Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss der SIV-Infektion und einer antiretroviralen Therapie auf die Expression von vesikulären Transmitterproteinen im Striatum von Rhesus Affen
Autor:Naumann, Nedye
Weitere Beteiligte: Czubayko, F. (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0631
URN: urn:nbn:de:hebis:04-z2015-06316
DOI: https://doi.org/10.17192/z2015.0631
DDC:610 Medizin
Titel (trans.):Influence of SIV-infection and antiretroviral therapy on the expression of vesicular transmitter proteins in the striatum of rhesus monkeys
Publikationsdatum:2015-12-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
HIV, ChAT, Lentivirale Infektion, TH, ChAT, SIV rhesus macaques, Acetylcholin, VMAT2, VGLUT1, VGLUT-1, VGAT, Vesikuläre Transmitterproteine, Dopamin, VGAT, vesicular transmitter proteins, Striatum, TH, VMAT2, Basalganglien

Zusammenfassung:
Seit dem Ausbruch der AIDS-Pandemie sind komplexe kognitive und sensomotorische neurologische Komplikationen im Zuge einer HIV-Infektion bekannt. Sie werden als HAND (HIV-associated neurocoginitve diseases) zusammengefasst und stellen trotz antiretroviraler Therapien nach wie vor ein relevantes gesundheitliches und sozioökonomisches Problem dar. Prävention und Therapie von HAND sind nicht zufriedenstellend gelöst. Neuroinflammation im ZNS wird als wichtiger pathogenetischer Faktor in der Entwicklung von HAND angesehen. Regionen-spezifische Veränderungen in cerebralen Transmittersystemen sind ein weiterer Faktor HAND-assoziierter neurologischer Dysfunktionen. Das Striatum gilt als besonders vulnerable Region. Ziel der vorliegenden Arbeit war es zu untersuchen, wie sich die klassischen Transmittersysteme im Striatum im Zuge einer SIV-Infektion des Rhesus-Makaken und deren antiretroviraler Therapie transient oder permanent verändern. Insbesondere sollte geklärt werden, inwieweit die vesikulären Transportproteine der klassischen Transmittersyteme im Striatum von der SIV-Infektion betroffen sind und ob, wie in anderen ZNS-Regionen beobachtet, dissoziierte oder konkordante Veränderungen entsprechender transmittersynthetisierender Enzyme auftreten. Des Weiteren sollte geklärt werden, wie sich die Veränderungen striataler Transmitterenzyme und vesikulärer Transporterproteine zur neuroinflammatorischen Signatur mikroglialer und astrozytärer Reaktionen im Zuge der SIV-Infektion und deren antiretroviralen Therapie verhalten. Zur Klärung dieser Fragen wurden immunhistochemische Analysen von striatalem Gewebe aus vier Versuchsgruppen des SIV-Modells durchgeführt: 1. Nicht-infizierte Kontrollgruppe, 2. SIV-infizierte, nicht an AIDS erkrankte Gruppe von Rhesus Makaken (SIV/-AIDS), 3. SIV-infiziert, an AIDS erkrankt (SIV/+AIDS), 4. SIV-infiziert, an AIDS erkrankt und anschließend antiretroviral behandelt (SIV/+AIDS/+ddG). Das entsprechende striatale Gewebe stand im Rahmen des durch die Volkswagen-Stiftung geförderten Kooperationsprojektes

Bibliographie / References

  1. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS, 24(9), 1243–1250.
  2. O´Shea RD. 2002. Roles and regulation of glutamate transporters in the central nervous system. Clinic Exp Pharmacol Physiol, (29), 1018–1023.
  3. Ugrumov MV. 2013. Brain neurons partly expressing dopaminergic phenotype: location, development, functional significance, and regulation. Adv Pharmacol, 68, 37– 91.
  4. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem, Sci 27(3), 139–147.
  5. Parsons SM. 2000. Transport mechanisms in acetylcholine and monoamine storage. J FASEB, 14(15), 2423–2434.
  6. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. 2002. Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci, 22(19), 8705–8710.
