  and  changes  in  gene

expression patterns could matter as well. On this basis, we

hypothesized that with the help of a large reference library

we might be able to detect that EM formation in oak leads

to  specific  patterns  of  up-  and  down-regulation  among

different  members  of  gene  families,  and  that  the  plant

genes  induced  in  other  EM  associations  may  not  be

induced in oak Ems.

MATERIALS AND METHODS

The experimental culture system

To  obtain  a  homogeneous  soil  substrate  for  the

experiments, 3 m 3 of the upper soil were collected from

an  oak  forest  stand  at  the  Dölauer  Heide  close  to

Halle/Saale,  Saxony  Anhalt,  Germany  (51.51016°N,

11.91291°E).  The  A0  (humus,  –10  cm)  and  A1A2

(organic,  –30  cm)  horizons  were  gathered,  air-dried,

sieved at 5 mm, mixed 1 : 1 (v/v), separated into 500 ml

aliquots, and sterilized at 50 kGy by BGS Beta-Gamma-

Service (Wiehe, Germany). The soil aliquots were stored

at 8°C and their sterility was tested before use by plating

on LB agar.

Micropropagation  and rooting  of  the  pedunculate

oak (Q. robur L.) clone DF159 was done according to

Herrmann  et  al. (2004),  reviewed  in  Herrmann  &

Buscot  (2008).  To  ensure  the  maximum  possible

production  of  microcuttings,  the  plant  hormones

indole  acetic  acid  and  6-benzylaminopurine  were

continuously supplied to the cultures. The root part of

each microcutting was placed into square Petri dishes
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Table 1  Treatments of pedunculate DF159 oak (Quercus
robur  L.)  microcuttings  with seven different  interacting
organisms.  The microcuttings  were grown in Petri  dish
soil microcosms for 6 weeks to produce the material for
the  contig  assembly  and  for  8  weeks  for  the  study  of
differential gene expression in ectomycorrhizas. Day 0 in
the  Table  indicates  the  date  on  which  the  oak
microcuttings were placed in the soil microcosms. 
Sample Treatment type

No treatment No inoculation 

None applied

Ectomycorrhizal fungus 
Fungal inoculum was mixed with
the soil substrate once, at day 0

Piloderma croceum

Mycorrhization helper 
bacterium 

2.5 x 107 spores were applied to 
the soil twice, at 3 and 4.5 weeks

Streptomyces sp. AcH 505

Leaf pathogen 
1.5 x 106 spores were applied to 
leaves once, at 4 weeks

Microsphaera alphitoides

Leaf herbivore 
One caterpillar per plant was ap-
plied once, at the last day before 
harvest

Lymantria dispar

Root pathogen 
1.0 x 106 zoospores per plant 
were applied to the soil once, at 5
weeks 

Phytophthora quercina

Root feeding nematode 
≈1.0 x 104 nematodes per plant 
were applied to the soil once; at 5
weeks

Pratylenchus penetrans

Rhizosphere consumer 
Ninety individuals per plant were
applied to the soil once, at 5 
weeks

Protaphorura armata  



OakContigDF159.1, a reference library for studying differential gene expression in   Quercus robur

(12 x 12 cm2) filled with c-sterilized soil, which is an

adaptation of the initial cultivation system described in

Herrmann et al. (1998). Shoots were grown outside the

Petri  dishes.  Seven  interacting  organisms  were

introduced to the culture  system either  at  the  time of

establishment (mycorrhizal fungus) or later; procedures

used are  listed in  Table  1 and detailed in  Supporting

Information, Methods S1, except for the interaction with

P. croceum, which was used for quantitative RNA-Seq

analysis,  and  is  detailed  later  in  this  paper.  For  all

interactions, the oak microcuttings were grown at 23°C

with a 16 : 8 h day : night (photosynthetic photon flux

density of 180 µ mol m-2 s-1). After transfer into the Petri

dish system, the plants were cultivated for 6 wk, before

the tissues  were harvested for RNA extraction.  While

the  shoot  tissues  consisted  of  a  mixture  of  leaves  at

different  developmental  stages  (buds,  sink and source

leaves),  the root tissues were exclusively lateral roots.

After  harvest,  tissues  were immediately submerged in

liquid nitrogen. Material was ground in a mortar with a

pestle under liquid nitrogen, divided into aliquots, and

stored at –80°C.

Piloderma croceum J.  Erikss.  & Hjortst.  Strain

729  (DSM-  4924)  was  cultivated  in  Petri  dishes  on

Melin Norkrans Modified by Marx (1969) agar medium

supplemented  with  0.1%  (w/v)  casein  hydrolysate  in

darkness  at  20°C  (Herrmann  et  al.,  1998).  Fungal

inoculum  was  produced  by  inoculating  a  substrate

mixture of vermiculite (675 ml), sphagnum peat (75 ml)

and 300 ml Melin Norkrans modified by Marx (1969)

liquid  medium  without  carbohydrates  and  with  1/10

strength for  P and N as  described in  Herrmann et  al.

(1998) with a 2-wk-old liquid fungal culture previously

grown in 100 ml glass flasks at 20°C in the dark with

shaking at 100 rpm. After 4 wk incubation at 20°C in

the  dark,  the  inoculum  was  used  for  mycorrhizal
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Fig.  1 Pedunculate  oak  DF159 (Quercus  robur)  hybrid  assembly
pipeline for Roche 454 and Illumina reads. 454 reads are assembled
by  Mimicking  Intelligent  Read  Assembly  (MIRA)  and  converted
into overlapping 100 bp single-end reads.  Single-end and 100 bp
paired-end (PE) Illumina reads are assembled by Trinity.
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synthesis, mixing it 1 : 1 (v/v) with the gamma-sterilized

soil.  The first  yellow mycorrhizal  root tips were visible

after 5 wk of coculture. Two sets of plants were produced

with  P. croceum.  One set was harvested at 6 wk at the

onset of EM formation. To obtain a larger 

amount  of  EM  for  quantifying  differential  gene

expression,  a  second set  of  plants  was  harvested  8  wk

after inoculation with P. croceum.

RNA extractions

Based  on  preliminary  experiments  comparing  the

performance  of  different  RNA extraction  methods  with

oak  roots,  the  MasterPure  Plant  RNA Purification  Kit

(Epicentre,  Hessisch Oldendorf,  Germany)  was selected

for RNA extractions. Fifty milligrams of leaf or 100 mg of

root material were used for each extraction. The extracted

RNA was treated with DNase I (Fermentas, St Leon-

Rot, Germany), and RNA quantification was carried

out  using  NanoDrop  (Thermo  Scientific,  Passau,

Germany) and a Quant-iT RiboGreen RNA Assay Kit

(Invitrogen, Darmstadt,  Germany). RNA quality was

checked  on  a  Nano  Chip  with  a  Bioanalyzer  2100

(Agilent, Böblingen, Germany).

Preparation and normalisation of cDNA pools for

454 pyrosequencing and Illumina RNA-Seq

Eight leaf and eight root samples were prepared for

454  pyrosequencing,  corresponding  to  above-  and

below-ground tissues of plants interacting with each

of  the  seven  organisms  plus  noninoculated  control

plants;  each sample  was  prepared  from four  plants.

Each of the 16 cDNA samples was prepared from 1 lg
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Fig. 2 Characteristics of the assemblies generated by the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembly programs. (a)
Basic assembly metrics. Values are shown from MIRA assembly of 454 reads, Trinity assembly of Illumina reads only, and Trinity assembly
of Illumina reads and MIRA contigs, as well as unassembled single reads converted into overlapping 100 bp single-end reads. (b) Numbers
of BLASTx matches of the contigs against Vitis vinifera and Populus trichocarpa RefSeq protein databases at an e-value cut-off of 1.0e–20.
MIRA 454, yellow bars; Trinity Illumina, red bars; Trinity 454/Illumina, purple bars. CDS, polypeptide coding sequence.
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total RNA with a SMARTer PCR cDNA Synthesis Kit

and  amplified  with  Advantage  DNA  Polymerase

(Clontech, Saint-Germain-en- Laye, France). To reduce

the  prevalence  of  high-abundance  transcripts  and  to

equalize transcript concentrations in the cDNA samples,

the  SMARTer  amplification  products  (5  lg)  were

subjected to TRIMMER cDNA normalization (Evrogen,

Heidelberg,  Germany).  The  normalized  cDNA  pools

were then used to prepare 454 sequencing libraries and

sequenced in-house by means of a titration run followed

by two picotitre plates with eight lanes each on a Roche

454 GS-FLX Titanium platform.

One  sample  from  the  total  root  system  and

another  from leaves  were  used  to  produce  sequences

with a read length of100 bp from paired-end libraries

(average  insert  size  198  bp),  which  were  sequenced

using an Illumina HiSeq 2000 at the Beijing Genomics

Institute,  Hong  Kong,  China.  In  addition,  for  the

transcriptome  assembly  as  well  as  the  transcriptomic

study of EM plants, three individually selected samples

of EMs and three samples of noninoculated fine roots

were used to prepare sequences with a read length of

100 bp from paired-end libraries  (average  insert  size,

400 bp), which were sequenced by Illumina HiSeq 2000

at IGA Technologies, Udine, Italy. The latter two steps

resulted in eight Illumina libraries in total.

Read  processing  and  construction  of  the

OakContigDF159.1 hybrid assembly

The 454 reads were screened for primers and adaptors

with  crossmatch  (P.  Green,

http://bozeman.mbt.washington.edu/phredphrap/phrap.  h

tml).  The  following  steps  were  implemented  using

custom Java scripts.  The 454 reads were masked, and

for  each  read,  the  longest  nonmasked  region  was

extracted. Remaining primer and adaptor artefacts were

also  eliminated.  For  both  454  and  Illumina  reads,

poly(A) tails, low complexity and low quality sequences

were  removed  with  SeqClean

(http://compbio.dfci.harvard.edu/tgi/software/).

Nucleotides with quality score < 20 were removed from

the  ends  of  the  reads  using  a  custom  Java  script.

Sequences < 50 bp were discarded, as were sequences

without paired-end information after  preprocessing.  In

order to minimize the number of contaminating reads, a

decontamination procedure was introduced for both the

454 and the Illumina reads, as described (Fig. S1).  A

hybrid assembly approach was selected to combine 454

and Illumina  reads  to  produce  an  OakContigDF159.1

reference  transcriptome.  This  process  is  described  in

Methods  S1  (see  the  ‘Construction  of

OakContigDF159.1  hybrid  assembly’  section)  and

illustrated in Fig. 1.
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http://bozeman.mbt.washington.edu/phredphrap/phrap.html
http://bozeman.mbt.washington.edu/phredphrap/phrap.html
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Analysis of differential expression in EMs by Illumina

RNA-Seq

Illumina  libraries  from  EMs  and  from  fine  roots  were

used to quantify gene expression. The Illumina reads were

aligned against  the  OakContigDF159.1 hybrid assembly

by  bowtie  (Langmead  et  al.,  2009)  and  quantified  by

RSEM  (Li  &  Dewey,  2011)  and  the  significance  of

differences  in  gene  expression  was  measured  using  the

DESeq  (Anders  &  Huber,  2010)  function  of  the

Bioconductor package (Gentleman et al., 2004) in R (R

core group, http://www.r-project.org/). The tools used for

transcript annotation and for metabolic pathway analyses,

and  the  quantitative  reverse  transcription  polymerase

chain  reaction  (qRT-PCR)  methodology,  are  described

(Table S1).

RESULTS

Generation of a hybrid OakContigDF159.1 reference

transcriptome

Root  and  shoot  material  from  successfully  established

interactions  between  oak  microcuttings  and  seven

representative organisms,  and from control  plants,  were

used  to  generate  a  total  of  821  534  reads  from

TRIMMER-normalized cDNA pools using a Roche 454

FLX  instrument  with  Titanium  chemistry  (Table  S2).

Most  454  reads  were  either  unique  or  present  in  low

numbers  in  the  normalized  cDNA  pools.  The  454

reads with homology to genes known to be expressed

at  a low level  were differentially represented in  the

individual 454 libraries (Fig. S2). For instance, only

two cDNA pools  included reads homologous to  the

transcriptional suppressor gene LHP1 of  Arabidopsis

thaliana.

Additional  Illumina RNA-Seq of  eight  cDNA

pools, four from roots, three from EMs and one from

leaves, allowed a greater depth of sequencing for the

pedunculate oak clone DF159 transcriptome assembly.

Depending on the sample, the libraries yielded 21–62

mio 100 bp paired-end reads with a Q20 percentage

(percentage  of  sequences  with  predicted  sequencing

error rate lower than 1%) of over 93% (Table S3).

Contaminating  reads  originating  from  oak-

interacting  organisms  were,  as  far  as  possible,

eliminated  from  all  sequence  libraries  by  BLASTx

searching against reference datasets (see Methods S1

and Fig.  S1  for  details).  A pedunculate  oak  DF159

reference  transcriptome  was  produced  from  the

decontaminated reads using a combination of overlap

layout  consensus  (OLC)  and  short  read  assemblers

(Fig.  1).  In  the  first  step,  the  Mimicking Intelligent

Read  Assembly  (MIRA)  OLC  assembler  was
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implemented to generate contigs from 454 reads. MIRA

contigs  and  singletons  (reads  which  were  not

incorporated into MIRA contigs)  were then converted

into overlapping 100 bp single-end reads and assembled

with  the  Illumina  reads  using  the  Trinity  short  read

assembler. The 454/Illumina hybrid assembly generated

more  contigs,  which  encoded  a  larger  number  of

predicted full-length polypeptide coding sequences than

the  454  or  Illumina  read  assemblies  alone  (Fig.  2a).

BLASTx  searches  against  Vitis  vinifera and  Populus

trichocarpa protein indices showed that the numbers of

matches  to  the  reference  sequences  were  highest  for

454/Illumina hybrid assembly contigs at e-values > 1e

50  and  highest  for  sequences  in  Illumina-only

assemblies at e-values < 1e–50 (Fig. S3). Comparable

numbers  of  matches  in  the  two  Trinity  assemblies

occurred  at  1e–50  (Fig.  2b).  Crosscomparison  of  the

MIRA and  Trinity  assemblies  by  BLASTn  with  the

threshold 1e–50 showed that 71 305 of 73 161 (97%)

MIRA  contigs  and  single  reads  are  homologous  to

Trinity  454/  Illumina  contigs,  and  69  057  (94%)  are

homologous to Trinity Illumina contigs. On the basis of

the  slightly  higher  number  of  matches  to  reference

sequences,  the  454/Illumina  hybrid  assembly  was

selected as being the most comprehensive.

The  OakContigDF159.1  reference  transcriptome

comprises 65 712 contigs with a mean length of 1003

bp,  totalling  65  913  455  bp.  Contig  lengths  in  this

transcriptome range from 200 to 15 438 bp. More than

57% of the contigs have a length of over 500 bp and >

36% are over 1000 bp. As expected, the Trinity contigs

of the OakContigDF159.1 reference transcriptome show

the  highest  degree  of  homology with  sequences  from

higher  plants  (Fig.  S4).  The  contigs  were  classified

using  the  Gene  Ontology  (GO)  terminology  with

Blast2GO and  a  range  of  diverse  functions  could  be

assigned to them (Fig. S5; Table S4). On the basis of the

Kyoto Encyclopedia  of  Genes and Genomes (KEGG)

global metabolic pathway annotation,  the distributions

of  metabolic  pathway-related  accessions  in  the

OakContigDF159.1  assembly  and  in  the  A.  thaliana

proteome were highly comparable (Fig. S6). The results

of  these  analyses  demonstrated  that  the

OakContigDF159.1  assembly  is  comprehensive  and

adequate for the analysis of oak gene expression at the

transcriptome level.

Differential  oak  gene  expression  induced  by

mycorrhiza formation

In  total,  3018  contigs  of  the  OakContigDF159.1

reference transcriptome were differentially expressed, of

which 1399 were up-regulated and 1619 down-regulated
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in

oak EMs with P. croceum (Fig. 3). Differential expression

levels of 14 contigs were confirmed by qRT-PCR analysis

(Fig. 4). On the one hand, GO enrichment analysis using

DAVID  detected  significantly  enriched  GO  terms

containing  the  words  ribosome,  vacuole,  response  to

stimulus, generation of precursor metabolites and energy,

starch metabolic process and transporter  activity among

genes  up-regulated  in  EMs,  and enriched KEGG terms

included ribosome and spliceosome (Table  S5).  On  the

other hand, GO terms that were depleted in EMs included

root  growth,  cytoskeleton,  auxin-mediated  signalling

pathway and auxin polar  transport,  laccase activity  and

phenylpropanoid metabolism (Table S5).

Highly  significant  up-regulation  of  gene

expression  was  observed  for  contigs  encoding,  for

example, galactinol synthase, inositol transporter, and

remorin (Table 2). Other up-regulated contigs encoded

sucrose and SWEET1 sugar transporters.  The RNA-

Seq analysis also revealed a general up-regulation of

contig family members. For instance, seven predicted

ethylene response transcription factors, eight predicted

proline-rich proteins, and six predicted that aquaporin
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Fig. 3 RNA-Seq based comparison of gene expression levels in
fine roots and ectomycorrhizas (EMs) of pedunculate oak DF159
(Quercus robur) with Piloderma croceum. Raw read counts were
generated  by  quantification  using  RSEM,  and  differentially
expressed  contigs  were  detected  by  DESeq.  Red  dots  mark
contigs detected as being significantly differentially expressed at
a 10% false discovery rate with Benjamini–Hochberg multiple
testing  adjustments  (P  <  0.01).  In  EMs,  3018  contigs  were
differentially  expressed,  of  which 1399 were up-regulated and
1619 were downregulated.

Fig. 4 Real-time quantitative reverse transcription polymerase chain
reaction  (qRT-PCR)  confirmation  of  14  differentially  expressed
genes  in  ectomycorrhizas  (EMs)  synthesized  between  oak
microcuttings  DF159  and  Piloderma  croceum in  comparison  to
noninfected lateral fine roots. RNASeq results (black bars) represent
means of  three biological replicates.  qRTPCR results  (green bars)
represent  means  of  three  biological  and  two  technical  replicates,
normalized with respect to an 18S rRNA gene.  The coefficient of
variation  was  <  6.0  for  all  qRT-PCR  reactions.  The  transcripts
analysed  were  predicted  to  encode  the  following  proteins  by
BLASTx searches against  the nr database at  an e-value cut-off of
1.0e–20: A, extensin; B, sieve element occlusion protein; C, plasma
membrane  H+-ATPase;  D,  endo-1,4-beta-glucanase;  E,
endomembrane  transport  protein;  F,  1  aminocyclopropane-1-
carboxylate oxidase; G, glucose-1- phosphate adenylyltransferase; H,
nucleoredoxin; I late embryogenesis abundant protein 5; J, proline-
rich  protein  PRP1;  K,  inositol  transporter;  L,  calcium-binding
protein; M, aspartic proteinase; N, galactinol synthase.
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contigs had higher expression levels in EMs (Table S6).

The  expression  levels  of  contigs  associated  with  the

starch metabolic pathway also increased in EMs (Fig.

S7).

Contigs  encoding pumilio RNA binding protein

and sieve element occlusion protein were the two most

strongly downregulated in EMs (Table 3). In agreement

with the results of GO enrichment analysis, nine auxin-

related contigs were downregulated in EMs (Table S6).

Cell wall protein, ammonium and phosphate transporter

contig families included contigs that were both up- and

down-regulated  in  EMs (Table  S6).  Overall,  the  high

resolution  of  RNA-Seq  enabled  the  identification  of

numerous EM-regulated genes and the visualization of

coregulated contig families.

DISCUSSION

In this study, RNA-Seq enabled the generation of the

first specific reference transcriptome for the pedunculate

oak clone DF159 under a range of biotic interactions;

the  study  of  global  transcriptional  responses  in  P.

croceum ectomycorrhizal  roots  despite  the  lack  of

reference genome sequence or array platform.

Hybrid  assembly  of  454  and  Illumina  reads  to

produce a reference transcriptome

Mimicking  Intelligent  Read  Assembly  (MIRA)  was

chosen for the preassembly of 454 reads from cDNA of

leaves and roots of pedunculate oaks involved in seven

types of interactions plus a noninfected control, since it

proved to be the most robust of the assemblers tested.

By contrast, the Illumina reads generated from EMs and

noninfected roots  and leaves  were assembled well  by

Trinity.  Numerous  studies  suggest  that  hybrid

454/Illumina  assembly  is  superior  in  quality  to

assemblies from 454 or Illumina reads alone (Blythe et

al.,  2010;  Sandmann  et  al.,  2011;  Hornett  &  Wheat,

2012). Following this advice, we constructed a hybrid

assembly pipeline for  the  pedunculate  oak reads.  The

hybrid assembly approach generated more contigs than

the  Illumina-  only  assembly,  and  included  sequence

information  from  the  majority  of  MIRA contigs  and

singletons. Furthermore, the number of unique contigs

was noticeably larger in the hybrid assembly than in the

Illumina-only assembly. High representation of  global

KEGG  biochemical  pathways  among  the  contigs

indicates  that  the  OakContigDF159.1  reference

transcriptome provides extensive coverage, even though

it does not cover the whole-genome sequence.

