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Abstract

Docking is an established method in computer-aided drug
design that tries to predict the binding and non-binding of
a small molecule to a protein target. The docking against a
single structure can be considered as established, in contrast
to the docking to several structures in order to elucidate the
binding profile of a ligand. This work explores the applica-
bility of docking in such a scenario.

In a case study, ligands binding either to one or both re-
ceptors are identified for CXCR3 and CXCR4, a pair of
chemokine GPCRs. This application proves the feasibility
of docking to select molecules with tailored selectivity and
yields ligands with excellent binding affinities.

The subsequent studies each utilizes different input struc-
tures of a common protein, also chemokine receptors. While
again new ligands can be identified by docking, the com-
plexity of GPCRs and functional GPCR assays is discussed,
which can impair the identification of low-efficacy ligands.
Finally, the limits of multi-target docking are explored by
docking to a newly created dataset, containing several hun-
dred kinase structures. The results indicate that the au-
tomatic prediction of very large binding profiles is beyond
current possibilities. The prediction accuracy of docking
can be improved by normalizing the docking scores across
multiple ligands and multiple targets, which leads to the
idea of “protein decoys” that might improve the robustness

of future docking applications.
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Vorwort des Autors (deutsch)

Mit dem Abschluss des Studiums schlieft man gleichzeitig ein wichtiges
Kapitel seines Lebens ab. Doch kaum ist das geschafft, findet man sich
selbst vor der Frage nach der Promotion. Zwar stand fiir mich das “dass”
fest, aber das “wo” ist immer eine gédnzlich andere Frage. Wohl fithlen muss
man sich am Ort der Promotion, wobei “Ort” sowohl die Geographie als
auch das direkte Arbeitsumfeld einschliefit. Dieses Wohlfiihlen ist wichtig,
schliellich verbringt man die néchsten drei Jahre dort. Zugegeben, meis-
tens sind es mehr, so auch in meinem Fall. Die Arbeitsgruppe der Wahl
muss aulerdem gut vernetzt sein und hohen wissenschaftlichen Anspriichen
geniigen, man mochte ja nicht “irgendwo” promovieren. Und selbstredend
muss der Gruppenleiter /Betreuer die Sorgen und Frustrationen des Dokto-
randen verstehen, auf Augenhohe diskutieren kénnen und seinen Schiitzling
anleiten ohne die eigenen Ideen des selbigen aus den Augen zu verlieren.
Achja, der thematische Schwerpunkt der Promotion sollte einen auch ein
wenig interessieren. Kurzum, vor der Promotion gilt es, ein nicht-triviales
Optimierungsproblem zu losen.

Bei der Losung halfen mir unter anderem Mireille Krier und Paul
Czdrowski. Mireille war zu damaligem Zeitpunkt die Betreuerin meiner
Diplomarbeit bei Merck Serono und Paul ein Kollege, der selbst hier in Mar-
burg promoviert hatte. Beide gaben mir dankenswerterweise Tipps, welche
Arbeitskreise fiir mich interessant sein kénnten und welche Konferenzen
ich besuchen koénnte, um jemanden aus diesen Gruppen zu treffen. Nur so
konnte ich Prof. Gerhard Klebe kennen lernen. Die Beitrage von Prof.
Klebe im Bereich von “computer-aided drug design” kannte ich aus dem
Studium und ich konnte mir gut vorstellen in dieser Gruppe zu promovie-

ren. Leider war zu dieser Zeit keine Stelle direkt in seiner Gruppe frei, aber
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er “kannte da jemanden”, der fiir mich interessant sein konnte. Dieser “je-
mand” war Peter Kolb, mein spéiterer Betreuer. Peter hatte die Zusage
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war es mir nur so moglich die wissenschaftliche Erfahrung zu erlangen, die
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Vor seiner Karriere als Gruppenleiter war Peter Post-Doc in San Fran-
cisco. Dementsprechend erfolgte das erste Kennenlernen per Internet-Tele-
fonie, erst das zweite Bewerbungsgespriach war von Angesicht zu Angesicht.
In einem Café. Peter hatte kein Biiro zu dieser Zeit, das (gemeinsame)
bezogen wir erst an unserem (gemeinsamen) ersten Arbeitstag. Die Ent-
scheidung in einer Arbeitsgruppe zu promovieren, die zu diesem Zeitpunkt
noch nicht existiert, kann natiirlich verunsichern. Allerdings vermittelte
Peter den Eindruck genau jenes Mentors, der frische Ideen hat und gleich-
zeitig die notige Erfahrung, auf die man als Doktorand angewiesen ist.
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bedanke ich mich bei Peter einfach nur sehr herzlich fiir seine exzellente
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alles Gute fiir seine wissenschaftliche Karriere, die genau wie meine vor
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1 Introduction

Life can be considered as a network of chemical interactions, a very complex
one, indeed. Driven by the mystery of its own existence, mankind has spent
an enormous effort trying to understand the human body. Today, we have
well-defined knowledge about general biological processes in human cells.
An important key concept are proteins, biological polymers comprised of
amino acids. An enormous amount of different proteins is encoded in our
genes. Through post-transcriptional modifications, the number of different
manifestations of proteins increases even more. Enzymes catalyze chemical
reactions to convert a variety of substrates, small peptides transfer signals
by interacting with receptor proteins, transporters and channels regulate
the distribution of all kinds of substances, and histones and transcription
factors constantly control the translation of DNA (deoxyribonucleic acid),
just to mention some key classes. Together, they all form a highly complex
network of dependencies and regulations in which every protein fulfills its
designated task.

Severe malfunction of this molecular machinery often expresses itself in
health disorders. Pharmaceutical research tries to identify the proteins
responsible for a certain dysfunction. Once the causes are understood, one
tries to develop strategies to fight a disease or its symptoms. This process
is commonly referred to as “target identification” and “target validation”.
At its end often stands a protein target, the activity of which has to be
either promoted or inhibited to compensate for imbalances in the protein
interaction network. What follows is the “hit and lead identification” phase,
which tries to nominate molecules that can modulate the protein target as
desired and are candidates for future drugs.

Nowadays, computer-aided drug design is an essential part in pharma-



1 Introduction

ceutical research and many methods have been developed in this field. One
of these methods, called docking, is the topic of this work. With first de-
scriptions dating back more than 30 years®, it has steadily been developed
and is widely applied today. This constant progress might have been cou-
pled with the availability of three-dimensional protein structures, which
serve as input for docking. The docking algorithms then try to fit a given
ligand into this protein structure and to quantify this fitness. That is, they
try to find the spatial orientation, and the associated value of the scoring
function, that gives the best sterical and chemical complementarity be-
tween the ligand and the protein. These informations help to understand
protein-ligand interactions. By docking many ligands, one can try to find
molecules that fit into a protein better than others, which makes docking

a valuable tool in the context of lead identification.

2
)

For a long time, drug design efforts focused on finding “magic bullets
molecules that exclusively bind and modulate the desired target protein in
order to avoid side effects. Starting about a decade ago, a new paradigm
emerged from the finding that Gleevec, a promising anti-cancer drug, was
no magic bullet but gets its full effect by inhibiting multiple kinases.? In
the meantime, several drugs with polyphamacological activity have been
released. Often these are kinase inhibitors targeting cancer.* Consequently,
lead identification processes have to be re-evaluated to develop molecules
that manipulate the protein interaction network at multiple sites.

In the present work, docking is challenged to identify ligands with tai-
lored selectivity, that is, the binding or non-binding to different protein
structures. The following chapters shall give a more detailed introduction
of docking and GPCRs (G protein-coupled receptors). GPCRs form a par-
ticular protein receptor family which is considered relevant in the target
identification and target validation phase of many disorders. Several case
studies are presented, showing the successful application of docking to dif-
ferent GPCR targets and structures. Eventually, this approach is scaled
up to several hundred different structures of kinases, a different protein

family constituting yet another pharmaceutically important target class.



2 Docking to GPCRs

Reproduced with permission from Schmidt, D.; Kolb, P. Computer-Aided
Design of Selective Ligands Binding to G Protein-Coupled Receptors. Dtsch.
Med. Wochenschr. 2013, 138, 2260-226.

2.1 From an ldea to a Lead Structure

Starting point of the development of new drugs usually is a target protein.
The ultimate aim is to modulate the activity of this target. New targets can
steadily be identified thanks to the increasing understanding of molecular
mechanisms. The inhibition or activation of these targets may directly or
indirectly cure a disease or alleviate its symptoms.

During the early phase of drug design, one or more lead structures have
to be identified. Lead structures are chemical compounds that do already
show the desired effect on the target protein, but have not yet been opti-
mized regarding essential properties of a drug. For example, these proper-
ties may be solubility, drug safety and target specificity. Lead structures
form an intermediate step from the “first idea” to a mature drug.

The methods that are employed in the area of computer-aided drug
design can be roughly separated into ligand-based and (protein-)structure-
base methods.® The method of ligand-based design uses the knowledge
about established binding molecules. By systematically testing chemical
variations or structurally similar molecules it can be deduced, which of the
properties of a molecule affect the interactions with the desired target in a

positive or negative way. Basing on these insights, new molecules can be
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developed and proposed for chemical synthesis.

The structure-based design, including docking, only relies on the knowl-
edge of the three-dimensional structure of the target protein.® This struc-
ture should thus be known with atomic detail, which can be achieved by
techniques like X-ray crystallography. Given this three-dimensional struc-
ture of the target and a virtual library of chemical compounds, docking can
be used in silico to test, which substance best “fits” (Lock-and-Key princi-
ple) the binding site of the target protein. After experimental verification
or falsification of the binding event of this ligand, the gained insights can
be used to improve the docking, i.e. by tailoring the ligand library. This
iterative process culminates in the discovery of new lead structures which
themselves form the basis for the development of new candidates for the
preclinical phase.

In short, docking is a computer-based methods to identify chemical sub-
stances that bind to a given protein and, presumably, modulate its activity.
By selection and rational modification, such substances can be further de-

veloped to clinical candidates.

2.2 Docking — Theory and Technique

For a docking experiment, two distinct inputs are necessary, which is the
three-dimensional structure of a protein on the one hand side, as well as
a database with a large number, up to several millions are possible, of
small molecules. Typically these substances have a molecular mass be-
tween 300gmol~'-500gmol !, which approximately corresponds to the
range of most approved drugs.” During the docking calculations, each and
every small molecule is placed into the binding site of the protein indi-
vidually and its orientation is optimized. The process is computationally
demanding, since the potential ligands can adopt numerous distinct con-
formations and each conformer can be placed at different positions and in
various orientations. Each possible combination of position and orientation

(each pose) is evaluated to identify the one that maintains the best pos-
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Figure 2.1: Typical application of docking in pharmaceutical research. Starting
with a structure and a library of molecules (Step 1) the docking calcu-
lations are carried out in silico (Step 2). Each molecule is evaluated,
scored and ranked (Step 3). After manual inspection (Step 4), single sub-
stances are selected and experimentally evaluated (Step 5). Ideally, new
lead structures can be identified from these results (Step 6).

sible interactions with the target protein. Such evaluations commonly use
physico-chemical potentials like the Lennard-Jones or the Coulomb poten-
tial or are described by so-called knowledge-based terms.® The latter ones
are based on the analysis of known three-dimensional protein-ligand struc-
tures, since atoms prefer certain spatial orientations towards each other,
only dependent on their types.? These relations can be described mathe-
matically.

A “perfect” mathematical function for such evaluations is hard to real-
ize since the calculations have to be very fast. This is usually achieved
at the expense of accuracy. Finally, the relative orientation of ligand and
protein towards each other is optimized by this mathematical function and
associated with a score. That score represents the fineness of compatibility
between the ligand and the binding site of the protein. The results of a
docking run of a complete library thus is a, usually sorted, list of molecules
and their corresponding scores, with the best-scoring molecule at the top
(see Figure 2.1). At least in theory there should be a correlation between
those values (or the rank within the list) and experimental affinities. Al-
though this correlation is usually not strict '%!!, active molecules usually
belong to the top scored molecules.

Docking as a method is very common today in computer-aided drug de-
sign, since it is fast compared to other structure-based methods and can

help to reduce the number of required experimental tests. Furthermore,
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docking is in many cases able to identify new ligands with chemical motifs
that have not been described before, since the complementarity to the pro-
tein is the only requirement in contrast to ligand-based methods. Certainly
docking also has a number of shortcomings. For example, the docked ligand
is usually treated flexibly but the protein is mostly treated as rigid body,
which obviously is not correct. Today, numerous docking programs exists
that try to take this flexibility adequately into account'%'3, however, the
number of possible poses increases dramatically, hence complicating the
search for the correct pose. An additional complexity is imposed by sin-
gle water molecules that interact with both, the ligand and the protein.
The consideration of these water molecules likewise increases the dock-
ing complexity and the localization of such water molecules can hardly be
predicted. Finally, docking suffers from conceptual limitations: Docking
scores single, static poses of a ligand in a protein binding site. Certainly,
the interactions between ligands and proteins in vivo are highly complex
and dynamic processes that have not yet been finally understood. Consid-
erably, we are only just beginning to glimpse the role of water on ligand
binding affinity and kinetics.'* Hence, entropic effects, polarization or sol-
vation effects will not be properly taken into account in a time-resolved
manor in the near future. Nevertheless, docking is one of the most success-
ful in silico tools, as shown by several studies.

In summary, docking is based on the “Lock-and-Key” principle. A
molecule is systematically placed into the binding site of a macromolecule
in various orientations. Every single pose is evaluated to identify the best-
fitting one (by “trial-and-error”), which renders docking a very demanding
method in terms of computer resources. Nevertheless, docking has become

entrenched as tool in modern pharmaceutical research.

2.3 G Protein-Coupled Receptors

G protein-coupled receptors (GPCRs) are the most widely spread principle

in nature to transduce extracellular signals over cellular membranes. This
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Figure 2.2: Crystal structure (PDB'" 2rh1'®) of the Pa-adrenergic receptor
(B2AR) in ribbon representation. Amino acids are colored from blue (N-
terminal, extracellular) to red (C-terminal, intracellular). Gray layers
indicate the approximate position of the membrane. The typical binding
site of small molecules is indicated as golden sphere. The seven trans-
membrane helices are labeled by roman numbers (except 1V). EZR: extra
cellular space, IZR: intra cellular space.

explains the high interest in pharmaceutical and academic research, met
with this protein family. In 2012, the Nobel Prize in chemistry was awarded
to Robert Lefkowitz and Brian Kobilka for their studies on GPCRs. By
today, around one third of all approved drugs do bind to a GPCR.'® These
include drugs like Aripiprazole for the treatment of schizophrenia or the
antiplatelet agent Clopidogrel which both belong the most frequently sold
drugs. 16 Structurally all GPCRs of known geometry have their seven trans-
membrane «-helices in common, that span the cell membrane in an anti-
parallel fashion (see Figure 2.2). Upon the binding of a ligand on the
extracellular side, the receptor conformation changes. This change allows
the binding of a heterotrimeric G protein on the intracellular side. By the

exchange of GDP (guanosine diphosphate) to GTP (guanosine triphos-



2 Docking to GPCRs
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Figure 2.3: Propanolol (middle) has a high structural similarity with the natural
ligands of the adrenergic receptors Adrenaline (left) and Noradrenaline
(right). The repeating moiety consists of a protonated amine (blue) in
prozimity to a hydrozy group (red) and a aromatic ring system (green).

phate) in the G4 subunit of the G protein and the subsequent dissociation
of this subunit the signal is transduced. Remarkably, many GPCRs do
show a basal activity even in the absence of any bound ligand and are
never completely muted. For these receptors, ligands are classified with
respect to their influence on this basal activity. If an agent increases the
basal activity it is classified as agonist, while an inverse agonist decreases
basal activity. An antagonist does not induce any change in activity on its

own, yet it competes with other molecules for their respective binding site.

By the arrangement of the seven transmembrane helices these receptors
are highly flexible, allowing for a fine-tuned control of signal transduction.
This flexibility together with the fact that GPCRs are membrane-bound re-
ceptors, however complicates the structure determination via protein X-ray
crystallography. On that account, the development of GPCR modulators
has been limited to ligand-based methods for a very long time. This be-
comes apparent in the structural similarity of the prototypic betablocker
Propanolol, designed by Sir James Black in the 1960s, and many others
with adrenaline and noradrenaline from which they were derived (see Fig-
ure 2.3). Only in 2000, the publication of the structure of rhodopsine
allowed for the subsequent application of structure-based design methods.
Nevertheless, it took another seven years until the structural elucidation of
a pharmaceutically relevant GPCR, the f2-adrenergic receptor (f2AR) by

the groups of Brian Kobilka ' and Ray Stevens.'® Since this point in time,
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Figure 2.4: Surface of the binding site of the PBa2-adrenergic receptor bound to
the inverse agonist Carazolol (carbon atoms in gray). (Left) Side view,
parallel to membrane. Surface cut open to allow view into the binding
site (shaded area). (Right) View turned by 90°, view perpendicular to
membrane. Color code according to Figure 2.2.

a total of 76 additional structures could be solved (by the time of publica-
tion of the original article), leading to a downright rush to structure-based
methods that shed light on a number of basic questions on GPCRs. Some

of the corresponding publications shall be discussed in detail below.

2.3.1 Docking identifies novel GPCR ligands

The Po-adrenergic receptor has been the target of the first successful dock-
ing studies on GPCRs.?%2! Due to the deep and narrow binding cleft,
this receptor is almost ideally suited for docking approaches. The back-
ground is that in such a binding site, less possible orientations exist for a
ligand and in addition, the effects of water (solvation effects) are less pro-
nounced, thereby simplifying the calculations (see Figure 2.4). The first
crystal structure (PDB 2rh1) was elucidated in complex with Carazolol, an
inverse agonist. Hence, the receptor was assumed to be in an inactive con-
formation.'? Consequently, it was investigated whether the given receptor
structure would exclusively be able to identify new inverse agonists.

In addition, it has been of special interest, whether or not docking is able
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Figure 2.5: Siz verified molecules modulating 2 AR identified by Docking.

to identify novel ligands for this receptor which has been in the focus of
research since the 1960s. Novel ligands, that is, molecules bearing chemical
motifs that have not been described before as binding to this receptor. Af-
ter successful docking and testing of 25 compounds, six molecules could be
identified as binding ligands, corresponding to a very high hit rate of 24 %.
Two of these substances are based on chemical scaffolds that have not been
described as binding to the Bs-adrenergic receptor before (see Figure 2.5,
5+6). The determination of the intrinsic activity classifies these molecules
as inverse agonists. Remarkably, compound 1 in Figure 2.5 represents the
most potent o-adrenergic inverse agonist identified so far, with an affinity
of 9nmol L~!. In summary this, as well as a second study by Sabio et al.?!
could verfify all assumptions made before. First of all, the binding site of
the Ps-adrenergic receptor is perfectly suited for docking approaches, as
underlined by the high hit rate and the excellent affinities. As assumed,
all ligands could be classified as inverse agonists, which might be biased
by the fact that agonists are less frequent than inverse agonists. Finally,
docking was able to identify several substances which can be considered
new, in a way that they show only limited similarity to known ligands such

as the Noradrenaline (see Figure 2.3).
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2.3.2 Homology Models of GPCRs

As introduced, docking methods rely on the three-dimensional arrange-
ment of the atoms of a protein. Since the experimental structur elucida-
tion is especially difficult for GPCRs as membrane receptors, until today
a comparatively low number of GPCRs have been characterized this way.
To close this structural gap, a computer-based method exists, called ho-
mology modeling. This generic term stands for a whole number of tech-
niques that can be reduced to a common denominator: The calculation of
a three-dimensional structure of a protein from the structure of a similar
(homologue) protein by comparing this two protein’s sequences.

A GPCR of pharmaceutical interest is the chemokine C-X-C receptor
3 (CXCR3), for which so far no crystallographically determined structure
exists. CXCRS3 is especially expressed on lymphocytes?? and is involved
in Multiples Scleroses?? and transplant rejection.?* Based on the experi-
mentally determined structure of the related receptor CXCR4 we built a
homology model of CXCR3.2® Subsequently, we tried to identify molecules
that regulate the activity of this receptor using docking approaches. Out
of seven selected compounds, biological activity against CXCR3 could be
proven for four of those by in vitro assays. At the same time, no activity
could be detected for these molecules against the related CXCR4, which
speaks in favor of the relevance of the models used. In an additional step, a
second docking was conducted to the crystal structure of the CXCR4. This
time six substances have been selected and tested experimentally, out of
which four were active but this time exclusively against CXCR4. Next to
our own work, a second CXCRA4 specific docking campaign was carried out
by another group without showing any overlap with the ligands identified

by our approach. 26

2.3.3 Distinct Conformations ldentify Different Ligands

The structural flexibility of GPCRs can be exploited together with the
sensitivity of docking towards subtle changes in the protein structure of

GPCRs to use slightly different protein conformations to identify different

11
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ligands. This has been demonstrated by two studies. On the one hand by
a comparison of the crystal structure of the Dopamine D3 receptor with a
homology model, built before the publication of the former2” and on the
other hand by means of comparison of multiple homology models of the
Ai-adenosine receptor. 28

In both cases, almost all protein structures used were able to identify
potent ligands. The respective ligand sets did not overlap, hence, ligands
that were well ranked in a given receptor conformation were not neces-
sarily amongst the best-scored molecules in a second conformation. The
purposeful generation of alternative receptor conformations could thus be
a potential method to identify more target-specific ligands.