  7. Huot P, Parent A. 2007. Dopaminergic neurons intrinsic to the striatum. J Neurochem, 101(6), 1441–1447.
  8. Joel D, Weiner I. 2000. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience, 96(3), 451–474.
  9. Sharp PM, Bailes E, Gao F, Beer BE, Hirsch VM and Hahn BH. 2000. Origins and evolution of AIDS viruses: estimating the time-scale. Evolution of Sequencens, Structures and Genomes, Biochem Soc Trans 28(2), 275-82.
  10. Tarazi FI, Baldessarini RJ. 1999. Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions. Mini Review. J Neurosci, 55, 401–410.
  11. Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C. 1992. Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol, 323(2), 252–268.
  12. Zhou FM, Wilson CJ, Dani JA. 2002. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol, 53(4), 590–605.
  13. Meredith GE, Farrell T, Kellaghan P, Tan Y, Zahm DS, Totterdell S. 1999. Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine depleting lesions. Eur J Neurosci, 11, 3585–35896
  14. Halliwell B. 1992. Reactive oxygen species and the central nervous system. J Neurochem, 59(5), 1609–1623.
  15. Reyes MG, Faraldi F, Senseng CS, Flowers C, Fariello R. 1991. Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropath, 82(1), 39–44.
  16. Schäfer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD. 1994. Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci, 5(1), 1–26.
  17. Lau A, Tymianski M. 2010. Glutamate receptors, neurotoxicity and neurodegeneration.
  18. Sopper S, Koutsillieri E, Scheller C, Czub S, Riederer P, ter Meulen V. 2002. Macaque animal model for HIV-induced neurological disease. J Neural Transm, 109, 747–766.
  19. Sem´yanov AV, 2005. Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neurosci. Behav Physiol, 35(3), 253–266.
  20. Potter MC, Figuera-Losada M, Rojas C, Slusher BS. 2013. Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol, 8(3), 594–607.
  21. Purohit V, Rapaka R, Shurtleff D. 2011. Drugs of abuse, dopamine, and HIV- associated neurocognitive disorders/HIV-associated dementia. Molec Neurobiol, 44(1), 102–110.
  22. Olney JW. 1990. Excitotoxicity: an overview. Can Dis Wkly Rep, 16(Suppl1E), 47-57.
  23. Smith Y, Parent A. 1986. Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: Morphological characteristics, intrinsic organization and co- localization with somatostatin. Brain Res, 372(2), 241–252.
  24. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. 1995. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci, 18(12), 527–535.
  25. Truong JG, Hanson GR, Fleckenstein AE. 2004. Apomorphine increases vesicular monoamine transporter-2 function: implications for neurodegeneration. Eur J Pharmacol, 492(2-3), 143–147.
  26. Sierra S, Kupfer B, Kaiser R. 2005. Basics of the virology of HIV-1 and its replication. J Clin Virol, 34(4), 233–244.
  27. Wilson CJ. 2005. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron, 45(4), 575–585.
  28. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron, 51(5), 601–612.
  29. Theodore S, Cass WA, Maragos WF. 2006b. Methamphetamine and human immunodeficiency virus protein Tat synergize to destroy dopaminergic terminals in the rat striatum. Neuroscience, 137(3), 925–935.
  30. Truong JG, Rau KS, Hanson GR, Fleckenstein AE. 2003. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson's neurodegeneration. Eur J Pharmacol, 474(2-3), 223–226.
  31. Letendre SL, McCutchan JA, Childers ME, Woods SP, Lazzaretto D, Heaton RK, et al. 2004. Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Ann Neurol, 56(3), 416–423.
  32. Song H, Ming G, Fon E, Bellocchio E, Edwards RH, Poo M. 1997. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron, 18(5), 815–826.
  33. Rugelese MT, Solano F, Dí az FJ, Bedoya VI, Patiño PJ. 2002. Molecular characterization of the CCR 5 gene in seronegative individuals exposed to human immunodeficiency virus (HIV). J Clinic Virol, 23(3), 161–169.