Differential gene expression in pedunculate oak EMs

Developmental  reprogramming  has  been  observed

previously  in  both  roots  and  fungal  hyphae  upon

formation of EMs (Johansson et al., 2004; Duplessis et
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al.,  2005; Martin  et al.,  2007). However, the authors of

these papers noted a much greater magnitude of change in

gene  expression  in  the  mycelium  (up  to  20%  of  the

analysed  transcripts)  than  in  the  root  cells  (2%  of  the

transcripts).  Our  RNA-Seq  analysis  of  plant  gene

expression in mature pedunculate oak EMs found a >

twofold  change  (4.6%  of  the  plant  contigs  were

differentially expressed in EMs at a significance level

of  P <  0.01).  In  total  we  found  3018  differentially

expressed plant  genes  in  oak EMs,  which increases
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Table 2 The 20 most significantly up-regulated contigs in ectomycorrhizas synthesized between oak DF159 (Quercus robur)  microcuttings and
Piloderma croceum

GENES UP-REGULATED IN MYCORRHIZA 

Contig no.

Raw read
counts in
Mycor-
rhiza

RNA-Seq

Raw read
counts in

Fine
Roots

RNA-Seq

P-value
RNA-Seq

Myc/FR
(log2 fold
change)

RNA-Seq

Myc/FR
(log2 fold
change)

qRT-PCR

Predicted function
Alignment e-value,
organism giving the best 
blastx match

43090_0_2 2058.39 147.45 4.60e-182 3.80 3.70*** Galactinol synthase 1e-93, Populus trichocarpa

36915_0_2 5973.13 1146.97 4.71e-150 2.38 2.13*** Inositol transporter 1 3e-114, Glycine max

35872_0_1 4171.80 1229.97 1.01e-149 1.76 No match

42280_0_1 3225.65 884.76 1.98e-147 1.86 Hypothetical protein 0, Populus trichocarpa

29157_0_2 639.69 13.27 4.76e-139 5.59 Protein phosphatase 2c 1e-65, Populus trichocarpa

36374_0_1 3219.85 992.25 6.17e-124 1.69 1.43
Glucose-1-phosphate adenylyl-
transferase

0, Populus trichocarpa

29927_0_1 1204.42 147.21 7.95e-123 3.03 3.35*** Aspartyl protease 6e-174, Ricinus communis

550515_0_1 1736.25 11.49 2.50e-108 8.23 No match

38461_0_5 534.23 18.19 5.85e-106 4.87 Pantothenate kinase 2 0, Vitis vinifera

43090_0_1 701.43 44.69 4.27e-101 3.97 Galactinol synthase 
4e-157, Populus tricho-
carpa

36915_0_1 2941.45 725.17 4.06e-96 2.02 Inositol transporter 1 0, Glycine max

28563_0_1 2521.02 802.43 2.31e-94 1.65 Remorin 3e-76, Jatropha curcas

40696_0_2 2352.19 575.33 2.26e-91 1.09 Expansin b1 4e-103, Ricinus communis

36836_0_1 422.87 9.68 4.78e-88 5.44 Farnesylated protein 1e-51, Vitis vinifera

21193_0_1 2043.99 817.43 9.54e-83 2.00 Lipid binding protein 1e-23, Ricinus communis

42096_3_1 730.62 80.61 2.27e-81 3.17 Hypothetical protein 1e-71, Populus trichocarpa

32514_0_1 1503.68 402.99 2.47e-75 1.89 Nucleoredoxin 2 2e-174, Vitis vinifera

42599_0_1 7358.51 4082.83 1.31e-70 0.84 Granule-bound starch synthase 0, Prunus persica

33802_0_1 3493.05 801.10 5.66e-62 2.12 1.66*
Late embryogenesis abundant 
protein

1e-20, Citrus sinensis

33859_0_1 3548.20 1705.6 1.40e-59 1.05  Formate dehydrogenase 0, Quercus robur

The contigs most significantly up-regulated according to the test statistic implemented in DESeq are listed. The RNA-Seq-based gene expression
levels in mycorrhiza (Myc) and in fine roots (FR) are means of three biological replicates. The mean number of reads that map to the respective
contigs is given.  P values represent  the probability  of  no difference between treatments with Benjamini–Hochberg multiple testing adjustment.
Putative gene functions were predicted by BLASTx searching against the nr database. The expected value of the sequence with the best BLASTx hit
and its source organism are given in each case. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results represent means of
three biological and two technical replicates, normalized with respect to an 18S rRNA gene. The coefficient of variation was < 6.0 for all qRT-PCR
reactions. Asterisks indicate significant differences according to a randomization test: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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the number identified by previous SSH (Krüger  et al.,

2004) or macroarray (Frettinger et al., 2007) approaches

applied to the same experimental system by a factor of

40.  In  addition,  the  quantification  was  confirmed  by

qRT-PCR  analyses  for  selected  genes.  This  indicates

that the strategy adopted in the present study provided

comprehensive  and  accurate  coverage  of  gene

expression changes.

Previous  analyses  of  Eucalyptus–Pisolithus,

Betula–Paxillus and Quercus–Piloderma symbioses did

not indicate expression of Emspecific plant genes, but

showed  rather  subtle  changes  in  the  level  of  gene

25

Table 3 The 20 most significantly down-regulated contigs in ectomycorrhizas synthesized between oak DF159 (Quercus robur) microcuttings and
Piloderma croceum

GENES DOWN-REGULATED IN MYCORRHIZA  

Contig no.

Raw read
counts in
Mycor-
rhiza

RNA-Seq

Raw read
counts in

Fine
Roots

RNA-Seq

P-value
RNA-Seq

Myc/FR
(log2 fold
change)

RNA-Seq

Myc/FR
(log2 fold
change)

qRT-PCR

Predicted function

Alignment e-value,
organism with the best 
blastx match

42518_1_2 8.99 1123.58 5.77e-237 -6.96 Pumilio RNA binding protein 0, Vitis vinifera 

40371_0_1 2289.14 5126.08 4.36e-95 -1.16
Sieve element-occlusion pro-
tein

0, Malus x domestica

42634_0_1 3033.65 7169.74 1.13e-96 -1.24 -0.66 MDR type ABC transporter 0, Vitis vinifera 

43602_1_1 5226.82 9598.42 4.15e-90 -0.87 Beta-glucosidase 24 5e-180, Sorghum bicolor

32110_0_1 6552.97 11553.25 1.25e-87 -0.81 Sucrose synthase 0, Manihot esculenta

39154_0_1 6915.03 11639.13 9.58e-77 -0.75 Ent-kaurenoic acid oxidase 4e-135, Medicago truncatula

43332_0_2 5906.27 7538.81 8.46e-68 -0.81 Cytochrome p450 3e-159, Populus trichocarpa

43934_0_1 2585.79 4894.94 9.36e-61 -0.92 U-box domain protein 20 2e-162, Populus trichocarpa

42460_1_2 392.97 1290.31 1.76e-54 -1.71 Metal transporter 1e-156, Vitis vinifera

23289_0_1 653.02 1731.4 2.13e-51 -1.40 Serine threonine protein kinase 0, Populus trichocarpa

35773_0_2 318.11 1063.76 2.34e-46 -1.74 Trehalose phosphate synthase 0, Vitis vinifera 

44296_0_1 563.66 1469.16 2.28e-43 -1.38 Hypothetical protein 3e-164, Populus trichocarpa

36775_0_1 287.34 982.41 1.20e-41 -1.77 -0.93 Plasma membrane H+ ATPase 0, Cucumis sativus

43667_2_1 201.98 788.65 1.30e-41 -1.96 Hypothetical protein 0, Populus trichocarpa

42185_1_1 1885.13 3395.16 1.63e-39 -0.84 ATP binding protein 0, Ricinus communis

42363_1_1 4379.53 6831.20 1.65e-39 -0.64 Phenylalanine ammonia-lyase 0, Quercus suber

37455_0_1 33.92 348.41 2.48e-39 -3.36 Hypothetical protein 2e-95, Ricinus communis

38461_0_1 339.44 1059.08 1.10e-38 -1.64 Pantothenate kinase 2-like 0, Ricinus communis

40709_0_2 56.13 489.57 7.93e-37 -3.12
Translation initiation factor eif-
4f

1e-152, Carica papaya

41450_0_1 1575.09 2892.91 2.43e-36 -0.87  Cytochrome P450 0, Ricinus communis
The contigs most significantly down-regulated according to the test statistic implemented in DESeq are listed. The RNA-Seq-based gene expression
levels in mycorrhiza (Myc) and in fine roots (FR) are means of three biological replicates. The mean number of reads which map to the respective
contigs is given. P values represent the probability of no difference between treatments with Benjamini–Hochberg multiple testing adjustment. Putative
gene functions were predicted by BLASTx searching against the nr database. The expected value of the sequence with the best BLASTx hit and its
source organism are given in each case. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) results represent means of three
biological and two technical replicates, normalized with respect to an 18S rRNA gene. The coefficient of variation was < 6.0 for all RT-qPCR reactions.
Asterisks indicate significant differences according to a randomization test: *, P < 0.05; **, P < 0.01; ***, P < 0.001.



Chapter II

expression (Voiblet  et al.,  2001; Johansson  et al.,  2004;

Duplessis et al., 2005; Le Quere et al., 2005; Frettinger et

al.,  2007).  This  suggests  that  the  development  and

metabolism of plant EM tissues are driven by differential

regulation  of  transcriptional  regulators,  signal

transduction,  and  metabolic  pathways,  rather  than  by

expression of symbiosis-specific genes (Duplessis  et al.,

2005;  Martin  et  al., 2007).  Our  data  confirm  these

findings.

Down-regulation of plant defence-related genes

Early  plant  response  to  mycorrhizal  fungi  involves

nonspecific, broad-spectrum defences, including increased

chitinase  and  peroxidase  activities  during  hyphal

penetration into the apoplastic space of the root  cortex.

However, this pattern of overexpression is only transient

and it is attenuated in mature EMs (Sauter & Hager, 1989;

Albrecht  et  al.,  1994;  Münzenberger  et  al.,  1997).  In

agreement  with  these  observations,  we  found  chitinase

and  laccase  contig  families,  as  well  as  phenylalanine

ammonia  lyase  contigs,  to  be  down  regulated  in  oak

mycorrhizal roots (Table S6), and GO enrichment analysis

identified genes related to phenylpropanoid metabolism as

being  depleted  (Table  S5).  This  confirms  that  plant

defences  were  attenuated  in  the  mature  oak  EMs

examined here,  while  roots  of  oak clone  DF159 at  the

premycorrhizal  stage  of  association  with  P.  croceum

(Frettinger  et  al.,  2006)  overexpressed one class  III

chitinase.  The down regulation  of  chitinase  that  we

found in the mature EM confirms the transitory nature

of  induction  of  defence  related  genes  during  EM

formation on oak.

Plants  experiencing  abiotic  environmental

stresses  produce  elevated  concentrations  of  the

phytohormone  ABA  and  generate  stress  resistance

responses  through ABA signal  transduction.  As  EM

formation  attenuates  plant  stress  (Smith  &  Read,

2008),  down-regulation of ABA-induced genes is  to

be  expected  in  Ems.  In  accordance  with  this

hypothesis,  we detected the down regulation of two

contigs  encoding putative  ABA receptors  in  mature

oak EMs, confirming the previous analysis of Voiblet

et al.  (2001), who were the first  to show the down-

regulation of a gene encoding an ABA induced protein

in EMs of eucalyptus.

Enhanced expression of ethylene-related contigs

In  the  Quercus–Piloderma symbiosis,  we  detected

enhanced ethylene  signalling  (Table  S6),  which  has

not  been  previously  reported  (Voiblet  et  al.,  2001;

Johansson  et  al.,  2004;  Duplessis  et  al.,  2005;

Frettinger  et  al.,  2007).  The  gaseous  phytohormone

ethylene  inhibits  root  elongation  and  regulates

transcription  of  numerous  cell  wall-related  genes
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(Sanchez-Rodriguez  et  al.,  2010).  When  Arabidopsis

roots  engage  in  symbiosis  with  the  generalist

endophytic  fungus  Piriformospora  indica,  ethylene

biosynthesis is induced. Moreover, if ethylene signalling

is impaired in  Arabidopsis, this results in reduced root

colonization  by  the  fungus.  This  suggests  that  the

hormone has a role in symbiotic root colonization by P.

indica (Khatabi  et  al.,  2012).  EM  fungi  produce

ethylene  in  pure  culture,  and  ethylene  production  is

enhanced  in  symbiosis  with  tree  roots  (Graham  &

Linderman, 1980). Moreover, a role for ethylene in the

dichotomous branching of the short  root  tips in pines

has  been  established  (Kaska  et  al.,  1999).  The  up-

regulation  of  the  ethylene-related  transcription  factor

family in oak EMs indicates that the ethylene signalling

may  play  a  role  in  suppressing  root  elongation  and

regulating the morphogenetic program of the symbiotic

roots.

Differential expression of auxin-related contigs

Previous  research  has  shown  that  auxin  signalling  is

central to the regulation of EM root development (Tagu

et  al.,  2002).  Herrmann  et  al.  (2004)  showed  that

addition  of  IAA  to  the  Quercus–Piloderma culture

system  stimulates  EM  formation.  In  the  Hebeloma

cylindrosporum–Pinus  pinaster  symbiosis,  an  auxin

overproducing  mutant  strain  of  H.  cylindrosporum

developed  EMs  with  a  thicker  fungal  mantle  and

multilayered Hartig net  (Gea  et  al.,  1994),  suggesting

that  this  phytohormone  controls  EM  morphogenesis.

Felten  et  al.  (2009)  observed  that  before  EM

development,  exudates  of  Laccaria  bicolor stimulate

lateral root formation in poplar, concomitantly with an

up-regulation  of  multiple  auxin-related  genes,  for

example, components of polar auxin transport and auxin

signalling.  The  present  study  revealed  that,  in  the

mature oak EM, auxin signalling genes are differentially

expressed (Table S6) and that the expression levels of

most putative auxin transporters,  and, in particular, of

many contigs encoding transcription factors, decreases.

As  many  auxin-related  genes  are  down-regulated  in

mature oak EMs, this indicates that auxin signalling is

central  to  the  early  mycorrhizal  phase,  and  less

important  in  regulating  processes  in  the  mature

symbiotic roots.

Overexpressed remorin contig

One  of  the  most  significantly  up-regulated  contigs

showed homology to remorins, and, to our knowledge,

this  is  the  first  report  of  EM-induced  remorin

expression.  Remorins  act  as  scaffolding  proteins  in

signalling complexes, and they have crucial functions in

plant–microbe  interactions.  For  instance,  a  remorin

protein interacts with symbiotic receptors and regulates
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bacterial  infection  in  legume  root  nodule  symbiosis

(Lefebvre  et al., 2010), and induction of a remorin gene

takes  place  upon  the  establishment  of  arbuscular

mycorrhizal  symbiosis  (Kistner  et  al.,  2005).  In  the

present  study,  only  one  of  the  15  remorin  contigs

contained  in  our  OakContigDF159.1  library  was  up-

regulated  in  EMs,  suggesting  that  this  member  of  the

family  may  play  a  specific  role  in  the  oak–Piloderma

interaction.

Specific up-regulation of proline-rich protein contigs

In EMs of  broadleaved trees such as  pedunculate  oaks,

fungal  colonization  induces  dramatic  changes  in  root

epidermal cells, which are stimulated to enlarge radially

and  to  loosen  their  cell  wall  structure  (Peterson  &

Farquhar,  1994).  Our  results  suggest  that  a  network  of

plant  cell  wall  proteins,  particularly prolinerich proteins

(Table S6), participates in the remodelling of cell walls of

symbiotic  roots.  The  proline-rich  protein  (PRP)  and

extensin  subfamilies  belong  to  the  ubiquitous  plant

protein family commonly known as hydroxyproline-rich

glycoproteins (Newman & Cooper, 2011). The PRPs have

been related to plant development, biotic interactions and

environmental stresses (van de Wiel et al., 1990; Newman

& Cooper, 2011). Previous analysis performed on the oak

clone DF159 detected one PRP transcript which was up-

regulated in both premycorrhizal roots and mature EMs

(Frettinger  et  al.,  2007).  Using  the  oak  contig

assembly, the expression pattern of the PRP family in

EM  oak  roots  was  shown  to  be  tightly  regulated,

confirming the crucial role played by these proteins in

determining the extracellular matrix of EM root cells.

Extensins  are  joined  to  each  other  and to  cell  wall

components by cell wall peroxidases (Schnabelrauch

et  al.,  1996),  increasing  the  tensile  strength  of  the

primary cell wall (Lamport et al., 2011). Two extensin

contigs and several peroxidase-encoding contigs were

downregulated  in  EMs,  indicating  that  there  is

reduced  potential  for  cross-linking  of  cell  wall

components  in  EM  roots.  This  hypothesis  was

supported  by  the  up-regulation  of  an  expansin-

encoding contig, since expansins have the capacity to

induce extensibility and stress relaxation in plant cell

walls  (Sanchez-Rodriguez  et  al.,  2010).  Cell  wall

extensibility is  further modulated by the xyloglucan

endotransglucosylase/  hydrolases  (XTH)  (Sanchez-

Rodriguez et al., 2010), but most of the XTH contigs

were  down-regulated  in  the  oak  EMs  (Table  S6).

Overall, the striking and specific up-regulation of the

PRP contig family in oak indicates the importance of

these  proteins  in  mycorrhiza  related  cell  wall

reorganization.
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Expression  of  genes  associated  with  metabolic

pathways

Oak  GO  terms  related  to  metabolic  pathways  were

altered upon EM formation.  The oak data corroborate

those from previous analyses of aspen EM (Larsen  et

al., 2011), as, in both cases, enrichment for GO terms

related to starch metabolism and transporter activity was

detected. These changes are central to the physiology of

EM tissue, as it acts as a strong carbon sink and is the

site  of  intensive  sugar  and  nutrient  transport  (Nehls,

2008). In the poplar-fly agaric symbiosis, the host plant

supplies the fungal partner with hexoses by converting

apoplastic sucrose to glucose and fructose by means of

plant invertase (Nehls, 2008). In the present study, up-

regulation of a sucrose transporter contig was observed,

but  the  invertase  encoding  contig  family  was

constitutively expressed. Whereas enhanced expression

of three monosaccharide transporter genes takes place in

poplar Ems (Nehls, 2008), from the oak transcriptome,

none  of  the  12  contigs  similar  to  the  poplar

monosaccharide  transporter  genes  was  up-regulated.

This confirms our second hypothesis, that some of the

EM-related genes of other systems are not affected in

oak.  More  recently,  plant  SWEET  genes  have  been

shown to be implicated in sugar efflux targeted to plant

pathogens and symbionts, and the SWEET1 protein of

Arabidopsis expresses  glucose  transporter  activity

(Chen  et al.,  2010). In the present oak EM study, one

putative  bidirectional  glucose  transporter  of  the

SWEET1  family  was  shown  to  be  up-regulated.

Although transporter activity has yet to be confirmed for

the  predicted  oak  SWEET1  protein,  the  result  could

indicate direct export of hexose into the plant apoplast

to support the fungus and may suggest the existence of a

complementary sugar exchange mechanism in oak Ems.

External  EM  fungal  hyphae  transport  nutrients,

particularly ammonium and phosphorus, to plant roots

(Selle  et  al.,  2005;  Loth-Pereda  et  al.,  2011).  EM

formation  with  Amanita  muscaria  results  in  up

regulation  of  three  poplar  ammonium  transporter

(AMT) genes (Selle et al., 2005). In oak EMs, one AMT

contig was up-regulated and three were down-regulated,

indicating a lower induction of plant AMT expression in

oak EM than in poplar EM. This result is in accordance

with  our  first  hypothesis,  which  postulates  that  EM

formation in oak leads to specific patterns of up- and

down-regulation among the different members of gene

families.  In  line  with  our  first  hypothesis,  we  also

observed the up-regulation of one, and down-regulation

of two, pedunculate oak phosphate transporter family 1

genes. In poplar, two phosphate transporters of the same

family were up-regulated and two were down-regulated
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in EMs (Loth-Pereda et al., 2011), suggesting that specific

EM-related phosphate transporting proteins exist in both

systems. 

Marjanovic  et al. (2005) reported that four poplar

aquaporin  genes  encoding  members  of  the  plasma

membrane intrinsic  protein family were up-regulated in

the  poplar-fly  agaric  symbiosis,  and  here,  six  oak

aquaporin contigs of the same family were found to be up-

regulated. These proteins are potentially involved in cell

turgor regulation in EM tissues.

Philippe  et  al.  (2010)  observed  the  induction  of

poplar  galactinol  and  raffinose  synthase  contigs  and

increased raffinose concentrations as a systemic response

to  herbivory,  and  suggested  that  raffinose  might  be

involved in plant responses to biotic interactions. In oak

EMs, genes of the raffinose pathway were up-regulated,

and a  galactinol  synthase  contig  was  one  of  those  that

were most significantly overexpressed in EMs. However,

induction of raffinose during EM formation has not  yet

been confirmed by metabolite analysis.

Taken together, our  data  support  and confirm the

view  that  instead  of  a  general  reprogramming  of

metabolic networks or transporter families, gene families

are precisely regulated to adjust the plant metabolism to

mycorrhizal  symbiosis.  The  greatly  increased  capacity

offered by our reference transcriptome for identification

of differential gene expression in oak EMs enabled us

not only to identify single genes but also to analyse

regulation within whole gene families. This degree of

precision enabled us to reveal several traits important

for the function of EM symbiosis in oaks (regulation

of  ethylene  or  remorin  encoding genes),  which had

not been detected in other host plants investigated to

date,  such  as  poplar,  eucalypt  or  birch.  In  the  oak

model  system,  different  up-  and  down-regulation

patterns  were  found  in  genes  and  gene  families

already observed to be involved in EM symbiosis on

other  host  plant  models  (invertase,  transporters  of

monosaccharides,  ammonium  and  phosphorus,  and

aquaporins).  Confirmation that these traits are really

oak-specific, however, requires analysing at a similar

depth the gene expression of these host plants when

inoculated with P. croceum. In addition, elucidation of

the  pedunculate  oak  whole-genome  sequence  and

supporting  functional  analysis  will  further  facilitate

comparisons between host responses in different EM

systems.