In summary, G protein-coupled receptors or GPCRs belong to the pro-
tein families with the highest current pharmaceutical relevance. Together
with the increasing number of solved crystal structures of GPCRs, the ap-
plication of docking studies has gained importance. Several studies were
able to show that docking is well applicable to GPCRs in general. Chem-
ically innovative and diverse ligands could be identified, predominantly

inverse agonists, amongst others for the group of adrenergic receptors.27:2%

2.4 Discussion

The above summarized examples show that structure-based methods do
allow the identification of ligands with chemically novel scaffolds. Even,
if the target protein has been in the focus of pharmaceutical research for
many decades. Presumably the high structural flexibility of GPCRs in
particular are responsible of the driving force of the successful application
of docking to this protein family. There is not a single “correct” receptor
conformation but there exist several.?? Each of these can be successfully
used as docking target. It should no go unmentioned at this point that in
general, small-molecule ligand databases tend to be enriched with GPCR
binding compounds.3? This rests upon the broad spectrum of ligands that

can be bound by GPCRs, as well as the multitudinous shares of medicinal

12



2.4 Discussion

chemistry to this field in the past decades. But as seen from the many
ligands with chemical novelty this cannot be the only explanation of the
high hit rates of docking-based virtual screenings. There is, however, room
for improvement when docking to receptors that bind large ligands and
hence have a broad binding site. Those spacious pockets and highly solvent
accessible pockets render current docking approaches complicated.

It can nevertheless be assumed that protein structure-based methods
will contribute especially to the field of GPCR research and support the
utilization of the “golden age” of the structural biology of GPCRs for future
pharmaceutical research.2%3!

As a consequence, with the increasing number of GPCR structures, ra-
tional drug design will likely lead to some new active agents with structural
moieties unprecedented so far. It remains to see whether these molecules
also offer improved mechanisms of action. Furthermore, by the ongoing
elucidation of protein structure, one can expect an improving understand-
ing of the mechanisms of signal transduction. This will likewise allow
for a more specific design of molecules with desired properties. On these
grounds, future drugs will developed with specific pharmacological profiles

of polypharmacological properties.
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3 ldentifying Modulators of CXC
Receptors 3 and 4 with
Tailored Selectivity using
Multi-Target Docking

Reproduced with permission from Schmidt, D.; Bernat, V.; Broz, R.; Tscham-
mer, N.; Kolb, P. Identifying Modulators of CXC Receptors 3 and 4 with
Tailored Selectivity using Multi- Target Docking. ACS Chem. Biol. 2015,
10, 715-724, Copyright 2015 American Chemical Society.

Author Contributions: D.S., V.B., N.T., and P.K. designed the research.
V.B. built the homology model. D.S. carried out docking, and D.S. and
P.K. selected and acquired the ligands. D.S. carried out DLS and NMR
experiments. R.B. and N.T. carried out biological assays. N.T. analyzed
biological data. D.S., V.B., N.T., and P.K. wrote the manuscript.

3.1 Introduction

Most cells are delimited by membranes formed by lipid bilayers. For a
cell to be able to react to its environment, communication across such
membranes must be possible, however. Signal transduction is frequently
achieved through G protein-coupled receptors (GPCRs), proteins that con-
sist of seven membrane-spanning helices connected by intra- and extracel-

lular loops. Binding of an agent to the outer part of the receptor elicits
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a conformational change that can influence processes inside the cell in a
multitude of ways.3? Historically, the function of many GPCRs has been
defined by the ligands that bind to them, and also today, small organic
molecules frequently serve as tool compounds to elucidate the mechanism
and function of a particular receptor.3?

There are many possible ways to find such chemical modulators but
one particularly effective method is small molecule docking. Docking of
molecule libraries to X-ray structures or homology models of protein tar-
gets has become a well-established technique.%3° Even the application to

20;21;26-28;34-37

)

GPCRs has gained substantial momentum over the past years
owing to the steadily increasing number of X-ray structures of this phar-
maceutically important receptor class. The focus of these and other studies
on different protein classes has usually been the hit rate and whether or
not chemotypes previously undescribed for a particular target were iden-
tified.2° The selectivity of compounds — although crucial for the effects
of a particular molecule — has rarely been included in such calculations
and mainly been investigated post hoc by experimentally testing ligands on
other (anti)targets.?® Nonetheless, by docking to the structure of only one
target, many selective compounds have been identified, but this fact was
only established after the calculations. Outside of the realm of docking, the
identification of ligands with polypharmacological profiles has recently been
demonstrated using multi-objective optimization of virtually enumerated
compounds.?® In their ligand-based approach, the authors used Bayesian
models trained on experimental affinity data to predict activity. Yet, also
this approach might benefit from seed molecules with defined polypharma-
cological profile that have been identified with docking.

We therefore wanted to prospectively identify ligands for two proteins
through docking and predict their binding pattern. For this purpose, we
employed a re-ranking function that would allow us to reorder ligands
according to a desired binding pattern. A system was chosen where the
challenge was to find non-selective ligands. Such a pair are the CXC
chemokine receptors 3 and 4 (CXCR3 and CXCR4, respectively). Signaling
peptides that bind to these receptors share a specific CXC motif. This

16
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Table 3.1: Size comparison of exemplary GPCR binding sites.”

Receptor PDB code Pocket ID  Size (AS)
Chemokine receptor CXCR4 3odu 110 3320
Chemokine receptor CCR5 4mbs’ 34 3995
Neurotensin receptor 1 4buo® 37 1950
[32-adrenergic receptor 2rh1 49 2057
Adenosine Asp receptor 3eml 52 1060

2Exemplary pocket volumes were taken from the CastP database 39

bStructures were not available at the time of analysis and had to be
uploaded to the server

motif has two Cys (cysteine) residues flanking a third one (Cys-X-Cys). As
shown for the CXCR4, the binding of its chemokine involves extracellular
parts of the receptor as well as residues within the transmembrane binding
pocket.32 With around 3000 A3, this pocket is distinctly larger than those
of non-chemokine class A GPCRs of known X-ray structure (see Table 3.1).
This size presents a challenge when docking to this pocket, since it allows
for many degrees of freedom. Furthermore, one can imagine a scenario
where two ligands bind to different subpockets within this binding site. To
properly account for this possibility, we used an allosteric ternary complex
model to analyze our assay data. This model yields a binding constant Kg
and a cooperativity factor af, the latter describing how the binding of a

modulator influences the binding of a different ligand.*?

The receptors investigated here are involved in severe pathologies such
as multiple sclerosis®?® and allograft rejection?* in case of the CXCR3 or
cancer! and HIV (human immunodeficiency virus) infection?? in case of
the CXCR4. More intriguingly, recent results in animal models indicate
the potential joint role of these receptors in disease-related animal models.
Kohler and coworkers, for example, showed that the concomitant mod-
ulation of CXCR3 and CXCR4 by synthetic peptide antagonists led to
inhibition of experimental autoimmune encephalomyelitis, a mouse model
of multiple sclerosis.*? In addition, it was shown only recently that the
CXCR3/CXCR4 double-knockdown reduced metastasis of colorectal can-
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Figure 3.1: The net charges of CXCRS (dark gray) and CXCR4 (light gray)
ligands from ChEMBL are differently distributed. Charges were assigned
using protonation states from the ZINC database.*® The height of the bars
indicate the relative frequency of occurence of a particular formal charge.

cer into other tissues like lung and liver in the respective mouse model. %4

Notably, the authors postulate a synergistic effect of CXCR3 activation
with CXCR4. This, in turn, means that simultaneous blocking of both
receptors could have a higher pharmacological effect compared to the in-

hibition of either receptor.

Although the CXCR3 and the CXCR4 share 36.7 % and 63.9 % sequence
identity and similarity, respectively, their small molecule ligand spaces dif-
fer: ChEMBL?* (version 17) lists 858 and 484 ligands tested against the
CXCR3 and the CXCR4, respectively, but none of them are categorized
as active in the other receptor at a threshold of 10pM. A comparison
of the properties of the ligands in each set shows that the CXCR4 tends
to bind ligands with a stronger positive charge compared to the CXCR3
(see Figure 3.1). In addition, the ligand sets differ in the distribution of
the number of hydrogen bond donors and the predicted lipophilicity (see
Figure 3.2). Since a successful dual binder ideally is within the “allowed”
range of both sets, this makes prediction more challenging. Finally, as only
the structure of the CXCR4 has been determined crystallographically 32,
another challenge was that the CXCR3 structure had to be obtained by

homology modeling.

For other chemokine targets, bioactive substances acting on more than
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Figure 3.2: The distributions of selected physico-chemical properties are shown
for ligands from ChEMBL (upper panel in each plot) and the new ligands
described here (lower panel in each plot) separately for ligands for the
CXCR3 (dark gray) and those for the CXCR4 (light gray). Dual binders
have been counted once in each of this two sets. Properties with continu-
ous values are shown as distributions with the y-axis showing the respec-
tive density (as calculated by a kernel density estimator), whereas discrete
values are represented as histograms with the absolute frequency on the
y-axis. Each upper panel shares its x-axis with the respective lower panel.
All features were calculated using Openeye’s MolProp TK.*"
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one receptor have been identified through optimization. AMD3451 is one
such example, a cyclam-based nanomolar dual inbihitor which targets the
CC chemokine receptor CCR5 and the CXCR4, thereby blocking entry of
R5 and X4 human immunodeficiency virus in parallel.*® UCB35625 also
acts on two chemokine receptors, namely the CCR1 and the CCR3 and
suppresses receptor-induced chemotaxis of transfected cells at nanomolar
concentration. This effect can be used to treat allergic inflammatory dis-
eases such as asthma, which involve the CCR1- and CCR3-based recruit-
ment of eosinophiles.*® These two examples, among others, highlight the
importance of modulators targeting multiple chemokine receptors and the
importance of prospective identification of such ligands.

Of course, trying to identify molecules that interact with multiple targets
bears the risk of incorrectly annotating frequent hitters as dual binders. We
therefore not only predicted dual binders, but also CXCR3-selective and
CXCR4-selective compounds using our docking approach. The correct cat-
egorization of each ligand was verified by in vitro assays for both receptors.
Multiple control experiments were used to rule out potential frequent hit-
ters or aggregators. In a second round we support the identification of a
dual binder by selecting chemically related molecules and verifying their

action on both targets.

3.2 Results and Discussion

3.2.1 CXCR3 homology model

The validity of the CXCR3 homology model was assessed using a Ra-
machandran plot (see Figure 3.3). The majority of residues (97.7 %) lie in
the allowed conformational space. The outlier residues are located in ECL2
(extracellular loop) and ICL2 and 3 (intracellular loop), thus hinting at the
difficulty of loop modeling. To assess the predictive power of the model
in ligand identification, we docked a subset of 511 small-molecule ligands
and decoys of the CXCR3 with unambiguous ICs (half maximal inhibitory
concentration) values from the ChEMBL GPCR SARfari database.%® The
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Figure 3.4: ROC curve of ligands and decoys from ChEMBL which were docked
to the final homology model of the CXCRS3. Blue line shows the enrich-
ment of binders over non-binders on a logarithmic x-axis (focus on early
enrichment). Dashed line shows the expected enrichment of a randomized
set. The graph highlights that the final homology model is able to rank
known binders higher than non-binders.

resulting ROC (receiver operatoring characteristic)®! plot demonstrates
good early enrichment and a total logarithmic AUC (area under curve)
of 15.68 (see Figure 3.4). A structural overlay of the CXCR3 model and
the CXCR4 X-ray structure (see Figure 3.5) shows the position of con-
served residues, and their similar orientation. The non-conserved residues
include 7.39 (Ballesteros-Weinstein notation®?), where CXCR3 contains a
serine while most other chemokines feature an aspartate®?, which has been
shown to be a key interaction in CXCR4 for binding AMD3100.%* Further-
more, two positions of the aromatic zipper®®, 3.32 and 7.43, show a Tyr
(tyrosine)-Phe (phenylalanine) exchange and vice-versa. At position 3.29,
CXCRA4 has a histidine that has been shown to interact with the recep-
tor’s peptidic ligands>?, whereas the glycine that is at the same position
in CXCR3 offers more room for ligands and has been proposed as poten-
tial selectivity site.®® Finally, at positions 5.39 and 7.35, the CXCR3, in
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Figure 3.5: Overlay of the CXCR3 homology model in brick-red and the CXCR/
crystal structure in green in ribbon representation. Residues around the
binding site are shown. Labeled residues are discussed in the text.

contrast to the CXCR4, contains two basic amino acids, which are poten-
tial opposites for the negatively charged aspartates and glutamates in the
vicinity. Altogether, our CXCR3 model resembles the conserved structural
features of the CXCRA4, while the sequence differences have been appropri-

ately captured and are consistent with earlier experimental data.??

3.2.2 Docking

More than 2 million compounds from the ZINC database were docked to
the receptor structures of the CXCR3 and the CXCR4, respectively. After
inspecting the best docked poses, we selected six and seven compounds
we expected to be selective for the CXCR3 and the CXCRA4, respectively.
Through re-ranking all compounds with equation (3.1), four more com-
pounds predicted to bind to both receptors were selected. In addition, we
verified that all compounds did not contain any of the known problem-
atic substructures as listed in the PAINS Filter A.% All 17 compounds
were assayed for their ability to bind and inhibit CXCR3- and CXCR4-
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mediated activation of G proteins, which was measured via [*>S|GTPyS
incorporation.

A detailed consideration of the predicted binding poses shows that sev-
eral key interactions can be observed repeatedly. These are contacts to
W1092-%0 D112263 Q204 and R212 in the CXCR3 and D972%-63, R188 and
E288739 in the CXCR4. Several of these residues have previously been
identified as key residues involved in ligand recognition and binding or sig-
nal transduction upon ligand binding.®”®® They are part of the so called
“minor binding pocket”, which is formed by the transmembrane helices
TM-I (transmembrane helix), -II, -IIT and -VII. %9

Figure 3.6 shows a comparative depiction of compounds 2 (see Fig-
ure 3.6a,b), 9 (Figure 3.6e,f) and 7 (see Figure 3.6¢,d), which were thought
to bind to the CXCR3 exclusively, the CXCR4 exclusively or to be a dual
binder, respectively. In the CXCR3, compound 2 forms m-stacking in-
teractions with W109260 as well as hydrogen bonds with Q204 and the
backbone of C203. The carboxy function interacts with R212 (see Fig-
ure 3.6a). In the CXCR4, the quinazoline moiety does not form strong
interactions with the receptor at all. The imidazole-ketone is charged and

points towards E2887-39

, while the carboxy group cannot form an opti-
mal interaction in this binding pose (see Figure 3.6b). Compound 2 ranks
highly in the CXCR3 docking and below rank 485000 in the CXCR4, re-
sulting in a selectivity score S of 0.09 (0 < .S < 1; at S = 0, a compound
is non-selective; see Table 3.2 for comprehensive list; see Equation 3.1 for
calculation of S). Because of this rank difference, taken together with the
higher number of interactions with the CXCR3, we considered compound
2 to be CXCR3-selective. Compound 7 shows favorable interactions with
both receptors, albeit in different poses. In the CXCR3, the ligand is
anchored with a hydrogen bond between its amide and D112%53 and the
2-(imidazol-1-yl)pyridine forms aromatic interactions with W109%-%° and
fills a rather hydrophobic pocket close to A12732% and L190. The aniline
motif is captured by F47 (see Figure 3.6¢). In the CXCRA4, the ligand is
anchored in a comparable way to D9726°, but the entire ligand is bent

and points to the bottom of the pocket with the imidazole ring, forming
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Figure 3.6: Comparison of docking poses for compound 2, a selective CXCR3
binder (a,b), compound 7, a dual binder (c,d) and compound 9, an ez-
clusive CXCRY binder (e,f) in the CXCRS3 homology model (a,c,e) and
the CXCR4 crystal structure (b,d,f), respectively. Ligands in the CXCRS
structure are shown in brick-red and in green in the CXCR/ structure.
The proteins are shown in light gray. Residues are labeled whenever dis-
cussed in the text. Roman numerals are used to label protein helices. 2D
structures of compounds are depicted in Table 8.3. Checks and crosses in-
dicate that the respective receptor-ligand combination was predicted to be
active or inactive, respectively. All predictions were shown to be correct.
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Table 3.2: Docking ranks of compounds selected for testing.®

Cpd Rank S
CXCR3 CXCR4

1 54 2891970  0.946
2 114 485 407 0.09
3 456 2863174  0.930
4 157 2791072 0.897
5 25526 40768 0.011
6 5541 34472 0.0069
7 12 488 39455 0.009
8 2374085 263 0.934
9 868 801 49 0.236
10 783 666 489 0.207
11 — 301 —

“For every docked compound, the achieved absolute ranks in both
dockings and the selectivity scores according to equation (1) are
given. Dashes indicate that the compound was not scored in the
respective docking at all.

electrostatic interactions with E28873 (see Figure 3.6d). In both recep-
tors, compound 7 ranks within the top 1.5 % of the list (S = 0.009). Lastly,
compound 9 does not form reasonable interactions in the CXCR3 at all (see
Figure 3.6e), while it stacks with W942:60 and can simultaneously form a
hydrogen bond to D97%:%3 in the CXCR4. In addition, a charge-assisted
hydrogen bond to E288737 from the piperazine ring is possible, due to a
kink introduced by the sulfone linker (see Figure 3.6f). It ranks among the
50 best compounds in the CXCR4 and worse than position 850 000 in the
CXCRS3, yielding a selectivity score of 0.236. Therefore, we expected this
compound to bind to the CXCRA4 exclusively.

3.2.3 [**S|GTPYS Assay

Compounds 1-4 and 18-20 were predicted to bind to the CXCR3 but not
to the CXCR4 (see Table 3.3; Table 3.5). And indeed, four out of seven
substances inhibited the CXCL11-mediated activation of G proteins with
the best Kp at 12nM and an «f value (which quantifies cooperativity)
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Table 3.4: Chemical structures of identified compounds.®
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%The structure is shown for each compound that has correctly been
predicted. The further columns show the most similar known active
from ChEMBL as well as the respective similarity.

4Similarity expressed as Tanimoto coefficient using Morgan
fingerprints.

°Most similar active compound found in respective ChEMBL set.
9Most similar active compound found in both ChEMBL sets.
hMost similar compound is active on the CXCR3.



3.2 Results and Discussion

Table 3.5: Chemical structures of molecules selected for testing without showing
an effect on the CXCRS3 or the CXCR/.
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3 CXCR3-CXCR4 Ligands with Tailored Selectivity

of 0.37 (compound 3). At the same time, none of the compounds showed
detectable activity at the CXCRA.

Out of the six compounds with predicted CXCR4 activity (compounds
8-11, 22, 23), three were confirmed in the CXCR4 [358} GTPyS assay,
with compound 9 modulating the activation of the CXCR4 by CXCL12
with nanomolar Kp (see Table 3.3). Compounds 10 and 11 acted as neg-
ative allosteric modulators, showing a strong negative cooperativity with
af values of 0.06 and 0.01, respectively. In contrast, compound 9 behaved
as a positive allosteric modulator, with a8 = 7.45. Two more substances
were completely inactive (compounds 22, 23), while the last one (com-
pound 8) unexpectedly showed activity in the CXCR3 [358} GTPyS assay,
independent of radioligand displacement. This indicates that the radioli-
gand RAMX3 and compound 8 bind to different subpockets simultane-
ously. Overall, the results were supported by the absence of radioligand
displacement in the CXCR3 (see Table 3.3; Table 3.6). In total, this cor-
responds to a 50 % hit rate in the CXCR4 [3*S|GTPyS assay.

Finally, four compounds (compounds 5-7, 21) were expected to exhibit
affinity towards both receptors, the most challenging prediction category
in this study. Two of these four, namely compounds 6 and 7, are active in
both receptor assays — as predicted. Interestingly, compound 6 behaves as
positive allosteric modulator in both receptors (see Figure 3.7) while not
detectably displacing the CXCR3 radioligand.  This is in accordance with
the high a8 value of 47. Compound 7, on the other hand, shows a negative
allosteric modulator effect throughout both receptors, accompanied by the
efficient displacement of the allosteric CXCR3 radioligand in the binding
assay (see Figure 3.9). For the further investigation of the dual binder
chemical space, we selected six additional compounds by fingerprint simi-
larity to compound 7 (substances 12-17). This second set of compounds
consistently inhibited both receptors with Kgs ranging from 300 nM down
to the one-digit nanomolar range (see Table 3.7), indicating that this scaf-
fold entertains efficient interactions with the receptor. Of the remaining
two compounds that we had predicted as dual binders, compound 5 showed
an effect in the CXCR3 while 21 showed no effect in either receptor (see
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3.2 Results and Discussion

Table 3.6: Displacement of RAMXS from the CXCRS3 for denoted compounds.