  34. Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem, 275, 4951–4965.
  35. Productive Infection of T Cells in Lymphoid Tissues during Primary and Early Human Immunodefiency Virus Infection. J Infect Dis, 183, 555–562.
  36. Zink MC, Brice AK, Kelly KM, Queen SE, Gama L, Li M, et al. 2010. Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis, 202(1), 161–170.
  37. Wang GJa, Chang L, Volkow ND, Telang F, Logan J, Ernst T, et al. 2004. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain, 127(11), 2452–2458.
  38. Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C. 2006. New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain, 129(5), 1194–1200.
  39. Weiss RA. 1996. Retrovirus classification and cell interactions. J Antimicrob Chemother, (Suppl. B), 1–11
  40. Weihe E, Nohr D, Sharer L, Murray E, Rausch D, Eiden LE. 1993. Cortical astrocytosis in juvenile rhesus monkeys infected with simian immunodeficiency virus. Neuroreport, 4(3), 263–266.
  41. Sardar AM, Czudek C, Reynolds GP. 1996. Dopamine deficits in the brain: the neurochemical basis of parkinsonian symptoms in AIDS. Neuroreport, 7(4), 910–912.
  42. Koutsilieri E, Czub S, Scheller C, Sopper S, Tatschner T, Stahl-Hennig C, et al. 2000. Brain choline acetyltransferase reduction in SIV infection. An index of early dementia? Neuroreport, 2(3), 2391– 2393.
  43. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS, 2, 101–105.
  44. Rausch DE, Weihe E, Eiden LE. 1994. Cytopathologic and neurochemical correlates of progression to motor/cognitive impairment in SIV-infected rhesus monkeys. J Neuropath Exp Neurol, 53, 165–175.
  45. Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, et al. 2011. Editorial neuroAIDS review. AIDS (London, England), 25(2), 123–141.
  46. The origins of acquired immune deficiency syndrome viruses: where and when? Philos Trans R Soc Biol Sci, Lond, 356(1410), 867–876.
  47. Tan IL, McArthur JC. 2011. HIV-associated central nervous system diseases in the era of combination antiretroviral therapy. Eur J Neurol, 18(3), 371–372.
  48. Early impairment in dopaminergic neurotransmission in brains of SIV-infected rhesus monkeys due to microglia activation. J Neurochem, 95(2), 377–387.
  49. Juge N, Omote H, Moriyama Y. 2013. Vesicular GABA transporter (VGAT) transports β-alanine. J Neurochem, 127(4), 482–486.
  50. Zhu J, Mactutus CF, Wallace DR, Booze RM. 2009. HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther, 329(3), 1071–1083.
  51. Lynch DR, Guttmann RP. 2002. Excitotoxicity: perspectives based on N-methyl-D- aspartate receptor subtypes. J Pharmacol Exp Ther, 300(3), 717–723.
  52. Murray E, Rausch D, Lendway J, Eiden LE. 1992. Cognitive and Motor Impairments Associated with SIV Infection in Rhesus Monkeys. Science, 255, 1246–1249.
  53. Zubieta JK, Huguelet P, Ohl LE, Koeppe RA, Kilbourn MR, Carr JM, et al. 2000. High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am J Psychiatry, 157(10), 1619–1628.
  54. Wainberg MA, Jeang KT. 2008. 25 years of HIV-1 research -progress and perspectives. BMC Med, 6, 31.
  55. Hanson GR, Sandoval V, Riddle E, Fleckenstein AE. 2004. Psychostimulants and vesicle trafficking: a novel mechanism and therapeutic implications. Ann Acad Sci, NY, 1025, 146–150.
  56. HIV-associated neurologic disease incidence changes:: Multicenter AIDS Cohort Study, 1990-1998. Neurology, 56(2), 257–260.
  57. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, et al. 2007. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci, 27(11), 2846–2857.