CONCLUSIONS

Deep  next-generation  sequencing  was  successfully

implemented  to  generate  a  more  complete  oak

transcriptome.  The  reference  transcriptome  of  the
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pedunculate  oak  clone  DF159  thus  produced  is  a

valuable  addition  to  previously  existing  oak  genomic

resources,  including  the  sessile  and  pedunculate  oak

contig transcriptome assembly (Ueno et al., 2010). It is

also  supporting  an  ongoing  pedunculate  oak  genome

sequencing  project  (Faivre-Rampant  et  al.,  2011;

Kremer et al., 2012), as the reference transcriptome will

help in achieving a better understanding of interactions

between  host  and  associated  organisms,  allow

development of new reagents sets for ‘omic approaches,

and  assist  the  experimental  annotation  of  the

pedunculate oak genome. Of immediate significance is

the ability to use the assembly for RNA-Seq analyses to

look at global changes in oak gene expression. Here we

have shown the power of this strategy by identifying an

extensive transcriptional program associated with EMs

on oak roots. In the context of the TrophinOak project,

we will use this resource to analyse the responses of the

oak  clone  DF159  to  a  wide  range  of  beneficial  and

detrimental  interacting  organisms,  in  relation  to  plant

development  and  under  variable  environmental

conditions.
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Ectomycorrhizal fungus changes defense strategies against leaf herbivory 

INTRODUCTION

Plants growing in natural environments interact with an

intriguing  diversity  of  organisms.  These  biotic

interactions,  both  above-  and  below-ground, have

important  consequences  for  the  performance  of

individual  plants,  dynamics  of  plant  populations,  and

composition  and  structure  of  plant  communities

(herbivores: Crawley, 1996; mycorrhizal fungi: Heijden

& Sanders, 2002; Smith & Read, 2010). Amongst the

most  common  interactions  of  plants  are  those  with

mycorrhizal  fungi  and  herbivorous  insects.  Under

natural  conditions,  both  types  of  interaction

simultaneously affect the physiology and growth of the

host  plant.  The  underlying  genetic  and  physiological

pathways induced by and involved in  the  above-  and

below-ground interactions seem to overlap  (Schenk  et

al.,  2008).  However,  the  simultaneous  and  concerted

influence of these interactions on plant performance is

still poorly understood.

Most  research  on  interactions  between  plants,

herbivores,  and  root  symbionts  has  concentrated  on

herbaceous  plants  and  arbuscular  mycorrhizal  fungi.

Trees have been mostly neglected in such studies, even

though  they  generally  harbor  a  high  density  and

diversity of insect herbivores (Brändle & Brandl, 2001),

and the majority of trees in boreal and temperate regions

(>95%)  are  associated  with  ectomycorrhizal  fungi

(Sanders, 1997; Baar  et al., 1999; Kõljalg et al., 2000;

Taylor, 2002), which are key elements of forest nutrient

cycles and therefore important drivers of processes and

services of forest ecosystems (Read et al., 2004).

Insect  herbivores  and  mycorrhizal  fungi  have
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SUMMARY

Mycorrhizal fungi and herbivores interactively influence the growth, resource utilization, and herbivore
defense of plants. The largely unexplored genetic and physiological basis of these interactions may
differ in the different plant growth phases, thereby contributing to the complexity of plant responses.
We studied these interactions in a tri-trophic system comprising oak (Quercus robur clone DF159),
larvae  of  the  moth  Lymantria  dispar, and  the  ectomycorrhizal  fungus  Piloderma  croceum under
controlled laboratory conditions at the level of gene expression using transcriptomics and at the level of
carbon/nitrogen allocation for plants from different growth stages. Herbivore feeding on oak leaves led
to increased expression of genes related to compensatory growth and to enriched GO terms described
with cell wall, cell division and DNA replication and other direct defense mechanisms of oak, like an
enhanced  expression  of  e.g.  chitinases  in  root  flush  and  protease  inhibitors  in  shoot  flush.  C/N-
allocation  analyses  indicated  an  increased  export  of  resources  from  aboveground  plant  parts  and
accordingly  genes  associated  with  the  transport  of  sugars  were  increased  upon  herbivore  attack.
Inoculation with an ectomycorrhizal fungus attenuated these effects in the pre-mycorrhizal stage but
caused an increased expression of genes related to the production of volatile organic compounds. We
conclude that the inoculation with ectomycorrhizal fungi mediates the plant’s defense strategy and that
this effect is moreover dependent on the growth stage of plants. These results from a rather simple tri-
trophic lab system give insights into the complexity of plant responses to a multi-trophic world.
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indirect  plant-mediated  effects  on  each  other.

Mycorrhizal  fungi  provide nutrients  to  plants,  thereby

increasing host plant vigor and nutritional quality, which

in  turn  can  increase  the  performance  of  insect

herbivores  (Gehring  &  Whitham,  1994;  Borowicz,

1997; Kempel  et al., 2010). This resource supply may

also allow plants to invest more into resistance against

generalist  insect  herbivores  (Jones  &  Last,  1991b;

Gange & West, 1994; Halldórsson et al., 2000; Bi et al.,

2007; Yao  et  al.,  2007;  Kempel  et  al.,  2010). Several

authors,  however,  have  observed  that  this  protective

effect  cannot  attributed  to  improved nutritional  status

alone (Fritz et al., 2006). 

Furthermore,  recent  research  on  arbuscular

mycorrhizhal  fungi  has brought evidence of enhanced

resistance  against  shoot  pathogens  induced  by  these

fungi  (Pozo & Azcón-Aguilar, 2007; Koricheva  et al.,

2009;  Campos-Soriano  et  al.,  2012).  In  herbaceous

plants associated with mycorrhizal fungi, qualitative and

quantitative  changes  in  flavonoid  contents  have  been

observed  (Vierheilig  &  Piche,  2002;  Akiyama  et  al.,

2002).  Further  changes  in  phenolic  compounds,

defense-related phytohormones have also been reported,

indicating  an  induction  of  defense  against  pathogens

and herbivores  (Fester & Hause, 2005; Lopez-Raez  et

al.,  2010).  Such  interactions  between  fungi  and

herbivores  are  based on the differential  expression of

genes  in  the  host  plant,  with  consequences  for

resistance, performance, and co-evolution of plants and

fungi as well as plants and insects (Gange et al., 2002). 

First  analyses  of  gene  expression  have

demonstrated  that  herbivores  can  influence  the

transcription of hundreds of plant genes (Hermsmeier et

al., 2001; Baldwin et al., 2001; Roda & Baldwin, 2003;

Schmidt  et  al.,  2005).  Herbivory  can  even  lead  to

complete  changes in metabolic  reorganization  (Hui  et

al.,  2003) and  can  influence  the  expression  of  genes

involved in regulation of photosynthesis and pathogen

resistance  (Hermsmeier  et  al.,  2001).  In  poplar  trees,

herbivory leads to an increase in the expression of genes

regulating the production of proteinase inhibitors, which

act  against  insect  herbivores  (Hui  et  al.,  2003);

oxidative enzymes that act as “anti-nutrients” (Major &

Constabel, 2006); and many enzymes that are involved

in the synthesis of secondary metabolites  (Babst  et al.,

2009); and when poplar trees are stressed or wounded,

chitinase-related genes are often expressed (reviewed in

Christopher  et  al., 2014).  Also  interactions  between

plants and mycorrhizal  fungi  lead to  changes in  gene

expression in the host plant (Wiemken & Boller, 2002).

Some of these genes are relevant for resource allocation

and for reactions to stress and defense (Herrmann et al.,
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1998; Frettinger et al., 2006a). This stimulation of plant

resistance is not only due to the well-known effects of

mycorrhiza  on  plant  nutrition,  but  also  to  changes  in

signal pathways that trigger direct and indirect defense

systems (Arimura et al., 2000; Bi et al., 2007; Yao et al.,

2007;  Pozo  &  Azcón-Aguilar,  2007),  yet  can  even

effects pre-mycorrhizal stages of symbiosis be similar to

the effects of mature mycorrhiza formations  (Volpin  et

al., 1994; Herrmann et al., 1998, 2004; Frettinger et al.,

2006a).  Furthermore,  plant  defense  against  pathogens

and herbivores seems to be regulated by a network of

interconnecting pathways (Ton et al., 2002; Glazebrook,

2005; Koornneef & Pieterse, 2008; Schenk et al., 2008).

Plant  growth  is  usually  characterized  by

different growth phases that differ in resource allocation

within  the  plants.  Temporal  growth  patterns  may

interfere with plant  responses to associated organisms

and  might  contribute  to  the  complexity  of  observed

effects.  Quercus robur is  characterized  by  an

endogenous  rhythmic  growth;  in  saplings  and  adult

trees, root and shoot growth flushes occur in a rhythmic

alternating pattern of stem extension/leaf expansion and

root growth (Harmer, 1990). These growth flushes play

an important role in the physiology and ecology of the

plant,  as  carbon  (further  on  abbreviated  with  C)  is

allocated to the shoot during shoot flush (Le Hir et al.,

2005). Such patterns of rhythmic allocation could have

a crucial impact on plant response to herbivore feeding.

For example, plants attacked during root flush might be

more  vulnerable  to  herbivores  than  those  attacked

during  shoot  flush  because  nutrients  are  allocated

towards the root system during root flush. On the other

hand, as the leaf surface area is reduced by herbivory,

the amount of C deposited in fine roots can be reduced

(Frost & Hunter, 2008), which in turn might influence

the  interaction  between  mycorrhizal  fungi  and  host

plants.

Oaks  represent  the  tree  genus  harboring  the

highest number of herbivore species in Central Europe

(Brändle  &  Brandl,  2001);  therefore,  oaks  are  a

promising  model  for  studying  interactions  with

herbivores. Here we report a controlled laboratory study

of the interactions of oak, the larva of Lymantria dispar,

and the mycorrhizal fungus  Piloderma croceum at the

levels  of  gene  expression,  and  carbon/nitrogen

allocation. As the oak genome sequence is not available,

we  studied  gene  expression  using  the  recently

developed  transcriptome  OakContigDF159.1  of  the

TrophinOak project  (http://www.trophinoak.de) (Tarkka

et al., 2013). We tested the following hypotheses: 

1)  as  defense  is  costly,  we  expect  oak  to  express

defense-related  genes  when  attacked  by  insect
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herbivores  particularly  when  the  tree  interacts  with

mycorrhizal fungi; and

2)  we  expect  insect  herbivory  to  negatively  affect  C

allocation to roots, and this will be more pronounced in

root flush when roots are the main C sink; such an effect

would highlight the potential role of insect herbivory as

a  modulator  of  resource  exchange  dynamics  between

oak and fungus.

MATERIALS AND METHODS

Oak, fungus, and herbivorous insect

To  suppress  effects  of  variability  between  host

individuals  (Ruhnke et al., 2006, 2009; Schädler  et al.,

2010),  we  used  genetically  identical  microcuttings  of

pedunculate  oak clone DF159 (Quercus  robur L.).  In

contrast to seedlings, microcuttings have a physiology

that resembles that of mature trees, including the typical

endogenous  rhythmic  growth  of  root  flush  and  shoot

flush  (Herrmann  et  al.,  1998;  Herrmann  &  Buscot,

2008).  Microcuttings  are  comparable  in  size  to

seedlings;  thus,  making  it  possible  to  perform

experiments in the laboratory, which would be difficult

with saplings and impossible with mature trees. 

The oak clone DF159 was micropropagated and

rooted  according  to  Herrmann,  et  al.  (1998),  then

cultivated in soil-based microcosms by placing rooted

microcuttings  in  Petri  dishes  filled  with  gamma-

sterilized  soil  as  previously  described  Tarkka,  et  al.

(2013).   Fungal  cultivation  with  the  ectomycorrhizal

fungus  Piloderma croceum  Hjortst.  strain 729 (DSM-

4924)  (Basidiomycota,  Atheliales,  Atheliaceae),

Atheliaceae),  which is  a  common  mutualist  of  both

coniferous and hardwood tree species and an established

model  for  both  ecological  and  physiological  studies,

were as described by Tarkka,  et al. (2013). The fungus

was added to the oak microcuttings at the beginning of

the experiment ( Fig S1).  

To test the effect of herbivory, we used larvae of

the moth Lymantra dispar (Lepidoptera: Noctuidae). L.

dispar is polyphagous, with a strong preference for oak

leaves (Alalouni et al., 2013). When mass outbreaks of

this  species  occur,  the  insect  causes  severe  damages,

especially  in  its  invasive  ranges,  e.g.,  North  America

(Hannemann,  1979;  Aukema  et  al.,  2011;  Alalouni  et

al., 2013). Egg masses of the New Jersey lab strain were

raised under the same environmental conditions as the

oak microcuttings and reared on artificial gypsy moth

diet  (based on wheat  germ).  Third  instar  larvae were

used in the experiments. 

Experimental design and C/N allocation analysis

Microcuttings  were  produced  as  described  by

(Herrmann  et  al.,  1998,  2004).  These  microcuttings
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were  grown in  square  Petri  dishes  (12  cm  × 12  cm;

further  on  called  microcosm)  filled  with  γ-sterilized

soil; the above-ground plant parts protruded through a

hole  on  the  side  of  the  petri  dish.  The  microcosm

experiments were conducted in growth chambers with a

photosynthetic photon flux density of 180 µmol m−2 s−1,

a long day setting (16 h/8 h), a constant temperature of

23 °C, and a relative air humidity of 75%  (Ton  et al.,

2002). After four weeks, sterilized tap water was added

to each microcosm with a sterile syringe. 

We used a  full factorial  experiment consisting

of  control  (oak microcuttings  alone),  inoculation (oak

microcuttings  plus  P.  croceum),  herbivory  (oak

microcuttings plus L. dispar), and combined inoculation

/herbivory (oak microcuttings plus  P. croceum  plus  L.

dispar). 

Sixty days after setting up the microcosms, all

microcosms  were  briefly  opened  under  sterile

conditions and 15NH4
15NO3 (5 mL of 0.02 g L−1; 98 atom

%  15N;  Sigma,  Germany)  was  added  to  the  soil

containing  roots.  One  day  after  the  addition  of  15N-

labeled ammonium nitrate, the “above-ground” parts of

each  plant  chosen  for  herbivory  exposure  (herbivory:

n = 12; inoculation with  P. croceum/herbivory:  n = 15;

Table S1) was exposed to one third instar larva of  L.

dispar. Each plant was covered with a bag with a mesh

size  of  100  µm  to  contain  the  larva.  The  feeding

progress was checked twice an hour, and non-feeding

larvae were exchanged with fresh ones.  After  6 h, all

larvae were removed. Immediately thereafter, all plants

were transferred to a labeling chamber. That night, the

ambient air CO2 in the labeling chamber was completely

exchanged with 13CO2 (10 atom%) in the dark. The CO2

concentration was adjusted to 401 ± 3 µL L−1 (mean ±

SD) yielding 9.2 ± 0.1 atm% 13C (mean ± SD). The 13C-

labeling  of  the  microcuttings  took  place  in  the

subsequent 16 h starting with the first light. 

Plants were assigned to either root flush (35) or

shoot  flush  (36),  which  form the  levels  of  the  factor

stage in our analysis (see  Angay et al. (2014); control:

root flush, n = 15; shoot flush, n = 12;  inoculation with

P.  croceum  root  flush,  n = 8;  shoot  flush,  n = 9;

herbivory:  root  flush,  n = 6;  shoot  flush,  n = 6;

inoculation with P. croceum/herbivory: root flush, n = 6;

shoot  flush,  n = 9). Microcuttings were  harvested  by

cutting  at  ground level.  The following plant  fractions

were  separated  according  to  Angay  et  al. (2014):  (1)

sink leaves, i.e. terminal leaves, not yet fully developed

or  buds;  (2)  source  leaves,  i.e.  sub-terminal,  fully

developed  leaves;  (3)  stems;  (4)  principal  roots,  i.e.

main roots originating from stem; and (5) lateral roots,

i.e.  fine  roots  originating  from  principal  roots.  After
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determining  the  fresh  weights,  all  samples  were

immediately frozen in liquid nitrogen and stored at −80

°C.  Dry  weights  used  in  the  statistical  analyses  were

calculated using reference values of each plant organ of

root  flush and  shoot  flush oak  clone  DF159

microcuttings given in Angay et al. (2014).

For  analyses  of  C  and  N  allocation,  parts  of

plant  organs  of  each  treatment  and  control  were

separately  pooled  (n = 6  biological  replicates),  dried,

and ground using a ball mill (Type MM2, Retsch, Hahn,

Germany). Stable C and N isotopes in the ground tissues

were  quantified  using  an  isotope-ratio  mass

spectrometry  (GVI-Isoprime,  Elementar,  Hanau,

Germany) coupled to an elemental analyzer (EA3000,

Euro Vector, Milan, Italy). Repeated measurement of a

laboratory working standard gave a precision of δ13C <

0.1‰ (SD, n = 10). 13C and 15N excess were calculated

per  plant  fraction  and  on  whole-plant  level  over

unlabeled microcuttings.

Transcriptomics

Total  RNA of  each  pooled  sample  (see  below)  was

extracted using the MasterPure Plant RNA Purification

Kit (Epicentre Technologies Corporation, Madison, WI),

according  to  the  manufacturer’s protocol  from 50 mg

leaf material  and up to 100 mg root  material  of  each

sample. The quality and quantity of RNA separated on

formaldehyde-agarose  gels  were  checked  using  a

Nanodrop spectrophotometer (Thermo Scientific), and a
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Table 1 Effects of the factors stage (root flush vs. shoot flush), inoculation with Piloderma croceum, herbivory (feeding by Lymantria dispar
larvae), and inoculation/herbivory (P. croceum and L. dispar) on biomass, analyzed in a three-way ANOVA. Interactions with the factor stage
were not significant and are not presented. Boxplots of each plant fraction can be found in the supplementary material. t-values were calculated
using the lm function implemented in R; significant t-values are in bold, signs indicate direction of the effects, and signs for the factor stage
indicate the direction of shoot flush (p < 0.001: *** ; p < 0.01: ** ; p < 0.05: *). 

        t- values n

Plant fraction Stage Inoculation Herbivory

(dry mass)

Sink leaves 2.19 * 1.46 0.55 71

Source leaves 3.27 ** 1.18 71

3.86 *** 0.48 71

Lateral roots -1.28 3.45 *** 0.11 71

Principal roots 1.09 0.51 71

2.83 ** 0.39 71

Inoculation/ 
herbivory

−1.48

−4.68 *** −1.9

Total above ground 
biomass −4.06 *** −1.76

−0.9

−2.17 * −0.87

Total below ground 
biomass −2.17 * −1.11
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Nano Chip and Bioanalyzer 2100 (Agilent). 

Samples of terminal leaves and of lateral roots

of plants in root flush or in shoot flush from the control

and each  of  the  three  treatments  (inoculation  with  P.

croceum,  herbivory,  inoculation  with  P.

croceum/herbivory)  were  pooled  separately.  The  leaf

samples were pooled as follows: three pools of at least

two  biological  replicates  each  of  control/root  flush;

control/shoot  flush,  inoculation  with  P.  croceum/root

flush,  inoculation  with  P.  croceum/shoot  flush,
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Figure 1 Effect  of  inoculation  with  P. croceum,  herbivory, and  inoculation  with  P. croceum/herbivory  on  the  incorporation  of  13C into
individual plant organs of oak microcuttings in root flush (RF) and shoot flush (SF). Oak microcuttings were inoculated with P. croceum (myc;
yellow bars), fed to larvae of  Lymantria dispar (herbivory; blue bars), inoculated with  P. croceum  and fed to larvae of  Lymantria dispar
(myc/herbiv; green bars), or not inoculated with the fungus and not fed to the herbivore (control; colorless bars). Bars in the boxplots indicate
the upper and lower quartile with median; whiskers indicate minimum and maximum values; dots are outliers. Note that the y-axes are log-
transformed.
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herbivory/root flush, herbivory/shoot flush, inoculation

with  P. croceum/herbivory/root  flush,  and  inoculation

with  P. croceum/herbivory/shoot flush. Due to the low

quantity of RNA in root samples, we were not able to

analyze  the  effects  of  root  flush  and  shoot  flush

separately. Therefore, in this case, the factor  stage was

discarded and all root samples of the control and each of

the three treatments were pooled separately as follows:

three pools each of inoculation with  P. croceum (root

flush plus shoot flush; three biological replicates each),
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Figure 2 Effect of inoculation with P. croceum, herbivory, and inoculation with P. croceum/herbivory on the incorporation of 15N  into individual
plant organs of oak microcuttings in root flush (RF) and shoot flush (SF). Oak microcuttings were inoculated with P. croceum (myc; yellow bars),
fed to larvae of Lymantria dispar (herbiv; blue bars), inoculated with P. croceum and fed to larvae of Lymantria dispar (myc/herbiv; green bars),
or not inoculated with the fungus and not fed to the herbivore (control; colorless bars). Bars in the boxplots indicate the upper and lower quartile
with median; whiskers indicate minimum and maximum values; dots are. Note that the y-axes are log-transformed.
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herbivory (root flush plus shoot flush;  three biological

replicates  each),  and  inoculation  with  P.

croceum/herbivory (root  flush  plus  shoot  flush;  three

biological  replicates  each),  and  two  pools  of  control

(root flush plus shoot flush; three biological replicates

each). 

RNA  samples  were  used  to  produce  100-bp

paired-end  libraries  which  were  sequenced  using  an

Illumina HiSeq 2000 at the Beijing Genomics Institute,

Hong Kong, China. The reliability of RNA-Seq analyses

derived  from  microcuttings  of  oak  clone  DF159  in

controlled trophic interactions with P. croceum has been

demonstrated recently by Tarkka et al. (2013) and Kurth

et  al. (2014).  Illumina  reads  were  processed  as

described in Tarkka et al. (2013). Briefly, poly(A) tails,

low  complexity,  and  low  quality  sequences  were

removed  with  SeqClean

(http://compbio.dfci.harvard.edu/tgi/software/).

Nucleotides  with  a  quality  score  <  20  were  removed

from the ends of the reads using a custom Java script.

Sequences < 50 bp were discarded, as were sequences

without paired-end information after pre-processing. 

Statistical analyses

The processed Illumina reads were aligned against the

OakContigDF159.1 reference transcriptome  (Tarkka et

al.,  2013) using  bowtie  (Langmead  et  al.,  2009) and

quantified  using  RSEM  (Li  &  Dewey,  2011).  The

significance  of  differences  in  gene  expression  was

measured via pairwise comparisons between contigs of

control  vs.  herbivory, control  vs.  inoculation  with  P.

croceum,  control  vs.  inoculation  with  P.
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Figure 3 Venn diagrams of  contigs  representing differentially  expressed
genes in (A) leaves during root flush, (B) leaves during shoot flush These
genes  were  expressed  at  higher  levels  when  oak  microcuttings  were
inoculated  with  P.  croceum,  herbivory,  or  inoculation  with  P.
croceum/herbivory compared to the control microcuttings.
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croceum/herbivory, separately  for  plants  in  root  flush

and for plants in  shoot flush, using the edgeR function

(Robinson  et  al.,  2010) of  the  Bioconductor  package

(Gentleman  et  al.,  2004) in  R  (R  Core  Group,

http://www.r-project.org/).  If  the  genes  represented by

these contigs were differentially expressed, we refer to

them as  differentially  expressed  genes.  When contigs

are compared with a reference group, the gene ontology

(GO) term and KEGG pathway enrichments are usually

statistically assessed  (Bluthgen  et al., 2005; Conesa  et

al.,  2005;  Kanehisa  et  al.,  2014).  Using the

Bioconductor package GOseq (Langmead et al., 2009),

we made pairwise comparisons between treatments and

their  respective  controls  to  evaluate  enrichments  or

depletions  of  GO  terms  and  KEGG  pathways. The

pairwise  comparisons  between  control  and  treatments

were  considered  to  be  significant  when  Benjamini-

Hochberg adjusted P-values were below 0.01. Biomass

and  C/N  allocation  were  statistically  analyzed  in  R

using  the  lm  function,  implementing  a  three-way

analysis of variance (ANOVA).

RESULTS

In the presence of Piloderma croceum, both the root and

shoot  biomass significantly  increased  (three-way

ANOVA;  Fig  S2  and  S3;  Table  1).  The  biomass  of

source leaves and lateral roots of microcuttings in root

flush were significantly higher than those in shoot flush,

and the biomass of sink leaves of these microcuttings

were significantly lower than that in shoot flush (three-

way ANOVA; factor  stage,  root  flush vs.  shoot flush;

Table 1). 

All  microcuttings  exposed  to  herbivory  were

damaged by the caterpillars. However, herbivory alone

had no significant effect on biomass when compared to

the control (Table 1), which indicated that that biomass

removal  by  the  herbivore  was  not  substantial.  The

effects of herbivory and P. croceum inoculation did not

interact  and  were  not  significantly  influenced  by  the

growth stage (Fig S2 and S3; Table 1).

Excess of C and N 

Sink leaves of microcuttings exposed to herbivory had

significantly lower levels of both 13C and 15N, and lateral

roots  of  microcuttings  exposed  to  P.  croceum

inoculation had significantly higher levels of  both  13C

and 15N (Table 2; Figs 1 and 2). The growth stage had a

significant  effect  on  the  incorporation  of  13C and  15N

only in principal roots during shoot flush, when less 13C

and 15N was incorporated. P. croceum inoculation and L.

dispar had a combined effect on the incorporation of 13C

and 15N only in stems, where significantly more 13C and

15N was  incorporated  compared  to  the  effect  of  each
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Figure  4 Heatmap  of  GO
term  enrichment  analysis.
Colors  represent  the  p-value
adjusted  by  the  Benjamini-
Hochberg  procedure  for  the
term enrichment, with  green
representing  enrichment  and
red representing depletion  of
the corresponding GO terms.
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factor alone.  P. croceum also had a negative effect on

the incorporation of 15N in stems and a positive effect on

the incorporation of 15N in source leaves (Table 2). The

effects  of  herbivory  and  fungal  inoculation  were  not

significantly mediated by the growth stage. Data derived

from molecular analysis, supported the C/N analysis.

Transcriptomics

Thirty-five RNA templates were used to prepare cDNA

libraries, which were sequenced (Table S3), resulting in

a  mean  sequence  length  of  1,713,403,922  bp  across

templates. After processing, 1,690,701,038 bp remained

for further analysis. 

In  microcuttings  in  root  flush  (Fig  3A),  the

highest  number  of  contigs  representing  differentially

expressed genes (3,970) was in leaves of oaks subjected

to herbivory, compared to 57 in leaves of  P. croceum

inoculated oaks and 89 in leaves in oaks subjected to

both  P.  croceum inoculation  and  herbivory.  In

microcuttings in shoot flush (Fig 3B), a similar pattern

was  found,  but  the  number  of  contigs  representing

differentially  expressed  genes  in  leaves  of  oaks  was

lower  than the number in leaves of oaks in root flush

subjected  to  herbivory. In  roots  of  oaks,  the  highest

numbers of contigs representing differentially expressed
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Table 2 Effects of the factors stage (root flush vs. shoot flush), inoculation with Piloderma croceum, herbivory (feeding by Lymantria dispar lar-
vae), and inoculation/herbivory  (P. croceum and L. dispar) on incorporation of 13C and 15N. Interactions with the factor stage were not significant
and are not presented. Boxplots of each plant fraction for excess of 13C and 15N can be found in the supplementary material.  Values were log-
transformed prior to analyses;  significant t-values are in bold, signs indicate direction of the effects, and signs for the factor stage indicate the di-
rection of shoot flush (p < 0.001: *** ; p < 0.01: ** ; p < 0.05: * ; p< 0.1: (*)).

        t- values n

Plant fraction Stage Inoculation Herbivory

Sink leaves 0.7 1.65 37

Source leaves 1.52 1.35 44

Stem 2.13 * 39

Lateral roots 0.23 4.42 *** 1.37 44

Principal roots 43

Sink leaves 1.73 (*) 1.27 37

Source leaves −0.69 1.32 44

Stem −0.83 −5.12 *** 3.87 *** 39

Lateral roots −0.57 3.34 ** 0.68 0.08 44

Principal roots −2.24 * −0.04 0.8 44

Inoculation/ 
herbivory

13C excess

−0.82 −3.06 **

−0.87 −1.33

−0.73 −0.46 −2.9 **

−0.47

−2.69 * −2.06 * −0.08 −0.68

15N excess

−1.07 −2.66 *

2.47 ** −0.7

−3.64 ***

−0.94
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genes were from oaks subjected to herbivory (100) and

in oaks inoculated with the mycorrhizal fungus (93).

Both the GO term enrichment analysis (Fig 4)

and analysis of KEGG pathways (Fig S4; Li & Dewey,

2011;  Kurth  et  al.,  2014)  of  all  contigs  representing

differentially expressed genes reflected the high number

of  such  contigs  from  leaves of  plants  in  root  flush.

Pairwise  comparisons  between control  vs. inoculation

with  P. croceum, control vs. herbivory, and control vs.

inoculation with P. croceum/herbivory revealed that GO

terms  and  KEGG  pathways  assigned  to  growth  and

development,  DNA  replication,  transcription,  and

translation were highly enriched and those assigned to

cell wall components and other growth related contigs
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Figure  5 Heatmap  of  contigs
representing  differentially  expressed
genes, showing pairwise comparisons of
control  vs.  inoculation  with  a
mycorrhizal  fungus,  control  vs.
herbivory,  and  control  vs.
inoculation/herbivory.  Sequence
description  derived   from  BLAST2GO
contic  assignment,  addressing  putative
functions.  Colors  indicate  direction  in
regulation:  blue,  down  regulation;  and
red,  up  regulation.  Significance  was
tested using false discovery rate (FDR):
p < 0.001: *** ; p < 0.01: ** ; p < 0.05: *
; n.s.: not significant.
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were  enriched  in  leaves  of  oak  microcuttings  in  root

flush and subjected to herbivory, whereas those assigned

to  catabolism,  photosynthesis,  chlorophyll  binding,

starch biosynthesis, and cell components were depleted

(Fig 4).

GO  term enrichment  was  not  as  strong  for

leaves of oak in shoot flush as for leaves of oak in root

flush.  In  leaves  of  oak  microcuttings  in  shoot  flush

subjected  to  herbivory,  the  enrichment  was  focused

more  on  direct  defense  mechanisms,  e.g.,  chitin

catabolism  and  killing  cells  of  other  organisms,  i.e.,

pathogenesis related, such as thaumatin-like protein. In

leaves of microcuttings subjected to inoculation with P.

croceum and in leaves of oaks microcuttings subjected

to  L.  dispar,  the  GO  term  for  apoplast  (a  cell

component)  was  depleted.  Along  to  the  13C  and  15N

allocation  results,  we  found  in  leaves  of  oak  in  root

flush enrichments in terms related to starch biosynthesis

in  oak  inoculated  with  P.  croceum and  exposed  to

herbivory,  which  was  depleted  in  oaks  exposed  to

herbivore  feeding  alone.  Further  was  the  term nitrate

reductase complex found depleted in shoot flush plants,

whereas enriched in root flush plants. We found terms

related  to  physiological  functions  as  photosynthesis

mainly depleted in leaves of oak exposed to herbivory,

which was in  line  with a  significant  reduction of  13C

incorporation. 

Analysis of the KEGG pathways (Kanehisa  et

al., 2014) revealed a pattern similar to that obtained in

the  GO  enrichment  analysis  (Fig  S4).  Most  of  the

enriched pathways were in leaves of oaks in  root flush

that were subjected to L. dispar, and included pathways

of amino acid metabolism and nucleotide metabolism.

The depleted pathways in these leaves included many

biosynthetic  pathways  of  secondary  metabolism,

carbohydrate  metabolism,  and  energy  metabolism.  In

leaves of oak in shoot flush, only few pathways were

significantly  enriched  (nitrogen  and  carbon

metabolism), and none were depleted. 

A deeper insight into the actual gene expression

levels can be  provided by determining the contigs that

represent  genes  whose  expression  levels  changed

compared to the respective controls (Fig 5). In leaves of

microcuttings  in  root  flush  subjected  to  L.  dispar,

contigs  representing  chitinase  genes  that  are  up-

regulated were identified, e.g., the gene encoding class I

chitinase was up-regulated with a log2-fold change of 4.

In contrast, this gene was not significantly up-regulated

in  microcuttings  in  root  flush  inoculated  with  P.

croceum or  inoculation/herbivory. In  leaves  of  oak in

shoot  flush, a  contig  representing  a  putative  protease

inhibitor was up-regulated with a log2-fold change of 10
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only  in  samples  subjected  to  herbivory.  Contigs

representing lignin-coding genes that were up-regulated

only in samples subjected to herbivory or to P. croceum

inoculation/L.  dispar.  Several  contigs  representing

genes  encoding  a  terpene  synthase  ((-)-germacrene-D

synthase) and nerolidol synthase (production of volatile

organic  compounds)  were  identified  exclusively  in

leaves  of  microcuttings in  root  flush with  P. croceum

inoculation/herbivory,  showing a  up-regulation with  a

log2-fold change of  6.8 and 2.3 respectively.  Contigs

representing genes putatively related to direct  defense

responses,  such  as  inter-alpha-trypsin  inhibitor  heavy,

were  identified  only  in  microcuttings  subjected  to

herbivory  in  both  root  flush  and shoot  flush.  Several

contigs,  representing  genes  involved  in  carbohydrate

transport,  production  and  incorporation  were  found

differentially  expressed  in  pairwise  comparisons

between oak exposed to herbivory and those inoculated

with P. croceum and exposed to herbivory, e.g. erd-like

sugar  transporter  with  a  log2fold-change  of  6.1  and

beta-galactosidase 16 with a log-fold change of 11.27.

Oaks  in  shoot  flush  were  not  as  rich  on  differential

expressed  genes  as  oak  in  root  flush.  A  contig

representing a nitrate transporter  gene was differential

expressed between control and the herbivory treatment

as well as the combined inoculation/herbivory treatment

displaying  a  up-regulation.  Furthermore  was  a  contig

representing  genes  encoding  proteins  involved  in

photosynthesis  (chlorophyll  a/b  binding  protein)

strongly down-regulated in oaks exposed to herbivory,

but  not  differential  expressed  in  the  combined

inoculation/herbivory treatment.

DISCUSSION

The  results  of  our  multi-trophic  experiments  under

controlled laboratory conditions revealed the impact of

inoculation with a mycorrhizal fungus on microcuttings

of  a  deciduous  tree  during  attack  by  a  generalist

herbivorous caterpillar. We found that biomass, C and N

allocation,  and  expression  of  genes was  not  only

affected by inoculation and herbivory but also differed

between plants in different growth stages (root flush or

shoot flush). 

The significant effects of Piloderma croceum on

the  biomass  of  both  shoots  and  roots  indicated  a

successful  inoculation  and  confirm  the  previously

described pre-mycorrhizal  effect of  P. croceum on the

host plant [40]. In contrast, the short period of feeding

by the herbivore did not affect plant biomass and thus

the  effects  of  the  herbivory  treatment  have  not  to  be

interpreted  as  a  consequence  of  biomass  loss.  A

comparison  of  the  number  of  contigs  representing
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differentially expressed genes in the different treatments

and in plants in both growth flushes revealed extensive

changes in gene expression in leaves of plants in  root

flush fed upon by the herbivore. In this growth stage,

the number of such contigs was 40 times higher due to

herbivory in leaves of  non-inoculated plants  than on

leaves of plants inoculated with P. croceum. The effect

was smaller in leaves of oak in shoot flush, where the

number  of  such contigs  was twofold  higher  in  plants

subjected to herbivory than in plants with inoculation

and herbivory. Our results therefore show for the first

time  that  the  effects  of  this  tri-trophic  interactions

strongly depend on plant growth stage.  

Effects on genes related to defence

Although  we  are  aware  of  the  drawbacks  of  gene

ontology (Ashburner et al., 2000; Yon Rhee et al., 2008;

Young  et al., 2010), it provides a means of annotating

the oak transcriptome according to the reference library.

Furthermore, GO term enrichment analysis is a useful

method for extracting patterns from masses of data. 

Compensatory  growth  of  herbs  and  trees  is  a

common  but  costly  direct  reaction  to  herbivory

(McNaughton,  1983;  Stowe  et  al.,  2000;  Haukioja  &

Koricheva, 2000). The results of GO term enrichment

and KEGG pathway analyses of contigs from leaves of

plants in  root flush revealed that many GO terms and

pathways  related  to  growth,  DNA  replication,  cell

proliferation,  photosynthesis,  and  starch  biosynthesis

were  enriched  in  plants  subjected  to  herbivory.

Enrichments  and  depletions  were  also  identified  in

leaves  of  plants  in  root  flush subjected  to  both

inoculation with the mycorrhizal fungus and herbivory,

but  at  a  much  lower  level  than  when  plants  were

subjected  only to  inoculation  or  herbivory alone.  GO

terms of growth, metabolism, and direct defense (e.g.,

chitin  catabolism  and  response  to  wounding)  were

enriched in leaves of plants in  shoot flush subjected to

herbivory,  but  no  enriched  or  depleted  terms  were

identified in leaves of plants in shoot flush subjected to

both inoculation and herbivory. The expression of genes

encoding  pathogenesis-related  proteins  induced  by

arthropod feeding has been reported by Shafique et al.

(2014), and these genes were also up-regulated in our

study only when plants were fed upon by the herbivore. 

Improved  nutrient  uptake  owing  to

mycorrhization leads to a better  condition of the host

plant (e.g., Read, 1991; Pearson & Stewart, 1993; Nehls

et al., 2007). In keeping with this, we found GO term

enrichments  mainly  related  to  growth  and

photosynthesis  in  plants  inoculated  with  P. croceum,

which indicated improved nutrient  uptake even in the

pre-mycorrhizal stage of symbiosis (Volpin et al., 1994;
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Herrmann et al., 1998, 2004; Frettinger et al., 2006a).

The  finding  of  a  depletion  of  the  same  GO

terms in plants inoculated with P. croceum and feeding

by L. dispar is consistent with results of KEGG pathway

analysis.  Presence of the mycorrhizal fungus seems to

“cool down” the strong and costly reaction of the plant

to  herbivory.  Our  finding  of  a  lower  number  of

regulated  pathways in  leaves  of  oak  in shoot  flush

compared  to  that  in  root  flush underlines  the  strong

impact of growth stage and the resulting differences in

responses  to herbivore  attack.  Furthermore,  this  shoot

flush effect is similar to the “cooling down” effect of the

ectomycorrhizal fungi on the reaction to herbivory. This

suggests  that  increased  plant  vigor  results  from  an

increased  availability  of  resources  caused  by  either

shoot  flush or association with ectomycorrhizal  fungi.

We conclude that plants growing without the support of

the fungus are forced to respond more strongly to attack

by  herbivores  than  plants  with  the  mycorrhizal

symbiont.  This  indicates  that  the  presence  of  a

mycorrhizal  symbiont  soothes  the  direct  defense

reactions of plants. In our study, this seems to apply e.g.

for  protease  inhibitors,  which  act  as  effective  anti-

nutrients, negatively affect the growth and development

of  herbivores  by  inhibiting  gut  proteases  (Howe  &

Jander,  2008).  Our  finding  of  an  up-regulation  of  a

putative protease inhibitor protein in plants attacked by

the  herbivore  but  not  in  plants  inoculated  with  the

mycorrhizal symbiont may serve as a further indication

of the “cooling down” effect.

Several  genes  represented  by  contigs  were

expressed in all plants exposed to P. croceum and/or L.

dispar.  For  example,  contigs  representing  genes

encoding chitinases were up-regulated in plants of  all

treatments  compared  to  the  control,  which  might  be

explained  by  the  diverse  functions  of  these  enzymes

(Brunner  et al., 1998; Kasprzewska, 2003; Hartl  et al.,

2012;  Veluthakkal  et  al.,  2012).  Besides  beneficial

effects  of  pre-mycorrhizal  stages  of  symbiosis,  it  is

thought  that  early  stages  of  mycorrhiza  formation  on

roots can be as stressful to plants as other factors, and

triggers  systemic,  nonspecific  defense  reactions,

including increased chitinase activities.  Our finding of

up-regulation of  a  class  I  chitinase gene  in  leaves  of

plants in root  flush or  shoot  flush,  and in roots (root

flush and shoot flush combined) only in plants subjected

to  herbivory  underlines  that  attenuation  in  protruding

and  mature  mycorrhiza  formations  (Sauter  &  Hager,

1989; Albrecht et al., 1994; Smith & Read, 2010). 

Indirect  defense  of  plants  often  involves  the

release  of  volatile  organic  compounds  triggered  by

herbivore feeding  (Arimura  et al., 2004). In tri-trophic
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systems, these compounds might attract natural enemies

of  the  arthropods,  such  as  parasites  and  parasitoids

(Kessler  & Baldwin,  2001;  Alalouni  et  al.,  2013; for

trees  see  Mondor  &  Roland,  1997,  1998;  Havill  &

Raffa, 2000). Terpene synthase and nerolidol synthase

are  involved  in  the  synthesis  of  the  volatile  organic

compounds  sesquiterpenes  and  monoterpenes

(Pichersky & Gershenzon, 2002; Arimura  et al., 2004;

Baer  et al., 2014). The encoding genes represented by

contigs  were  exclusively  up-regulated  in  plants

subjected  to  both  P.  croceum and  L.  dispar,  which

indicates the strong influence of the mycorrhizal fungus

P. croceum on the defence strategy of oak. However the

production and secretion of these compounds warrants

further  investigation.  Nevertheless  this indicates  that

mycorrhizal  inoculation  may  lead  to  a  switch  from

compensatory  growth  and direct  defense  strategies  to

indirect defense by attracting the natural enemies of the

herbivore  with  these  compounds.  Thus,  our  first

hypothesis  can  only  be  partially  confirmed,  since  the

inoculation with a mycorrhizal fungus did not generally

increased the expression of  defence related genes  but

seems to alter the defence strategy of oak.

Nutrient allocation patterns

The results  of  the C-N allocation analysis  correspond

with  the  patterns  derived  from GO term –  and DEG

comparisons. Babst et al. (2008) reported an increased C

export  from leaves of  Populus  nigra leaves after  leaf

chewing  by  L.  dispar  caterpillars.  Accordingly,  our

findings  show  that  oaks  in  root  flush  respond  to

herbivory with a reduced incorporation of carbohydrates

into leaves. According to transcriptional changes and C-

excess data, this effect is attenuated or even reversed in

inoculated  oak.  In  the  herbivory  treatment  we  found

genes  encoding  erd6-like  sugar  transporters  and  beta

galactosidase  16  down-regulated  compared  to  the

control,  the  inoculation  and  the  herbivory/inoculation

treatments. Up-regulation of both genes was shown in

Arabidopsis thaliana induced by cold stress, and other

abiotic  stess  factors  as  high  salinity  (Kiyosue  et  al.,

1998; Seki et al., 2002). As defense induction caused by

herbivore feeding can reconfigure primary metabolism

(Schwachtje & Baldwin,  2008),  our finding of an up-

regulation of these genes indicates the need of saving

valuable C resources from herbivorous insects supports

former results  derived from, e.g.  Arabidopsis thaliana

and poplar surveys  (Babst  et al.,  2009; Ferrieri  et al.,

2013).

Differences in gene expression patterns to herbivory

between plants with root flush or shoot flush growth

When we compared  the  trophic  interactions  of  plants

with  root  flush growth  and  plants  with  shoot  flush
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growth, profound effects of this rhythmic growth on the

response patterns triggered by herbivory were revealed.

Our results indicated that oaks use different strategies to

deal with herbivory depending not only on the presence

of a mycorrhizal fungus, but also on the growth stage.

Our  RNA-Seq  data  suggested  that  during  root  flush,

when  roots  elongate  and  leaf  development  rests,

herbivory leads to an initiation of compensatory growth.

This  reaction  is  alleviated  in  the  presence  of  the

mycorrhizal  fungus,  which emphasizes  once more the

soothing  effect  of  mycorrhiza  on  its  host.  However,

these mediating effects of growth stage are not reflected

in responses of biomass and resource allocation within

the plant.

CONCLUSIONS

Our  results  indicated that  gene expression patterns  in

oaks  are  modulated  by  effects  of  inoculation  with  a

mycorrhizal  fungus  and  insect  herbivory  alone  and

together. Specifically, the expression of defense-related

genes in oak upon attack by an insect herbivore depends

on the presence or absence of the mycorrhizal symbiont.

The  strategy of  dealing with herbivory changed from

direct  defense  without  the  fungus  to  indirect  defense

with the fungus, and the compensatory growth reaction

was lower in presence of the mycorrhizal symbiont. In

addition,  we  shed more light  on the  consequences  of

endogenous rhythmic growth in the ability of the plant

to fight insect pests with indirect defense mechanisms

with  the  support  of  a  mycorrhizal  partner.  Nutrient

allocation is clearly altered by the mycorrhizal fungus,

but  our results  did not  support  our  hypothesis,  as  the

amount of  13C and  15N incorporated into sink leaves in

plants  subjected  to  herbivory  decreased,  but  that

incorporated into roots  did not.  The method we used

here  to  study  the  ecology  of  trophic  interactions  has

been  extended to various types of interactions.  
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Nutrient allocation in oak as affected by detritivore – herbivore – mycorrhiza interactions

INTRODUCTION

Plants  encounter  numerous  above-  and  below-ground

interactions  with  a  bewildering  variety  of  organisms

(Ehrlich & Raven, 1964; Thompson, 2009). As sessile

life  forms  they  have  developed  strategies  to  handle

both,  beneficial  and  antagonistic  interactions  with

species,  above-  and  belowground,  including  direct

attacks  such  as  leaf  herbivores  but  also  by  root

herbivores and pathogens below the ground  (Crawley,

1996; Freiberg et al., 1997; Heijden & Sanders, 2002).

The  different  strategies  to  handle  attacks  range  from

physical  barriers  like  thick  secondary  cell  walls  and

trichomes to secondary metabolites which are toxic to

hostile  organisms  and  referred  to  as  direct  defense

(Kessler  &  Balwin,  2001,  2002).  In  addition  to

contributing  to  defense mechanisms,  rapid  changes  in

metabolite  allocation  mitigates  detrimental  effects  of

herbivory (Schwachtje et al., 2006). 

However, plants also form mutual relationships

with other organisms.  Most  plant  species are  in close

association  with  symbiotic  fungi  by  forming

mycorrhiza-symbiosis,  which  are  beneficial  to  both

partners  (Herrmann et al., 1998; Smith & Read, 2010).

This  relationship  fosters  water  and  nutrient  uptake

especially  nitrogen  and  phosphorus  by  increasing

nutrient  exploition  of  the  rhizosphere  via  extraradical
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SUMMARY

Mycorrhizal fungi and herbivores interactively influence the growth, resource utilization, and herbivore
defense of plants. The largely unexplored genetic and physiological basis of these interactions may
differ in the different plant growth phases, thereby contributing to the complexity of plant responses.
We studied these interactions in a tri-trophic system comprising oak (Quercus robur clone DF159),
larvae  of  the  moth  Lymantria  dispar, and  the  ectomycorrhizal  fungus  Piloderma  croceum under
controlled laboratory conditions at the level of gene expression using transcriptomics and at the level of
carbon/nitrogen allocation for plants from different growth stages. Herbivore feeding on oak leaves led
to increased expression of genes related to compensatory growth and to enriched GO terms described
with cell wall, cell division and DNA replication and other direct defense mechanisms of oak, like an
enhanced  expression  of  e.g.  chitinases  in  root  flush  and  protease  inhibitors  in  shoot  flush.  C/N-
allocation  analyses  indicated  an  increased  export  of  resources  from  aboveground  plant  parts  and
accordingly  genes  associated  with  the  transport  of  sugars  were  increased  upon  herbivore  attack.
Inoculation with an ectomycorrhizal fungus attenuated these effects in the pre-mycorrhizal stage but
caused an increased expression of genes related to the production of volatile organic compounds. We
conclude that the inoculation with ectomycorrhizal fungi mediates the plant’s defense strategy and that
this effect is moreover dependent on the growth stage of plants. These results from a rather simple tri-
trophic lab system give insights into the complexity of plant responses to a multi-trophic world.
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hyphae. Notably, in addition to fostering plant nutrient

exploiuation, the association of plants with mycorrhizal

fungi also improve plant defense against antagonists via

priming defense (Pozo  &  Azcón-Aguilar,  2007;

Koricheva  et al.,  2009; Campos-Soriano  et al.,  2012).

Furthermore,  decomposers including dung beetles  and

earthworms impact secondary metabolite synthesis and

defense array of plants against herbivory  (Wurst et al.,

2004; Blouin et al., 2006). In addition, soil detritivores

such as Collembola and earthworms alter plant nutrient

supply  and  therefore  plant  growth  performance  and

vitality.  For  instance  Collembola  recycle  plant  litter

thereby  increasing  nutrient  availability  of  plants,  but

they  also  alter  plant  growth  via  changing  plant  –

microbial interactions, in particular that between plants

and  fungi  (Chamberlain  et  al.,  2006).  Furthermore,

Collembola affect plant  performance not only through

provisioning of nutrients but also influence their growth

and  survivability  by  a  number  of  other  indirect

mechanisms  like  grazing  on  rhizosphere

microorganisms  and  modifying  the  soil  structure

(Scheu,  2001;  Gormsen  et  al.,  2004;  Friberg  et  al.,

2005). Further, Collembolan driven increase of nutrient

uptake  impacts  plant  growth  and  plant  nutrient

concentration  (Lussenhop  &  Bassirirad,  2005;

Mitschunas et al., 2006; Ladygina et  al.,  2010) which

may  affects  above  ground  herbivore  performance

(Schütz  et al., 2008).  Surprisingly, until now there are

no  investigations  regarding  to  interactions  of

ectomycorrhizal  plants  like  oaks  and  decomposer

animals  (e.g.  Collembola)  which  are  most  notably

existing in forest soils. However there is a rising number

of  studies  dealing  with  interactive  effects  of  above-

ground herbivory and mycorrhizal fungi (e.g. Bacht  et

al. unpblished),  there  is  no knowledge  about

multitrophic interactions of above-ground herbivory and

below-ground  communities  of  Collembolans  and

mycorrhizal fungi.

 They  are  among  the  most  widespread  and

abundant  soil  arthropods  and  reach  densities  of  >

100,000  individuals  per  square  meter  in  forests.

Therefore, it is likely to assume they have an impact on
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plant – mycorrhiza interactions (Gange, 2000; Kaneda

& Kaneko, 2004; Jonas  et al., 2007). However, plants

have  been  shown  to  respond  to  the  presence  of

Collembola  in  the  rhizosphere  due to  root  elongation

and branching even though total biomass and nutrient

concentration  remained  unaffected  (Endlweber  et  al.,

2006; Endlweber & Scheu, 2007)

Recent  research  on  arbuscular  mycorrhizhal

fungi  has  brought  evidence  of  enhanced  resistance

against shoot pathogens induced by these fungi (Pozo &

Azcón-Aguilar, 2007; Koricheva et al., 2009; Campos-

Soriano  et  al.,  2012).  Further,  qualitative  and

quantitative  changes  in  flavonoid  contents  have  been

observed,  in  plants  associated  with  mycorrhizal  fungi

(Vierheilig  &  Piche,  2002;  Akiyama  et  al.,  2002).

Fester and Hause (2005) have also reported of profound

changes  in  phenolic  compounds,  defense-related

phytohormones,  indicating  a  induction  of  defense

against  pathogens  and  herbivores  (Fester  &  Hause,

2005; Lopez-Raez et al., 2010).

Most  research  dealing  with  interaction  of

mycorrhiza  and  herbivory  has  concentrated  on

herbaceous  plants,  and  arbuscular  mycorrhizal  fungi.

However trees, in boreal and temperate regions mostly

in  symbiosis  with  ectomycorrhizal  fungi,  harbor  a

generally high number of interacting organisms, with an

intriguing density and diversity of herbivores (Brändle

& Brandl, 2001). The ecological importance of trees is

accounted by the longer life span of tree, compared to

herbaceous plants. For several reasons this might cause

pronounced effects on biodiversity:  first, the long life

span  allows  trees  to  implement  advanced  defense

mechanisms against  herbivory, second,  changes in  the

apparency and light  environment  in  tree  stands might

alter levels of herbivory and third, old trees may change

the  abundances  and  efficiency  of  natural  enemies

(Moore & Francis, 1991; Tylianakis et al., 2004; Boege

& Marquis, 2005). 

In  order  to  improve  our  understanding  of

multitrophic above- and below-ground interactions we

established  a  laboratory  experiment  centered  on  an

ectomycorrhizal plant (Quercus robur). one of the most
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common European tree species of significant economic

importance.  The  ectomycorrhizal  fungal  species

(Piloderma croceum), widespread in deciduous forests

and  the  Collembolan  species  Protaphorura  armata

representing  euedaphic  Collembola,  common  in  the

rhizosphere of plants were added. To add above-ground

interaction,  caterpillars of  the generalist leaf herbivore

Lymantria  dispar were  included.  To  unravel

morphological and nutritional changes in  Q. robur due

to the presence of P. croceum,  P. armata and L. dispar

we established a full factorial experiment investigating

the impact of multitrophic interactions of Q. robur with

biological  interactors  including  mutualists  and

antagonists.  Using  13C  and  15N  labelling  changes  in

carbon and nitrogen allocation of  Q. robur in presence

of  P.  armata  and P.  croceum  and  L.  dispar was

investigated.  Specifically, we  addressed  the  following

hypotheses:

1. Enhanced nutrient supply by mycorrhizal fungi

enhance  plant  growth,  but  in  particular  the

allocation of carbon to roots and the allocation

of nitrogen to leaves.

2. Defense  against  herbivores  varies  with  plant

nutrient  supply.  Therefore,  we  expect  direct

defense mechanisms to be more pronounced in

mycorrhizal  oaks,  supported  by  enhanced

nutrient supply. In Contrast, positive effects of

the  mycorrhizal  fungus  on  the  oaks  defense

mechanisms will be attenuated by Collembolan

feeding on fungal hyphae.

3. Collembola  interaction  will  lead  oaks  to

enhanced  N  incorporation  due  to  enhanced

mineralization in  the  soil.  Collembola  feeding

on hyphae ectomycorrhizal oak will affect this, 

4. by reducing nutrient supply by the fungus.
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MATERIALS AND METHODS

Seeds and soil

In order to obtain a homogeneous soil substrate for the

experiments, 1 m3 of the upper soil were collected from

an  oak  forest  stand  at  the  Dölauer  Heide  close  to

Halle/Saale, Saxony Anhalt in Germany (51.51016 N,

11.91291  E).  The  A0  (humus,  -10  cm)  and  A1A2

(organic,  -30  cm)  horizons  were  sampled,  air  dried,

sieved at 5 mm, mixed 1:1 (v/v), further sterilised with

a  steam  sterilisation  system  and  washed  thrice  with

dH2O in order to  dissolved nutrients.  Seedlings were

raised from acorns applied from a German federal seed

dealer  (Staatsklenge  Nagold).  Prior  to  planting,  the

acorns  were  peeled  and washed with  water.  After  an

initial planting in sterile sand, acorns were submerged

for  30  min.  in  hydrogen  peroxide  (10  v/v).  After

thoroughly washing with water, acorns were planted in

the substrate. Position of oak individuals in the climate

chamber was randomised weekly, oaks were rinsed with

sterile tap water (30ml) twice a week. After six weeks

the  oaks  were  inoculated   with  Piloderma  croceum.

Seedlings not designated for mycorrhizal infection were

treated the same way as the inoculated ones, but with a

vermiculite/peat mixture without P. croceum. During the

inoculation procedure all  seedlings were measured for

stem length. The whole time the acorns and later on, the

seedling were kept under controlled conditions of 70%

rel. humidity, 25°C and long days (16/8 h; day/night).

Experimental design

63 Quercus robur seedlings were raised under controlled

conditions and analysed. The experiment was set up in a

full  factorial  design  with  the  following  factors:

Piloderma croceum  as  a  inoculation  treatment  with  a

mycorrhizal fungus, Lymantria dispar as leaf herbivore,

as well as Protarophura armata (Colembola), each with

its  respective  control,  resulting  in  8  treatment

combination.

Piloderma croceum

P. croceum inoculum was  produced  at  the  Helmholtz

Centre  for  Environmental  Research  UFZ  Halle.  The

production of the  P. croceum inoculum comprises two

steps. First, mycelium is grown in the modified Melin-
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Norkans  (MMN) liquid  medium with  10  g/L glucose

over  10  days  and  added  to  solid  sterilized

vermiculite/perlite substrates according to the procedure

described in Herrmann et al. (1992). After three to five

weeks incubation, the substrate was rinsed with sterile

and  purified  water  in  order  to  suppress  rest  of

carbohydrates and reduce the risks of contamination.

Lymantria dispar

Egg masses  of the  New Jersey lab strain were raised

under  the  same  environmental  conditions  as  the  Oak

seedlings and fed with artificial gypsy moth died (based

on wheat  germ).  Caterpillars  of  the  third  larval  stage

were  chosen  for  the  experiment,  weight  measured

before and after feeding.

Protaphorura armata

The  Collembola  species Protaphorura  armata

(Collembola,  Tullberg)  was  taken  from  laboratory

cultures  established  from  field  populations  close  to

Darmstadt (Germany). Cultures were kept on a mixture

of sterilized potting soil and clay pellets (3:1) at 14°C in

darkness.

Nine weeks after inoculation with P. croceum all

seedlings  were equipped with a  bag of  100µm mesh,

strapped to one mature leaf per oak. After weighing the

caterpillars,  half  of  the  bags were equipped with one

third instar larvae. Every source-leaf of the  Lymantria

treatment was photographed in 90° angle with a scale, in

order to measure the fed leaf material afterwards. After

5 days  of  feeding,  the  caterpillars  were removed and

weighted, the removed leaf area was documented and

devoured  leaf  mass  was  calculated.  For  harvest,  the

seedling were cut at ground level and separated into root

and shoot. The following plant fractions were separated

according to Angay  et al. (2014): (1) sink leaves, i.e.

terminal  leaves,  not  yet  fully  developed  or  buds;  (2)

source leaves, i.e. sub-terminal, fully developed leaves;

(3)  roots,  i.e.  main  roots  originating  from  stem  and

lateral  roots,  i.e.  fine  roots  originating from principal

roots. After determining the fresh weight of the single

plant organs, half of the harvested replicates was frozen

in liquid nitrogen immediately, the other half was dried

for one week at 60°C and weighted.
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C-/N labelling and allocation analyses

Together with the inoculation process, the substrate of

every  seedling  was  mixed  with  ground  15N  labeled

Lolium perenne material. Nine weeks after inoculation

and  C  labeling,  every  plant  chosen  for  herbivory

exposure  was  exposed  to  previously  weighted  third

instar  larvae of  L. dispar.  To cage larvae,  one source

leaf per plant was covered by a bag with a mesh size of

100µm. After six hours all  caterpillars were removed.

Directly  after  the  feeding,  about  36  hours  before

harvest,  all  microcuttings  were  transferred  to  the  13C

labeling chamber. During the night before the actual C

labeling procedure, the CO2 was completely exchanged

with labeled CO2 with 10 Atom Percent (atom%) 13CO2.

According  to  the  previous  light  period  and  with

unchanged climatic conditions,  the labeling procedure

took place in the subsequent 16 hours starting with the

first light. CO2 concentration was adjusted to 400 ± 2

µL L-1 (mean ± SD) yielding in  7.9 ± 0.3  atm%  13C

(mean ± SD).

For the allocation analyses parts of every plant

fraction  were  pooled  to  a  total  of  six  biological

replicates which were dried and ground using a ball mill

(Type MM2, Retsch, Hahn, Germany). An isotope-ratio

mass  spectrometry  (IRMS)  (GVI-Isoprime,  Elementar,

Hanau,  Germany)  coupled  to  an  element  analyzer

(EA3000,  Euro  Vector,  Milan,  Italy)  was  used  to

quantify  the  stable  C  and  N  isotopes.  Repeated

measurements of a laboratory working standard gave a

precision of δ13C < 0.1 ‰ (SD, n = 10). Incorporation of

13C and 15N were calculated as excess per organ and on

whole-plant level over unlabeled microcuttings serving

as  controls.  Allocation  patterns  were  calculated  as

percentage of plant fractions share of excess on whole-

plant levels excess.

Statistical analyses

Statistical  analyses  of  biomass  and  C-/N-  allocation

were  done  in  R  (R  core  group,   http://www.r-

project.org/), using the lm function for realizing a three

factorial  ANOVA.  Data  were  transformed  (ln

transformation) to obtain normal distribution wherever

necessary. The significance level was set 
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to P < 0.05; values for 0.05 ≤ P < 0.10 were defined as

marginally  significant.  To  quantify  caterpillar

performance,  we  calculated  according  to  Waldbauer

(1968),  relative  consumption  rate  [RCR  =  leaf  area

consumed [cm2]·(initial  larval  weight [mg])−1·(time)−1);

relative  growth  rate:  [RGR =  (larval  biomass  gained

[mg]·(initial  larval  weight  [mg])−1·(time)−1)];  relative

consumption  efficiency:  [RCE  =  final  larval  weight

[mg]−(initial  larval weight) [mg]·(leaf area consumed)

[cm2]−1. Performance of the Collembola population was

calculated as fitness rate (final number of individuals at

harvest, divided by initial number; n=50 per seedling).

These parameters were used as dependent variables in a

three factorial ANOVA with the factors inoculation and

Collembola.
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Table 1 Effects of the factors mycorrhization (inoculation with Piloderma croceum), collembola (presence of  Protaphorura armata), herbivory
(feeding by Lymantria dispar larvae), mycorrhization/collembola (P. croceum and P. armata) mycorrhization/herbivory (P. croceum and L. dispar)
and all factors combined (P. croceum, P. armata and L. dispar) on biomass, analysed in a three-way ANOVA. t-values were calculated using the lm
function implemented in R; significant t-values are in bold, signs indicate direction of the effects (p < 0.05: *; p < 0.01: **; p < 0.001: ***). 

t- values n

Plant fraction P. croceum P. armata L.dispar
(dry mass)

Sink leaves 2.05 * 63

Source leaves 2.65 * 3.01 ** 1.21 63

2.94 ** 2.38 * 1.19 1.32 0.05 63

2.28 * 3.24 ** 0.58 63

Sink leaves 0.11 0.57 2.02 * 55

Source leaves 1.47 2.88 ** 1.53 0.53 53

Roots 2.82 **
0.68

1.39 0.55 0.21 52

Sink leaves 0.31 1.68 (*) 0.44 55

Source leaves 0.34 1.43 0.38 53

Roots 0.26 -0.06 0.17 1.32 0.89 0.09 52

P. croceum * 
P. armata

P. croceum * 
L. dispar

P. armata * L. 
dispar

P. croceum * 
P. armata * 
L. dispar

−0.89 −0.85 −0.06 –0.06 −0.16 −0.7

−0.83 –1.94 (*) −0.16 −0.34

Total above 
ground biomass

−0.53 −0.76

Total below 
ground biomass

−0.31 –0.29 –1.05 −0.84

13C excess

−1.17 −1.19 −0.07 −0.46

−0.77 –0.66 −1.47

−0.57 –0.92

15N excess

–1.21 –0.98 –0.63 –0.21

–0.77 –0.06 –0.88 –0.65

–0.15
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RESULTS

A  multi-factorial  ANOVA  revealed  a  significant

increase in root and shoot biomass in presence of the

mycorrhizal  fungi, showing  that  the  inoculation  was

successful  (Fig  1;  Table  1).  Presence  of  Collembola

increased  the  mass  of  sink  leaves,  but  only  in  the

combined treatment with mycorrhiza. Biomass of source

leaves,  as  well  as  roots  was  increased  by  the  leaf
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Figure 1 Effect of mycorrhization on the biomass (dry weight) of Quercus robur seedlings. Oaks were fed to larvae of Lymantria dispar (herb; right
side of each boxplot), inoculated with Piloderma croceum (myc; yellow boxes), accompanied by Protaphorura armata (coll; blue boxes), inoculated
with Piloderma croceum and Protaphorura armata (myc/coll; green boxes), or not inoculated with the fungus and  (control; colorless boxes). Bars
in the boxplots indicate the upper and lower quartile with median; whiskers indicate minimum and maximum values; dots are outliers.



Chapter IV

herbivore.  An interacting effect  of  inoculation with  P.

croceum  in  combination  with  herbivory  caused  a

marginally significant decrease in source leaf mass.

Bioassay  of  Lymantria  dispar and  Protaphorura

armata

Caterpillar  mortality  was  not  affected  by  inoculation

with the mycorrhizal fungus or the presence of Collem-

bola,  all  caterpillars  survived  the  feeding  experiment.

The  bioassay  variables  acquired  for  L.  dispar,  RGR,

RCR and RCE were not influenced by the factors inocu-

lation or  Collembola, nor was there any significant in-

teracting effect. Survival rate of P. armata ranged from

4.49 to 0.96; enhanced marginally significant by herbi-

vore feeding only on the leaves (t=1.88; p=0.07).

Incorporation and allocation of C/N

On whole-plant level, excess of whether 13C nor 15N was

altered. 

Analysing the plant  fractions of oak seedlings

(source  leaves,  sink  leaves  and  roots)  we  found

increases of both  13C and  15N excess while not  13C nor

15N was decreased significantly (Table 1). Roots of oak
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Figure  2  Effect  of  mycorrhization,  collembola,  herbivory,
mycorrhization/collembola,  mycorrhization/herbivory  and
mycorrhization/collembola/herbivory  on  the  excess  of  13C of
plant fractions of oak seedlings, calculated over unlabeled oak
samples. Seedlings were fed to larvae of Lymantria dispar (herb;
right side of each boxplot), inoculated with  Piloderma croceum
(myc;  yellow  boxes),  accompanied  by  Protaphorura  armata
(coll;  blue  boxes),  inoculated  with  Piloderma  croceum  and
Protaphorura armata (myc/coll; green boxes), or not inoculated
with  the  fungus  and   (control;  colorless  boxes).  Bars  in  the
boxplots  indicate  the  upper  and  lower  quartile  with  median;
whiskers  indicate  minimum  and  maximum  values;  dots  are
outliers. Note that the y-axes are log-transformed.
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seedlings  inoculated  with  P. croceum had  significant

higher levels of  13C compared to the controls. Presence

of Collembola in the soil had a positive  effect on the

incorporation of 13C in source leaves. On sink leaves,

only  the  combination  treatment  with  inoculation  and

herbivory  showed  an  enhanced  incorporation  of  13C

compared to the control. 15N was solely increased in the

combination  treatment  with  the  mycorrhizal  symbiont

and Collembola combines in the soil  (Figs 2 and 3).  

Differences in plant  fractions of excess of  13C

and  15N  on  whole-plant  excess  were  used  to  assess

allocation patterns (Table 2; Figs 4 and 5). Inoculation

with  P. croceum enhanced allocation of C to the roots.

Collembolans in the soil enhanced the allocation of C to

source leaves,   while  C allocation to  sink leaves  was

reduced.  In  contrast,  C  allocation  to  sink  leaves  was

enhanced in oak seedlings subjected to mycorrhiza and

Collembola in comparison to the control. Allocation of

C was not mediated by leaf herbivory, neither alone nor

in combination with P. croceum or P. armata. 
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Figure  3  Effect  of  mycorrhization,  collembola,  herbivory,
mycorrhization/collembola,  mycorrhization/herbivory  and
mycorrhization/collembola/herbivory  on  the  excess  of  15N  of  plant
fractions  of  oak  seedlings,  calculated  over  unlabeled  oak  samples.
Seedlings were fed to larvae of  Lymantria dispar  (herb; right side of
each  boxplot),  inoculated  with  Piloderma  croceum (myc;  yellow
boxes),  accompanied  by  Protaphorura  armata  (coll;  blue  boxes),
inoculated  with  Piloderma  croceum  and Protaphorura  armata
(myc/coll;  green  boxes),  or  not  inoculated  with  the  fungus  and
(control; colorless boxes). Bars in the boxplots indicate the upper and
lower quartile with median; whiskers indicate minimum and maximum
values; dots are outliers. Note that the y-axes are log-transformed.
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Nitrogen allocation was not  significantly mediated by

any of the factors (Fig 5).

DISCUSSION

The role of plants as primary producers and resource for

consumers,  as  well  as  their  interaction  with  other

organisms,  has  been  intensively  studied  and is  rather

well  understood (Gange,  2000;  Kessler  et  al.,  2006;

Pierik  et  al., 2013).  However,  understanding  of

interrelationships  of  organisms  above-  and  below-

ground, and the role of plants as linkage between these

two realms still is in its infancy (Bardgett et al., 1998;

Van der Putten & Vet, 2001; Eisenhauer  et al.,  2011).

From the perspective of plant vitality and plant defense

strategies,  understanding  of  plant  induced  defense by

above- and belowground mutualists or antagonists will

unravel  processes  influencing  other  plant  associated

organisms,  in  particular  herbivores  and  pathogens
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Figure 4 Carbon allocation in  response to  Protaphorura  armata (collembola)  in  the  soil,  leaf  herbivory by feeding of  Lymantria  dispar
(herbivory), collembola and leaf herbivory (herbivory:collembola). Upper part shows data without mycorrhization, lower part shows data of
seedlings inoculated with  Piloderma croceum. Pie chart area gives whole-plant  13C excess (see values below), C allocation pattern to plant
fractions is reflected by pie slices (means ± SE).
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(Bezemer & Vandam, 2005). Until today knowledge on

interactions  of  mycorrhizal  plants  with  above-  and

belowground herbivores as well as animals involved in

the  decomposition  process  is  limited  to  herbaceous

plants, in particular crop species and weeds (Blossey &

Hunt-Joshi, 2003; Vos et al., 2013). 

The results showed that oaks indeed respond to

the studied biological interactions, including changes in

morphology, C and N concentrations and nutrient and

carbon allocation to different plant compartments. The

results  mirror  the  complex  interactions  which  oak

seedlings are facing during early development and early

phases of mycorrhization, meaning the interaction of P.

croceum  and  P. armata which impacted oak sink leaf

biomass and  15N tissue concentration. In addition a  P.

croceum and L. dispar interaction impacted source leaf

biomass negatively and increased sink leaf 13C tissue

concentration.  There  is  already  a  large  body  of  data
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Figure 5 Nitrogen allocation in  response to  Protaphorura  armata (collembola)  in  the soil,  leaf  herbivory by feeding of  Lymantria dispar
(herbivory),  collembola and leaf herbivory (herbivory:collembola). Upper part shows data without mycorrhization, lower part shows data of
seedlings inoculated with  Piloderma croceum.  Pie chart  area gives whole-plant  15N excess (see values below),  C allocation pattern to plant
fractions is reflected by pie slices (means ± SE).
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describing  this  kind  of  premycorrhizal  effects  (e.g.

(Frettinger  et  al.,  2006a,  2007;  Felten  et  al.,  2009).

However,  we  were  able  to  add  important  knowledge

regarding its influence in multitrophic systems.

As  expected,  the  presence  of  P. croceum as

ectomycorrhizal  symbiont  to  oak  seedlings  stimulated

plant growth. This was reflected by increased root and

shoot biomass  but  also the increased incorporation of

assimilated carbon into roots (see also  Sanders, 1997;

Herrmann et al., 1998; Smith & Read, 2010). Increased

incorporation of 13C into the root systems indicates that

inoculation with P. croceum resulted in the formation of

a  fully  functional  oak-mycorrhiza-symbiosis.  These

findings  confirm  our  first  hypothesis  in  terms  of

enhanced growth of mycorrhized oak seedlings, as well

as  enhanced  C  incorporation.  Although  we  found  no

increase  of  N incorporation  to  sink  leaves,  we  could

show an increase of sink leaf biomass in mycorrhized

oaks. 

Herbivory  affects  plants  in  various  ways,  as

well as to other associated, interacting organisms, such

as  mycorrhizal  fungi.  Defoliation  by  herbivores

decreases leaf area available for photosynthesis, but can

also increase light levels to previously shaded portions

of  the  canopy,  thereby  increasing  photosynthetic

capacity in remaining leaves (Mabry & Wayne, 1997).

Further, plant sap sucking aphids indirectly interact with

AM fungi through plant metabolism. The AM presence

increased  the  attractiveness  of  host  plant  to  aphids,

whereas  aphids  inhibit  the  formation  of  a  plant-

mycorrhiza-symbiosis between Vicia faba and different

AM  fungi  (Babikova  et  al.,  2014).  In  addition,

mycorrhizal  hyphae  networks  are  capable  of

communicating  informations  about  herbivore  attack

between plants (Babikova  et al., 2013).  Compensatory

growth is a common but costly strategy of plants against

herbivores  (McNaughton,  1983;  Stowe  et  al.,  2000;

Haukioja  &  Koricheva,  2000).  Interestingly,  in  non-

inoculated oaks of our experiment, herbivory resulted in

an  increase  in  biomass  of  source  leaves  and  roots

suggesting that the plants responded to herbivory with

compensatory  growth  which  may  also  be  viewed  as
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defense reaction (Strauss & Agrawal, 1999). This is in

contrast to our second hypothesis, where we suspected

that direct defense mechanisms as compensatory growth

should  be  more  pronounced  in  mycorrhizal  oaks.

Notably,  Piloderma inoculated  oaks  responded  to

herbivory in part oppositely, i.e. with reduced biomass

of  source  leaves,  suggesting  that  plants  modify  their

defense response  in  presence  of  multiple  interacting

partners. 

Collembola  also  affected  plant  biomass

depending on the presence of mycorrhiza. In presence

of  mycorrhiza,  the  presence  of  Collembola  increased

biomass of sink leaf. This effect was associated with an

increased  15N  tissue  concentration  in  sink  leafs.

Collembola  are  known  to  increase  nutrient

mineralization and  plant  growth (Partsch  et al.,  2006,

Ke & Scheu,  2008),  further  Bardgett  & Chan (1999)

showed N mineralization  and shoot N concentration in

Nardus  stricta to  be  increased  in  presence  of

Collembola, with the effect being more pronounced in

presence of nematodes. But Collembola interaction with

ectomycorrhizal trees is little studied. In line with these

findings,  we  found  increased  13C  excess  in

photosynthetically  active  source  leaves  of  oaks  in

presence  of  Collembola.  A  preference  of  some

Collembola  species  for  mycorrhiza  infected  roots,

though in arbuscular mycorrhiza, has been discussed in

the  literature  (Thimm  &  Larink,  1995;  Caravaca  &

Ruess, 2014). Our results indicate a positive interaction

effect  between  the  mycorrhizal  fungus  and

Collembolans. The symbiosis with P. croceum seems to

increase nutrient uptake even more, assumingly due to

the  extended  hyphal  network  and  Collembolan

mineralized  nutrients.  Therefore  we  reject  our  third

hypothesis. 

Further, Collembola presence is known to alter

root morphology in  Trifolium repens and reduce shoot

biomass in Lolium perenne while enhancing root length

and number of root tips (Endleweber & Scheu, 2007). In

another study it was shown that Collembola occurrence

in the non-mycorrhizal rhizosphere of  Trifolium repens

can have a negative impact on the reproduction of the
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aphid  Myzus persicae (Scheu  et  al.,  1999).  Overall  it

can be assumed that Collembola density is crucial for

the out coming impact on plant growth and development

(Gange, 2000).  

CONCLUSIONS

Our  results  suggests  once  more  that  ectomycorrhizal

symbionts,  and even its  premycorrhizal  effects  are  of

crucial importance to trees in natural ecosystems. In this

study  we  didn’t   found   evidence  for  hyphal

consumption  of  P.  armata on  P.  croceum and  no

negative  effects  on  performance  of  mycorrhized  oak.

Furthermore, we found none of the expected interactive

effects  of  above-ground  herbivory  and  Collembolan

below-ground.  However,  this  study  suggests  a  strong

compensatory  growth  reaction  of  oak  seedlings  after

exposure  to  leaf  chewing caterpillars  with  a  soothing

effect of P. croceum on this reaction.
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Summary and outlook

Several studies, including the present dissertation, have

illustrated  the  ecological  importance  of  trophic

interactions between species. Centred on a plants point

of view, this includes defense responses, nutrient supply

supported  by  symbionts  and  decomposers,  as  well  as

interacting effects linking different kinds of interaction.

Due to the complexity of natural habitats, a suitable way

for studying trophic interactions in a multi-factorial way

was of urgent need. 

The second chapter is devoted to the construction of a

reliable  reference  data  base  for  large  scale  gene

expression analysis. The OakContigDF159.1 provides a

reliable reference to study gene expression patterns, e.g.

triggered  by  different  trophic  or  multitrophic

interactions. 

In order to provide a reliable reference which

covers the largest possible number of gene transcripts,

we treated micropropagated cuttings of the pedunculate

oak  (Quercus  robur)  with  seven  different  interacting

species plus control treatment. These microcuttings had

to  cope  with  an  ectomycorrhizal  fungus  (Piloderma

croceum),  a  leaf  herbivore (Lymantria  dispar),  a

Collembolan  species (Protaphorura  armata),  a  leaf

pathogen (Microsphaera  alphitoides),  a  root  feeding

nematode (Pratylenchus  penetrans),  a  root  pathogen

(Phytophthora  quercina) and  a  mycorrhiza  helper

bacterium  (Streptomyces AcH  505)  in  experiments

under controlled laboratory conditions. After an initial

normalisation of RNA templates, sequencing using the

two  architectures,  454  pyrosequencing  and  Illumina

sequencing took place. Further, we used the Mimicking

Intelligent  Read  Assembly  (MIRA)  and  the  Trinity

assembler, to  construct  the  OakContigDF159.1 hybrid

assembly, containing 65,712 contigs with a mean length

of 1003 bp. Illumina constructed cDNA libraries were

used to examine gene expression induced by mycorrhiza

formation.  After  aligning  the  cDNA libraries  of  fine

roots  against  the  reference,  reads  were  quantified  by

RSEM, differences in gene expression was measured in

R,  revealing  3018  differentially  expressed  contigs,  of

which 1399 were up-regulated and 1619 down-regulated

in oak EMs with P .croceum. 

Our data support and confirm the view that gene

families  are  precisely  regulated  to  adjust  the  plants

metabolism  to  mycorrhizal  symbiosis,  rather  than  by

expression  of  symbiosis-specific  genes.  Furthermore,

our  findings  of   e.g.  down-regulated  chitinases

confirmes that  defense-related genes are  attenuated in

mature  mycorrizal  symbiosis.  taking  account  to  the

mycorrhizal  symbiosis,  the  expression  of  a  SWEET1

glucose  transporter  could  indicate  a  direct  export  of
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hexose into the plant apoplast to support the fungus and

may  suggest  the  existence  of  a  complementary  sugar

exchange mechanism in mycorrhizal symbiosis in oak.

As  mycorrhizal  fungi  and  herbivores

interactively influence the growth, resource utilization,

and defense of plants, the third chapter shall provide a

deeper  insight  in  actual  gene  expression  changes  and

metabolic  adjustments  of  oak  facing  herbivory  in  a

system including mycorrhizal fungi. 

Again,  microcuttings  of  the  Quercus  robur

clone DF159 served as  a  experimental  platform for a

full  factorial  experiment.  In  order  to  examine  the

separate and combined effects of a mycorrhizal fungus

and  a  leaf  chewing  caterpillar  on  oak,  I  analysed

changes  in  gene  expression  and  nutrient  allocation

patterns  on  a  total  of  71  13C  and  15N  labelled

microcuttings, of which 35 were in root flush and 36 in

shoot  flush.  First,  I  extracted total  RNA templates  of

pooled  samples  which  were  further  used  to  produce

100-bp  paired-end  libraries  and  sequenced  using  an

Illumina  HiSeq  2000.  After  alignment  against  the

reference  transcriptome  OakContigDF159.1,

significance  of  differences  in  gene  expression  was

measured via pairwise comparisons between contigs of

control  vs.  herbivory, control  vs.  inoculation  with  P.

croceum,  control  vs.  inoculation/herbivory, separately

for  plants  in  root  flush and for  plants  in  shoot  flush.

Furthermore,  I  analysed  changes  in  nutrient

incorporation using calculated differences of 13C and 15N

excess  over  unlabelled  control  plants.  Significance  of

effects was tested using a three-way ANOVA.

I found an increased expression of genes related

to compensatory growth and direct defense in oaks in

root flush, an effect that was attenuated in presence of P.

croceum. Further was the expression of genes related to

the production of VOC increased in oak inoculated with

P. croceum and exposed to  L. dispar. I  found diverse

effects of the growth stage, inoculation and herbivory on

the incorporation of nutrients. Additionally I found, on

the one hand an increased incorporation of  13C and 15N

in sink leaves of oaks exposed to herbivory, on the other

hand the incorporation of 13C decreased in source leaves

of  oaks  in  shoot  flush  and  exposed  to  herbivory.  In

stems,  the  incorporation  of  both,  13C  and  15N  was

decreased in  oak  exposed to  herbivory, an  effect  that

was reversed in inoculated oak exposed to herbivory.

Taken together, these findings indicate that oaks

may switches from direct herbivore defense mechanism,

including compensatory growth, during root flush to the

indirect  defense  mechanism  of  producing  chemicals

attractive  to  natural  enemies  of  herbivores  when  the
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plant benefits from pre-mycorrhizal effects. 

The  experiment  described  in  the  fourth  chapter  was

designed to investigate above-ground and below-ground

interaction  of  herbivory,  collembola  and

mycorrhization.  I  used  a  four-factorial  system

comprising  seedlings  of  Quercus  robur,  Lymantria

dispar,  Protaphorura armata  and  Piloderma croceum.

Under controlled laboratory conditions I applied a  13C

and  15N labelling prior to the feeding experiment with

the leaf chewing caterpillars.

I  found  strong  pre-mycorrhizal  effects,

reflecting an increased root and shoot biomass but also

an  increased  incorporation  of  currently  assimilated

carbon into the root system. The results showed further,

that  oaks  indeed  respond  sensitively  to  the  studied

biological  interactions,  including  changes  in

morphology, C and N concentrations and nutrient and

carbon allocation to different plant fractions.

I didn’t found evidence for hyphal consumtion

of  P. aramta and  no  negative  effects  of  collembola

presence  on  performance  of  oak  inoculated  with  a

mycorrhizal  fungus. Furthermore, I  found none of the

expected interactive effects of above-ground herbivory

and below-ground collembolan activity. However, this

study suggests a strong compensatory growth reaction

of  oak  seedlings  after  exposure  to  leaf  chewing

caterpillars with a soothing effect of P. croceum on this

reaction.

Outlook

The  present  dissertation  offers  detailed  information

about  the  effects  caused  by  interactions  between  the

partners tree, mycorrhizal fungus and herbivorous insect

and elucidates the importance of future research in the

multitrophic  context.  Even  though  I  added  a

collembolan population to cover also one type of below-

ground interaction, the picture drawn is far from being

complete.

• Following  the  example  given  in  chapter  four

(Nutrient  allocation  in  oak  as  affected  by

detritivore  –  herbivore  –  mycorrhiza

interactions),  I  advice  the  combination  of

further  interactions  around  the  oak,  e.g.: leaf

pathogen, root pathogen, root feeding nematode

and  mycorrhizal  helper  bacteria.  The

construction  of  the  OakContigDF159.1

reference transcriptome and the following gene

expression  surveys  on  the  suggested

interactions allows the detection of target genes.

Due  to  the  knowledge  gathered  by  previous

work,  future  experiments  examining  gene

expression patterns will become much cheaper,
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by  sequencing  short  fractions  of  the

genom/transciptome  instead  of  the  whole

transcriptome,  or  by  gene  expression

measurements using qRT-PCR technology.

• The reaction of the mycorrhizal partner in these

trophic interaction remains unclear. Therefore, a

change  in  the  point  of  view  could  offer  a

promising  avenue  for  future  studies.  The

genome  and  the  transcriptome  of  Piloderma

croceum strain  “F  1598”  could  be  used   for

experimental  surveys like those in the present

thesis,  but  with  the  inclusion  of  a  gene

expression survey on the site of the fungus. On

the one hand this may lead to promising insights

in the establishment of mycorrhizal symbiosis.

On  the  other  hand,  knowledge  about  fungal

reaction  on  above-ground  herbivory,  hyphal

consumption,  root  feeding  nematodes  ect.,

could be gathered. 

• In preparation of future research, microcuttings

of  Quercus  robur clone  DF159  have  been

planted in open field trials, in Kreinitz and Bad

Lauchstädt.  This  allows  further  studies  under

natural  conditions.  The  genetic  uniform

microcuttings  are  characterised  under  the

conditions  of  several  separate  interactions,

which  makes  them an  ideal  model  system to

study  environmental  variability.  Furthermore,

coupled  with  experimentations  on  litter

decomposition, including the characterization of

the  involved  microorganisms  and  enzymatic

processes, this release of oaks as living analysis

systems  could  be  used  as  a  kind  of  a

“Phytometer”.  Alongside to  research on biotic

factors,  also  the  effect  of  climate  change,

draught  periods  etc.  could  be  studied.  The

planting  of  microcuttings  on  the  fields  of  the

diversity experiment in Kreinitz, would allow to

study  even  effects  of  tree  diversity  on  gene

expression  of  oaks,  which  would  be  a  great

opportunity in this field of research.
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Deutsche Zusammenfassung

Mit  der  vorliegenden  Dissertation  konnte  ich  die

Bedeutung  von  trophischen  Interaktion,  als

Wechselwirkung zwischen Arten darstellen.  Betrachtet

man dies von der Seite der Pflanzen aus,  zeigen sich

sowohl  Effekte  wie  Verteidigungsreaktionen,

Änderungen  in  der  Nährstoffverteilung  innerhalb  der

Pflanze  als  auch  interagierende  Effekte.  Die

Komplexität  natürlicher  Habitate  hat  es  bisher  sehr

schwierig gemacht solche Interaktionen zu untersuchen.

Die  Möglichkeit  ein  komplexes  System ins  Labor  zu

bringen  und  Untersuchungen  unter  kontrollierten

Bedingungen  mit  mehreren  Faktoren  durchführen  zu

können,  stellt  einen  großen  Vorteil  dar  und  soll  im

Folgenden näher beleuchtet werden. 

Das  erste  Kapitel  dieser  Dissertation  ist  einer

allgemeinen Einleitung in das Thema gewidmet.

Im zweiten Kapitel stelle ich das experimentelle System

näher vor. Des Weiteren beschreibe ich die Konstruktion

der  verlässlichen  Referenzdatenbank

OakContigDF159.1,  welche  das  Studium  von

Genexpression  auf  Gesamttranskriptom-Ebene

ermöglicht.  Damit  das  Referenztranskriptom  eine

möglichst hohe Anzahl an Transkripten aus dem Genom

der Stieleiche (Quercus robur) beinhaltet,  behandelten

wir  microcuttings der Stieleiche mit insgesamt sieben

Arten, welche jeweils eine andere Form der trophischen

Interaktion  mit  der  Eiche  eingehen.  Zusätzlich  einer

Kontrolle  wurden  die  microcuttings  Piloderma

croceum,  Lymantria  dispar,  Protaphorura  armata,

Microsphaera  alphitoides,  Pratylenchus  penetrans,

Phytophthora  quercina  and Streptomyces  AcH  505

ausgesetzt.  Normalisierung  und  anschließende

Sequenzierung  mittels  Illumina  und  454  Pyro-

Sequenzierung  resultierten,  nach  Nachbereitung  mit

MIRA und Trinity assembler, in der OakContigDF159.1

Datenbank.

Im  dritten  Kapitel  untersuche  ich  mit  Hilfe  der

Referenzdatenbank  OakContigDF159.1  differenzielle

Genexpression,  sowie  Änderungen  in  der

Nährstoffverteilung.  Hierzu  habe  ich  ein

multifaktorielles  Experiment  mit  Piloderma  croceum

und  Lymantria  dispar durchgeführt.  Die

Versuchspflanzen wurden im Vorfeld mit  den stabilen

Isotopen  13C und  15N markiert, um nach der Ernte den

Isotopen-Überschuss  mit  einer unmarkierten Kontrolle

zu vergleichen und mittels einer 3-faktoriellen ANOVA

zu  analysieren.  Zusätzlich  wurde  die  Gesamt-RNA

extrahiert  und  mittels  Illumina  sequenziert.  Die

enhaltenen  cDNA-Bibliotheken  habe  ich  an  die

Referenzdatenbank  angepasst  und  erhielt  so  35
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Transcriptome  welche  ich  weiterhin  zur  paarweisen

Berechnung  von  differentieller  Genexpression

verwendete.

Pflanzen  die  mit  dem  Mykorrhizapilz

Piloderma  croceum inokuliert  waren,  zeigten  starke

prämykorrhizale  Effekte,  welche  sich  z.B.  in  einer

Erhöhung der Biomasse zeigten. Herbivorie verursachte

von  Genen  die  mit  kompensatorischem  Wachstum  in

Verbindung  stehen,  sowie  eine  verstärkte  Expression

von Primär-Verteidigungs Genen. Dieser Effekt wurde

durch inokulierung mit  P. croceum abgeschwächt. Die

Expressionsdaten  ließen  zudem  bei  inokulierten  und

befressenen  Eichen  auf  eine  erhöhte  produktion  von

volativen  organischen  Substanzen  schließen,  die  der

Attraktion  von  Fraßfeinden  der  Herbivoren  dienen.

Zusätzlich zeigte sich bei Pflanzen mit Herbivorenfraß

eine erhöhte Aufnahme von 13C and 15N in junge Blätter,

wohingegen sich die Aufnahme von  13C in reife Blätter

durch Herbivory verringert zeigte.

Auf diesen Ergebnissen folgerte ich, dass eine

Interaktion mit  einem Ekto-Mykorrhiza  Pilz,  selbst  in

einem frühen Stadium der Symbiose, deutliche Effekte

auf das Abwehrverhalten einer Pflanze haben kann. Hier

wurde  die  heftige  Abwehrreaktion,  inkl.

kompensatorischen  Wachstums,  durch  den  Pilz

abgeschwächt und sogar verlagert auf Mechanismen der

sekundären Abwehr. Die Gegenwart des Pilzes scheint

eine “beruhigende“ Wirkung auf die Pflanze auszuüben.

Das vierte Kapitel ist der genaueren Untersuchung der

ober-  und  unterirdischen  Wechselwirkungen  der

verschieden  trophischen  Partner  gewidmet.  Hierzu

führte  ich  ein  multifaktorielles  Experiment  mit  den

trophischen  Partnern  Piloderma  croceum,  Lymantria

dispar und Protaphorura armata durch. Auch hier fand

ich  starke  prä-mykorrhizale  Effekte,  sich  die  in  einer

Erhöhung  der  Biomasse,  analog  zu  einer  erhöhten

Einlagerung von 13C and 15N in P. croceum inokulierten

Eichen zeigten. Weiterhin zeigte sich eine Erhöhung der

Biomasse  bei  Eichen  die  L.  dispar ausgesetzt  waren.

Obwohl  ich  keine  Anzeichen  für  eine  Interaktion  der

ober-  und  unterirdischen Interaktoren  der  Eiche  fand,

hatten  alle  Faktoren  einzeln  betrachtet  deutlichen

Einfluss auf die Nährstoffverteilung.  Ich konnte keine

Hinweise  von Hyphenfraß  durch  Collembolen  finden,

ebenso  konnte  ich  keine  negativen  Effekte  der

Collembolenpopulation  auf  inokulierte  Eichen

feststellen.  Im  Gegenteil  zeigte  sich  eine  erhöhte

Nährstoffaufnahme, was ich als Hinweis auf  gesteigerte

Nährstoffmineralisierung  durch  die  Collembolen

deutete.
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SUPPORTING METHODS 

Interaction  of  oaks  with  mycorrhization  helper

bacterium Streptomyces sp. AcH 505

Streptomyces  sp. AcH 505, isolated by Andreas Maier

from  the  soil  around  Norway  spruce  mycorrhizas  in

Haigerloch,  Germany  ,  was  maintained  on  ISP2  agar

medium. For AcH 505 treatment, roots of individual oak

microcuttings were inoculated twice (3 weeks and 1.5

weeks before harvest) with 2.5 x 107 bacterial spores. In

a  preliminary  experiment,  this  level  of  bacterial

application  was  shown  to  significantly  increase

mycorrhiza formation on oak microcuttings after eight

weeks. 

Interaction  of  oaks  with  the  oak  powdery  mildew

Microsphaera alphitoides

Microsphaera  alphitoides was  obtained  from infected

oak  leaves  from  a  natural  woodland,  and  after

verification  of  its  identity  by  PCR with  specific  ITS

primers  ,  it  was  maintained  on  oak  leaves.  Heavily

infested leaves were used to infect  oak microcuttings.

Mildew developed homogeneously on emerging leaves

when fungal spores were inoculated onto swelling and

bursting buds. For the experiment, oak buds and young

leaves  were inoculated  with 1.5  x  106 M. alphitoides

spores per plant 14 days before harvest. Spore quantity

was calculated by collecting and counting spores from

mock  inoculations  in  a  Fuchs-Rosenthal  counting

chamber.  Infection  became  visible after  seven  to  ten

days. 

Interaction  of  oaks  with  the  root  pathogen

Phytophthora quercina 

The Phytophthora quercina T. Jung strain QUE 6 (CBS

789.95) was selected for the present work. The cultures

were  grown  on  V8  agar  for  14  days  in  darkness  at

20 °C.  Production  of  zoosporangia  was  induced  by

flooding the culture first with sterile distilled water for 7

days and subsequently with sterile  soil  solution for  5

more days, with daily exchange in each case. On the day

of  pedunculate  oak  inoculation,  soil  solution  was

replaced  with  10  ml  sterile  distilled  water  and  the

release  of  zoospores  was  induced  by  chilling  the

cultures for 1 hour at 4 °C followed by 30 minutes of

incubation  at  room  temperature.  After  gathering  the

zoospores  and  placing  them  on  ice,  the  zoospore

concentration was determined using an Abbe-Zeiss cell

counting chamber and adjusted to 2.0 x 105 zoospores

per  ml.  5  ml  of  the  suspension  were  applied  in

concentric  circles  onto  the  pre-flooded  (with  50  ml

sterile distilled water for one hour) roots and incubated

for 5 hours in a horizontal position. After removing the

surplus  of  water,  the  microcosms  were  re-sealed  and

returned to an upright position. Plants were inoculated
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with P. quercina one week before harvest. At the time of

harvest,  P. quercina was re-isolated from fine roots to

monitor the success of the infestation.

Interaction of oaks with the gypsy moth  Lymantria

dispar 

Egg masses of gypsy moth (Lymantria dispar L.) were

obtained from a lab colony of the New Jersey Standard

Strain. Larvae were reared on an artificial diet based on

wheat germ at 25 °C, 60 – 70 % relative humidity and a

16 h day and 8 h night photoperiod. For the oak-gypsy

moth  system,  one  third-instar  larva  of  L.  dispar was

added to each microcutting. For this purpose, the whole

plant  was caged in  200 µm nylon mesh.  Plants  were

inspected each hour and inactive larvae were replaced

by active ones. Larvae avoided feeding on very young

leaves and on the older leaves from the first shoot flush

and generally preferred fully developed mature leaves.

Larvae  were  allowed  to  consume  a  leaf  area

corresponding to 30 - 50 % of the fully developed leaf

area  of  each  plant.  After  6  hours,  all  larvae  were

removed from the microcuttings,  and the  plants  were

harvested.

Interaction  of  oaks  with  the  root  nematode

Pratylenchus penetrans

Axenic  cultures  of  Pratylenchus  penetrans  (Cobb)

Philip  & Stek, kindly  provided by Johannes Hallman

(Julius Kühn-Institute, Germany), were established and

multiplied  on  carrot  disks  according  to  .  For  the

experiment,  5  ml  aliquots  of  nematode  suspension  in

water were evenly applied to the root system, with each

plant  receiving  ≈10,000  nematodes.  Plants  were

incubated with  P. penetrans for  7  days prior  to  plant

harvest.  Roots  were  stained  with  acid  fuchsine   and

microscopic  observation  was  used  to  reveal  root

penetration by P. penetrans.

Interaction  of  oaks  with  Collembola Protaphorura

armata

Protaphorura  armata was  taken  from  the  culture

collection of the Animal Ecology Group of the Georg

August University Göttingen. The animals were kept on

a mixed substrate of potting compost and clay. For the

experiments with oak microcuttings,  ninety  P. armata

individuals  were introduced into each oak microcosm

one week before harvest of microcuttings.

Decontamination:  Removal  of  454  and  Illumina

reads from oak-interacting organisms

Blastx bit-scores were used to evaluate homologies be-

tween the reads produced in this study and reference se-

quences  (Fig.  S1).  All  reads  were  first  subjected  to

blastx searching against the Plant RefSeq protein dataset

(P). A read was considered to be potentially homologous

to a RefSeq plant sequence if the blastx bit-score was >
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10. Reads with a lower bit-score (i.e. with less homol-

ogy to plant sequences) were discarded. The remaining

reads  were  blastx-searched against  a  common dataset

(C) to remove general sequence contaminants. In addi-

tion to the RefSeq accessions of taxa listed in Figure

S1b,  the  genome of  Piloderma croceum  (version 1.0,

http://genome.jgi.doe.gov/Pilcr1/Pilcr1.home.html, Joint

Genome Institute, USA) was included in the common

dataset. In order to identify specific sequence contami-

nants from the organisms used for inoculation, the fol-

lowing 454 libraries were subsequently decontaminated

with specific (S) datasets (see Fig. S1b for the taxa in-

cluded):  Streptomyces  sp.  AcH  505,  Phytophthora

quercina,  Lymantria dispar, Protaphorura armata  and

Pratylenchus penetrans.  The draft genome of  Strepto-

myces sp. AcH 505 (T. W., F. B., L. F., M. T., unpub-

lished) was included in the specific dataset  for  S. sp.

AcH 505.

A  read  was  considered  to  be  a  potential

contaminant  if  it  had  a  blastx  bit-score  >  10.  We

observed that the candidate contaminants included some

sequences of possible plant origin, and these reads were

subjected  to  a  final  blastx  analysis  against  plant,

common and specific datasets. When the homology of

such reads was higher to plant  accessions than to the

accessions in  common or  specific  datasets,  they were

regarded as being sequences of plant origin. In Figure

S1  these  three  steps  have  been  indicated  as  circle-1

indicating  the  blastx-search  plant  RefSeq  protein

dataset,  circle-2  the  blastx-searches  against  common

and specific decontamination datasets, and circle-3 the

retrieval  of  plant  sequences  from  the  candidate

contaminant sequences, respectively.

The decontamination of reads was an iterative

process. After the first complete decontamination cycle

described  above,  the  retained  reads  were  assembled.

However,  blastx  search  of  these  assembled  contigs

against the nr database of NCBI indicated that this pri-

mary contig assembly might still be contaminated with

sequences  of  fungal  and  bacterial  origin.  In  order  to

eliminate  this  residual  contamination,  the  common

dataset (C) was subsequently extended to include pro-

tein  sequences  from the  contaminating  organisms  de-

tected, and the decontamination process was repeated.

The retained reads were again assembled and the assem-

bly subjected to a blastx search against the nr database.

As expected, the best blastx matches were against plant

datasets (Fig. S4). Out of 65,712 contigs, 88% (57,940

contigs)  showed  highest  blastx  identity  to  sequences

from higher plants, and 1.4% (941 contigs) to sequences

from  other  organisms.  The  remaining  6,831  contigs

showed no significant  matches to sequences in the nr
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database with an e-value cutoff of 1e-5.

Construction of OakContigDF159.1 hybrid assembly

A  454/Illumina  read  hybrid  assembly  approach  was

selected in  order  to  combine the different  read types.

The strategy used for hybrid assembly included a pre-

assembly of 454 reads and integration of the 454 contigs

with  Illumina  reads  as  overlapping  100  bp  454

sequences  (100-mers  or  pseudo-Illumina  reads).  To

estimate  the  quality  of  the  hybrid  assembly,  an

additional  assembly  of  Illumina  reads  alone  was

performed. 

The  pre-assembly  of  454  reads  was  imple-

mented with MIRA 3.4.1.1 . Assembly parameters were

chosen based on the following metrics. The number of

reads used for the assembly, the number of contigs >

100 bp generated, and the N50 length (smallest contig

size in which half the assembly is represented) were es-

timated. The sequence coverage and accuracy was then

analysed by blastx searching against  the  Vitis  vinifera

and  Populus  trichocarpa RefSeq  protein  databases  at

NCBI.  For  this  purpose,  a  custom  script  was  imple-

mented, which extracted the contig most homologous to

each  V.  vinifera and  P.  trichocarpa protein;  conse-

quently, each contig was covered by a maximum of one

reference  transcript.  Full  length  coding  regions  were

predicted by AUGUSTUS 2.5.5 , trained for Arabidop-

sis thaliana.  The 454 reads were assembled by MIRA

with the parameters mira --job=denovo,est,accurate,454

454_SETTINGS -AL:mo=40:mrs=90.  

The  short  read  assembler Trinity  2012_06_08

was  used  to  assemble  the  eight  Illumina  RNA-Seq

datasets, with and without 454-derived contigs. Trinity

assembly was performed with the parameters trinity.pl

--min_kmer_cov 3.  Trinity produces large numbers of

short contigs, which were removed using a threshold of

200  bp.  The  454  and  the  Illumina  reads  were

subsequently  mapped  against  the  contigs  by  bowtie.

When  none  of  the  reads  aligned  with  a  contig,  this

contig  was  discarded.  The  contigs  retained  were

clustered to reduce sequence redundancy using CD-HIT

according to  with the parameters –c 0.99 and –aS 1.0. 

Classification of the contigs by Gene Ontology terms

and by KEGG metabolic pathway analysis

The  contigs  were  classified  using  the  gene  ontology

(GO) terminology with the Blast2GO software portal ,

and  the  GO  annotations  were  grouped  using

GOSlimViewer . GO enrichment analyses were imple-

mented with the functional  annotation tool  in DAVID

Bioinformatics Resources 6.7 . Briefly, the oak contig

list was compared to the background of the Arabidopsis

thaliana genome  dataset.  P-values  indicating  enrich-

ment were corrected using the Benjamini-Hochberg pro-
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Appendix chapter II

cedure. 

Interactive Pathways Explorer 2.0  was used to

visualize KEGG global metabolism  by first subjecting

oak  contigs  to  a  blastx  search  against  A.  thaliana

polypeptides,  with an e-value cutoff  of  1e-5.  TAIR10

accessions  of  the  matching  A.  thaliana polypeptides

were then mapped against the global KEGG metabolism

map of  A.  thaliana (ath01100).  As a  comparison,  the

analysis  was  repeated  with  A.  thaliana TAIR10

polypeptides. The software Pathway Tools  was used to

explore  the  AraCyc  9.0  and PoplarCyc  5.01  pathway

collections from BioCyc  and PlantCyc (version Decem-

ber  12th  2012;

http://www.plantcyc.org/tools/tools_overview.faces), re-

spectively. Based on the results  of  these analyses, the

KEGG software portal  was used to construct biochemi-

cal pathways and differential gene expression was visu-

alised with the software tool Vanted 2.0 . 

Real-time-quantitative  reverse  transcriptase-PCR

(RT-qPCR) 

To confirm the differential expression of genes revealed

by RNA-Seq, the expression of 14 genes was measured

by RT-qPCR. Primer pairs (Table S1) were constructed

based on the OakContigDF159.1 assembly. They were

designed  using  Primer3  software  at

http://frodo.wi.mit.edu/primer3/   taking  the  following

criteria  into  account:  melting  temperature  of  55  to

65 °C, GC content of 58 to 63 % and primer length of

18-22 bp. The amplified products were between 70-150

bp in length. In addition, the expression levels of PRP1

and  Lea5 genes  were  evaluated  with  primers  from  .

Primer  sequences  and  estimated  amplicon  sizes  are

listed in Table S1.

All newly designed primers were first tested for

functionality  and predicted  amplicon size  by carrying

out PCR with a DNA template. Each primer pair was

also tested with  P. croceum DNA and RNA to rule out

the possibility that they might also amplify fungal genes

from the mycorrhizas. Before RNA-based analyses, an

additional  DNase  I digestion was performed using 1 U

DNase  I  (Fermentas)  and 500 ng RNA in a 10-20 µl

volume. DNA was digested for 30 min, and the reaction

was stopped by adding 1 µl 50 mM EDTA. The absence

of  genomic  DNA  contamination  was  confirmed  by

performing  PCR  amplification  using  total  RNA  as

template  and  18S_2  primers.  The  specificity  and  the

efficiency of the primer pairs were estimated by means

of melting and standard curves,  with a dilution series

(32, 16, 8, 4, 2, 1 ng µl-1) of RNA as template.

RT-qPCR was performed using iScript One-Step

RT-PCR Kit (containing SYBR Green and fluorescein;

Bio-Rad).  Reaction  mixtures  for  cDNA  synthesis
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contained  7.5  µl  of  One-Step  Master  Mix,  0.3  µl  of

iScript Reverse Transcriptase, 1 μl RNA adjusted to 1

and 8 ng, and 400 nmol of each gene-specific primer.

The experiments were carried out in 96-well plates with

an iQ 5 Multicolor Real-Time PCR Detection System

(Bio-Rad).  PCR  was  always  performed  with  three

biological and two technical replicates for each reaction,

together  with  reference  gene  detection.  Reverse

transcription was carried out for 10 min at 50 °C and

cycling conditions were 10 s at 95 °C; 30 s at 55 °C.

The 18S rRNA gene was selected as a reference for the

RT-qPCR analysis. To confirm that its expression level

was stable, RNA from leaves of non-inoculated control

oak  microcuttings,  mechanically  wounded  leaves,  M.

alphitoides infected leaves, leaves from oaks with root

inoculation of  Streptomyces GB 4-2 (Lehr  et al., 2008;

isolated by K. Poralla), tissue with and without mildew

infection,  and leaves of oaks with root  inoculation of

Streptomyces AcH505  were  tested  by  RT-qPCR  with

18S rRNA primers (primer pair 18S_2; Table S1). Root

RNA  was  extracted  from  the  same  plant  material.

Constant  Ct-values  for  RNAs from differently  treated

plants were taken as an indication of stable  18S rRNA

gene  expression  levels.  Transcript  abundances  in

ectomycorrhiza and fine root samples were determined

by the Ct value or the number of cycles needed to reach

a specific threshold level of detection in the exponential

phase  of  the  PCR  reaction,  using  the  Relative

Expression Software Tool .The coefficient of variation

(CV)  was  calculated  in  order  to  assess  the

reproducibility  of  the  reactions.  Values  <  6.0  were

considered  to  be  reproducible.  Differential  gene

expression  was  determined  by  a  randomisation  test

within the Relative Expression Software Tool.
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Fig. S1 Strategy for removing 454 and Illumina reads from oak-interacting organisms. (a) The three stages in the blastx search-based sequence decontamination process (see Supporting Methods for
details). Circle-1 marks blastx-search against plant RefSeq protein dataset (P), circle-2 indicates blastx-search against a common dataset (C) to remove general sequence contaminants and a specific (S)
dataset to remove sequences from the inoculated organisms, and circle-3 indicates the retrieval of oak sequences from the candidate contaminant sequences. (b) List of taxa at the genus level, from
which the NCBI RefSeq or Joint Genome Institute datasets were derived for the removal of reads from oak-interacting organisms. 



Gene Control +Pilo. +Strepto. +Micro. +Phyto. +Lyman. +Praty. +Prota.

L R L R L R L R L R L R L R L R

1 + + + + + + + + + + + + + + + +

2 + - + - + - + + + + + - + + + +

3 + - + + - + - + + + + + + - - +

4 + - - - - - + + + - + - + + + +

5 + - + + - - + - - - + + - - + -

6 + - + + - - + - - - - + - - - +

7 + - - - - - - - - - + - - + + -

8 + - - - - - + - - - - - - - + -

9 - - - - - - - - - - - - + - + +

10 + - - - - - - - - - - - - - + -

Gene Blastx predicted identity of the Roche 454 read Functional category

1 Auxin-responsive IAA Auxin signalling

2 Photosystem II light harvesting complex Photosynthesis

3 Photolyase/blue-light receptor 2 Photosensor

4 Early-responsive to dehydration stress Drought stress

5 Carbamoyl phosphate synthetase A Nitrogen metabolism

6 Phosphotyrosyl phosphatase activator Signalling

7 Ubiquitin carboxyl-terminal hydrolase 22 Protein degradation

8 Topoisomerase II-associated PAT1 Chromosome structure

9 Transcription factor PIF4 Phytochrome signalling

10 Chromo domain-containing LHP1 Signalling
Fig. S2 Representation of reads with homology to Arabidopsis accessions in 16 pedunculate oak Roche 454 transcript libraries. Abbreviations: 
Control, no inoculation; Pilo, Piloderma croceum; Strepto, Streptomyces sp. AcH 505; Micro, Microsphaera alphitoides; Phyto, Phytophthora 
quercina; Lyman, Lymantria dispar; Praty, Pratylenchus penetrans; Prota, Protaphorura armata; L, leaves; R, roots; +, present in the 454 
library; -, not present in the 454 library.

Fig. S3  Comparison  of
the oak assemblies generated by the MIRA and Trinity assembly programs with reference databases.  MIRA assembly of 454 reads, Trinity
assemblies of Illumina reads only, and Trinity assembly of Illumina reads, MIRA contigs and single reads converted into overlapping 100 bp
single-end reads, were compared by blastx searches. Number of blastx matches given by the contigs against (a) Vitis vinifera and (b) Populus
trichocarpa RefSeq protein databases. 



Fig. S4 Relatedness of the contigs in the OakContigDF159.1 reference transcriptome to sequences in the GenBank nr database. The contigs
were submitted for blastx searching against the GenBank nr database at the National Center for Biotechnology Information (NCBI). The twenty
five plant species that gave the largest numbers of top blastx matches are shown.  

Fig.  S5  Classification of contigs  in
the  OakContigDF159.1  reference
transcriptome  using Gene Ontology
terms.  Contigs  were  GO-annotated
by  Blast2GO  and  grouped  by
GOSlimViewer.  Examples  of  GO
annotations  in  the  categories
molecular  functions,  cellular
compartments,  and  biological
processes are shown.



Fig. S6 Comparison of coverage of global KEGG metabolic pathways by the OakContigDF159.1 reference transcriptome relative to the Arabidopsis thaliana proteome. A. thaliana metabolic pathways
also found in OakContigDF159.1 are shown as green lines, while those missing are marked in red. 



Fig.  S7  Mycorrhiza  formation  on  oak  roots  leads  to  increased  expression  levels  of  transcripts  associated  with  starch
metabolism in comparison to levels in fine roots. The contig expression levels were analysed by RNA-Seq. (a) Combined
contig expression levels associated with starch metabolism-related Enzyme Commission numbers (EC numbers). Red arrows
indicate  higher  total  numbers  of  mapped  reads  from  mycorrhizas  than  from  fine  roots.  (b)  Expression  levels  of  the
differentially expressed contigs. 



Table S1 Quantitative polymerase chain reaction primers. Blastx searching against the NCBI nr database was used to predict the identity of the
target transcripts. Asterisks indicate primers from.
Primer Sequence (5'-3') Blastx predicted transcript identity

CA13661-f CACCTGGCATCCTTGGAG Extensin 
CA13661-r GGTCTTTGTCTGGGGCTACACC
CA16488-f GAACACAGCCCATCCTCTCT Sieve element occlusion protein
CA16488-r CGAAGACGACAGCCTCCTAA
CA9232-f GGCTCGGGCTGGTATTAG Plasma membrane H+-ATPase
CA9232-r GGGTCAGGATCTGCTCAGGA
CA325-f GAGGCTGTGACCATACAAGC Endo-1,4-beta-glucanase
CA325-r GCACTTGTGGCTTTGTCAGG
CA8705-f AGCCTCTTCCTGGGTCTC Endomembrane transport protein
CA8705-r CTCTTCCTCTCGGGCATGGT
CA4304-f CACCTTGTCCACAGCCAGAG 1-aminocyclopropane-carboxylate oxidase
CA4304-r GCAATCCAGGCACATCATCC
CA9325-f GCAGGTGTTGCTGTTCTTCTGG Glucose-1-P-adenylyltransferase
CA9325-r GAGGCTGTGACCATACAAGC
CA10387-f GTGTACCATCCAGGGCATC Thioredoxin
CA10387-r GCACCTCATACCCACATTCC
Lea5-f* CATTGGACGGGATTGATGAGG Late embryogenesis abundant 5
Lea5-r* GTGATCAGTGACCTCCAGGC
PRP1-f* CTTGTGCTGGACCTCTGG Proline-rich protein PRP1
PRP1-r* GCATAAACAGTAGTCGGATGGG
CA377-f CTCAACACCAGCTTTAGCC Inositol transporter 
CA377-r TGGTTGGGGCTGGACTAC
CA20973 GGTGCCAAGGGTGTCAAA Calcium-binding  protein
CA2973 CTGGAGCCACTGTCAAAGC
CA4305-f GGGACAGGAGAAGGGCTA Aspartic proteinase
CA4305-r GACGAAGCGGGTCACAAC
CA1557-f GAGGAAGAGAACATGGACAGG Galactinol synthase 
CA1557-r GAGGAAGAGAACATGGACAGG
18S_2-f CAAGGTGGACTCTCTCACGG 18S rRNA
18S_2-r CCTCGGATGCAGAACACC  



Table S3 Transcripts in roots and leaves of oak DF159 microcuttings and in ectomycorrhizas synthesised with Piloderma croceum as revealed by Illumina sequencing.
RNAs were 100 bp paired-end sequenced using the HiSeq2000 version of the Illumina system. All reads were used to generate the pedunculate oak reference tran -
scriptome, and the reads FROOT 1 to 3 and MYCO 1 to 3 were used to estimate changes in oak gene expression levels upon mycorrhiza formation in pedunculate oak
inoculated with the fungus Piloderma croceum. The term trimmed reads indicates reads that have been processed to a higher quality. The trimming steps include the
removal of adapter sequences, sequencing artefacts and reads from other organisms. 

Number of  Number of Number of
reads trimmed reads decontaminated Number of

(mean length Number of (mean length Number of reads (mean decontaminated
Library Dataset  ± SD) raw bases  ± SD) trimmed bases length ± SD) bases
LDIIL_R6 L. dispar 28,785,780 2,878,578,000 26,742,031 2,629,268,576 17,195,756 1,719,237,046

caterpillar, (100 ± 0) (98 ± 5) (99 ± 1)
root sample

PCRIL_L6 P. croceum 28,947,224 2,894,722,400 25,083,660 2,463,896,470 17,030,641 1,702,671,255
mycorrhiza, (100 ± 0) (98 ± 5) (98 ± 5)
leaf sample

FROOT1 No treatment 35,484,706 3,548,470,600 23,374,074 2,274,191,122 14,519,937 1,417,915,913
fine roots (100 ± 0) (97 ± 8) (98 ± 6)

FROOT2 No treatment 34,343,015 3,434,301,500 20,842,612 2,035,293,414 13,583,329 1,332,890,970
fine roots (100 ± 0) (97 ± 7) (98 ± 6)

FROOT3 None, 62,496,259 6,249,625,900 41,105,168 4,001,988,613 20,073,458 1,968,403,291
fine roots (100 ± 0) (97 ± 8) (98 ± 6)

MYCO1 Individual 21,366,078 2,157,973,878 17,326,725 1,713,355,292 9,296,305 922,262,350
P. croceum (101 ± 0) (99 ± 7) (99 ± 5)
mycorrhizas

MYCO2 Individual 22,510,865 2,273,597,365 18,245,941 1,802,180,568 9,465,172 937,736,287
P. croceum (101 ± 0) (99 ± 7) (99 ± 5)
mycorrhizas

MYCO3 Individual 21,303,775 2,151,681,275 17,365,350 1,718,293,477 9,111,800 901,500,664
P. croceum (101 ± 0) (99 ± 6) (99 ± 5)
mycorrhizas

IN TOTAL  255,237,702 25,588,950,918 190,085,561 18,638,467,532 110,276,398 10,902,617,776



Table S4  GO annotation of contigs in the OakContigDF159.1 reference transcriptome. The contigs were

annotated by Blast2GO with GenBank nr  as  the  reference database.  The dataset  can be downloaded at

https://www.ufz.de/trophinoak/index.php?de=31205.

Table  S5  GO  enrichment  analysis  of  ectomycorrhizas  synthesised  between  oak  DF159  and  Piloderma  croceum.  GO
enrichment analyses were implemented with the functional annotation tool in DAVID. Myc, mycorrhiza; FR, fine roots.

   Fold P-value after 
Gene Ontology GO term description change Benjamini 

term  Myc/FR procedure

GO terms for differentially expressed genes enriched in Myc

GO:0022626 Cytosolic ribosome 3.780 2.75e-20

GO:0005622 Intracellular 1.166 5.85e-10

GO:0005773 Vacuole 2.232 2.29e-09

GO:0050896 Response to stimulus 1.229 0.001

GO:0043227 Membrane-bounded organelle 1.142 3.10e-03

GO:0006091
Generation of precursor metabolites and en-
ergy

1.763 0.011

GO:0005982 Starch metabolic process 4.029 0.034

GO:0005215 Transporter activity 1.265 0.036

    

KEGG pathway associations of differentially expressed genes increased in Myc on the basis of fold change

ath03010 Ribosome 1.932 0.24

ath03040 Spliceosome 1.767 0.421

GO terms for differentially expressed genes less abundant in Myc 

GO:0000166 Nucleotide binding -1.799 1.75e-54

GO:0016462 Pyrophosphatase activity -2.312 2.91e-25

GO:0004871 Signal transducer activity -1.981 8.38e-13

GO:0004672 Protein kinase activity -1.781 1.21e-11

GO:0016265 Death -2.716 1.50e-09

GO:0044430 Cytoskeletal part -2.824 6.20e-06

GO:0050793 Regulation of developmental process -1.766 0.003

GO:0008471 Laccase activity -5.234 0.003

GO:0009698 Phenylpropanoid metabolic process -2.015 0.007

GO:0009734 Auxin mediated signalling pathway -2.234 0.007

GO:0006807 Nitrogen compound metabolic process -1.147 0.012

GO:0005992 Trehalose biosynthetic process -4.480 0.012

GO:0009926 Auxin polar transport -2.954 0.02

GO:0022622 Root system development -1.760 0.032

KEGG pathway associations of differentially expressed genes less abundant in Myc on the basis of fold 
change
ath03030: DNA replication -3.418 0.018

ath00940: Phenylpropanoid biosynthesis -1.825 0.454

ath00970: Aminoacyl-tRNA biosynthesis -2.126 0.719

ath00230: Purine metabolism -1.587 0.701

ath00360: Phenylalanine metabolism -1.624 0.798

https://www.ufz.de/trophinoak/index.php?de=31205


Table S6 Differentially expressed transcripts in ectomycorrhizas synthesised between microcuttings of the pedunculate oak clone DF159 and Piloderma croceum.
The  OakContigDF159.1  transcripts  were  selected  based  on  their  predicted  biological  functions,  including  transcripts  encoding  cell  wall  proteins,  signalling
polypeptides and chitinases. Blastx searching was used to predict the functions of the contig-encoded polypeptides.

Contig no. Raw read counts
in mycorrhiza

Raw read counts
in fine roots

P-value Myc vs. FR (log2

fold change)
Predicted function

Proline-rich protein-related contigs
28167_c0_seq1 2298 443 3.52e-15 2.37 Proline-rich protein PRP1 
27955_c0_seq1 269 62 9.81e-17 2.09 Proline rich protein
28167_c0_seq2 469 135 2.13e-19 1.78 Proline-rich protein PRP1 
21940_c0_seq1 1524 498 3.99e-53 1.61 Proline-rich cell wall protein 2
21940_c0_seq2 675 246 6.49e-23 1.45 Proline-rich cell wall protein 2
37383_c0_seq1 150 70 0.0011 1.09 Proline rich protein
41209_c0_seq1 936 629 6.84e-06 0.57 Proline-rich cell wall protein
42760_c0_seq1 1215 805 2.19e-05 0.59 Proline-rich glycoprotein
28257_c0_seq1 2190 1645 2.80e-04 0.41 Hydroxyproline-rich glycoprotein
43327_c1_seq7 337 537 8.17e-05 -0.67 Hydroxyproline rich glycoprotein
36333_c0_seq1 362 578 3.69e-05 -0.67 Hydroxyproline-rich glycoprotein
43233_c1_seq1 619 1118 7.19e-10 -0.85 Hydroxyproline-rich glycoprotein
34894_c1_seq1 88 194 1.60e-04 -1.13 Hydroxyproline-rich glycoprotein
Expansin related contigs
40696_c0_seq2 2352 575 2.26e-91 2.03 Expansin-like b1   
38597_c0_seq1 29 93 0.00079 -1.65 Expansin-like b1   
42087_c0_seq2 12 97 2.34e-09 -2.96 Expansin
42087_c0_seq1 4 46 3.35e-05 -3.27 Expansin-b3-like precursor      
Xyloglucan endotransglucosylase/hydrolase (XTH)-related contigs
22994_c1_seq1 997 636 8.24e-08 0.65 XTH
43120_c0_seq11 2068 2471 0.0014 -0.26 XTH
43120_c0_seq8 81 174 0.00064 -1.09 XTH
44218_c0_seq1 103 227 2.20e-05 -1.14 XTH inhibitor
37028_c1_seq2 16 60 0.0038 -1.83 XTH
37028_c2_seq1 12 62 0.00018 -2.37 XTH
Extensin related contigs
19989_c0_seq1 99 5 7.85e-10 4.08 Extensin family protein
32486_c0_seq1 464 709 2.05e-05 -0.61 Extensin family protein
35925_c0_seq1 57 154 2.47e-05 -1.41 Extensin family protein



Contig no.
Raw read counts

in mycorrhiza
Raw read counts

in fine roots
P value

Myc vs. FR (log2

fold change)
Predicted function

Auxin signalling related contigs
30241_c1_seq3 816 618 0.0046 0.40 Auxin response factor 3
38228_c2_seq3 69 21 0,0054 1.66 Auxin influx carrier component
19890_c0_seq1 2767 2194 2.98e-06 1.26 Auxin associated protein
39524_c0_seq1 3311 2055 1.92e-26 0.69 Auxin induced mono-oxygenase
43589_c3_seq7 1508 933 1.50e-06 0.69 Auxin induced pcnt115-like protein
43589_c3_seq5 4366 3147 6.35e-16 0.47 Auxin induced pcnt115-like protein
36749_c0_seq1 265 446 0,0089 0.43 Auxin induced protein
44137_c0_seq1 1234 964 0.0032 0.36 Auxin-responsive protein iaa13
19927_c0_seq1 6275 5002 2.82e-10 0.32 Auxin repressed protein
41841_c0_seq1 1144 1424 4.40e-03 -0.31 Auxin response factor 1
33319_c0_seq1 761 997 0,0019 -0.38 Auxin response factor 5
29024_c0_seq1 759 1170 9.37e-09 -0.62 Auxin response factor 6
19485_c0_seq1 416 1009 5.99e-20 -1.27 Auxin response factor 6
30567_c2_seq1 110 456 4.10e-26 -2.05 Auxin response factor 7
42796_c0_seq1 47 113 0.0022 -1.25 Auxin response factor
43565_c0_seq1 1022 1925 3.98e-11 -0.91 Auxin transport protein
37248_c1_seq1 90 186 0,00089 -1.04 Auxin efflux carrier protein
37248_c0_seq1 68 145 0,0029 -1.09 Auxin efflux carrier protein
38167_c0_seq1 265 466 9.90e-06 -0.81 Auxin efflux carrier component
20073_c0_seq1 1230 1565 0.00048 -0.34 Auxin induced 5ng4
36368_c0_seq1 955 1234 0,0012 -0.37 Auxin responsive protein
20100_c1_seq1 512 687 0.0059 -0.42 Auxin responsive protein
32000_c0_seq1 679 960 3.44e-05 -0.50 Auxin responsive protein
32281_c1_seq1 295 439 0,0034 -0.50 Auxin responsive protein



Contig no.
Raw read counts

in mycorrhiza
Raw read counts

in fine roots
P value

Myc vs. FR (log2

fold change)
Predicted function

Ethylene signalling transcription factor-related contigs

18724_c0_seq1 68 23 6.60e-03 1.55
AP2 ERF domain-containing transcription factor 
3

32408_c1_seq2 360 143 1.95e-10 1.33 Ethylene-responsive transcription factor ERF003
33501_c0_seq1 339 211 1.70e-03 0.68 Ethylene-responsive transcriptional coactivator
28737_c0_seq1 937 604 1.72e-07 0.63 AP2 ERF domain-containing transcription factor
27633_c0_seq1 1632 1061 1.14e-07 0.62 Ethylene-responsive transcription factor
36646_c0_seq2 338 225 0.01 0.58 Ethylene-responsive transcription factor RAP2-7
32111_c0_seq1 2837 2196 2.55e-07 0.37 Ethylene-responsive transcription factor RAP2-4
34234_c0_seq1 740 954 8.30e-03 -0.37 AP2 ERF domain-containing transcription factor

34589_c2_seq1 638 953 1.89e-06 -0.58
AP2-like ethylene-responsive transcription factor
ant-like

35474_c0_seq2 55 137 0.0005 -1.31
AP2-like ethylene-responsive transcription factor
ant-like

Abscisic acid signalling related contigs
39870_c0_seq2 115 268 9.21e-07 -1.21 Abscisic acid receptor PYL4
41933_c1_seq1 63 246 6.9e-06 -1.95 Abscisic acid receptor PYL4
Chitinase related contigs
37928_c4_seq3 167 272 0.0068 -0.71 Chitinase
37928_c4_seq1 101 194 0.0026 -0.93 Chitinase
35193_c0_seq2 37 99 0.002 -1.41 Chitinase class 4
Sugar transporter related contigs
38572_c0_seq1 157 52 1.61e-06 1.57 Sucrose transporter
39582_c1_seq2 211 91 2.72e-05 1.21 Bidirectional sugar transporter SWEET 1
37411_c1_seq1 161 499 5.83e-20 -1.63 Hexose transporter



Contig no.
Raw read counts

in mycorrhiza
Raw read counts

in fine roots
P value

Myc vs. FR (log2

fold change)
Predicted function

Phosphate transporter related contigs
37520_c0_seq3 142 46 3.49e-06 1.60 Phosphate transporter PHO1
37520_c0_seq1 207 452 8.87e-10 -1.12 Phosphate transporter PHO1
42379_c0_seq4 95 36 0.0032 -1.38 Phosphate transporter PHO1
Ammonium transporter related contigs
36778_c0_seq1 303 11 2.75e-45 4.67 Ammonium transporter 
36737_c0_seq1 613 847 0.00086 -0.46 Ammonium transporter 
38574_c0_seq1 145 279 0.00012 -0.93 Ammonium transporter 1
34978_c0_seq1 49 110 0.0099 -1.16 Ammonium transporter AMT2
Aquaporin related contigs
comp27667_c0_seq1 198 85 2.65e-5 1.22 Aquaporin PIP
comp34309_c0_seq2 82 35 0.0079 1.21 Aquaporin PIP 2-5
comp24553_c0_seq1 769 370 1.16e-14 1.06 Aquaporin PIP 2-7
comp33626_c1_seq1 4404 2545 1.75e-32 0.79 Aquaporin PIP 1-1
comp37527_c0_seq1 423 256 0.00012 0.72 Aquaporin SIP 2-1
comp37244_c0_seq1 1221 785 6.18e-10 0.64 Aquaporin PIP 1-3
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Figure S1 Experimental timeline from the inoculation of the microcuttings with Piloderma croceum at day 0 to harvest at day 63.

Figure S2 Effect of inoculation with a mycorrhizal fungus on the biomass (dry weight) of oak shoots
and oak roots  in  root  flush (RF) and in  shoot  flush (SF).  Oak microcuttings were inoculated with
Piloderma croceum (myc;  yellow bars);  control  microcuttings were  not  inoculated with  the fungus
(control;  colorless  bars).  Bars  in  the  boxplots  indicate  the  upper  and  lower  quartile  with  median;
whiskers indicate minimum and maximum values; dots are outliers.
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Figure S3 Effect of inoculation with a mycorrhizal fungus on the biomass (dry weight) of separate oak plant organs in root flush (RF) and in
shoot flush (SF). Oak microcuttings were inoculated with Piloderma croceum (myc; yellow bars); control microcuttings were not inoculated with
the fungus (control; colorless bars).  Bars in the boxplots indicate the upper and lower quartile with median; whiskers indicate minimum and
maximum values; dots are outliers.
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