Cpd pKg+SEM  «
1 515 £ 0.19  0.41
2 459 +£0.19  0.09
3 444 £ 051 0.29
4 5.80 + 0.28  0.56
5 514 £0.14  0.00
6 S J—
7 545+ 0.34  0.07
8 J— J—
9 — J—
10 — —
11 — —
12 85%@lopM*
13 61%@lopM®
14  74%@l0pM®
15  53%@l0opM*
16  40%@l0pM®
17 44%@lopM®
18 486 +0.10 0.00
19  453+£026 015
20 5544025 0.26
21 5664027 0.05
22 — —
23 — —

“pKp could not be determined. Instead % inhibition at maximal concentration

is given.
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Figure 3.7: Representative dose-effect curves from the [35S} GTPyS assay. The
dose-dependent receptor activity is plotted for known nanomolar receptor
anatagonists as reference (gray) and selected dual binders identified in this
study. An endogenous chemokine is used for each target to achieve initial
receptor activity (100%). cRAMX3 denotes the “cold” (unlabeled) variant
of RAMX3 and is depicted in Figure 3.8.
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Figure 3.8: The structure of labeled (“hot”) and unlabeled (“cold”) RAMX3.%!
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Figure 3.9: Dose-response curves of radioligand displacement assay. For the ini-
tial set of compounds, the dose-dependent displacement of RAMXS3 from
the CXCRS3 is shown. The curves indicate that the compounds inter-
fere with RAMXS3 binding but cannot displace it completely. The dose-
dependent binding of RAMXS3 to the CXCRS is shown as reference.

Table 3.5).

Lastly, we underlined the allosteric nature of our ligands by running the
[358] GTPyS assay in the absence of endogenous ligand, showing that the
presented ligands have no effect in this case (see Figure 3.10).

In summary, we correctly predicted CXCR3- and CXCRA4-selective binders
with a very high success rate of 57 % and 50 %, respectively. Even more no-
tably, two dual binders were correctly identified by docking. An additional

similarity search around compound 7 lead to six more modulators.

3.2.4 Aggregator counter screening

To reduce the risk of false positive hits by compound aggregation %63,

we
used DLS (Dynamic Light Scattering) to identify potential aggregators.
Moreover, we performed a fluorescence-based endothiapepsin assay as an
orthogonal counter screen. At concentrations well above those used in the
chemokine receptor assays, the vast majority of the compounds including,
notably, the dual binders showed no sign of aggregation. Only compounds

8, 9 and 10 and, to a mild degree, compound 6 showed autocorrelation
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Figure 3.10: Effect of substances in absence of endogenous ligands. Compounds
that have shown activity are screened in the [SSS] GTPyS assay again in
the absence of endogenous ligands against the CXCRS3 (upper panel) and
the CXCR4 (lower panel). Additionally, the basal activity, the activity
induced by the endogenous ligand (CXCL11 for CXCRS8 and CXCL12 for
CXCR/ and the activity induced by a known modulator (¢cRAMXS3 for
CXCRS3 and IT1t for CXCRY) are shown as reference. Assays were carried
out at 10 uM as described in the “Methods”.
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curves and count rates that might be associated with aggregational behav-
ior (see Figure 3.11). At the same time, only compounds 10 and 11 showed
inhibition of endothiapepsin (see Figure 3.12). These findings would speak
in favor of aggregation-based promiscuous inhibition. To investigate this
in further detail, protein crystals of endothiapepsin were soaked with com-
pounds 10 and 11. While some difference electron density was visible in
the binding site, it was not sufficiently resolved to place the ligands, which
speaks for incomplete population of the ligands in the crystals. Altogether,
except for compounds 10 and 11, we can rule out that our ligands act via
an aggregation-based mechanism under the investigated assay conditions.
However, even for 10 and 11 this seems unlikely in the present assay, as
neither compound shows any activity against the CXCR3 under the same
assay conditions used for the CXCR4 and compound 11 shows no sign of

aggregation in the DLS assay.

3.2.5 Summary

While docking to single targets works well®, the identification of ligands
with predefined selectivity has only rarely been investigated. Knowing
the binding patterns of ligands, however, is important to clearly under-
stand their biological effects. In this study, we docked a large database of
molecules to two targets and systematically selected candidates that would
bind preferentially to only one or both targets.

The main result is that we were successful both in finding selective as
well as non-selective ligands. Overall, we identified eleven novel ligands
for the CXCR3/CXCRA4 receptor pair. Given the high hit rates of 57%
(compounds 1-4), 50 % (compounds 9-11), and 50 % (compounds 6 and
7), respectively, serendipitous discovery of ligands in each category can be
regarded as unlikely.

At the same time, it can be concluded that the CXCR3 model we built
does not suffer from template bias. Otherwise, we would have found many
more potential dual binders, but a low hit rate in that category. It has

to be emphasized again that finding a dual binder for this protein pair is
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Figure 3.11: Results of DLS experiments. For selected compounds, the autocor-
relation curves of the Dynamic Light Scattering experiments are shown in
blue with error bars in gray. The corresponding absolute countrates are
shown as barplot.
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Figure 3.12: Inhibition of endothiapepsin in dependence of compound concen-
tration as determined by a fluorescence assay. Values have been scaled by
reference measurements containing no compound.

rather unlikely, as evidenced by the ligand sets obtained from ChEMBL

and remarked previously by Pease & Horuk. %4

The identified ligands, furthermore, show remarkable binding constants
mostly in the two-digit nanomolar range. In combination with the rather
low molecular weights (see Figure 3.2), these yield very good binding effi-
ciency indices®® with an average of around 22, clearly above-average com-
pared to the ChEMBL sets of known ligands (see Figure 3.13).

As mentioned in the Introduction, the CXCR4 tends to bind ligands
with a stronger positive charge compared to the CXCR3. Since for a given
molecule all precalculated protonation states from the ZINC database were
docked, we can state that in the CXCR3, negatively charged or neutral
species tend to be scored highest, while in the CXCRA4, the stronger posi-
tively charged species of a molecule is preferred. As shown in Figure 3.6,
this also applies for compound 7, where the neutral species is the best-
scoring one in the CXCR3 whereas it is the positively charged one in the
CXCRA. Interestingly, this change in protonation is predicted to occur at
the imidazole moiety and thus is chemically reasonable under assay condi-
tions at pH 7.4, assuming no significant pK, shifts due to local charge dis-
tributions in the binding site. Apart from the charges, the physico-chemical

properties of the ligands presented here lie well within the distributions of
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Figure 3.13: Distribution of BEIs (binding efficiency indices) for ligands with
annotated ICs59s or K;s taken from ChEMBL (upper panel) and ligands
identified here (lower panel), separately for the CXCRS3 (dark gray) and
the CXCRY (light gray). The relative frequency of BEIs is expressed as
density, calculated by a kernel density estimator. For dual binders, the
BEI values for both receptors were considered.

known ligands.

Additionally, we can draw very similar conclusions as in previous stud-
ies 2926527 with respect to the general suitability of docking against GPCRs.
First, in each category, high hit rates were obtained, sometimes even higher
than in other studies investigating peptide-binding GPCRs.?¢ Homology
models also continue to be a good source of ligands, with the hit rate for
the model of the CXCR3 being higher than the one for the CXCR4 in
our study. Second, docking is able to identify compounds with chemistry
previously undescribed for these targets. All but one compound identi-
fied herein have a Tanimoto similarity below 0.4 to any known CXCR3 or
CXCR4 binder from ChEMBL (see Table 3.3).

Lastly, the importance of careful verification of the binding specificity of
each ligand has to be emphasized. The risk of being overwhelmed by fre-
quent hitters or aggregators is particularly high in settings like the present
one, where compounds with a particular nonselectivity for two receptors
are desired. On the other hand, compounds should not be ruled out just
because of failure in only one control assay, as shown by the fact that com-
pounds that were flagged as potential aggregators in the DLS assay are in

fact likely specific binders in our assay conditions.
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The computational identification of ligands with tailored selectivity pat-
terns represents a promising avenue towards the discovery of effective med-
ications? and precise tool compounds in chemical biology applications. For
the receptors investigated, CXCR3 and CXCR4, the compounds described
here might serve as seeds to further investigate the potential of dual binders
as therapeutics. Future studies will show to what extent the panels of tar-

gets to be docked against can be expanded.

3.3 Methods

3.3.1 Homology Modeling

The sequence of the human CXCR3 (Uniprot: P49682, P42-Q345) was
aligned to the sequence of the crystal structure of the CXCR4 (PDB:
3odu, P27-Q328) 3% with T4-lysozyme residues (G900-S1201) removed, us-
ing the alignment service of uniprot.org. The sequence alignment was used
as input for Modeller 9.10.%6 Homology Modeling was performed using
multiple templates of the CXCR4 bound to the small-molecule modulator
It1t (PDB: 3odu, 30e6, 30e8, 30e9). One hundred models were gener-
ated and evaluated using the Stuctural Assessment service provided by
Swissmodel®” with QMEAN scoring. The eleven top-scoring models were
selected for a subsequent loop and binding site remodeling step. For each
of these eleven models, extracellular loops 2 and 3 (ECL2: A200-F207,
ECL3: A285-C290) were resampled, resulting in 110 new models. Re-
sampling was restricted in order to conserve disulfide bridges C124-C203
and C43—-C290. These models were again evaluated using the Swissmodel
server and the best-scored model of the overall 121 models was used for

further optimization steps.

3.3.2 Model refinement

Protonation states were assigned using YASARA®® to correspond to pH

7.0, optimizing the rotameric states for histidine, asparagine, and glu-
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tamine residues at the same time. Using PLOP %7 unfavorable inter-
actions were identified and automatically curated. We rebuilt ECL2, em-
ploying a two-step procedure: first, rebuilding A200-C203, followed by
the larger part L190-C203. Spatial restraints were used to maintain the
overall shape of the loop and to prevent it from collapsing into the trans-
membrane pocket. To optimize electrostatic interactions, selected residues

were subjected to a local energy minimization (see Table 3.8 (“EM”)).

3.3.3 Optimization of transmembrane binding pocket

After global optimization of the homology model, the allosteric binding
pocket of the receptor was optimized in more detail using six negative
allosteric modulators with subnanomolar affinity for the CXCR3 (com-
pounds 24-29, Table 3.9). These molecules were docked to the model

using Autodock Vina 1.1.17!

, calculating nine binding poses per ligand.
The superposition of all 54 binding poses was inspected and the two most
abundant orientations were selected for further investigation. This ex-
cluded 27-29 from further analysis. For the remaining six models (three
ligands with two binding poses each), the binding pocket was optimized
using PLOP. The residues involved in minimization for each binding pose
are listed in Table 3.8 (“BS1”,“BS2”). The final model was selected by
cross-docking all three ligands to each of the six models and choosing the
one with the best average score. We evaluated the final model by extracting
ligands (IC50<1pM) and decoys (IC50>1pM) from ChEMBL and docking
them to the model.

3.3.4 Docking & Re-Ranking

Docking was performed using DOCK 3.5.54.%72°™ The docking spheres
generated by sphgen were manually inspected and modified where neces-
sary to achieve a more uniform distribution across the binding site. The
‘lead-like’ subset of ZINC version 1146 was used, comprising around 2.4
M molecules at the time of download. The model of the CXCR3 and the
crystal structure of the CXCR4 (PDB: 3odu) were prepared for docking,
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Table 3.8: Residues of CXCRS3 that were subject to different refinement steps
(“BS17, “BS2”, “EM”) during model building.

Residue BW BS1 BS2 EM

GIn4d5 — X - X
Phed7 — X X X
Ser48 — X X -
Asph2  1.31 X X -
Argh3  1.32 x x x
Leu56 1.35 X X -
Tyr60 1.39 b X -
Thr105 2.56 X X -
LeulO8  2.59 X X -
Trpl109  2.60 X X -
Aspll2 263 X X -
Alall3 2.64 X X -
Trpl17 — X X -
Cysl24  3.25 X X -
Alal27  3.28 X X -
Gly128  3.29 X X -
Alal29  3.30 X X -
Phel31 3.32 X X -
Asnl132  3.33 X X -
Phel35  3.36 X X -
Aspl86  4.60 X X -
Leul90 4.64 X X -
His202  4.98 X X -
Cys203 — X X -
GIn204 — X X -
Tyr205 — X X -
Arg212 — x X -
Leu215 5.38 X X -
Arg216  5.39 - X X
GIn219  5.42 x X -
Trp268  6.48 - X -
Tyr271  6.51 X X -
Val275  6.55 - X -
Asp278  6.58 - - b
Asp297  7.32 - - X
Val298  7.33 b - -
Lys300  7.35 X X X
Ser301  7.36 x X -
Ser304  7.39 x X -
Gly305  7.40 x X -
Tyr308  7.43 x x -
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Table 3.9: ChEMBL IDs of CXCRS3 ligands used to refine the binding pocket of
the homology model.

Cpd ChEMBL ID

24 CHEMBL1077831
25 CHEMBL254083
26 CHEMBL403036
27 CHEMBL576097
28 CHEMBL578187
29 CHEMBL578192

optimizing hydrogen placement with CHARMM. ?® In order to identify dual
binders, we developed a re-ranking procedure yielding the selectivity score
S. S is defined as follows: given two dockings, the selectivity score of a
compound only takes the relative ranking of this compound in both dock-
ings into account. The relative rank is based on the rank of the compound

(r,) and the number of compounds docked in this docking campaign (m,).

(R — R2)2 +Ri+ R
2

R, = (7;2_11) (3.2)

where x denotes one of the two docking campaigns. The selectivity score

SRri,R2 = (3.1)

with

penalizes unfavorable rankings in each docking as well as a high difference

in rank and is scaled between 0 and 1 (see Figure 3.14).

3.3.5 Ligand selection and validation

Candidate molecules were selected from the 500 best-ranked molecules after
repeated visual inspection in order to remove molecules that achieve arti-
ficially high ranks because of one of several deficiencies of docking scoring
functions.?® For all compounds, a 'H-NMR (nuclear magnetic resonance)
spectra of 3mg compound in 1 mL DMSO (dimethyl sulfoxide)-D6 was de-
termined using a JEOL ECA-500 machine after receiving them from their
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Figure 3.14: 3D plot of the rescoring function used to identify dual binders.
Azis units show relative ranks and range from 0 (low rank) to 1 (high
rank). Dual binders should have a selectivity score close to zero.

respective vendors (Vitas-M Laboratory, Ltd [compounds 1, 2 and 19]; Life
Chemicals Inc. [compound 8]; Princeton Biomolecular Research Inc. [com-
pounds 10 and 11]; Ukrorgsyntez Ltd. (UORSY) [compounds 12, 13 and
20]; ChemBridge Corporation [compound 23]; Enamine Ltd. [compounds
3-7,14-18 and 21-23)). Each spectrum was checked for consistency with

theoretically expected peak distributions.

3.3.6 HEK membrane preparations

HEK (human embryonic kidney) cells were cultured in a 150-mm cell cul-
ture plate in DMEM (Dulbecco’s Modified Eagle’s Medium)/F-12 supple-
mented with 10% (v/v) FBS (fetal bovine serum), 2mM L-glutamine, 1 %
(w/v) penicilin-streptomycin and incubated at 37 °C in humid atmosphere
with 5% CO,. At 50%-70% confluency, cells were transiently trans-
fected with 30 pg of CXCR3 or CXCR4 cDNA, using TransIT-293 trans-
fection reagent (Mirus Corporation) and harvested 48 h after transfection.
The medium was aspirated, cells washed once with ice cold phosphate-
buffered saline (PBS, pH 7.4) and detached with harvest buffer (10 mM
Tris-HCl, 0.5mM EDTA (ethylenediaminetetraacetic acid), 5.4 mM KCI,
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140nM NaCl, pH 7.4). Cells were scraped, collected in a centrifuge tube
and spun at 220 G for 8 min. The resulting pellet was resuspended in 5 mL
of homogenate buffer (50 mM Tris-HCl, 5mM EDTA, 1.5 mM CaCl,, 5 mM
MgCl,, 5mM KCI, 120mM NaCl, pH 7.4) and subsequently lysed with an
Ultraturrax. After additional centrifugation at 50 000 G, membranes were
resuspended in binding buffer (50 mM Tris, 1mM EDTA, 5mM MgCl,,
100 pgmL~! bacitracin, 5 pgmL~! soybean trypsin inhibitor) and homog-
enized ten times with a glass-Teflon homogenizer at 4 °C. The homoge-
nized membranes were shock-frozen in liquid nitrogen and stored at —80 °C.
The protein concentration was determined with the Lowry method, using

bovine serum albumin as standard.

3.3.7 [**S|GTPYS incorporation assay

The [35 S} GTPyS incorporation assay was performed on membrane prepa-
rations of transiently transfected HEK293 cells that expressed either the
CXCR3 or the CXCR4. The assay was carried out in 96-well plates at a
final volume of 200 pL.. The incubation buffer contained 20 mM HEPES (4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 10 mM MgCl,-hexahy-
drate, 100 mM NaCl and 70 mg L ~! saponin (pH 7.4). Membranes (30 ug mL~!
of membrane protein), compounds and 10uM GDP were preincubated
for 30 min at 37°C together with either 5n1M CXCL11 (CXCR3-specific
chemokine) or 10nM CXCL12 (CXCR4-specific chemokine). After the ad-
dition of 0.10 nM [35 S} GTPyS, membranes were incubated for an additional
30min at 37 °C. Incubation was terminated by filtration through Whatman
GF /B filters soaked with ice-cold PBS. The filter-bound radioactivity was
measured as described above. Three to four experiments per compound
were performed with each concentration in triplicate. Ky and af values
were obtained from compound dose-response curves at constant chemokine

concentration.
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3 CXCR3-CXCR4 Ligands with Tailored Selectivity

3.3.8 Functional study analysis

To characterize the allosteric profile of our novel ligands, we applied the
ternary complex model of allosterism to analyze the data obtained from the
functional assays. The assumptions were that the allosteric modulators do
not cause a depression of maximal response or a suppression of basal activ-
ity, as these are not accounted for in this model. Importantly, even if these
assumptions did not hold entirely true for all the novel allosteric modula-
tors, this analysis enables a first approximation and a semi-empirical esti-
mate of cooperativity.” The data from functional studies, where discrete
concentrations of agonists were used, were fitted to the following equations

using Prism 5.0:

[B]
% 7KA <1+K—B) -
ap = T aBE (3.3)
I+ %5
[c] + Kapp

where K, describes the occupancy of the orthosteric site, K4 was the
ECs0 (half maximal effective concentration) value of CXCL11 or CXCL12
for CXCR3 and CXCR4, respectively, Yy the amount of agonist binding
in the absence of modulator, Y is the agonist binding, [c] the concentra-
tion of CXCL11 or CXCL12 used, [B] the concentration of novel allosteric
modulator, Kp the equilibrium dissociation constant of modulator bind-
ing, and «af the ternary complex constant, which denotes the cooperativity
factor.4%7% Importantly, the analysis of activity data requires considering
the cooperativity of allosteric and orthosteric ligand binding « as well as
the cooperativity against effectors like G proteins 3, although these cannot
be separated. In contrast, in binding data analysis the cooperativity factor
only takes « into account. Values of a8 > 1 denote positive cooperativity,
whereas a8 < 1 denotes negative ccoperativity. Values of a8 approaching
0 are indistinguishable from competitive antagonism. In that case, the Kp

values approaches the K; value.%? In the absence of cooperativity, aff = 1
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applies. In the [3*S]|GTP~S accumulation assay, the K 4 value for CXCR3
was set to 1.55nM and to 0.70nM for CXCR4. The concentration of the
chemokines CXCL11 and CXCL12 were set to 5nM and 10nM, respec-
tively.

3.3.9 Ligand similarities and properties

Ligand similarities (SIM) presented throughout the chapter represent the
Tanimoto coefficient between the ECFP4-like (extended-connectivity fin-
t.77

gerprint) Morgan fingerprints as implemented in RDki Ligand proper-

ties were calculated using OpenEye’s MolProp toolkit. "

3.3.10 Dynamic Light Scattering

DMSO stocks of each compound were diluted with filtered binding buffer
to a final compound concentration of 4 x 1073 mgmL~! (>10 M) and 1%
DMSO. Light scattering was measured using a Xtal-Concepts Spectro Size
300 machine at a scattering angle of 90° with an emission wavelength of
660 nm. For each compound, a maximum of 20 samples was recorded with

a measurement length of 10s each.

3.3.11 Endothiapepsin Assay

The endothiapepsin inhibition assay was carried out as described else-
where.™ A DMSO stock solution with 4mgmL~! was used, leading to
a maximum compound concentration of 4 x 1072 mgmL~" (>1001M) in
the well.
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4 Development of Tool
Compounds Targeting CXCR4
Isoforms in Zebrafish (Danio

Rerio)

In collaboration with Dr. Arndt Siekmann, Maz-Planck Insitute for Molec-
ular Biomedicine, Minster, Germany.
Contributions: Arndt Siekmann contributed the initial idea and carried out

all experiments in zebrafish.

4.1 Introduction

As has been described before, the CXC receptor 4 or its malfunction are
involved in infections or diseases, making the receptor an interesting target
for pharmaceutical research. However, CXCR4 also plays important roles
in embryogenic processes as extensively studied in different model animals.