  58. Pifl C, Rajput A, Reither H, Blesa J, Cavada C, Obeso JA, et al. 2014. Is Parkinson's disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J Neurosci, 34(24), 8210– 8218.
  59. Zink MC, Spelman JP, Clemens JE. 1998. SIV infection of macaques-modelling the progression to AIDS dementia. J Neuro Virol, 4, 249–259.
  60. Kerr DIB, Ong J. 1995. GABAB receptors. Pharmacol Therapeut, 67(2), 187–246.
  61. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, et al. 2006. Molecular anatomy of a trafficking organelle. Cell, 127(4), 831–846.
  62. Modrow S, Kattenbeck B, von Poblotzki A, Niedrig M, Wagner R, Wolf H. 1994. The gag proteins of human immunodeficiency virus type 1: mechanisms of virus assembly and possibilities for interference. Med Microbiol Immunol, 183(4), 177–194.
  63. Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G. 2000. Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic Interneurons. J Neurosci, 20(7), RC69.
  64. Hsu M, Wainberg MA. 2000. Interactions between human immunodeficiency virus type 1 reverse transcriptase, tRNA primer, and nucleocapsid protein during reverse transcription. J Hum Virol, 3(1), 16–26.
  65. Letendre S. 2011. Central nervous system complications in HIV disease: HIV- associated neurocognitive disorder. Top Antivir Med, 19(4), 137–142.
  66. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382, 722–725.
  67. Unique luminal localization of VGAT-C terminus allows for selective labeling of active cortical GABAergic synapses. J Neurosci, 28(49), 13125–13131.
  68. Yan Z, Song WJ, Surmeier DJ. 1997. D2 Dopamine receptors reduce N-type Ca2 currents in rat neostriatal cholinergic interneurons through a membrane-delimited Protein-Kinase-C-insensitive pathway. J Neurophysiol, 77(2), 1003–1015.
  69. Xing HQ, Mori K, Sugimoto C, Ono F, Izumo K, Kuboda R, et al. 2008. Impaired astrocytes and diffuse activation of microglia in the cerebral cortex in simian immunodeficiency virus-infected macaques without simian immunodeficiency virus encephalitis. J Neuropath Exp Neurol, 67(6), 600–611.
  70. Reimer RJ, Edwards RH 2004. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch, 447(5), 629–635.
  71. Scheller C, Arendt G, Nolting T, Antke C, Sopper S, Maschke M, et al. 2010. Increased dopaminergic neurotransmission in therapy-naïve asymptomatic HIV patients is not associated with adaptive changes at the dopaminergic synapses. J Neural Transm, 117(6), 699–705.
  72. Koutsilieri E, Sopper S, Scheller C, ter Meulen V, Riederer P. 2002. Parkinsonism in HIV dementia. J Neural Transm, 109(5-6), 767–775.
  73. Schäfer MK, Eiden LE, Weihe E. 1998. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience, 84(2), 331–359.
  74. Stellbrink HJ Leitlinienkoordination. 2012. Deutsch \Österreichische Therapieleitlinien HIV Version 4 rev nach AWMF) DAIG (Version 04.1)
  75. Rothman SM, Olney JW. 1995. Excitotoxicity and the NMDA receptor -still lethal after eight years. Trends Neurosci, 18(2), 57–58.
  76. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, et al. 2011. Habenula "cholinergic" neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron, 69(3), 445–452.
  77. Trono D. 1995. HIV accessory proteins: Leading roles for the supporting cast. Cell, 82(2), 189–192.
  78. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. 2010. HIV- associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study, Neurology, 75(23), 2087–2096.
  79. Marmor S, Donnell B, Celum B, Koblin S. 2001. Homozygous and heterozygous CCR5 DELTA 32.9. The HIV Network for Prevention Trials Vaccine Preparedness Protocol Team. J AIDS, 2, 472–481.
  80. Letvin NL, King NW. 1990. Immunologic and pathologic manifestations of the infection of rhesus monkeys with simian immunodeficiency virus of macaques. J Acquir Immune Defic Syndr, 3(11), 1023–1040.
  81. Koutsilieri E, Sopper S, Scheller C, ter Meulen V, Riederer P. 2002. Involvement of dopamine in the progression of AIDS Dementia Complex. J Neural Transm, 109(3), 399–410.
  82. Smith, Bevan,Shink, Bolam 1998. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 86(2), 353–387.
  83. Kreutzberg GW. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 19(8), 312–318.
  84. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. 1998. Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol Brain Res, 57(1), 1–9.
  85. Schäfer MKH, Varoqui H, Defamie N, Weihe E, Erickson JD. 2002. Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem, 277(52), 50734– 50748.
  86. Itoh K, Mehraein P, Weis S. 2000. Neuronal damage of the substantia nigra in HIV-1 infected brains. Acta Neuropathol, 99(4), 376–384.
  87. Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA, 293(16), 2003–2011.
  88. Sudhof TC, Jahn R. 1991. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron, 6(5), 665–677.
  89. Whitcomb JM, Hughes SH. 1992. Retroviral reverse transcription and integration: progress and problems. Ann Rev Cell Biol, 8, 275–306.
  90. Peter D, Jimenez J, Liu Y, Kim J, Edwards RH. 1994. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem, 269(10), 7231–7237.
  91. Kanki PJ, Hopper JR, Essex M. 1987. The Origins of HIV-1 and HTLV-4/HIV-2. Ann Acad Sci, NY, 511 (1 Normal and Ne), 370–375.
  92. Rausch DE, Eiden LE. 1999. The SIV-infected rhesus monkey model for HIV- associated dementia and implications for neurological diseases. J Leukoc Biol, 65, 466–474.
  93. Levy JA. 1996. The value of primate models for studying human immunodeficiency virus pathogenesis. JM Primatol, 25(3), 163–174.
  94. Weihe E, Depboylu C, Schütz B, Schäfer MKH, Eiden LE. 2006. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell Mol Neurobiol, 26(4-6), 659–678.
  95. Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat. Neurosci Lett, 97(1-2), 6–10.
  96. Palmer E, Goldsmith CS. 1988. Ultrastructure of human retroviruses. J Electron Microsc Techn, 8(1), 3–15.
  97. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, et al. 2009. Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol, 15(3), 257–274.
  98. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M. 2011. Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol, 17(1), 26–40.
  99. Stokes AH, Hastings TG, Vrana KE. 1999. Cytotoxic and Genotoxic Potential of Dopamine. Mini Review. J Neurosci Res, (55), 659–665.
  100. Nirenberg MJ, Chan J, Liu Y, Edwards RH, Pickel VM. 1997. Vesicular monoamine transporter-2: immunogold localization in striatal axons and terminals. Synapse (N.Y.) 26(2), 194–198.
  101. Mazloom M, Smith Y. 2006. Synaptic microcircuitry of tyrosine hydroxylase-containing neurons and terminals in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- treated monkeys. J Comp Neurol, 495(4), 453–469.
  102. Nosheny RL, Bachis A, Aden SA, De Bernardi MA, Mocchetti I. 2006. Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell- line derived neurotrophic factor levels and causes apoptosis in the substantia nigra. J Neurobiol, 66(12), 1311–1321.
  103. Hisano S. 2003. Vesicular glutamate transporters in the brain. Anat Sci Int, 78(4), 191– 204.
  104. Oda Y. 1999. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int, 49(11), 921–937.
  105. Marx PA, Apetrei C, Drucker E. 2004. AIDS as a zoonosis? Confusion over the origin of the virus and the origin of the epidemics. J Med Primatol, 33(5-6), 220–226.
  106. Schuldiner S, Shirvan A, Linial M. 1995. Vesicular neurotransmitter transporters: from bacteria to humans. Physiol Rev, 75(2), 369–392.
  107. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. 2005. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res, 111(2), 194–213.