In mice, for example, CXCRA4 and its ligand CXCL12 (SDF-1), in concert
with other signaling pathways, are responsible for different hematopoietic

79

processes such as B-cell lymphopoiesis and bone-marrow myelopoiesis * or

for growth-related processes such as the vascularization of the gastroin-
testinal tract.80
Another widely used in vivo model organism, besides the mouse, is the

zebrafish (danio rerio). It has desirable attributes such as the fast embry-
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4 Tool Compounds Targeting Zebrafish CXCR4 Isoforms

onic development and the optical clarity, which allows the application of
examination techniques such as fluorescent labeling and staining in live an-
imals. As a consequence, numerous experimental procedures for genomic
analysis and alteration have been developed for zebrafish, further increas-
ing the experimental value of this model organism.

Interestingly, due to a potential gene duplication event, zebrafish possess
two isoforms of the CXCR4 and consequently two ligand isoforms, termed
CXCR4a and CXCR4b and SDF-1b (CXCL12b) and SDF-1a (CXCL12a),
respectively. Both isoforms are highly similar, with CXCL12a (99 amino
acids, 11.3 kDa) and CXCL12b (97 amino acids, 11.3 kDa) sharing more
than 73% identical residues. Similarly, their receptors (360 & 353 amino
acids, 40.2 & 39.4 kDa) have a sequence identity higher than 72%. Interest-
ingly, the major contribution to receptor-ligand selectivity can be assigned
to a single position, position 33, which is an asparagine (N33, CXCL12a)
and a serine (S33, CXCL12b), respectively. Yet, these subtle differences in
concert with different expression patterns, predominantly contribute to the
subfunctionalization of the two receptor/ligand copies®!, which has been
investigated in several studies.

As in many other species, it could be determined that these CXCR4
isoforms and their respective ligands are involved in the guidance of mi-
grating cells by chemotaxis. In case of the latter receptor-ligand pair,
CXCR4b/CXCL12a, the cells guided can be primordial germ cells, which
are directed to the somatic site of the latter gonads.®? This differentiation
process is independent of CXCR4a and SDF-1b, which, in contrast, plays
a major role in the growth of blood vessels starting from existing ones.

The formation of the so-called LDA (lateral dorsal aorta), forms an im-
portant step in zebrafish embryogenesis and is achieved in a bidirectional
growth process, where the anterior LDA grows in posterior direction, while
the posterior LDA grows anteriorly, finally fusing and forming a contin-
uous vessel, as revealed by in vivo fluorescent techniques.®? During this
process, CXCL12b is expressed in the endoderm, a structure ventral to the
LDA, while its receptor is solely expressed in the anterior LDA, empha-

sizing the complexity of expression patterns and networks involved during
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4.1 Introduction

such developmental steps.

In parallel to the growth of the LDA, a second sprouting process can be
observed that forms the bilateral PHBCs (primordial hindbrain channels),
a venous structure in the zebrafish hindbrain. This process seems to be
independent of CXCRA4 signaling, since knockout mutants show a normal
phenotype. However, at a later stage of embryogenesis, starting at 30 hpf
(hours post-fertilization), another process of angiogenic sprouting in ze-
brafish hindbrain is evidently under the control of CXCR4.%* Originating
from the bilateral PHBCs, several CtAs (central arteries) start growing
and branching in an arch-shaped manner. These CtAs can form intercon-
nections before finally fusing with the medial-located BA (basilar artery).
During this cross-linking of venous and arterial structures, CXCR4a is ex-
pressed in the tips of sprouting CtAs while SDF-1b is secreted near the
BA, thus guiding the direction of growth. Upon connection of the CtAs
to the BA, the resulting blood flow down-regulates CXCR4 expression and
in turn, stops further growing. In knockdown mutants lacking CXCR4a or
SDF-1b, the CtAs emerge from the PHBCs the same way, but the growth
is undirected and stochastically driven, leading to an increased number of
CtA interconnections and a decreased number of drains into the BA.

These examples from zebrafish nicely underline that CXCRA4, in either of
its isoforms, has an important function in the proper development during
embryogenesis. Of course, CXCR4 signaling is not solely responsible for
these mechanisms but this receptor is only part of a complex network and
interplays with other targets such as VEGF and Notch.®* The complexity
of these signaling networks not only arises from the number of participating
structures, but also spatial (CXCR4 has to be expressed in the anterior
LDA but not in the posterior LDA) and temporal (LDA formation and
BA connection occur at different times in developmental cycle) factors, do
play a critical role.

One major drawback of the genomic methods used to investigate the
above described mechanisms is that usually these techniques only allow
gene silencing without further spatio-temporal control, i.e. they do not al-

low silencing at a certain developmental stage or in a tissue-specific manner
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4 Tool Compounds Targeting Zebrafish CXCR4 Isoforms

or if they do, the respective experimental setup is very complex. Conse-
quently, certain phenotypes could be the result of a secondary effect instead
of a direct effect related to the knockout of that gene. A small-molecule
tool compound might, in contrast, allow the rapid and reversible inhibi-
tion and activation of specific targets and in turn allow a more fine-tuned
control over the experimental setup.

In collaboration with the group of Dr. Siekmann (Max-Planck Insi-
tute for Molecular Biomedicine, Miinster, Germany), I started the de-
velopment of such tools compounds modulating CXCR4, preferably se-
lective for either CXCR4a or CXCR4b of the zebrafish. Since neither
of these structures had been determined experimentally, two homology
models had to be built based on solved GPCR crystal structures. Sub-
sequently, we docked the ZINC46:% lead-like subset to these models and
selected molecules whose docked poses showed favorable interactions with
the receptor models. These molecules were tested in vivo by incubating
the zebrafish embryos together with the respective compound and moni-
toring the phenotype during the following developmental stages, with the
aim to identify bioactive compounds showing a CXCR4 subtype-related
phenotype.

4.2 Results

4.2.1 Homology Models and Docking

The final homology models were assessed in an unbiased way using the
ModEval Server, which calculates the GA34185 and the normalized DOPE
(z-DOPE) score®” (Table 4.1). Both scores try to score the quality of a
structure based on pairwise potentials, but while the first one positively
correlates with the model quality, a better model is indicated by a more
negative z-DOPE score. The homology models perform slightly worse than
the crystal structure but lie within a comparable range with respect to these
quality scores. Furthermore, a manual comparison of the crystal structure

of human CXCRA4 that was used as template with the built homology mod-
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4.2 Results

Table 4.1: Structure quality assessment of CXCR4a, CXCR4b and the used

template.®
hCXCR4 template CXCR4a model CXCR4b model
GA341 0.998 0.825 0.869
z-DOPE —0.592 —0.461 —0.364

“Assessment scores were calculated using the ModEval server.
For GA341, scores > 0 indicate good models while for z-DOPE
scores < 0 are preferred. For non-membrane proteins, scores
above 1 or below -1, respectively, indicate a native-like structure.

els clearly shows the similarity between the structures and that the homol-
ogy models successfully resemble the main features of the template (see
Figure 4.1). These features include position 7.39 (Ballesteros-Weinstein
notation®?), where the conserved glutamic acid is responsible for form-
ing a key interaction with a bound ligand.®* Furthermore, the respective
aromatic zippers®® have positions 3.32 and 6.51 in common, while the ty-
rosine at position 7.43 in zebrafish variants offers an additional hydrogen
bonding capability compared to the phenylalanine in human CXCR4. Ad-
ditionally, the aromatic zipper is extended by a phenylalanine in CXCR4a
and CXCR4b. After building and validating the homology models of both
isoforms, the ZINC lead-like subset%%® was docked to each of the mod-
els as described in the “Methods” section. From each of the two docking
runs, compounds were selected from the top-scoring poses based on man-
ual inspection. In total, 42 substances were independently selected for

subsequent experimental testing, 21 for each of the models (see Table 4.2).

4.2.2 In vivo assay

All compounds were applied to zebrafish during embryogenesis and larvae
were monitored for abnormal phenotypes. For all but one compound, the
larvae either underwent a normal embrygenetic cycle or died. Given the lat-
ter case, the applied doses of test compound were lowered until a non-lethal
dose was reached. In all of these cases, no phenotypic differences could be

observed once such a non-lethal dose was reached. No attempt was made
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4 Tool Compounds Targeting Zebrafish CXCR4 Isoforms

Figure 4.1: Comparsion of the human CXCR4 crystal structure (a+b, light
brown) and the created homology models of zebrafish CXCR4a (¢, cyan)
and CXCR4b (d, magenta), respectively. Receptors in ribbon represen-
tation. Residues surrounding binding site in stick representation. (a)
Human CXCR/ (PDB 3o0du). (b) Human CXCR4 (PDB 3odu) with co-
crystallized ligand ITD as stick&stick. (c) Homology model of zebrafish
CXCR4a. (d) Homology molde of zebrafish CXCR4b.
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to further investigate these lethal compounds, since these effects could well
be target-mediated, i.e. by blocking off-targets, as well as of chemical
nature, i.e. the change of pH value or osmotic pressure or similar at con-
centrations as high as 100pnM. One single compound, however, did show
a phenotypic effect. This compound, C72447712, reproducibly introduced
cranial bleeding in zebrafish larvae as shown in Figure 4.2. However, this
specific phenotype differs from the phenotype introduced by CXCR4a/b

knockdown.

4.3 Discussion

As described in the results, the models built here do resemble the main
features of the (human) CXCR4 binding site. However, it has to be noted
here that no ligand information, that is, information about known binders,
were used to refine the receptor binding site around the poses of these com-
pounds. It has been shown that the use of such additional information can
substantially improve the quality, in terms of retrieval rate, of a homology
model, even when the binding poses used in such a process are not ex-
perimentally supported but purely modeled.®® Unfortunately, the amount
of ligand data on zebrafish CXCR4a/b is sparse, at best. In ChEMBL%
for example, not a single compound is listed binding to either CXCR4a or
CXCR4b (as of Dec 2014).

This fact might be the reason that only one compound out of 42 showed
a biological activity, which corresponds to a low hit rate, compared to
other studies applying docking techniques to GPCRs.?® This hit rate must
be considered however within the context of the setup used herein. All
compounds which were predicted to be affine to either of the receptors were
predicted based on homology models, which is more challenging than using
an experimentally determined structure, despite the fact that homology
models can be successfully used within such a setup. The above described
lack of ligand data that could be used to refine the model has to be taken

into account as well.
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Tg(kdr:EGFP)s
C

Tg(gatala:DsRed)s®

overlay

Figure 4.2: Substance C72447712 leads to cranial bleedings in zebrafish em-
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bryos. Embryos were treated with 100 puM DMSO as control (left col-
umn) or with substance C72447712 (right column). (A) Brightfield im-
age of control embryo at 48 hpf. (B) Tg(kdrl:EGFP)***% transgene shows
blood vessels in green. (C) Tg(gatala:DsRed)*™ transgene shows red blood
cells. Arrowhead marks brain blood vessels. (D) Confocal zoom in image
of brain blood wvessels marked by Tg(kdrl:EGFP)***? transgene and red
blood cells marked by Tg(gatala:DsRed)*™. Arrowhead indicates anterior
brain blood vessels. (E) Brightfield image of C72447712 treated embryo
at 48 hpf. (F) Ty(kdrl:EGFP)**** transgene shows blood vessels in green.
(G) Tg(gatala:DsRed)*™ transgene shows red blood cells. Arrow indi-
cates cranial bleeding. (H) Confocal zoom in image of brain blood vessels
marked by Tg(kdrl:EGFP)**** transgene and red blood cells marked by
Tg(gatala:DsRed)*™. Arrow indicates cranial hemorrhage. Hpf: hours
post fertilization



4.3 Discussion

Secondly, and maybe more importantly, the in vivo experiments used to
verify the predictions made have some disadvantages compared to in vitro
assay. First of all, although GPCRs are membrane receptors and as such
do not require the ligand to diffuse through the membrane, it must be as-
sumed that the ligand concentration throughout the tissue of the zebrafish
larvae is non-uniformly distributed. The respective diffusion constants, of
course, may vary between the single test substances. In turn, this means
that the final bioactive ligand concentration, i.e. the number of ligands in-
teracting with the respective receptor, is undefined and may be way smaller
than the concentration applied. The same limitations, of course, apply for
the update rates of the test substances into the larvae. Altogether, it is
possible that a compound cannot interact with the receptor in reasonable
high concentrations although the ex vivo concentration is very high. By
design, the molecule library used for docking should contain structures that
have a high probability of being bioavailable. However, this assumption is
based on the calculation of simple physico-chemical descriptors and thus
bioavailability cannot be guaranteed.

Furthermore, while there’s usually a defined readout in in vitro experi-
ments, which can be detected in a quantitative manner, the definition of
such a quantitative measure can be difficult in in vivo models. For example
considering the fusion of the anterior and posterior lateral dorsal aorta as
described above.

All these aspects do contribute to the difficulty in predicting bioactive
substances and proving such bioactivity. In the given case, however, we do
see a biological effect, but this effect has not been described before to be
associated with CXCR4 knockdown. The observed bleeding is located in
the hindbrain, anterior to the bilateral PHBCs (see Figure 4.2), while the
latter as well as the fusion of the LDA seems to be unaffected, in contrast
to a CXCR4 knockdown. Of note, the fact that C72447712 shows an
effect different from a CXCR4 knockdown does not exclude the possibility
that this effect is mediated via a directed CXCRA4 interaction. In fact,
the heterogeneous ligand distribution (spatially and temporally) and the

(potentially) incomplete down-regulation compared to a knockout might
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well lead to the exhibition of a different effect, which is supported by the
fact that the observed phenotype involves the integrity of blood vessels, for
which a correctly functional CXCRA4 is crucial. Moreover, C72447712 could
act as an agonist, for which the phenotypic effect has not been described.

Nevertheless, the possible interaction of C72447712 with an off-target is
plausible and has not been neglected. Instead, SEA® has been used to
predict potential targets other than CXCR4, yielding the murine GABA
(y-Aminobutyric acid) transpoter 1 as potential off-target with an E-value
of 2.7 x 10~* using ChEMBL*® version 16 as database and ECFP4 as
fingerprint metric (as of Dec 2014). Since no ligands are annotated for
zebrafish targets in ChEMBL, SEA cannot yield any zebrafish-specific tar-
gets. Searching the ZFIN database?® did however not yield a GABA trans-
porter 1 with a phenotype comparable to the one observed.

In summary, the application of modeling and virtual screening to two
zebrafish variants of CXCR4 lead to a single compound C72447712 which
induced a cranial bleeding in the zebrafish hindbrain. This might well be
the result of an interaction with CXCR4 despite the fact that this new phe-
notype differs from those induced by CXCR4 knockdowns. The achieved
hit rate is low and might be the result of a lack of ligand information that
could be used to shape the binding site of the built models. It could improve
iteratively by feeding back experimental data into the model, thereby refin-
ing the models. Furthermore, even correct predictions might be considered
false negatives if the interaction is hindered by differing spatial-temporal
distribution of CXCR4 and respective test substance or the insufficient up-
take of the latter into the larvae. If an existing interaction is not observed
since the morphological effect cannot be detected by the experimental setup
used, the application of different gene markers or staining techniques might
be required. Consequently, an in-depth analysis might yield additional hits
than the one observed.

Although the desired small-molecule tool compound could not be iden-
tified in this first round of screening, the detailed analysis of the selected
compounds, the iterative improvement of the used models, the potential

off-target interaction and the new, before described phenotype pose inter-
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4.4 Material & Methods

esting challenges for subsequent research projects.

4.4 Material & Methods

4.4.1 Homology Modeling & Refinement

The sequence of CXCR4a (entry F1QCB2) and CXCR4b (entry QIPTET)
were retrieved from the Uniprot database.?! These sequences were aligned
against the sequence of the crystal structure of the human CXCR4 (PDB
30DU) using Muscle v3.8.31.92 The resulting alignment was manually
truncated to those amino acids which had been crystallographically re-
solved. Then, three homology models were built of each of the two re-
ceptors using Modeller 6 v9.10. During modeling, artificial restraints were
applied to residues 201-205 of CXCR4a and residues 193-197 of CXCR4b,
which were defined to be part of an a-helix (TM-V).

The initial homology models were all protonated using PropKa
as implemented in PDB2PQR? 1.8 at pH 7.0. These hydrogens were min-
imized using PLOP5%7_ followed by the calculation of energies and the

93;94 3.0

identification of structural clashes as defined by PLOP. In a second mini-
mization step, the sidechains of these clashing residues were unconstrained,
while all remaining atoms were kept fixed. Subsequently, the best model
was manually selected for each of the two targets. The initial model of
CXCR4a was used for a first round of docking and experimental testing
and due to the lack of results, both models were separately inspected and
further optimized.

For CXCR4a several sidechains close to the binding site were selected,
for which the orientations were resampled using PLOP. These residues were
Leud7 (leucine), Tyr51, Valll8 (valine), Tyr122, Leul26, Phel91, Glul193
(glutamic acid), Argl94 (arginine), Arg209, Tyr265, I11e269 (isoleucine),
Asp272 (aspartic acid), Leu290, GIn291 (glutamine) and Phe295. The
resulting structure underwent two final minimization steps, the first one
involving residues 196-204, forming the N-terminal part of TM-V and a

final all-atom relaxation using a high RMSG (root-mean-square gradient)
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of 0.5 as termination criterion.

For CXCR4b, as for CXCR4a, several sidechains were manually se-
lected subsequently and their conformations automatically resampled us-
ing PLOP. These were Leu28, Val30, Gln35, Asnlll (asparagine), Asp169,
I1e183, Glul85, Leul86, Thr187 (threonine), Lys197 (lysine), Arg201, Asp265,
Glu284 and Phe288. The final minimization steps included Tyr188 followed
by an all-atom relaxation as described for CXCR4a.

4.4.2 Docking

Virtual screening was carried out using DOCK 3.6 1727 with the ZINC 46:8
lead-like subset as input. The necessary input spheres for DOCK were gen-
erated from sphgen. Since for homology models no crystallographic ligand
information are available, an artificial ligand was built to define the bind-
ing site for docking. For this artificial ligand, the crystallographic data
of Arg2, Aln3 and Dprl6 (D-proline) of the cyclic 16-mer peptide (PDB
30e0) and the small-molecule ITD (PDB 3odu) were used. These atomic
positions were solely selected to represent the complete spatial extent of
the binding pocket. This artificial ligand did not influence the sampling
or scoring process in any kind. Consequently, sphgen was run using the
“useligsph=no” setting.

From the respective docking runs, the top scoring molecules were manually

inspected and evaluated and promising candidates were selected.

4.4.3 Compound Acquisition

All compounds were acquired from Enamine Ltd. and ChemBridge Cor-
poration as indicated in Table 4.2.

4.4.4 In vivo screening

Embryos were dechorionated at 26 hours post fertilization (hpf) and in-
cubated in either 100 pM DMSO (vehicle) or 100 pM of test substance

at standard conditions. Solutions were prepared from 50 mM stocks in
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Table 4.2: Compounds selected for erperimental testing.”

Zinc-ID Vendor Vendor-ID Model

1 C14541589 Chembridge 37918222 CXCR4b

2 C19733246  Chembridge 56561462 CXCR4b

3 C19810479  Chembridge 64204583  CXCR4b

4  (C23368589  Chembridge 48301499  CXCR4b

5 (32859998 Enamine 7203876164  CXCRA4a

6  C32860075 Enamine 7203880752  CXCRA4a

7  (C45814912  Enamine 7507420516 ~ CXCRA4a

8 (C47676702  Enamine 7595833238  CXCRA4a

9 (C48018216 Enamine 7433968290 CXCR4a
10 C56890235  Enamine 7748134498  CXCRA4a
11  C58304919  Enamine 71097113944  CXCR4a
12 (C58329494  Enamine 71104856873  CXCR4b
13  C65435638  Chembridge 67775968  CXCRA4a
14 C67688459  Chembridge 31651906  CXCRA4a
15 C67712788  Chembridge 59060042 CXCR4b
16  C67724182  Chembridge 36244854  CXCR4b
17  C67774860  Chembridge 67542592  CXCR4b
18 C67884655  Chembridge 54121352  CXCR4b
19 C67921334  Chembridge 86052064  CXCR4b
20 C67983484  Chembridge 98321975  CXCR4a
21  C69390116  Enamine 71139549946  CXCR4b
22 C69716774  Enamine 71088496416  CXCR4a
23 C69848777  Enamine 71139513069 CXCR4a
24 C69952155  Enamine 71102775653  CXCR4a
25  C70457919  Chembridge 56912524  CXCR4a
26  C71405573  Chembridge 12508662 CXCR4b
27 C71768012  Chembridge 91924514  CXCRA4a
28 (72148370  Chembridge 62916307 CXCRA4a
29  (C72155873  Chembridge 72062625  CXCR4b
30 (C72156022  Chembridge 72312322 CXCR4b
31 (C72162162  Chembridge 52465319 CXCR4a
32 (72162456  Chembridge 53236042 CXCR4a
33 C72165221 Chembridge 81726638 CXCR4b
34 (C72166712 Chembridge 85293936  CXCRA4a
35 (C72280919 Enamine 71183935251 CXCRA4a
36  (C72285240 Enamine 71207958007 CXCR4b
37 (C72447712  Chembridge 63825925  CXCR4b
38 C73271416 Enamine 71314157363 CXCR4b
39 (C77285475  Enamine 71252568433 CXCR4b
40 C77505538  Chembridge 85126517  CXCR4b
41  C78491589  Enamine 7103788666  CXCRA4a
42 C79074287  Enamine 7446174310 CXCR4b

% Shown is the compound ID, the vendor the substance was acquired
from, the vendor’s compound id and the model the compound was
selected from.
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DMSO. Imaging was performed on a Leica stereomicroscope or on a Leica
SP5 confocal microscope. Confocal images were analyzed using Imaris soft-
ware (Bitplane). For images from the stereomicroscope, Volocity software

was used.
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5 Docking to Crystallized and
Modeled CCR5 Receptor

Conformations

Contributions: Second messenger assays were carried out by the contract

research organization DiscoveRx Corporation, Fremont, CA, USA.

5.1 Introduction

The 3-chemokine receptor CCR5 is another prominent example of a recep-
tor from the chemokine receptor family with high pharmaceutical relevance.
As chemokine receptor it is highly expressed on leukocytes and is respon-
sible for the triggering of chemotaxis. Four major endogenous chemokine
agonists are known, which are RANTES (“regulated on activation, nor-
mal T cell expressed and secreted”, CCL5), the macrophage inflammatory
proteins-1oc and -1 (MIP-1oc and MIP-1f3, CCL3 and CCL4) and the
monocyte chemotactic protein-2 (MCP-2, CCLS), however, evidence exists
for interactions with other signaling agents. %6

CCRb5 has a proven role in rheumatoid arthritis, graft rejection, neu-
rodegenerative diseases and asthma, but the main reason it has been in
the spotlight of research for several years now is its ability to trigger inter-
nalization, which can be exploited by HI virions to enter and infect the host
cell.?7 As a result of the intense research activities on this target, several

high-affinity ligands binding to CCR5 are known, including, but not limited
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Figure 5.1: Chemical structures of known CCR5 inhibitors a) TAK-779, shown
with azes for orientation. Implications of those axes are discussed in the
text. b) Maraviroc

to, TAK-779, developed by Takeda Inc.”® (see Figure 5.1a) and UK-427857
(see Figure 5.1b), which was developed from a high-throughput screening
hit at Pfizer.?? Since 2007, UK-427857 is approved by the FDA (U.S. Food
And Drug Administration) as HIV entry inhibitor named Maraviroc.

At the beginning of the project outlined here, no crystal structure of
CCR5 was publicly available. Consequently, the aim of this work was to
develop a homology model of CCR5 using one or several known binders to
model a highly accurate binding site and to use this model for subsequent
virtual screenings and potential SAR (structure-activity relationship) stud-
ies. However, close to the finalization of the model, the CCR5 crystal struc-
ture was solved and published with Maraviroc, an inverse agonist, bound.

As a consequence, the outline of this project was realigned.

Instead of considering the building of a homology model as obsolete, this
new situation was considered as a chance to directly compare an unbiased
homology model with the respective crystal structure. This comparison is
not limited to structural differences between model and crystal structure

but also the docking runs, i.e. the ranking of the ligands was compared.



5.2 Results & Discussion

In addition, the binding site of the crystal structure was remodeled, re-
sulting in a third structure, which was able to host TAK-779. This was
based on the observation that the crystal of CCR5 structure bound to
Maraviroc was unlikely to be able to bind TAK-779 in the observed re-
ceptor conformation. Through detailed inspection of the crystal structure
combined with proposed interaction modes of TAK-779 derived from ex-
perimental data, a single phenylalanine side-chain could be identified as
gatekeeper residue, closing a large subpocket located deeper within the he-
lix bundle. By flipping this residue to a new conformation, the respective
subpocket was opened and able to host part of TAK-779 upon binding. To
refine this third structure, TAK-779 was manually placed into the struc-
ture, the complex was modified where considered necessary, and subse-
quently minimized. The whole cycle was iterated several times to create a
final complex as near as possible to a native conformation of the receptor
bound to TAK-779.

Each of the three structures was then subjected to large-scale virtual
screening, during which the ZINC lead-like subset was docked to every
receptor. Subsequently, promising candidates where selected from each
docking run. Selected compounds were finally evaluated for their in wvitro
activity against the CCR5.

5.2 Results & Discussion

5.2.1 Homology Modeling of CCR5

The homology model of CCR5 was built using three distinct crystal struc-
tures as templates. All three templates had a sequence identity above
30 %, which can be considered a lower threshold of sequence identity for
which the respective structures can be expected to have to same fold '%°
(see Table 5.3). Initially, 20 models were generated using Modeller ¢ which
were manually inspected and the most promising one selected. This model
was then manually refined in an iterative process as described in detail in

the “Methods” section. An unbiased homology model was created, i.e. no
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(a) (b)

Figure 5.2: Querlay of the CCR5 crystal structure (brown) and the homology
model (green). The crystal ligand Maraviroc is shown in red. View from
the extracellular side onto the plane of the membrane (a) Ribbon represen-
tation (b) Stick representation of the binding site. Trp86=°° (tryptophan),
Glu283™% and GIn194°4 are highlighted by ball-and-stick representation.

Residues are labeled where feasible.

ligand structure was used throughout the refinement process of the model,
although this is known to potentially improve the quality of a homology
model. 34% The reasoning was that any ligand information used would in-
troduce a bias towards (using Maraviroc) or away (using any other ligand)
from the crystal structure. Nevertheless, the final homology model nicely
resembled the overall structure of CCR5 as shown in Figure 5.2a, with a
calculated RMSD (root-mean-square distance) of the backbone atoms of
2.6 A. Major differences include the N-terminus (not depicted in Figure 5.2)
which is not forming a distinct secondary structure in the homology model,
due to the lack of an appropriate template. A typical issue in homology
models of GPCRs. Furthermore, the -hairpin structure of ECL2 is more
“closed” in the model, thereby covering the transmembrane binding site.

At its C-terminal end, the crystallized conformation of this loop shows an
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unusual turn structure without internal hydrogen bonds that could stabi-
lize the turn (see Figure 5.3a). A closer inspection of the electron density
of the crystal structure highlights that the structure assignment is not
unambiguous due the experimental uncertainty at the given resolution of
2.7A. An alternative loop conformation can easily be modeled that fits
the electron density equally well and at the same time brings the carbonyl
oxygen of Pro183 (proline) and the amide nitrogen of GIn186 in hydrogen
bonding distance (see Figure 5.3b). Also, the overall shape of the loop
might well be influenced of the crystal packing with the symmetry related
unit (see Figure 5.3, light brown), leading to a bend conformation of the
loop in contrast to the extended conformation in the homology model (see
Figure 5.3¢). Due to the in-between distance, a strong influence of this
loop region on the binding pocket is unlikely. Yet, these two aspects nicely

highlight that have to be considered when working with crystal structures.

The most apparent structural deviation is at the extracellular parts of
TM-VI and TM-VII, where TM-VI is slightly more ordered and forms a
more ideal a-helix in the model, while the first turn of TM-VII is strongly
disordered. Also, the modeled helices tend to be bend towards the center
of the structure, leading to a smaller binding site.

A more detailed comparison of the binding sites (see Figure 5.2b) un-
derlines the successful modeling, since most residues have comparable side-
chain orientations in the model and the crystal structure. Notable excep-
tions are highlighted in Figure 5.2b by a ball-and-stick representation and
include Trp862%°, Glu2837-3° and GIn194°4°. In the experimentally de-
termined structure, Trp862° is in an “upright” conformation while the
modeled conformation is flipped by around 90°, i.e. the indole moiety is
close to parallel to the layer of the membrane. The latter conformation
would interfere with the binding of Maraviroc but is the observed confor-
mation in CXCR4 (PDB 3o0du??), thus both conformations seem possible.
This turned conformation closes a small subpocket hosting the isopropyl
moiety of Maraviroc and thus changes the overall shape of the pocket.

As a side note, the salt bridge between Glu28373° and the azabicyclo
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(©)

Figure 5.3: The CCR5 crystal structure shows an unusual turn structure between
ECL2 and TM-V without stabilizing hydrogen bonds. (a) Crystal structure
of CCR5 (PDB 4mbs, brown) with symmetry related unit (light brown,).
(b) Alternative loop conformation (gray) brings Pro183 and GIn186 in
hydrogen-bonding distance. Electron density (blue) from PDB 4mbs at a
o-level of 1. (c) Eaxtended loop conformation in homology model (green)
might interfere with symmetry related unit (light brown).
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(tropanyl) moiety is a nice example of an electrostatic interaction which is
embedded in a hydrophobic environment, in the given case the isopropyl
and the benzyl moiety of Maraviroc. The hydrophobic environment shields
the interaction from other polar groups, thereby decreasing the dielectric
constant € and consequently increasing the enthalpic contribution com-
pared to a salt bridge which is solvent exposed.!®! Such a shielded salt
bridge may be beneficial for a long residence time, which has been mea-
sured to be around 16 h for Maraviroc bound to CCR5. 102

This specific glutamate adopts a different side-chain orientation in the
model which is closer to Tyr37, presumably caused by the minimization
protocol used, where the glutamate was allowed to move freely, i.e. un-
constrained, during the last minimization cycle. Since no ligand was used
within this refinement, the final structure is biased towards a conformation
where the negative charge is at least partly compensated, achieved by the
hydrogen bond to Tyr37-OH. Finally, also Gln194°4° was modeled point-
ing into the binding pocket and thus offers additional hydrogen bonding
possibilities. In combination with the aforementioned inwards movement
of TM-VI and TM-VII, this conformation contributes to the size reduction
of the binding pocket.

Altogether, it can be assumed that the templates and the sequence align-
ment used for model building were in general correct, as concluded from the
successful overlay of the binding site residues. Furthermore, the model is
structurally close to the experimentally determined one in terms of RMSD.
Using Maraviroc as ligand might have increased the similarity even more,
given that the binding mode of Maraviroc would have been correctly pre-
dicted. The model also reproduces the positions of the majority of the
binding site residues with few exceptions including the known key residue
Glu28373 as well as Trp86290. The “ligand-free” optimization protocol
used led to a shrunk binding site, which might be the major drawback of
the developed model.
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5.2.2 Reshaping the CCR5 binding site

Besides Maraviroc as FDA-approved CCR5 inverse agonist, a number of
CCR5 modulating lead structures have been identified, including TAK-
779, a CCRH antagonist which has been developed already 15 years ago
(see Figure 5.1a). Until now, several works have been published proposing
binding modes of TAK-779 in complex with CCR5 based on experimental
data like site-directed mutagenesis. %3196 However, crystallographic data
have not been available at this point in time. Remarkably, although the
sets of proposed key residues involved in ligand binding overlap through-
out the mentioned articles, the authors propose different binding modes.
With the availability of the crystal structure, a new opportunity emerges
to derive a more accurate model of the bound complex. Based on previous
publications and a comparison with the crystal structure it was assumed
that (i) the tertiary amine binds to Glu2837-39 (ii) the oxane moiety points
into the minor binding pocket between TM-I, TM-II, TM-III and TM-VII,
comparable to the 3-methyl-5-isopropyl-1,2,3-triazol function in Maraviroc
and (iii) the position of the amide bonds are comparable between Maravi-
roc and TAK-779. Interestingly, the conformational flexibility of TAK-779
is restrained by the cycloheptene ring to have a nearly 90° kink in the
three-dimensional geometry of the molecule. This is indicated by the axes
in Figures 5.1a & 5.4 and the superposition of sampled ligand conforma-
tions (see Figure 5.4). This, in concert with the assumptions made before,
lead to the conclusion that the hydrophobic tail of this ligand points ei-
ther out of the binding site towards the extracellular side of the cell (as

104) or deeper into the transmembrane

it has indeed been proposed before
helix bundle. While it seems unlikely that a high-affinity ligand has a
hydrophobic group pointing towards the solvent, the latter orientation is
hindered by the limited depth of the pocket which is formed by Tyr1083-32,
Phe1123-36 and Trp2485-48. This depression does not offer more space than
for the phenyl moiety of Maraviroc. Delving into the buried volumes within
the solved structure reveals a small, hidden cavity capped by Phe1123-36

in the extracellular direction. By choosing a different phenylalanine side-

70



5.2 Results & Discussion

Figure 5.4: Sampled ligand conformations of TAK-779 are superimposed to high-
light its kinked overall conformation. Axes as in Figure 5.1. Arrows in-
dicate potential interactions between ligand moieties and CCR5. These
assumptions were used to model TAK-779 bound to CCR5. Ligand con-
formations calculated using Corina?” 199,

chain rotamer, this pocket opens towards the ligand binding site and allows
TAK-779 to bind deeply within the transmembrane helix bundle (see Fig-
ure 5.5). According to the Dunbrack library !0 used, the selected rotamer
(x1 ~ —80°, x2 ~ 100°) has a considerably lower probability of occurrence
with 13 % compared to the original rotamer (y; = 180°, x2 ~ 80°) with
76 %. Still, it is the second most abundant orientation of Phenylalanine
observed, indicating that this newly created conformation is near-native.
Concurrently, while the side chain flip did cause minor movements of the
neighboring Phe79253, it did not introduce a severe sterical clash. The
completely remodeled and minimized structure shows an all-atom RMSD
of only 2.35 A, accentuating that this conformation could potentially be
adopted by CCR5 in vivo and thus might have a biological relevance. Fi-
nally, the resulting pocket is not only able to host TAK-779, but there is
still unoccupied space in the newly formed pocket which explains studies
on chemical derivatives of TAK-779, showing that even extended 4-methyl-
biphenyl motifes can bind to CCR5 within a nanomolar affinity range.!!!
The generated model of CCR5 in a TAK-779-bound conformation was

subsequently used for a virtual screening campaign as described below,
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Figure 5.5: Comparison of the CCRS5 crystal structure (brown) with the reshaped
model (purple). Side view parallel to the membrane. Receptor in surface
representation cut open perpendicular to the line of sight. Ligands in ball-
and-stick representation. Light areas indicate where surface is hidden by
the cut plane. (a) Crystal structure (brown) bound to Maraviroc (red),
(b) Reshaped model (purple) bound to TAK-779 (yellow). By turning the
F112 side chain, a new binding pocket becomes accessible.
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convinced that this model will enrich different chemotypes upon docking
compared to the remaining two structures used. However, although the
complex was modeled very carefully and likely resembles the overall bio-
logical interaction between CCR5 and TAK-779, it has to be emphasized
that there is room for further improvement. A shift of TAK-779 along axis
“ax1” and simultaneously along axis “ax2” would lead to a counterclock-
wise rotation of TAK-779 within the binding site, thereby resolving mi-
nor issues. These issues are the slightly stranded tetrahydropyran moiety,
which has been forced into a boat conformation during the minimization.
The above described motion of the ligand could allow it to adopt a more
relaxed conformation and potentially flip into a chair conformation. As
an additional side effect, the quartenary amine would move closer to the
center of the binding pocket and thus allow Glu28373° to adopt a side-
chain orientation closer to the one found in the crystal structure. The
benzene ring of the 6,7-dihydro-5H-benzocycloheptene substructure would

23-36 instead of the termi-

then form m-stacking interactions with Phell
nal 4-methyl-phenyl group. The latter one would move deeper into the
transient pocket and could form aromatic interactions with Tyr244544 and
Trp248%-48, Though they have of course been considered, these proposed
interactions are purely hypothetical and could not be reproduced using
the minimization protocol described herein. This protocol consisted of the
manual movement of the ligand in the bound complex alternating with
an energy minimization. These steps were repeatedly iterated until con-
vergence was reached. At this point, the energy minimization caused the
ligand to move back into the initial orientation after a manual movement
of the ligand towards the desired binding mode. Consequently, it has to
be assumed that (i) the minimization procedure converged at the stable
receptor-ligand complex or (ii) the minimization trajectory is trapped at
a local optimum and further improvements require major side-chain re-
orientations or moves of the backbone structure. These major structural
changes might be necessary, although the overall change in orientation of
the ligand within the binding site might be small. For the further use of the

structure, the first case is assumed but the possible existence of a spatially
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close but energetically preferred structure must not be neglected. However,
overcoming the structural barrier to find this potential structure might re-
quire more sophisticated simulation techniques such as steered molecular
dynamics simulations. Such a simulation would allow to apply an artificial
force along the axes “ax1” and “ax2”, beyond the possibilities of the simple
minimization protocol used here. This could allow the ligand the overcome
the energy barrier of the local minimum and to move into the above de-
scribed position. Also, these simulations can take explicit solvent effects
and the influence of an artificial membrane into account that is required
to elucidate significant changes on receptor geometry.!'?113 Due to the
complex nature of such simulations, the correct setup is time-consuming
and requires future work.

In summary, a CCR5 model was developed bound to its antagonist TAK-
779 starting from the crystal structure of CCR5, solved in complex with
Maraviroc, an inverse agonist. Phel11233% was identified as a gatekeeper
residue, capping a hidden subpocket deep within the transmembrane helix
bundle. By flipping the phenylalanine aside, this hidden pocket opens and
allows the long hydrophobic tail of TAK-779 to bind to the CCR5. This
newly identified void also explains how chemical derivatives of TAK-779
with extended hydrophobic tails can bind to the receptor with nanomo-
lar affinities as determined by Junker and coworkers.'!! The development
of a receptor conformation that is presumably able to bind these ligands
consequently allows the future development of quantitative SARs to bet-
ter understand which chemical entities strengthen and weaken the ligand-
receptors interactions. Molecular simulations would furthermore help to
understand the dynamics of receptor-ligand interactions beyond this static
view and might eventually yield even better models of the CCR5-TAK-
779 complex, which could not be developed using the modeling procedure
outlined here. Finally, sufficiently sophisticated simulations might give an
insight into the mechanisms causing TAK-779 to act as antagonist and
Maraviroc being an inverse agonist. Altogether, a number of new and ex-
citing questions arose from this project for future research topics, starting

with a virtual screening approach as presented in this work.
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5.2.3 Virtual Screening against different CCR5 structures

Each of the three above-described structures, i.e. the crystal structure, the
homology model and the crystal structure with a reshaped binding site,
were used for large-scale virtual screening. The complete ZINC lead-like
subset was used as ligand set and all dockings were run in an unbiased
fashion and independently of each other, i.e. no filtering rules or phar-
macophore models were used to reduce the number of ligands. The whole
set of necessary calculations required a large amount of computational re-
source, in total more than 23300 CPU (Central Processing Unit) hours
were spent on the docking calculations alone, distributed over about 250
CPU cores.

After docking, the best 500 scored molecules for each single docking run
were inspected. For the docking to the model and the reshaped structure,
candidate molecules were selected from these sets of molecules. For the
docking to the crystal structure, however, the poses were post-processed
after the docking calculations and molecules were filtered as described be-
low. As depicted in Figure 5.6, around 70 out of the 100 best-scoring
molecules from the docking to the crystal structure have a formal charge
of 42 or higher. Furthermore, the corresponding calculated binding modes
do show an overemphasized charge-based interaction with Glu2837-37, as
exemplarily shown in Figure 5.7, where four hydrogen bonds are formed
with Glu2837-3? as acceptor, two of which are charge-assisted. ~ One pos-
sible reason might be inherent in the docking process or more accurately
in the treatment of charges in general. Starting from the prepared protein,
electrostatic grids are precalculated to allow a fast evaluation of sampled

binding poses.

Consequently, polarization effects are not taken into account, i.e. given a
certain charge on the protein side, a docking score increases with additional
opposing charges placed close by on the ligand side, without taking into
account the influence of each single charge on the whole electrostatic en-
vironment. This holds true for docking in general and the aforementioned

drawbacks and inaccuracies are accepted in the interest of a gain in docking
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Figure 5.6: Distribution of formal charges for the top scoring molecules for each
of the docking runs. The crystal structure tends to enrich more strongly
charged molecules compared to the other receptor conformations used.

(a) (b)

Figure 5.7: Exzample of a docking pose that has been dismissed during the
post filtering. (a) Close-up view of binding site of the CCRS5 crystal
structure (brown, stick representation) with a examplarily selected docking
pose (green, ball-and-stick representation). The docked molecule shows an
overemphasized, charge-based interactions with E283"%°. The pyrrolidine
and the morpholino moiety are both charged and form hydrogen bonds with
E283"% as do both amide binds. (b) Chemical structure of the molecule
shown in (a).
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speed, usually without causing major problems. In case of CCR5, however,
the binding site offers a spatially exposed charge, Glu2837-3?, which can
be addressed by ligands from various directions at the same time. In con-
trast, the glutamate has moved in the homology model and the reshaped
crystal structure during the minimization process as described before (see
Figures 5.2 & 5.5). In fact, the summed solvent-accessible surface of oxy-
gen atoms in e-position is about 39 A2 in the crystal structure, but only
14 A2 and 8 A2 in the reshaped crystal structure and the homology model,
respectively.

This specific exposed glutamate of the crystal structure might be the rea-
son for the, presumably artificial, enrichment of strongly positively charged
ligands. Without compensating penalties on the docking score, ligands
with multiple protonatable groups and their corresponding poses are en-
riched during docking. There are different possible solution approaches for
that. In theory, one could change the partial point charges on the protein
side or the dielectric properties during the grid calculations. However, this
would also lower the score of a single charged ligand and effectively change
the overall weighting of polar and apolar docking scores. Instead, the gen-
erated poses were post-processed in a filtering step. Using Chimera, the
docking pose of every docked ligand was discarded if it maintained more
than one hydrogen bond with Glu2837-3.

It can be debated whether such a kind of filtering should occur during the
pose sampling step in contrast to filtering the final (single) pose(s). For a
given molecule there might exist a docking pose fulfilling the defined filter-
ing criteria that is not stored due to a score just slightly worse than a pose
retained from sampling. When filtering final poses, this molecule would be
completely discarded but when filtering already during the generation of
poses, only a certain pose would be discarded and a new, possibly more
valid one, in lieu could be sampled. Thus, when filtering final poses, po-
tential hits might not be identified as such, hence the alternative approach
might is beneficial. It does on the other hand side massively increase the
computational effort since much more poses have to be evaluated and fur-

thermore it can be reasoned that in a large-scale virtual screening one is
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not interested in a particular ligand , but in the identification of any bind-
ing molecule. As such, an increased false negative rate is not problematic

as long as sufficient true positives are identified.

5.2.4 Compound Validation

After the finalization of the docking process, 20 compounds were selected
for evaluation in biological experiments (see Table 5.1). Of these, five have
been selected from the docking to the crystal structure, eight from the
docking to the reshaped crystal structure which offers a new binding site
deep in the transmembrane helix bundle and another seven from the ho-
mology model. All substances were subjected to an initial screening at a
single concentration of 10 pM using a commercially screening service. Using
a P-galactosidase complementation assay, which traces changes in cAMP
(cyclic adenosine monophosphate) level caused by Adenylate Cyclase ac-
tivity, each compound was investigated for its effect as agonist as well as
antagonist. Based on the data of the plate control, the standard deviation
can be estimated separately for the 0% and the 100 % values of the assay,
as discussed in detail in the “Methods” section. For further analysis, the
higher and thus more conservative o1¢gy uncertainties will be used, which
are around 6.4 % for the agonist assay and 6.8 % for the antagonist assay.
Importantly, this uncertainty expressed as propagated standard deviation
is solely estimated from the experimental repeatability, without taking any
biological effects into account.

The results of this primary screen are depicted in Figure 5.8. Overall,
the ligands tested in this first screening approach do not exceed a 30 %
efficacy. However, several ligands do show a distinct biological effect be-
yond the noise in the data. The antagonist screen reveals seven substances
that exceed the 1o level and of these, three have an average measured ef-
ficacy beyond the more strict and expressive 20 value. These three are
DS49232, DS50192 and DS83957, with 19.5%, 19.1% and 29.9 % efficacy,
respectively. These efficacies correspond to 2.90, 2.80 and 4.40 above 0%,

rendering a random effect very unlikely. More specifically, these o devia-
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Table 5.1: Structures selected from docking for experimental evaluation

5.2 Results & Discussion
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Figure 5.8: Graphical representation of the results of the primary screen. For
every substance tested, measured efficacy is shown for the agonist screening
(upper panel, yellow) and the antagonist screening (lower panel, blue),
separately for compounds selected from the docking to the crystal structure
(left panel, brown), the homology model (middle panel, green) and the re-
shaped model (right panel, purple).
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tions indicate that the probability of a measurement to show such a high
effect without an underlying biological effect is extremely small. In addi-
tion, the measured effects as agonists for these compounds are very close
to 1o (DS50192) or even negative (DS49232, DS83957) which means that
these results to not contradict those from the antagonist assay.

Compared to the former results, the measured efficacies of the agonist
apparently tend to be higher (thirteen compounds show efficacies above
1o) and deviate stronger from the mean, which is also reflected by the
higher oy, value. Out of the thirteen compounds mentioned, six show an
average effect higher than twice the background standard deviation with
DS81651, exhibiting the strongest agonistic effect of 20.1% (>30). At the
same time, this compound does not show an antagonistic effect and the
single measurements are close to each other, i.e. the measurement shows
a high repeatability, similar to DS00794. In contrast to that, DS75993
and DS57404 show a high, DS62535 and DS67459 even a very high spread
between the two measurements. In case of DS57404, the compound in ad-
dition shows a slight antagonistic effect which is sufficiently small to be
considered false positive, yet it might also contradict the agonistic mode
of action. In total, the results of the agonist assay are less conclusive than
those of the antagonistic screening because of the higher baseline activ-
ity and the stronger diverging measurements. Still, even when dismissing
DS62535 and DS67459 because of the high deviation between the repeats
of the measurements, four substances selected from the virtual screening
campaigns show an agonistic effect as proven by the single point measure-
ment discussed above. Three additional compounds present antagonistic
behaviors which are much more pronounced when compared to the effects
of the remaining compounds than in the agonist assay.

Interestingly, there are indications for a certain correlation between the
mode of action of a compound and the virtual screening run it was se-
lected from. In Figure 5.9 the experimentally determined efficacies from
Figure 5.8 have been rearranged to highlight this fact. The data of the
agonist screening (Figure 5.8, top row & Figure 5.9, left column) and the

antagonist screening (Figure 5.8, bottom row & Figure 5.9, right column)
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Figure 5.9: Graphical representation of the results of the primary screen, re-
organized from Figure 5.8. Measured efficacies are shown for the agonist
screening (left panel, yellow) and the antagonist screening (right panel,
blue). Within each panel, efficacies are sorted in decreasing order and
colored by the docking strategy they were identified with.

have been separately sorted by value and colored according to the struc-
ture/docking run the compound was selected from. This sort of data pre-
sentation nicely shows that three out of the four highest values in the
agonist assay have been measured for compounds selected from the dock-
ing to the homology model. Again, this model has been built and refined
without using any ligand structure. In contrast, the two most potent an-
tagonists have been selected from the docking to the re-shaped crystal
structure, which bears ligand information of TAK-779, a CCR5 antago-
nist. Of course, this assumption has to be considered with caution, since
the number of compounds tested is too small to be able to draw final con-
clusions and, of course, there is a certain amount of experimenter’s bias
introduced through the process of ligand selection. Still, this observation
strongly underlines the demand for subsequent experiments, both in silico
and in vitro, addressing questions on receptor conformations and the mode

of action as pointed out earlier.
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Table 5.2: Comprehensive results of the second screening (dose-response screen-

ing)
Compound  Type RCso [nmol L™!]  Hill Max. Response [%]
DS00794 Agonist > 100 — 23.7
DS55435 Agonist > 100 — 15.6
DS67459 Agonist 59.16 1.9 83.4
DS75993 Agonist > 100 — 16.9
DS81651 Agonist 32.98 1.3 23.4
DS49232 Antagonist > 100 — 0.0
DS50192 Antagonist > 100 — 0.1
DS83957 Antagonist > 100 — 0.1

From the first round of screening, which used single point measurements,
the most promising candidates were selected to undergo a second screen-
ing campaign. This time, we recorded dose-response curves using the same
assay system as described before. DS49232, DS50192 and DS89674 were
selected for a screening in an antagonist assay system. For the correspond-
ing agonistic screen, DS00794, DS55435, DS67459, DS75993 and DS81651
were selected. The screening of DS57404 and DS62535 was waived in
favor of DS55435. The reasoning is that, although DS55435 is only an
averagely strong agonist, it simultaneously shows the strongest negative
antagonistic effect, vindicating a more detailed investigation of that sub-
stance. A negative antagonistic effect indicates that the receptor activity
is higher as the reference activity used (80%), corresponding an agonistic
effect, whereas a negative agonistic effect corresponds to an inverse ago-
nist. The comprehensive results from this second screening are listed in
Table 5.2. Merely for DS67459 and DS81651 dose response curves could
be fitted, depicted in Figure 5.10, and subsequent ECs5y values derived.
Those values are located in the range of 30 pmol L =160 pmol L~*, which is
the order of magnitude one has to expect when dealing with primary hits
from a virtual screening campaign, especially considering (i) the peptidic
nature of endogenous chemokine receptor modulators, (ii) the fact that

these substances are partly derived from homology models and (iii) the
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Figure 5.10: Selected dose-response curves of second screening for (a) DS67459
and (b) DS81651.

size of the compounds, which is limited to 350 Da by the screening library
used. The same arguments apply when discussing the maximum biological
effect, which is around 83 % for DS67459 and 23 % for DS81651. Addi-
tionally, the agonistic effect does not necessarily correlate with the binding
affinity. Instead, even nanomolar binders can behave as partial agonists.
Moreover, the measured response in general not only depends on the na-
ture of the ligands and their concentrations but also on various equilibrium
constants and concentrations within the whole signaling pathway. Exam-
ples include the equilibrium dissociation constant of the signaling pathway
activation, i.e. the concentration of receptor-ligand complex that causes
50 % response. !4 This value can be interpreted as strength of the signal
amplification of incoming stimulus, i.e. ligand binding, and is strongly cor-
related with the density of expressed GPCRs on the cell surface. The ratio
of these two values directly, and strongly, influence the apparent potency
and maximum response.''* In other words, the measured efficacy might
change using a different batch of cells. In the given case it has to be added

that full saturation has not been achieved using the maximum concentra-
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tion of 100 pmol L~! according to the dose response curves. Thus, the final
effect could be higher, which would influence the recorded ECsy accord-
ingly. The remaining potential agonists show an overall maximum effect
between 16 and 24 %, which is comparable to the primary screening but
without a dose-dependent behavior. The potential antagonists tested do
not show any effect at all.

In summary, out of the five potential agonists tested, three could not
be confirmed by dose response screening, including DS55435, which was
selected for the second screening campaign despite the rather low agonistic
effect in the primary screen. Conversely, two substances detected in the
primary screen show dose-dependent effects and can thus be considered as
preliminary hits.

At the same time, none of the potential antagonists could be verified,
although the exact same stock solutions were used for the subsequent dose
response screening as for the primary screen. This is rather unexpected
since the primary antagonist screen had a lower baseline and the potential
hits were more distinct from this baseline compared to the agonist screen-
ing. Furthermore, the most promising candidate of all, DS83957, induced a
response of almost 30 % in the primary screening, which is highly unlikely
to be observed without any biological interaction of the ligand with the
assay system, based on the standard deviations calculated from the plate
controls. If such a biological interaction exists, be it specific CCR5 binding
or of unspecific nature, it should be reproducible using the same assay con-
ditions. Since this is not the case here, it is assumed that the response is
masked by inherent changes in the assay system. These could be changes
in expression density of CCRbH on the surface as well as the amount of
downstream actors like G proteins of Adenylate Cyclase, but also changes
in concentrations of chemicals and endogenous ligand. To rule out simple
human mistakes during the handling of chemicals and the assay system
as a whole or similar errors, the antagonist dose response screening was
repeated. Again, no response could be detected which supports the con-
clusion that the difference between the response of the primary screen and

those of the dose-response screening must be due to different batches of
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research materials used in the assay.

5.3 Summary & Outlook

The CC chemokine receptor CCR5 is and has been in the focus of pharma-
ceutical research due to its role in several inflammatory diseases but also,
maybe most importantly, due to the role in the host cell invasion process of
HIV. This research momentum has lead to the development of Maraviroc,
an FDA-approved HIV entry inhibitor. The corresponding crystal struc-
ture was the first one of CCR5 to be published. This crystal structure
finally allows virtual screening approaches to CCR5, which was one part
of the presented project.

Besides, two models of the CCR5 were built to explore more receptor
protein conformations and exploit these for virtual screening, in order to
find new and different molecules than with the crystal structure alone. The
first model was an ordinary homology model, which was built on existing
GPCR structure templates. Since the crystal structure was already known,
a comparison with the unbiased homology model was possible, highlighting
the overall similarity of the model with the known structure whilst showing
subtle, but important, differences in the binding site.

Finally, a third structure was developed by re-shaping the binding site.
The rationale for the development of this third structure was the observa-
tion that the crystal structure could not explain the binding of TAK-779
and its derivatives synthesized by Junker and coworkers to CCR5. These
molecules, as well as those molecules identified by the docking to this new
structure, share a common, simple pharmacophore consisting of a poten-

37:39: a linker moi-

tial positive charge, presumably interacting with Glu28
ety that can contain an amide function or a similar group; and finally an
extended aromatic portion. The crystal structure could not explain the
binding of this aromatic portion to the receptor, while the modeled struc-
ture shows a completely new binding pocket, deep within the protein. As

for the two structures introduced before, a virtual screening campaign was
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carried out against this modeled conformation.

The computational effort spent on the identification of new CCR5 mod-
ulators exceeded those of many other virtual screening campaigns against a
single protein target by far. This originated from the use of multiple input
structures, the use of a large ligand database and the relinquishment of any
pre-screening methods such as pharmacophore models or property-based
filtering. A post-docking filtering step was conducted to abolish potentially
artificially enriched molecules showing over-emphasized charge interactions
with Glu28373° from the docking to the CCR5 crystal structure. Apart
from that, no additional computational post-processing was used. Instead,
the top-scoring poses of each single docking run were manually inspected,
judged and iteratively narrowed down, culminating in a set of 20 potential
CCRb5 modulators.

This set was tested using a commercially available functional assay ser-
vice. In a primary screen using a fixed ligand concentration, three sub-
stances could be classified as potential antagonists and five more as po-
tential agonists. These classification are based on the measured activity
in the respective assay relative to the background variance of that assay.
The primary hits show a low overall efficacy, not exceeding 30 %. However,
in a virtual screening campaign using docking, compounds are selected
based on sterical and chemical complementarity. Unlike an experimental
high-throughput screening, there is no selection bias towards high-efficacy
ligands. Still, low-efficacy ligands can exhibit high binding affinity towards
their target. Worthwhile to mention, each of the three structures used add
to these seven ligands.

The potential hits from the first round of screening were validated in
a dose-response testing using the same assay setup. In this second round
of screening, two of the agonist candidate compounds could be verified by
showing a full dose response curve. The derived EC5q values and the maxi-
mum responses are well within the scope to be expected in a virtual screen-
ing setup such as the one presented here, arising from the complex nature of
chemokine receptors and their multifarious interactions with upstream and

downstream regulators. The remaining three agonist candidates showed a
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low background response without a dose-dependent behavior and thus have
to be considered false positive hits from the first screening, at least in the
assay system used to this point. Of the three antagonist candidates, none
could be verified although these molecules were the most promising can-
didates in the first round of screening. Two possible scenarios exist, (i)
those compounds were false positive hits in the first screening or (ii) those
compounds were false negatives in the second screening. Due to the overall
favorable results from the first screening, one may assume that the second
scenario applies. Several explanations exist why a receptor response might
remain undetected. One particularly conclusive one already mentioned is
the receptor expression density on the cell surface. In contrast to other
factors like concentrations of assay chemicals or comparable variables, the
receptor density can not easily be controlled nor measured effectively. Also,
it could change over time under different environments or through certain
treatments of the cells (i.e. freeze-thaw cycles). Hence, these compounds
should, and will, be screened again using different, complementary assay
systems.

Given the two confirmed hits, DS67459 and DS81651, the identification
of new chemical modulators of CCR5 can be considered successful with a
hit rate of 10 %, which is a respectable result. Nonetheless, future efforts
will be expended on screening the potential antagonists again to ensure
no hit is missed. Furthermore, the hit rate might improve even more by
using complementary assays. So far only the signaling via the G protein-
coupled signaling pathway has been considered, but the ligands presented
here might well induce biased signaling'® that is, they signal via the -
arrestin pathway more strongly or even exclusively. Finally, a binding assay
might even reveal hits that do bind to CCR5 as predicted but do not in-
duce signaling at all. Beyond the evident achievement of hit identification,
several general conclusions about the docking to GPCRs and homology
models of those could be strengthened.

First of all, docking to GPCRs works, as has been shown by numerous
studies before, for example the docking to the A; Adenosine receptor 28, the

Bo-adrenergic receptor?%2! or the CXC receptor 4.2¢ Finally, the just re-
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Table 5.3: Template structures of CCR5 homology model

PDB Description % identity =~ Resolution
4grv-A Neurotensin receptor 30% 2.8A
4ea3-B N/OFQ opioid receptor 31% 3.0A
3odu-A  Chemokine receptor CXCR4 36 % 25A

cently published OX5 orexin receptor structure nicely showed that docking
is able to reproduce the quite surprising binding mode of suvorexant. !¢
Furthermore, docking to homology models works well. In fact, the so far
proven binders in this study have been selected from docking to the two
models, not from docking to the crystal structure. Yet, this might of course
change with future results. Finally, this also underlines the plausibility of
the built models and thus allows the further use of those to address other
issues and in turn deepens the understanding of CCRJ5, its structure, its

dynamics, its ligands and the conjunction thereof.

5.4 Material & Methods

5.4.1 Structure Modeling

Three different crystal structures were used to model the CCR5, namely
(i) PDB'7 30du?®?, a crystal structure of the CXCR4 receptor, (ii) PDB
4grvi7 ) the structure of the neurotensin receptor NTS1 and (iii) PDB
4ea3'18 the crystallized nociceptin/orphanin FQ receptor (see Table 5.3).
The T4-lysozyme insertion of 3odu and 4grv was removed manually. The
respective multiple sequence alignment was derived from the structural
alignment using the “salign” function as implemented in Modeller®® 9.10.
The alignment was augmented by including all human sequences of the
CC, the CXC, the neurotensin- and the opioid receptor family, downloaded
from GPCRDB. !'? Using the “automodel” function of Modeller, 20 models
were built and by manual inspection, one of these was selected for in-detail

investigation and further optimization.
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5.4.2 Model optimization

The initial model was inspected and for several residues around the binding
site, new side-chain rotamers were selected from the Dunbrack side-chain
rotamer library 10, to improve sterical fit and hydrogen bonding patterns.
Residues concerned were Leu36, Trp86, Leul04, Thr105, Leul07, Ile198,
Asn252, Thr284 and Thr288. Subsequently, these residues as well as all
residues within a 3.5 A radius were energy minimized using PLOP.%%70
After the optimization of the binding site, ECL2 was minimized around
the disulfide bridge between Cys101 and Cys178. The C-terminal end of
the receptor (residues 318 et seqq.) was removed, due to the lack of an
appropriate template. For residues 301-317, 25 new models were sampled
using Modeller, where residues 301-305 (C-terminal end of TM-VII) and
308-317 (helix 8) were restricted to have an «-helical secondary structure.
Also for ECL3, 25 new models were sampled, applying the x-helical con-
straint to residues 269-273. The resulting models were inspected after a
short energy-minimization using PLOP and the best one was selected. Us-
ing PropKa®%% 3.0 implemented in PDB2PQR" 1.8, protonation states
were assigned at pH 7.0. Since no ligand was considered during this cal-
culation, Glu283 was assigned a high pKa (7.6) and thus protonated. For
further calculations, Glu283 was deprotonated manually, since it is known
to form important charged interactions with CCR5 ligands. Finally, the
whole structure was relaxed using PLOP’s energy-minimization procedure

with an RMSG of 0.1.

5.4.3 Binding Site Reshaping

The CCRb crystal structure 4mbs was used as starting point for the design
of a receptor able to bind TAK-779. An initial orientation of the ligand
was achieved by manually placing it in the binding site and minimizing
the ligand together with its surrounding residues. To form a deeper bind-
ing pocket, a different side-chain orientation was selected for Phell2 from
the Dunbrack side-chain rotamer library '° and the complex was manu-

ally refined in several iterative steps, which included swapping the donor
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and acceptor functions of the hydroxy group of Tyr37 and Tyr251 and the
corresponding amide function of TAK-779. To reduce the bias of man-
ual curation, the complex structure was created be re-docking TAK-779
into this final receptor structure using AutoDock Vina’ v1.1.2. Input
conformations were pre-generated using Corina 97109 3.491, allowing the
sampling of ring conformations (“rc” keyword). For each conformation,
a maximum of ten poses was created by AutoDock Vina and the most

promising one selected manually.

5.4.4 Docking

Virtual screening was carried out using DOCK 3.5.54 17277 with the ZINC46
lead-like subset as input. The necessary input spheres for DOCK were
generated by sphgen. For the crystal structure, the necessary seed coor-
dinates were taken from the respective ligand, whereas for the modified
crystal structure the docking pose of TAK-779 was used. For the homol-
ogy model, no ligand information was available. To allow an even sampling
of the binding site, a two-step procedure was applied. First, sphgen was
used to calculate spheres for the whole receptor structure and the cluster
representing the binding site was taken as input ligand for a second run
of sphgen, while making sure that the ligand coordinates were not used to
generate spheres (“useligsph=no0”). From the respective docking runs, the
top scoring molecules were manually inspected and evaluated and promis-

ing candidates were selected.

5.4.5 Compound Acquisition

Compounds were purchased from the following vendors: Enamine [DS84666,
DS89674, DS55435, DS50263, DS83957, DS50192, DS23844, DS11585, DS29983,
DS62535, DS81651, DS75993, DS00794, DS05596] and Chembridge [DS49232,
DS10403, DS57404, DS55622, DS62705, DS67459]. For stock solutions,
compounds were dissolved in DMSO and mass spectra were recorded to
verify compound identity. Compound purity was stated to be higher than

90 % and was not assessed.
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5.4.6 Second Messenger Assay

The cAMP second messenger assays “HitHunter cAMP XS+” were car-
ried out by DiscoveRx Corporation, Fremont, CA, USA. Samples were
shipped as 10mmol L~! DMSO stocks. Briefly, cAMP Hunter cell lines
were expanded from freezer stocks according to standard procedures, be-
fore incubating them at 37 °C in a total volume of 20 pL. into white-walled,
384-well microplates. Cells were pre-incubated with sample in the pres-
ence of forskolin, to induce a response. For agonist screening, an ECg,
for antagonist screening an ECyg of forskolin was used. Medium was as-
pirated from cells and replaced with 15pL 2:1 HBSS (Hank’s Balanced
Salt Solution)/10nmol L=* HEPES:cAMP XS+ Ab reagent. Intermedi-
ate dilution of sample stocks was performed to generate 4X sample in assay
buffer containing 4X ECgq (for agonist screening) or ECqg (for antagonist
screening) forskolin. 5pL of 4X sample was added to cells and incubated
at 37°C. The final (highest) compound concentration used in the assay
was 10pmol L~! in the single point measurements and 100 pmol L~ for
the dose response measurements. Assay signal was generated through in-
cubation with 20pL cAMP XS+ ED/CL lysis cocktail for one hour fol-
lowed by incubation with 20 L. cAMP XS+ EA reagent for three hours
at room temperature. Microplates were read following signal generation
with a PerkinElmer Envision™ instrument for chemiluminescent signal
detection. Compound activity was analyzed using CBIS data analysis
suite (ChemInnovation, CA, USA). The relative effect was calculated using
Formula 5.1 for agonist screening and Formula 5.2 for antagonist screen-
ing, where RLUyenicte controt and RLUforskolin positive control correspond
to the positive assay controls and define 100 % while RLU 40 contror and

RLUECy, control TepPresent the negative controls and set the 0 % baseline.

100% X (1 - (RLUsample - RLUmaw control))
RLUvehicle control — RLUmax control

% Activity = (5.1)

100% x (RLUsample - RLUEng control))

% Inhibition =
RLUforskolin positive control — RLUECSU control

(5.2)
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Table 5.4: Raw control readouts in first round of screening

Pos. Control  Neg. Control

Assay Type I o I o

Agonist 12690 1331 64947 1951
Antagonist 62640 1662 17385 1401

Table 5.5: Formulas for propagation of uncertainty

Function Approx. Standard Deviation

f=aA—bB o =/a20% +b20% — 2aboas

A A [o% o% OAB
= = — £ L _ 2_
=3 or=pg\ a2t B2 " “aB

5.4.7 Error Propagation

The mean readout for the positive and negative plate controls as well as
their respective standard deviations as reported by the contract researcher
are shown in Table 5.4. At least three of each controls were used per plate.

120 a5 denoted in

Given the formulas for the propagation of uncertainty
Table 5.5, the standard deviation o of efficacies as calculated by Equations
5.1 or 5.2 can be can calculated. For the o value of the positive control,
these formulas can be simplified to Formula 5.3, under the assumption that
the errors of the measurements are uncorrelated, i.e. their covariance o 4p
is zero. The resulting o1ggy, are 6.4 % for the agonist screening and 6.8 % for
the antagonist screening. By considering limit values, also the propagated
standard deviations of the negative controls oy can be approximated,

yielding values of oy agonist = 5.3 % and ooy, antagonist ~ 4.4 %.

p _ 2(012708.cont. + U?Leg.cont.) (5 3)
100% (pos.cont. — neg.cont.)? '
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6 A large-scale docking approach

to kinases

6.1 Introduction

In prior examples of docking scenarios addressing multiple targets, the
number of structures used was small, at least compared to the number of
potential protein drug targets. Specifically, two to three different receptors
were used. The question arises to which extent docking can be used for the
prediction of “selectivity profiles”, that is, the prediction of binding or non-
binding of a compound against a panel of protein targets. Addressing this
question requires the docking of one compound to many structures, some-
times referred to as “inverse docking”.*?! Obviously, a generalization using
a single ligand is not possible, which leads to a setup where multiple ligands
are docked to many targets. For a retrospective evaluation, experimental
data are required for all protein-ligand combinations. These data form the
“ground truth”, with which the docking results, i.e. scores or ranks, can
be compared. Together, a dataset is required containing protein crystal
structures and ligands for which experimental binding data are available.
The development of such a dataset and the subsequent large-scale docking
assessment is described here.

The protein targets suitable for such an application have to be available
in high numbers in the PDB database!” to serve as target structures for
docking. Furthermore, the experimental data required have to be com-
plete in a way that all ligands have been tested against all targets, i.e. the

corresponding protein-ligand matrix must be (at least almost) completely
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populated. In addition, the data have to be comparable and should ideally
originate from the same source. Together, these prerequisites render the
usage of GPCRs highly difficult, mainly due to the lack of crystal struc-
ture data. This can be generalized to membrane proteins. In contrast, the
catalytic domains of protein kinases are globular protein targets, although
they can be indirectly bound to the membrane via additional domains. 122
Catalytic protein kinase domains are highly represented in the PDB with
currently more than 3200 structures (structures with PFAM 22 classifica-
tion PF00069, as of Apr 2015).

Kinases, in general, form a very large and heterogeneous group of pro-
teins, sharing the ability to transfer a phosphate group from a phosphate
donor to a phosphate acceptor. The phosphate donor is usually formed by
ATP (adenosine triphosphate), which donates a phosphate group that is
then transferred to the acceptor. The latter is very often another protein;
however, kinases exist that phosphorylate other molecular species such as
lipids. An example for such a kinase is the sphingosine kinase that catalyzes
the reaction of sphingosine to sphingosine-1-phosphate.'?* The phospho-
rylated lipid then acts as lipid mediator within the cell or on other cells,
via the sphingosine-1-phosphate receptor, a GPCR.'?® Other chemical en-
tities exist that are phosphorylated by kinases, but the vast majority of
kinases target other proteins and are consequently referred to as protein
kinases. The phosphate group is transferred to a specific residue on the
target protein, mostly serine, threonine (serine/threonine kinases) or tyro-
sine (tyrosine kinases). The catalytic domains of protein kinases share a
common fold (see Figure 6.1). This fold has two lobes, an N-terminal and
a C-terminal one. The N-terminal lobe consists of 3-sheets and an o-helix,
the C-helix 2", whereas the C-terminal lobe is mainly o-helical. The lobes
are connected by a so-called “hinge region”, which forms hydrogen bonds
with the adenine ring of ATP that binds in the flat pocket between the two
lobes.

Using phosphorylation, kinases are able to modify the activity of down-
stream regulators and thus play a very central role in the regulation of

cellular processes'2®, highlighted by the existence of more than 500 ki-
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—— 9O [RUTULIO}-N

2qo[ [RUTILIO}-D)

(a) (b)

Figure 6.1: Overview of the structure of the catalytic domain of a protein kinase
(dark gray) with ATP bound (light brown, sticks). A peptidic, competetive
inhibitor is bound to the site of phosphorylation (orange, ribbon). Struc-
ture from PDB Jwb5."*° (a) Kinase domain in ribbon representation. (b)
Kinase domain in surface representation. The surface highlights the flat
ATP binding pocket between the two lobes.

97



6 Large-scale docking to kinases

nases in the human kinome.?? A dysfunction or -regulation is hence often
associated with a physiological disorder. Especially for countering various
forms of cancer, many kinases are considered valuable drug targets. 4126:128
This medical relevance has obviously stimulated the research effort spent
on kinases and has lead not only to the aforementioned number of crystal
structures but also to a number of new drugs like Flavopiridol, Roscovi-
tine and Gleevec.® These pharmaceuticals bind, at least partly, to the
main binding pocket of kinases and thus compete with ATP. This is the
common mechanism of small molecules that inhibit kinase activity. On
the one hand, this allows, to a limited extend, the transfer of knowledge
from one target to another, since core scaffolds can bind to different kinases
(“hinge binding motifs”). 3! This binding site similarity can be desired for
polypharmacological kinase inhibitors.!3? On the other hand, the design
of selective kinase inhibitors is an ongoing issue and has been long focused
on the exploitation of differences in residues flanking the ATP binding
site. However, new crystal structures allowed insights into the dynamics
of kinases, revealing two different mechanisms that would open new bind-

130:133 (see Figure 6.2). The first mechanism is the transition

ing pockets
from the active conformation to the inactive conformation of the kinase via
the movement of the activation segment, or loop. The two related states
are commonly referred to as the “DFG-in” and the “DFG-out” motif. 133
The DFG motif is a segment of three highly conserved amino acids, as-
partate, phenylalanine and glycine at the N-terminal end of the activation
segment. This loop can switch into a conformation where the binding of
the substrate is blocked. In this conformation, the phenylalanine residue
of the DFG motif is pointing outwards into the direction of the solvent (see
Figure 6.2b). This allows a ligand to bind to the pocket that would be oc-
cupied by the phenylalanine in the active conformation. Another dynamic
process of kinases is related with an outward shift of helix C, which requires
the breaking of a salt bridge, acting as an “ionic lock” (see Figure 6.2c).
Together, these moves give room for the binding of larger ligands that ex-
tend from the ATP binding pocket deeper into the protein. This spatial

area is termed the “back pocket” or “deep pocket” and is considered as

98



6.1 Introduction

Lys (“ionic lock”)

/ Glu (“ionic lock™)

Helix C

Phe (“DFG”)

Helix C

Lys (“ionic lock”)
Glu (“ionic lock™)

Helix C
Phe (“DEG”)

(c)

Figure 6.2: View of the binding site of different kinase (gray, ribbon) and ligand
(light brown, stick) combinations. B-sheets removed for clarity. (a) ATP
bound to PKA (PDB jwb5'*%). DFG motif and o-heliz C are in “In”
state. (b) Lapatinib bound to EGFR (PDB 1akk'*). Heliz C in “Out”
conformation, the locking salt bridge is disrupted. (c¢) Sorafenib bound to
B-Raf (PDB 1uwh®*). DFG motif in “Out” state.

99



6 Large-scale docking to kinases

an important aspect in the design of selective kinase inhibitors (“type II
inhibitors”). 136

To investigate the selectivity of a molecule to multiple kinases, assay sys-
tems are required that allow the screening of compounds against a panel
of kinases at a reasonable effort. Consequently, such systems have been
developed and have lead to the availability of large experimental datasets.
Karaman and co-workers were amongst the first to systematically screen a
compound set against a broad panel of kinases and publish the correspond-
ing data.'3® The authors tested 38 kinase inhibitors that were developed
against different targets. For every compound, the affinity was evaluated
against a panel of 317 kinases in total, consisting of 287 distinct protein
kinases (~55% of the human kinome), a number of disease-related mu-
tants thereof and some lipid kinases. This satisfies the requirements for an
experimental dataset as defined before.

Together, kinases are ideally suited for an assessment of docking per-
formance across many targets. Consequently, a dataset suitable for the
intended large-scale docking approach has been built by mapping the ki-
nases from the dataset of Karaman et al. to the PDB!7. The ligands from
the experimental dataset where then docked to each retrieved structure.
Again using the experimental dataset, ligands were classified as known ac-
tive or inactive binder for every structure and used to quantify the retrieval
rate achieved by docking by means of ROC®! and enrichment. In addition,
different procedures were selected from literature that aim at improving
docking accuracy by normalizing docking scores between multiple pockets.
The performance of such normalized scores has then been compared to that

of raw docking scores.

6.2 Results & Discussion

After initial retrieval and the subsequent selection process, a total of 650
crystal structures was considered as set of target structures for docking.
These 650 structures represented 129 different kinases out of the 317 ki-
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Figure 6.3: Distribution of the number of crystal structures per kinase for the
650 kinase structures in the final dataset. y-azis logarithmic.

nases in the experimental dataset from Karaman and co-workers. For the
remaining kinases, no structure was available in the first place or they
failed to fulfil the quality criteria described in the “Methods” section. The
structure/kinase ratio implies that, on average, every kinase is represented
by about five different structures. However, as Figure 6.3 shows, this value
differs strongly between different kinases. Around 100 kinases are each
represented by five structures or less. More detailed, 56 kinases are rep-
resented by a single structure only. In other words, more than 40 % of
the kinases constitute less than 9% of the structures. On the other hand,
some kinases are highly overrepresented. The five (4 %) most abundant
kinases (CDK2, MAPK14, CHEK1, PIM1 & PDPK1) contribute a total
of 178 structures (27 %). In theory, a high number of structures for a given
kinase is favorable, since the conformational space of the kinase and its
binding site is covered to a larger extent. Consequently, it is more likely
that the conformation necessary to bind a certain ligand is available. Ac-
cordingly, kinases for which only few structures are available, are in theory

more likely to generate false-negatives, i.e. in wvivo binders with an unfa-
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vorable docking score, caused by the non-compatibility of the ligand with
the few available binding site conformations. However, dismissing kinases
with few structures to balance the distribution of structures per kinase
would dramatically decrease the size of the dataset and was therefor not
considered.

The initially selected and prepared structures were then used in the large-
scale docking approach, where all ligands from the experimental dataset
were docked to the 650 structures. The complete matrix with the docking
scores of all structure-ligand combinations is depicted in Figure 6.4. Dock-
ing scores are represented by a color scale ranging from orange (negative, fa-
vorable) to purple (positive, unfavorable). Gray indicates structure-ligand
combinations without assigned docking score. Except for few cases, no
scoreable ligand poses were found for these combinations. The remaining
few cases are outliers that have been removed for proper visualization (see
“Methods” section for details). Three columns, i.e. ligands, stand out in
that depiction with a high number of white and purple fields compared to
the remaining columns. These ligands with mainly unfavorable scores are
staurosporine and two chemical derivatives of it. Staurosporine is known to
bind to a large number of kinases '3¢, hence one might expect a high number
of favorable docking scores when docking to numerous kinases. An expla-
nation that this is not observed here might be the large and bulky structure
of stauropsorine which requires an open binding site conformation. Obvi-
ously, the binding sites of most kinase structures used here are adapted to a
smaller ligand and are thus in a more closed conformation. Therefor, stau-
rosporine is a convincing example pointing to the necessity of a suitable
receptor conformation for successful docking. Besides this observation, the
general glance of the matrix indicates certain trends in the scores. First,
some ligands (in columns) tend to get constantly higher/lower scores than
other ligands. It is generally accepted that the absolute value of docking

scores depends on the nature of the docked ligands 37

, which is nicely un-
derscored here. But not only the ligands, also the structures, respectively
kinases, seem to have an overall different level of docking scores, visible as

blocks of rows with a similar color pattern in Figure 6.4. As an example,
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Figure 6.4: Score heatmap of all structure-ligand combinations. Structures are
grouped by kinase. Raw docking scores are depicted by color scale ranging
from orange (negative, favorable) over white (average) to purple (posi-
tive, unfavorable). Gray fields indicate protein-ligand combinations with-
out score (see “Methods” section for details). For visualization, the matriz
has been split. (a) Upper part. (b) Middle part. (¢) Lower part.
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Figure 6.5: Heatmap of docking scores for selected kinases. Excerpt from Fig-
ure 6.4. (a) Heatmap for all PIM1 structures. (b) Heatmap for all p38c
structures.

Figure 6.5 shows two of such blocks, representing the structures of PIM1
and p38«, respectively. Normalization procedures have been discussed in
literature to equalize the overall score levels between different structures
or ligands and thus improve the prediction accuracy.

Three different approaches were selected from literature and the predic-
tion accuracy was compared between these normalized and the raw docking
scores. The normalization procedures are hereafter referred to as “MASC”,
“mMASC” and “iterative normalization”. The MASC (“multiple active site
correction”) approach was introduced by Vigers and co-workers. 38 When
docking to multiple targets, they proposed to normalize the docking scores
of a ligand against all targets. More specifically, for each score, the mean
determined across all structures is subtracted, followed by a division by the
standard deviation. This corresponds to a Z-normalization of all scores of
a ligand (Z-normalization of the columns when referring to the matrix in
Figure 6.4). The idea behind this strategy is that the non-specific part
of the docking score, e.g. due to the molecular size of the molecule, is
reduced. Jacobsson et al. developed this method further and proposed
the mMASC! approach. They subtracted a ligand’s mean from each of
its scores but did not divide it by the standard deviation. Such a division

would penalize ligands with a high spread in score amongst different tar-

'Tn the original publication, the authors used the term “MASC?”, just as Vigers and
Rizzo. “mMASC” has been introduced here for clarity.
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gets and the necessity of such a penalty is not obvious. Before calculating
the mean score of a ligand, they applied a Z-normalization along all scores
within a structure to make the scores comparable between different struc-
tures. This seems reasonable, since the target can bias the docking score the
same way as a ligand does. And indeed, as mentioned before, this behavior
has been observed here (see Figure 6.5). In short, the mMASC approach
is the Z-normalization over each structure (normalizing each row when re-
ferring to Figure 6.4), followed by shifting each score by the mean of the
respective ligand (column mean when referring to Figure 6.4). Figure 6.6
shows the heatmap of docking scores after normalization using the mMASC
approach. Compared to the unnormalized scores in Figure 6.4, the afore-
mentioned blocks of patterns seem to be less pronounced, which was the
goal of normalization. Finally, Casey and co-workers'3Y proposed an itera-
tive approach where the scores are Z-normalized first for each structure and
then for each ligand. These steps are repeated until the scores converge.

Using the raw docking scores and the three sets of transformed scores,
the prediction power of docking was assessed retrospectively using two
different measures, the ROC, more accurately the AUC of the ROC, and
the enrichment factor. While the ROC is a global assessment of a ranking,
the enrichment is calculated at a given point, or percentage, of the ranked
list. Importantly, within the Karaman dataset the number of active ligands
out of the 38 used differs strongly between the individual kinases as shown
in Figure 6.7. If the enrichment would be calculated for a fixed number of
top scoring poses, the enrichment factor between kinases would be scaled
to a different range and could thus not be compared. For a fair comparison,
an “adaptive” enrichment was calculated, which takes the number of actual
actives into account (see “Methods”).

For one, these assessments were calculated for each structure and fur-
thermore for each kinase, i.e. groups of structures. The docking scores
of all structures of a certain kinase were consolidated, meaning that the
docking score of a ligand to a kinase equals the best (smallest) score of
that ligand to all structures of that kinase (see Equation 6.1).

The ROC and enrichment values are presented in Figure 6.8 on the struc-

105



6 Large-scale docking to kinases

g

(a) (b) (c)

Figure 6.6: Score heatmap of all structure-ligand combinations. Structures are
grouped by kinases. mMASC-normalized docking scores are depicted by
color scale ranging from orange (negative, favorable) over white (aver-
age) to purple (positive, unfavorable). Gray fields indicate protein-ligand
combinations without score (see “Methods” section for details). For visu-
alization, the matriz has been split. (a) Upper part. (b) Middle part. (c)
Lower part.
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Figure 6.7: Distribution of the number of active ligands per kinase for each
kinase in the Karaman dataset®™®

ture level and Figure 6.9 on the kinase level.  For the raw docking scores,
the overall performance of the large-scale docking approach presented here
is very mediocre. The ROC AUC has a mean around 0.5, on the structure
level, corresponding to a randomly sorted ranking (see Figure 6.8a). The
distribution is only slightly skewed, which means it ranges to both sides
of the average. This implies that in some structures the active ligands
are on average ranked worse than the non-active ones. However, in the
opposite direction, the result is almost equally frequent. The enrichment
is more promising than the ROC AUC, indicating that on average, 25%
of all known active ligands can be found among the top-scoring molecules
(see Figure 6.8b). In comparison, the average ROC AUC indicates that in
general, active ligands are not ranked better than known inactive ligands.
The enrichment, however, suggests the opposite. This discrepancy might
indicate a scenario were some actives are well enriched, leading to a rea-
sonable enrichment value, but others are ranked low. These low ranked
actives compensate the highly ranked ones in the ROC AUC calculation.

Such a scenario might relate to the problem of “availability of a suitable
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Figure 6.8: Docking performance in the large-scale docking approach for the
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raw and normalized docking scores. Evaluation on the level of structures.
Boz spans range from first to third quartile. Whiskers span 1.5 times
inter-quartile range above and below median. Black line indicates median.
Black dot indicates mean. Notches indicate 95 % confidence interval. (a)
Performance expressed as ROC AUC. (b) Performance expressed as en-
richment.
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Figure 6.9: Docking Performance in the large-scale docking approach for the
raw and normalized docking scores. Fuvaluation on the level of kinases.
Box spans range from first to third quartile. Whiskers span 1.5 times
inter-quartile range above and below median. Black line indicates median.
Black dot indicates mean. Notches indicate 95 % confidence interval. (a)
Performance expressed as ROC AUC. (b) Performance expressed as en-
richment.
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binding site”, i.e. every structure can bind only those ligands that fit its

conformation.

When consolidating the docking scores for the structures to the respec-
tive kinase, the median ROC AUC as well as the enrichment remain almost
unaltered, however, the interquartile range becomes smaller. Hence, the
prediction becomes more stable and has smaller extreme values, yet in both
directions. In short, the average prediction accuracy does not improve
when using multiple structures for docking. This finding is counterintu-
itive, but can eventually be explained by the fact that the majority of all
kinases are represented by only a few structures (see Figure 6.3). Thus, the
distribution of ROC AUCs and enrichment values for kinases is strongly
dominated by those kinases that have a small chance to improve. In ad-
dition, the similarities between multiple structures belonging to the same
kinase have not been assessed. Consequently, structural diversity cannot

be taken for granted even if numerous structures exists for a kinase.

Up to a certain extent, the claims made about the ROC AUC values and
enrichments on the structure and the kinase level for raw docking scores
can be transferred to each set of transformed docking scores. However,
a comparison between the different sets of docking scores indicates that
each of the three normalization procedures can improve the docking pre-
diction accuracy, at least slightly. Exceptions are the ROC value of the
MASC approach and the enrichment of the iterative approach on the ki-
nase level (see Figure 6.9), which are both slightly worse than the respective
performance using the raw docking scores. The mMASC approach is the
procedure that performs best among all methods. When comparing ROC
AUC values, the iterative approach does not perform significantly worse,
since the 95 % confidence intervals (indicated by the notches) are overlap-
ping. Still, the average values speak in favor of the mMASC method. This
observation clearly holds true when moving from the ROC evaluation to
the enrichment. Here, mMASC on average outperforms all other methods
and increases the amount of active ligands in the top scoring molecules to
30 %.
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6.3 Summary & Perspective

Kinases distinguish themselves from many other protein families by the
availability of large, consecutive, experimental inhibition datasets as well
as a high number of crystal structures. These features render kinases an
ideal protein target family for a large-scale docking setup, together with
a retrospective analysis of the docking performance. A dataset of crystal
structures has been built here, containing 650 structures from 129 different
kinases, which has been used for such a docking assessment. Of note, it can
be used as input dataset for a wide range of other computational methods.
For the 129 kinases, experimental binding data are available for 38 ligands,
allowing the calculation of ROC AUC and enrichment values for the 650
docking runs. The assessment of docking performance has been accom-
plished using the raw docking scores as well as the transformed scores from
three different normalization methods. All three post-processing functions
can improve the overall performance with the mMASC methods being the
most successful one. Still, the predictive power is limited. For mMASC,
around one third of all actives can be retrieved as the top scoring molecules,

indicated by the enrichment factor.

Despite the overall performance, the improvement upon normalization
clearly shows that there is information available not only in the single
docking score itself, but also in the distribution of docking scores over dif-
ferent structures and ligands. These informations can be used to augment
docking predictions, as done here using normalization. Another idea of
normalizing ligand docking scores is by using ligand decoys. Wallach and
co-workers 49 for example, used virtually generated decoy ligands to nor-
malize the scores of the ligands of interest. Using decoys for normalization
has the advantage of being independent of the of composition of the ligand
library used for docking. Herein, a small and strongly biased ligand library
was used. Diverse decoy sets might be beneficial for the normalization
in future docking experiments. Decoys can be virtually generated? or
selected from a library of existing molecules?%; however, a virtual library

can cover a larger chemical space. Like the ligand set, the set of protein
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structures is strongly biased since it is comprised of kinase domains only.
It is very large, indeed, yet it might profit from a more diverse selection
of protein structures. One might image a protein decoy set, where for a
given binding pocket, new binding pockets are selected from the PDB!”
which are similar in terms of physico-chemical properties, i.e. size, elec-
trostatic properties, but are structurally unrelated. Cavbase!'! and the
scoring functions implemented therein might serve as similarity measure

for such an approach.

In summary, a structure dataset has been compiled which can be used
for future assessment of docking and other retrieval methods. It is inhomo-
geneous in a way that the number of available structures per kinase differs
greatly among different kinases. Together with the small number of ligands
and their chemical similarity as kinase inhibitors, this makes the dataset

challenging for docking retrievals.

Score normalization has shown to be able to improve the retrieval rate
but might still benefit from ligand decoy sets for normalization. This ap-
proach could also be applied to protein decoys, an idea that has not yet
been described before and might be an interesting future development. So
far, the prediction of a “selectivity profile” for that very large number of

targets is not reliably possible.

In contrast to the preparation of only a few structures for docking, the
distinct characteristics of a structure cannot be taken into account in such
a large dataset. This includes, for example, the presence and position of
water molecules, ions or additives as well as structural resolution and qual-
ity. Such aspects can clearly influence the docking results. The resulting
mediocre docking performance achieved here is in contrast to the numer-
ous success stories of docking and highlights the importance of a proper
structure selection, preparation and docking setup by an experienced in-

vestigator.
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6.4 Materials & Methods

6.4.1 Structure Selection and Preparation

The accession codes given by Karaman et al. 136

were mapped to PDB codes
using the Uniprot database.®! For every PDB code obtained, the respective
PDB structure was downloaded (2012, Feb) and verified to possess a kinase
domain since the sequence accession code might cover additional domains.
Furthermore, every structure was ensured to contain a ligand in the ATP
binding site. Other ligands and crystallization additives were removed from
the structure. The amino acid sequences were extracted from the struc-
tures and aligned using the MUSCLE multiple sequence alignment tool 142,
separately for every accession code, i.e. same sequences were aligned. The
alignments were inspected and checked for mutations and deletions. These
were then evaluated and classified as either significantly influencing ligand
binding or not. If so, the respective structure was dismissed. This clas-
sification was based on manual inspection and evaluation of the structure
not on simple distance-based criteria. In addition, these alignments were
used to trim the structures, i.e. elongated and mostly disordered N- and
C-termini were truncated. The first and last residue of the kinase domain,
as annotated in Uniprot, were used as reference. Truncated versions of the
structure contained the complete kinase domain, where possible. Struc-
tures where the kinase domain was not completely resolved, were again
manually evaluated and retained were tenable. Structures were proto-
nated using the “AddHyd” command implemented in YASARA5® version
11.9.18 and the resulting hydrogen bonding network was minimized using
CHARMM™ version 31b2. Kinase inhibitors were taken from the ZINC

46;85

database using full-text and structure-based searches.

6.4.2 Docking

DOCK 3.5.54172"™ was used to dock the downloaded inhibitors to the pre-
pared structures. The necessary input spheres for DOCK were generated

from sphgen ', using the crystal ligand as reference for defining the binding
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site.

6.4.3 Evaluation

The normalization procedures used 38139143

were implemented as func-
tions in R. The calculation of ROC AUC values and enrichment values was
implemented likewise. To assess the ROC AUC and the enrichment for a
kinase, i.e. a set of structures in contrast to a single structure, a new vector
of ligand docking scores was calculated using the best (smallest) score for
each ligand ¢ over every structure j representing the given kinase k (see
Equation 6.1).

Skt = min (577 (6.1)

The enrichment values were calculated using variable thresholds. The num-
ber of top scoring compounds considered was not fixed at a certain per-
centage of the database size. Instead, the number of ligands considered
was set to the number of true actives in the experimental dataset. Conse-
quently, the enrichment is scaled to 0 %-100% and can thus be compared
between different structures and kinases, although the absolute number of
true active differs. Ligands were classified as actives against a certain ki-
nase/structure, if the K, value was reported to be below 10 pmol L=! by

Karaman et al.. Otherwise, they were classified as inactives.

6.4.4 Visualization

For proper visualization, selected scores were removed in Figure 6.4 &
Figure 6.6. Some few protein-ligand combinations lead to extremely high
docking scores, i.e. a docking pose was found but the associated score was
extremely unfavorable. The heatmap visualization used applies a linear
color gradient along the distribution of scores. The aforementioned out-
liers lead to a very broad score range. By removing positive outliers, the
score distribution is balanced around the average and so is the distribution
of colors in the heatmap. More specifically, every score S with a positive

value exceeding the absolute value of the smallest, negative value of all
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scores was removed. This removal of outliers was only applied during visu-

alization. Consequently, the protein-ligand combinations without assigned

scored (gray fields) slightly differ between the heatmap representations.
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7.1 Summary (english)

The first chapters of this work have focused on the identification of ligands
for GPCR targets with an emphasis on the use of multiple structures.
This could be homology models or crystal structures. These structures
represented either (i) different states of the same receptor as described for
CCRb5, (ii) different isoforms of a receptor such as CXCR4a and CXCR4b
or (iii) actually different receptors. The last instance is assuredly the most
interesting one since the binding of a molecule to multiple, well-defined,
protein targets forms the basis of polypharmacology.?*

The identification of ligands binding to CXCR3 and CXCR4 and the
prediction of the selectivity of these ligands represents a successful exam-
ple with respect to modeling and docking. In this specific example, eleven
substances were correctly predicted to bind to either one or both of the
receptors. The most challenging category has assuredly been the identi-
fication of ligands binding to both receptors, due to the different charge
preferences of these two receptors. Yet, two molecules could be selected
from both docking applications and experimentally verified to match the
expected dual-binding profile. Furthermore, the compounds showed very
good binding affinities despite a limited efficacy. These results substanti-
ate the general applicability of docking to identify substances that bind to
multiple targets.

An effort into the opposite direction is the identification of ligands se-
lective for one receptor over, one or more, others. In such a scenario the

receptors are very similar and tend to bind the same ligands. This can
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be different isoforms of the same receptor, such as CXCR4 in zebrafish

144 1 gerotonin 14°

or different subtypes like those of the muscarinic recep-
tors. These two studies highlight the topicality of the general question of
selectivity prediction of a ligands against several targets. Especially the
work from Kruse et al.'** additionally shows the high difficulty of a suc-
cessful prediction in such a setup, as it was addressed here by the docking
to isoforms of CXCR4 subtypes of zebrafish. Compounds that selectively
regulate a desired receptor isoform can be utilized to investigate this re-
ceptor’s role in zebrafish development. This underscores the applicability
of the prediction of tailored selectivity.

The zebrafish in vivo system could not verify the efficacy of the predicted
ligands and accordingly, the correctness of the selectivity predictions made
could not be assessed. Chemokine GPCRs form a challenging group of tar-
gets due to the large and solvated binding site. Yet, new GPCR-binding
ligands have been predicted and verified in this work. However, ligands
predicted by docking are selected on the base of spatial and chemical com-
plementarity to the binding site, not on the response they induce in the
receptor. As a consequence, the effect of these ligands can be very weak, as
it has been observed in the CXCR3-CXCR4 and the CCR5 example. This
also applies to ligands with high binding affinity. Thus, the zebrafish in
vivo system might be inadequate to detect the modulation of the CXCR4
isoforms.

Also the CCR5 example shows the problems that can be associated with
GPCR assays, since the reproduction of initial screenings turned out to
be problematic. Assay protocols might not be optimized for compounds
with weak efficacy or may not be sufficiently sensitive in a reliable fashion.
However, the initial screening successfully identified compounds that were
selected from different input structures. The fact that different structures
bind different ligands is an interesting consideration in the realm of dock-
ing to multiple target proteins. One can imagine different structures of a
particular protein that bind different sets of ligands. These sets might be
partly overlapping or not. Thus, to predict whether or not a compound

binds to different proteins, one has to carefully think about choosing the
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right structures for each of the proteins.

For the protein kinase family, many more crystal structures are available
than for GPCRs. This allowed to build a dataset of crystal structures and
kinase inhibitors for which experimental binding data are available. An
unsupervised docking against this dataset suggested that the prediction
of binding profiles on a large-scale basis is not yet feasible with the given
methods. Instead, careful structure selection and preparation seems to be
key for an successful docking to multiple targets. Several ideas originated
from the discussed experiment to improve docking accuracy, e.g. by using
protein decoys next to ligand decoys. New methods likes these will help
to improve the outcome of such complex docking challenges and allow the
wider application of docking for the prediction of ligands with tailored
selectivity.

In summary, the CXCR3-CXCR4 case study proves that docking can
predict dual-binding ligands. However, GPCRs have certain peculiarities.
Depending on where they bind and which conformational change they in-
duce, ligands can act as allosteric modulators, antagonists or agonists or
bind without inducing a response. If there is a response, this can be for-
warded via different pathways and lead to different signals. Altogether,
GPCR assays might be too complex to expand the experiments to a higher
number and more divergent structures. Kinases might be better suited for
future studies with more targets, due to the availability of crystal struc-
tures and experimental setups. Nevertheless, the large-scale docking setup
to kinases highlights the necessity of a proper docking setup by an ex-
perienced experimenter and methods like normalization using ligand and
protein decoys.

The presented work shows the feasibility of docking approaches to iden-
tify ligands with tailored selectivity. Future experiments are going to ex-
tend the number of target structures, presumably moving to another pro-
tein family like kinases. With increasing experience and maybe improved
algorithms, upcoming docking setups will hopefully allow the prediction
of selectivity profiles over a larger panel of targets, even across multiple

protein families.
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7.2 Zusammenfassung (deutsch)

Die ersten Kapitel dieser Arbeit haben sich auf die Identifizierung von
Liganden fiir GPCRs konzentriert. Der Fokus lag dabei auf der Nutzung
von mehreren Strukturen, seien es Homologiemodelle oder Kristallstruk-
turen. Diese Strukturen konnten entweder (i) verschiedene Zustdnde des
gleichen Rezeptors darstellen, wie fiir CCR5 beschrieben oder (ii) verschie-
dene Isoformen des gleichen Rezeptors wie CXCR4a und CXCR4b oder
aber (iii) wirklich unterschiedliche Rezeptoren. Der letzte Fall ist mit Si-
cherheit der interessanteste, da die Bindung eines Molekiils an mehrere,
definierte Zielproteine die Grundlage von Polypharmakologie ist.?* So-
wohl die Entdeckung von Liganden die an CXCR3 und CXCR4 binden
als auch die Vorhersage der Selektivitéit dieser Liganden ist ein gelungenes
Beispiel dafiir.

In diesem speziellen Beispiel wurde fiir elf Substanzen korrekt vorher-
gesagt, ob sie entweder an einen oder an beide Rezeptoren binden. Die
grofite Herausforderung war mit Sicherheit die letzte Kategorie, da gezeigt
wurde, dass diese Rezeptoren die Bindung von Liganden mit unterschied-
lichen Ladungen préferieren. Nichtsdestotrotz, konnten zwei Molekiile von
den beiden Dockinganwendungen ausgewéahlt werden, fiir die die erwartete
duale Bindung nachgewiesen werden konnte. Zusézlich zeigten diese Sub-
stanzen sehr gute Bindeaffinitdten trotz der begrenzten Bindungseffekte.
Diese Ergebnisse beweisen, dass Docking generell angewendet werden kann,
um Liganden zu identifizieren, die an mehrere Zielproteine binden.

Ein Vorstof} in die entgegengesetzte Richtung ist die Identifizierung von
Liganden die selektiv sind fiir einen Rezeptor gegeniiber einem oder mehre-
ren anderen. In so einem Szenario sind sich die Rezeptoren sehr &hnlich und
binden tendenziell die gleichen Liganden. Das kénnen verschiedene Isofor-
men sein, wie die von CXCR4 im Zebrafisch oder verschiedene Subtypen

144 oder des Serotonin-Rezeptors. ® Diese bei-

wie die des muskarinischen
den Studien zeigen die Aktualitdt der Fragestellung nach der Vorhersage
der Selektivitdt eines Liganden gegen mehrere Zielproteine. Vor allem die

Arbeit von Kruse et al.'4* zeigt zusitzlich auf, wie schwierig die erfolg-
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reiche Vorhersage in so einem Versuchsaufbau ist, wie er hier angegangen
wurde durch das Docking gegen CXCR4 Isoformen aus dem Zebrafisch.
Substanzen die gezielt die Isoform eines Rezeptors regulieren kénnen, kon-
nen genutzt werden um die Rolle dieses Rezeptors in der Entwicklung von
Zebrafischen zu verstehen. Diese Anwendung unterstreicht die Relevanz der
Vorhersage von mafigeschneiderten Selektivitaten.

Das Zebrafisch in vivo Systems war nicht in der Lage die Wirkung der
vorhergesagten Liganden zu zeigen, dementsprechend konnte die Korrekt-
heit der Vorhersage von Selektivitdten nicht ausgewertet werden. Chemo-
kine GPCRs stellen eine herausfordernde Gruppe von Zielproteinen dar,
durch ihre grofle Bindetasche, die zugénglich ist fiir Wasser. Trotzdem
konnten an anderer Stelle in dieser Arbeit Liganden entdeckt und veri-
fiziert werden, die an chemokine GPCRs binden. Grundsétzlich werden
Liganden beim Docking selektiert aufgrund ihrer rdumlichen und chemi-
schen Komplementaritit zur Bindetasche, nicht aufgrund der Antwort, die
sie im Rezeptor induzieren. Als Konsequenz kann der induzierte Effekt
solcher Liganden sehr klein sein, wie es auch beim CXCR3-CXCR4 und
CCRS5 Beispiel ersichtlich war. Das gilt auch, wenn die Bindeaffinitat hoch
ist. Folglich ist das Zebrafisch in vivo System moglicherweise ungeeignet
um die Modulation der CXCR4 Isoformen nachzuweisen.

Auch beim Beispiel von CCR5 werden moégliche Probleme von GPCR
Assaysystemen deutlich, da die Wiederholbarkeit der initialen Screenings
problematisch war. Assayprotokolle sind unter Umstdnden nicht optimiert
fiir Substanzen mit nur schwach ausgepragten Effekten und im unteren Be-
reich der Sensitivitdt nicht ausreichend verlafllich. Nichtsdestotrotz konn-
ten beim ersten Screening erfolgreich Substanzen entdeckt werden, die mit
verschiedenen Ausgangsstrukturen ausgewahlt wurden. Die Tatsache, dass
verschiedene Strukturen verschiedene Liganden binden kénnen ist von In-
teresse bei der Anwendung von Docking gegen mehrere Zielproteine. Man
kann sich verschiedene Strukturen eines bestimmten Proteins vorstellen,
die verschiedene Gruppen von Liganden binden. Diese Gruppen kénnen
teilweise iiberlappen oder nicht. Fiir die Vorhersage, ob ein Ligand an ver-

schiedene Proteine bindet oder nicht, muss entsprechend wohl {iberlegt
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7 Summary

sein, welche Struktur fiir jedes der Proteine gewédhlt wird.

Fiir die Familie der Proteinkinasen existieren deutlich mehr Kristall-
strukturen als fiir GPCRs. Das machte es moglich einen Datensatz zu-
sammen zu stellen mit Kristallstrukturen und Kinaseinhibitoren, fiir die
experimentelle Bindungsdaten existieren. Ein nicht-iiberwachtes Docking
gegen alle Strukturen dieses Datensatzes legt nahe, dass die Vorhersage von
Bindeprofilen in einem groflen Mafistab nicht méglich ist mit existierenden
Methoden. Im Gegenteil scheint die {iberlegte Auswahl und Préparierung
von Strukturen der Schliissel zu einem erfolgreichen Docking gegen mehrere
Strukturen zu sein. Mehrere Ideen sind aus diesem Experiment entstanden
um die Vorhersagegenauigkeit von Docking zu verbessern, zum Beispiel
Proteindecoys zusitzlich zu Ligandendecoys zu benutzen. Neue Anséitze
wie diese werden kiinftig helfen, den Erfolg von solch herausfordernden
Docking-Szenarien zu verbessern. Dadurch wird es moglich sein, Docking
breiter einzusetzen um Liganden mit mafigeschneiderten Selektivitdten zu
entwickeln.

Zusammengefasst zeigt das CXCR3-CXCR4 Fallbeispiel dass Docking
Liganden mit dualem Bindungsprofil vorhersagen kann. Allerdings haben
GPCRs einige Besonderheiten. Abhédngig davon wo sie binden und welche
Konformationsdnderung sie hervorrufen, kénnen Liganden als allosterische
Modulatoren, Antagonisten oder Agonisten wirken, oder binden ohne eine
Signalantwort zu induzieren. Wenn es eine Antwort gibt, kann diese auf
verschiedenen Pfaden weitergeleitet werden und zu verschiedenen Signalen
fithren. Alles in allem sind GPCRs vermutlich zu komplex um die Expe-
rimente auszuweiten auf eine groflere Zahl von undhnlicheren Strukturen.
Kinasen konnten hingegen besser geeignet sein fiir zukiinftige Studien mit
mehr Zielproteinen, durch die Verfiigbarkeit von Kristallstrukturen und ex-
perimentellen Moglichkeiten. Trotzdem hebt der Hochdurchsatz-Docking-
ansatz gegen den Kinasedatensatz hervor, dass eine korrekte Anwendung
von Docking durch einen erfahrenen Experimentator notig ist, genauso wie
Methoden wie die Normalisierung von Dockingwerten durch Liganden- und
Proteindecoys.

Die vorgestellte Arbeit zeigt die Machbarkeit, Dockinganséitze zu nutzen
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7.2 Zusammenfassung (deutsch)

um Liganden mit maflgeschneiderten Selektivitdten zu entwickeln. Zukiinf-
tige Experimente werde die Zahl der genutzten Strukturen erweitern, ver-
mutlich durch die Nutzung einer neuen Klasse von Zielproteinen, wie die
Kinasen. Mit steigender Erfahrung und eventuell verbesserten Algorithmen
werden kommende Docking- Ansétze hoffentlich die Vorhersage von Selekti-
vitatsprofilen gegen eine groflere Auswahl von Zielproteinen erlauben, sogar

iiber verschiedene Proteinfamilien hinweg.
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