  108. Kreitzer AC. 2009. Physiology and Pharmacology of Striatal Neurons. Ann Rev Neurosci, 32(1), 127–147.
  109. Williams KC, Hickey WF. 2002. Central nervous damage, monocytes and macrophages, and neurological disorders in AIDS. Ann Rev Neuro, 25(1), 537–562.
  110. Varoqui H, Erickson JD. 1996. Active transport of acetylcholine by the human vesicular acetylcholine transporter. J Biol Chem, 271(44), 27229–27232.
  111. Juge N, Muroyama A, Hiasa M, Omote H, Moriyama Y. 2009. Vesicular inhibitory amino acid transporter is a Cl-/gamma-aminobutyrate Co-transporter. J Biol Chem, 284(50), 35073–35078.
  112. Wilson CJ, Chang HT and Kitai ST. 1990. Firing patterns and synaptic potentials of identified giant spiny interneurons in the rat neostriatum. J Neurosci, 10(2), 508–519.
  113. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice. Mol Brain, 3(40).
  114. Warner CG, Peterlin BM. 2002. Charting HIV's remarkable voyage through the cell: Basic science as a passport to future therapy. Review. Nat Med, 8, 673–680.
  115. Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD. 1998. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature, 391(6667),594-597.
  116. Kaul M, Garden GA, Lipton SA. 2001. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 410(6831), 988–994.
  117. Nickell JR, Siripurapu KB, Vartak A, Crooks PA, Dwoskin LP. 2014. The vesicular monoamine transporter-2: an important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse. Adv Pharmacol Calif, 69, 71–106.
  118. Scholl DA. 1953. Dendric organization in the neurons of the visual and motor cortices of the cat. J Anat, 87, 387–406,
  119. Hawkins MH, Mitsuya C, McCully K, Goldwin K, Murakami D, Poplack FB. 1995. pharmacokinetics of dideoxypurine nucleoside analogs in plasma and cerebrospinal fluid in rhesus monkeys. Antimicrobl Agents Chemother, 36(6) 1259-1264.
  120. Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, et al. 1997. VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA, 94(18), 9938–9943.
  121. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. 2009. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS, 23(11), 1359–1366.
  122. Rees JN, Florang VR, Eckert LL, Doorn JA. 2009. Protein reactivity of 3,4- dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicology, 22(7), 1256–1263.
  123. Kreitzer AC, Malenka RC. 2008. Striatal Plasticity and Basal Ganglia Circuit Function. Cell Press, 60(4), 543–554.
  124. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. 2008. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol, 65(1), 65–70.
  125. Patel K, Ming X, Williams PL, Robertson KR, Oleske JM, Seage GR 3rd. 2009. Impact of HAART and CNS-penetrating antiretroviral regimens on HIV encephalopathy among perinatally infected children and adolescents. AIDS, 23(14), 1893–1901.
  126. Lima RF, Prado VF, Prado MAM, Kushmerick C. 2010. Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter. J Neurochem, 113(4), 943–951.
  127. Proton magnetic resonance spectroscopy reveals neuroprotection by oral minocycline in a nonhuman primate model of accelerated NeuroAIDS. Plos One, 5(5), 10523.
  128. Sharp PM, Hahn BH. 2010. The evolution of HIV-1 and the origin of AIDS. Biol Sci, 365(1552), 2487–2494.
  129. Tepper JM, Tecuapetla F, Koos T, Ibanez-Sandoval O. 2010. Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat, 4, 150.
  130. Unal B, Ibanez-Sandoval O, Shah F, Abercrombie ED, Tepper JM. 2011. Distribution of tyrosine hydroxylase-expressing interneurons with respect to anatomical organization of the neostriatum. Front Syst Neurosci, 5, 41.
  131. Guzman MS, Jaeger X, Raulic S, Souza IA, Li AX, Schmid S, et al. 2011. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. Plos Biol, 9(11), 1001194.
  132. Early Minocycline Treatment Prevents a Decrease in Striatal Dopamine in an SIV Model of HIV-Associated Neurological Disease. J Neuroimmune Pharmacol, 7(2), 454- 464.
  133. Midde NM, Gomez AM, Zhu J. 2012. HIV-1 Tat Protein Decreases Dopamine Transporter Cell Surface Expression and Vesicular Monoamine Transporter-2 Function in Rat Striatal Synaptosomes. J Neuroimmune Pharmacol, 7(3), 629-639. Literaturverzeichnis 90
  134. Lau KA, Wong JJL. 2013. Current trends of HIV recombination worldwide. Infect Dis Rep, 5 (1S).
  135. Schäfer MKH, Weihe E, Eiden LE. 2013. Localization and expression of VMAT2 aross mammalian species: a translational guide for its visualization and targeting in health and disease. Adv Pharmacol (San Diego, Calif.), 68, 319–334.
  136. Ton H, Xiong H. 2013. Astrocyte dysfunctions and HIV-1 neurotoxicity. J AIDS Clin Res, 4 (11), 255.
  137. Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE. 1996. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA, 93(8), 3547– 3552.
  138. Zahid M, Saeed M, Yang L, Beseler C, Rogan E, Cavalieri EL. 2011. Formation of dopamine quinone-DNA adducts and their potential role in the etiology of Parkinson's disease. Iubmb Life, 63(12), 1087–1093.
  139. Theodore S, Cass WA, Dwoskin LP, Maragos WF. 2012. HIV-1 protein Tat inhibits vesicular monoamine transporter-2 activity in rat striatum. Synapse, 66(8), 755–757.
  140. Maycox PR, Deckwerth T, Jahn R. 1990. Bacteriorhodopsin drives the glutamate transporter of synaptic vesicles after co-reconstitution. J Embo, 9(5), 1465–1469.
  141. Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA, Holzman RS, et al. 1981. An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med, 305(24), 1431–1438.
  142. Wu Y. 2004. HIV-1 gene expression: lessons from provirus and non-integrated DNA. Retrovirology, 1(1), 13.
  143. Sakurada T, Alufuzoff I, Winblad B, Nordberg A. 1990. Substance P-like immunoreactivity, choline acetyltransferase activity and cholinergic muscarinic receptors in Alzheimer's disease and multi-infarct dementia. Brain Res, 521(1-2), 329– 332.
  144. Parent A, Hazrati LN. 1995. Functional anatomy of the basal ganglia. I. The cortico- basal ganglia-thalamo-cortical loop. Brain Res Rev, 20(1), 91–127.
  145. Mesulam MM, Mufson EL, Levey AL, Wainer BH. 1984. Atlas of cholinergic neurons in the forebrain an upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholineesterase. Neuroscience, 12(3), 669–686.
  146. Zubieta JK, Taylor SF, Huguelet P, Koeppe RA, Kilbourn MR, Frey KA. 2001. Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry, 49(2), 110–116.
  147. Theodore S, Cass WA, Maragos WF. 2006a. Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum. Exp Neurol, 199(2), 490–498.
  148. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. 2007. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci, 30(5), 228–235.
  149. Nambu A, Tokuno H, Takada M. 2002. Functional significance of the cortico– subthalamo–pallidal 'hyperdirect' pathway. Neurosci Res, 43(2), 111–117.
  150. Keber U, Klietz M, Carlsson T, Oertel WH, Weihe E, Schafer MKH, et al. 2015. Striatal tyrosine hydroxylase-positive neurons are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuroscience, 298, 302–317.
  151. Wang P, Barks JD, Silverstein FS. 1999. Tat, a human immunodeficiency virus-1- derived protein, augments excitotoxic hippocampal injury in neonatal rats. Neuroscience, 88(2), 585–597.
  152. Tepper JM, Bolam JP. 2004. Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiology, 14(6), 685–692.
  153. Kilbourn MR, Butch ER, Desmond T, Sherman P, Harris PE, Frey KA. 2010. In vivo 11Cdihydrotetrabenazine binding in rat striatum: sensitivity to dopamine concentrations. Nucl Med Biol, 37(1), 3–8.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten