Publikationsserver der Universitätsbibliothek Marburg

Titel:High-Power Operation of Semiconductor Disk Lasers
Autor:Al Nakdali, Dalia
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2015-04794
DDC: Physik
Titel (trans.):Hochleistungsbetrieb von Halbleiterscheibenlasern


Halbleiterlaser, Halbleiterlaser, semiconductor disk lasers, semiconductor laser, VECSEL, VECSEL-Laser, Halbleiterscheibenlaser, quantum well, Optisch gepumpter Halbleiterlaser

The development of semiconductor disk lasers (SDLs), which are also known as vertical-external-cavity surface-emitting lasers (VECSELs), gives rise to semiconductor lasers with high multi-watt output power combined with diffraction-limited output beam-profile. Owing to a steady progress in the field of SDLs, they feature many advantages over conventional semiconductor (diode) lasers. For instance, high output powers can be achieved with a TEM00 beam profile, no p-n junctions are needed in an SDL device which reduces losses due to free-carrier absorption in doped regions, broad wavelength tuning (> 100 nm) is possible due to a broad gain bandwidth in semiconductors, and external-cavity configurations allow for different operation schemes, i. e., intra-cavity frequency conversion, wavelength-tunable single-frequency operation and mode-locking. This versatility is particularly beneficial with respect to applications. Up to now, mainly quantum-well (QW) based SDLs were used due to their strong yield. However, quantum-dots (QDs) based SDLs become increasingly popular, because they offer a number of advantages hardly achievable when using QWs, such as a reduced lasing threshold, a lower thermal sensitivity, and a higher differential gain. In addition, QDs are also applicable for a coverage of different spectral regions such as in the range of 1 to 1.3 µm, they can provide enhanced wavelength tunability and ultrafast carrier dynamics, which potentially will improve mode-locked operation with respect to shorter puls durations. The work presented in this thesis was focussed on the development and testing of high-power semiconductor disk lasers based on novel quantum-dot structures, and the analysis of optical-scattering losses in SDLs in general. The QDs in the SDL chip structure were formed by molecular-beam-epitaxy growth of InGaAs/GaAs semiconductor materials using the Stranski-Krastanov growth method, and supplied by our cooperation partners for investigations on the performance optimization. The employment of QD materials allowed for the realization of SDLs in the infrared spectral region between 1 and 1.3 µm. Devices with emission wavelengths of 1040 and 1180 nm were subject of this work and QD-based SDLs were tested with respect to high-power operation in a linear cavity configuration. The experiments were performed in order to achieve a maximum output power in the continuous-wave (CW) regime for the existing chips. Therefore, the cavity parameters, i. e., the cavity length, the pump-spot width, and the transmittance of the output-coupler (OC) mirror, were systematically varied in order to reach the best performance of the studied device. As a consequence of the optimization of the operation conditions, record-high CW output powers up to 8.4 and 7.2 W are obtained at temperatures around 2 °C for SDLs emitting at 1040 and 1180 nm, respectively. Besides, by rotating an additionally inserted birefringent filter inside the laser cavity, the laser became wavelength tunable over a relatively large range of 45 and 37 nm for SDLs emitting at 1040 and 1180 nm, respectively. Although the results presented in this thesis may have certainly contributed to the development of QD SDLs, more effort is needed to fully explore the advantages of QD based materials. This will include wider research concerning the thermal sensitivity and operational stability of QD based lasers. That would allow for a more accurate design of the devices, which lead to a more efficient operation. To highlight the influence of optical-scattering losses on the SDL's performance, the thermal resistance of a reference low-surface-quality SDLs chip was analyzed. From experimental input-output characteristics based on thermal roll-over for different output-coupler transmittance values, the optical surface-scattering losses were identified when using an expanded model that takes into account non-heating losses in a device. In this study, we've learned that optical surface-scattering is a non-negligible component of loss in an SDL system, thus further contributing to an understanding of limitations to high-power operation. In conclusion, the best-quality chips -not only with respect to the structural quality inside the chip, but also to the surface quality- are required for the purpose of high-power operation.

Bibliographie / References

  1. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schulzgen, N. Peyghambarian, S. W. Koch, W. Stolz, and J. T. Mur- ray, " Over 3 W high-efficiency vertical-external-cavity surfaceemitting lasers and application as efficient fiber laser pump sources, " Appl.Phys. Lett, vol. 86, no. 21, 2005.
  2. W. W. Chow, S. W. Koch, Semiconductor-Laser Fundamentals. Springer- Verlag, Berlin, Heidelberg, Germany, 1999.
  3. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, " 106 W continuouswave out- put power from vertical-external-cavity surface-emitting laser, " Electron. Lett, vol. 48, no. 9, 2012.
  4. M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Malcolm, and E. U. Rafailov, " Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power, " Opt. Express, vol. 21, no. 21, 2013.
  5. Wilcox, K.G., Tropper, A.C., Beere, H.E., Ritchie, D.A., Kunert, B., Heinen, B., Stolz, W., "4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation," Opt. Express 21(2), 1599–1605 (2013)
  6. J. Rautiainen, M. Butkus, I. Krestnikov, E. U. Rafailov, and O. Okhotnikov, " High-power quantum dot semiconductor disk lasers, " Proc. of SPIE, vol. 8242, 2012.
  7. Al Nakdali, D., Shakfa, M. K., Gaafar, M., Butkus, M., Fedorova, K. A., Zulonas, M., Wichmann, M., Zhang, F., Heinen, B., Rahimi-Iman, A., Stolz, W., Rafailov, E. U., and Koch M., "High-Power Quantum-Dot Vertical- External-Cavity Surface-Emitting Laser Exceeding 8 W," IEEE Photonics Technol. Lett. 26(15), 1561 (2014)
  8. J. Rautiainen, I. Krestnikov, M. Butkus, E. U. Rafailov, and O. G. Okhot- nikov, " Optically pumped semiconductor quantum dot disk laser operating at 1180 nm, " Optics Letters, vol. 35, no. 5, 2010.
  9. Kornaszewski, L., Maker, G., Malcolm, G. P. A., Butkus, M., Rafailov, E. U. and Hamilton, C. J., "SESAM-free mode-locked semiconductor disk laser," Laser Photonics Rev. 6(6), L20–L23 (2012).
  10. T. D. Germann, A. Strittmatter, U. W. Pohl, D. Bimberg, J. Rautiainen, M. Guina, and O. G. Okhotnikov, " Quantum-dot semiconductor disk lasers, " J.
  11. E. Wintner, Handbook of the Eurolaser Academy. Springer-Verlag US, 1998.
  12. Wichmann, M., Stein, M., Rahimi-Iman, A., Koch, S. W., and Koch, M., "Interferometric Characterization of a Semiconductor Disk Laser driven Terahertz Source," J. Infrared Milli. Terahz. Waves 35(6-7), 503–508 (2014).
  13. L. Fan, T. Hsu, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, J. Hader, A. R. Zakharian, J. V. Moloney, S. W. Koch, and W. Stolz, " Tunable high- power high-brightness linearly polarized vertical-external-cavity surfaceemit- ting lasers, " Appl.Phys. Lett, vol. 88, no. 2, 2006.
  14. T. D. Germann, A. Strittmatter, J. Pohl, U. W. Pohl, D. Bimberg, J. Rauti- ainen, M. Guina, and O. G. Okhotnikov, " Temperature-stable operation of a quantum dot semiconductor disk laser, " Applied Physics Letters, vol. 93, no. 5, 2008.
  15. Husaini, S., and Bedford, R. G., "Graphene saturable absorber for high power semiconductor disk laser mode- locking," Appl. Phys. Lett. 104(16), 161107 (2014).
  16. J. A. Lott, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, " GaAs-Based InAs/InGaAs quantum dot vertical cavity and vertical external cavity surface emitting lasers emitting near 1300 nm, " Pacific Rim Conference on Lasers and Electro-Optics, pp. 160 – 161, Tokyo, Japan, 2005.
  17. J. Hader, J. V. Moloney, and S. Koch, " Microscopic evaluation of sponta- neous emission-and Auger-processes in semiconductor lasers, " IEEE Journal of Quantum Electronics, vol. 41, no. 5, 2005.
  18. U. Rafailov, and O. Okhotnikov, " Flip chip quantum-dot semiconductor disk laser at 1200 nm, " IEEE Photonics Technol. Lett, vol. 24, no. 15, 2012.
  19. Mangold, M., Wittwer, V. J., Zaugg, C. A., Link, S. M., Golling, M., Tilma, B. W., and Keller, U., "Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)," Opt. Express 21(21), 24904–24911 (2013).
  20. Zaugg, C. A., Sun, Z., Wittwer, V. J., Popa, D., Milana, S., Kulmala, T. S., Sundaram, R. S., Mangold, M., Sieber, O. D., Golling, M., Lee, Y., Ahn, J. H., Ferrari, A. C., and Keller, U., "Ultrafast and widely tuneable vertical- external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector," Opt. Express 21(25), 31548–31559 (2013).
  21. Gaafar, M., Al Nakdali, D., Möller, C., Fedorova, K. A., Wichmann, M., Shakfa, M. K., Zhang, F., Rahimi-Iman, A., Rafailov, E. U. and Koch, M., "Self-mode-locked quantum-dot vertical-external-cavity surface-emitting laser," Opt. Lett. 39(15), 4623–4626 (2014).
  22. D. Al Nakdali, M. Gaafar, M. K. Shakfa, F. Zhang, M. Vaupel, K. A. Fe- dorova, A. Rahimi-Iman, E. U. Rafailov, and M. Koch, " High-Power Opera- tion of Quantum-Dot Semiconductor Disk Laser at 1180 nm, " IEEE Photonics Technol. Lett, vol. 27, no. 10, 2015.
  23. U. Rafailov, " High-power quantum-dot-based semiconductor disk laser, " Optics Letters, vol. 34, no. 11, 2009.
  24. Keller, U. and Tropper, A. C., "Passively modelocked surface-emitting semiconductor lasers," Physics Reports 429, 67–120 (2006).
  25. Liang, H. C., Tsou, C. H., Lee, Y. C., Huang, K. F. and Chen, Y. F., "Observation of self-mode-locking assisted by high-order transverse modes in optically pumped semiconductor lasers," Laser Phys. Lett. 11, 105803 (2014).
  26. Chen, Y. F., Lee, Y. C., Liang, H. C., Lin, K. Y., Su, K. W. and Huang, K. F., "Femtosecond high-power spontaneous mode-locked operation in vertical-external cavity surface-emitting laser with gigahertz oscillation," Opt. Lett. 36(23), 4581–4583 (2011).
  27. Y. Yu. Peter, M. Cardona, Fundamentals of Semiconductors. Springer-Verlag, Berlin, Heidelberg, Germany, 2001.
  28. T. Numai, Fundamentals of Semiconductor Lasers. Springer-Verlag, Berlin, Heidelberg, Germany, 2003.
  29. D.I. Babic, and S.W. Corzine, " Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors, " IEEE Quantum Electron, vol. 28, 1992.
  30. M. Butkus, J. Rautiainen, O. G. Okhotnikov, C. J. Hamilton, G. P. A. Malcolm, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, " Quantum dot based semiconductor disk lasers for 1-1.3 µm, " IEEE J. Sel. Top. Quantum Electron, vol. 17, no. 6, 2011.
  31. A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatter- jee, S. W. Koch, T. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, " Heat Management in High-Power Vertical-External-Cavity Surface-Emitting Lasers, " IEEE Journal Of Selected Topics In Quantum Elec- tronicsv, vol. 17, no. 6, 2011.
  32. Kuznetsov, M., Hakimi, F., Sprague, R. and Mooradian, A., "High-power (>0.5-W CW) diode-pumped vertical- external-cavity surface-emitting semiconductor lasers with circular TEM00 beams," IEEE Photonics Technol. Lett. 9, 1063-1065 (1997).
  33. Heinen, B., Zhang, F., Sparenberg, M., Kunert, B., Koch, M., and Stolz, W., "On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)," IEEE J. Quantum Electron., 48(7), 934–940 (2012).
  34. S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer and M. Guina, " 1180 nm VECSEL with output power beyond 20 W, " Electronics Letters, vol.49, no. 1, 2013.
  35. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, " 15 W single frequency optically pumped semiconductor laser with submegahertz linewidth, " IEEE Photonics Technol. Lett, vol. 26, no. 2, 2014.
  36. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, " Design and Charac- teristics of High-Power ( 0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM 00 Beams, " IEEE Journal of Photonics Technolgy Letters, vol. 5, no. 3, 1999.
  37. Hoogland, S., Dhanjal, S., Tropper, A. C., Roberts, S. J., Häring, R., Paschotta, R., and Keller, U., "Passively mode- locked diode-pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
  38. A Rantamäki, A Sirbu, A Mereuta, E Kapon, and O. G. Okhotnikov, " 3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser, " Opt. Express, vol. 18, no. 21, 2010.
  39. A. C. Troppera, and S. Hoogland, " Design of Extended cavity surface-emitting semiconductor lasers, " Prog. Quantum Electron, vol. 30, no. 1, 2006.
  40. W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semi- conductor Lasers with Circular TEM 00 Beams, " IEEE Journal of Photonics Technolgy Letters, vol. 9, no. 8, 1999.
  41. Wichmann, M., Shakfa, M. K., Zhang, F., Heinen, B., Scheller, M., Rahimi-Iman, A., Stolz, W., Moloney, J. V., Koch, S. W. and Koch, M., "Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers," Opt. Express 21(26) 31940 (2013).
  42. M. Butkus, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krest- nikov, and E. U. Rafailov, " Flip 1270 nm quantum dot based semiconductor disk lasers, " 22nd IEEE international semiconductor laser conference (ISLC), 2010.
  43. Gaafar, M., Möller, C., Wichmann, M., Heinen, B., Kunert, B., Rahimi-Iman, A., Stolz, W. and Koch, M., "Harmonic self-mode-locking of optically pumped semiconductor disc laser," Electron. Lett. 50(7), 542–543 (2014).
  44. P. J. Schlosser, J. E. Hastie, S. Calvez, A. B. Krysa, and M. D. Daw- son, " InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM00 emission at 716–755 nm, " Opt. Express, vol. 17, no. 24, 2009.
  45. M. I. Mishchenko,L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles. Cabridge University Press, New York, UK, 2004.
  46. A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, J. V. Moloney, K. J. Mal- loy, and G. Balakrishnan, " Multi-watt 1.25 µm quantum dot VECSEL, " Elec- tron. Lett, vol. 46, no. 12, 2010.
  47. Nd:YVO 4 laser under 880 nm diode direct-in-band pumping, " Opt. Commun, vol. 284, no. 19, 2011.
  48. Gaafar, M., Richter, P., Keskin, H., Möller, C., Wichmann, M., Stolz, W., Rahimi-Iman, A. and Koch, M., "Self- mode-locking semiconductor disk laser," Opt. Express 22(23), 28390–28399 (2014).
  49. C. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers -Design, Fabrication, Characterization, and Applications. Cambridge Studies in Modern Optics, 1999.
  50. Albrecht, A. R., Wang, Y., Ghasemkhani, M., Seletskiy, D. V., Cederberg, J. G. and Sheik-Bahae, M., "Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers," Opt. Express 21(23), 28801–28808 (2013).
  51. N. Schulz, J. M. Hopkins, M. Rattunde, D. Burns , and J. Wagner , " High- brightness long-wavelength semiconductor disk lasers, " Laser & Photon, no. 3, 2008.
  52. Wang, T.-L., Heinen, B., Hader, J., Dineen, C., Sparenberg, M., Weber, A., Kunert, B., Koch, S. W., Moloney, J. V., Koch, M., and Stolz, W., "Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W," Laser Photonic Rev., 6(5), L12–L14 (2012)
  53. C. Bückers, E. Kühn, C. Schlichenmaier, S. Imhof, A. Thränhardt, J. Hader, J. V. Moloney, O. Rubel, W. Zhang, T. Ackemann, and S. W. Koch, " Quantum modeling of semiconductor gain materials and vertical-externalcavity surface- emitting laser systems, " Phys. Status Solidi B, vol. 247, no. 4, 2010.
  54. Downloaded From: on 03/19/2015 Terms of Use: [5] Heinen, B., Wang, T. L., Sparenberg, M., Weber, A., Kunert, B., Hader, J., Koch, S. W., Moloney, J. V., Koch, M. and Stolz, W., "106 W continuous-wave output power from vertical-external-cavity surface-emitting laser," Electron. Lett. 48 (9), 516-517 (2012).
  55. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouil- lard, D. Romanini, and E. Cerda-Mendez, " 2–2.7 µm single frequency tunable Sbbased lasers operating in CW at RT: Microcavity and external-cavity VC- SELs, DFB, " Proc. SPIE, vol. 6184, 2006.
  56. R. G. Bedforda, M. Kolesikb, J. L. A. Chillac, M. K. Reedc, T. R. Nelsona, and J. V. Moloneyb, " Power-limiting mechanisms in VECSELs, " Proc. of SPIE, vol. 5814, 2005.
  57. T. Schwarzbäck, R. Bek, F. Hargart, C. A. Kessler, H. Kahle, E. Koroknay, M. Jetter, and P. Michler, " High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W, " Appl. Phys. Lett, vol. 102, no. 9, 2013.
  58. A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, " Influence of the spatial pump distribution on the perfor- mance of high power vertical-external-cavity surface-emitting lasers, " Appl.
  59. E. Kühn, A. Thränhardt, C. Bückers, S. W. Koch, J. Hader, " Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers, " Journal of Applied Physics, vol. 106, 2009.
  60. Hader, J., Wang, T.-L., Moloney, J. V., Heinen, B., Koch, M., Koch, S. W., Kunert, B., and Stolz, W., "On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers," J. Appl. Phys., 113(15), 153102 (2013).
  61. A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Bal- akrishnan, and J. V. Moloney, " High power 1.25 µm InAs quantum dot vertical external-cavity surface-emitting laser, " Journal of Vacuum Science and Tech- nology B, vol. 29, no. 3, 2011.
  62. M. Butkus, C. J. Hamilton, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, and E. U. Rafailov, " Broadly tunable 1250 nm quantum dot- based semiconductor disk laser, " IET Optoelectron, vol. 5, 2011.
  63. S. Calvez, J. E. Hastie, M. Guin, O. G. Okhotnikov, and M. D. Daw- son, " Semiconductor disk lasers for the generation of visible and ultraviolet ra- diation, " Laser Photon, vol. 3, no. 5, 2009.
  64. O. G. Okhotnikov, Semiconductor Disk Lasers. Wiley-VCH Verlag GmbH and Co, 2010
  65. A. J. Kemp, A. J. Maclean, J. E. Hastie, S. A. Smith, J. M. Hopkins, S. Calvez, and G. J. Valentine, M. D. Dawson, and D. Burns, " Thermal lensing, thermal management and transverse mode control in microchip VECSELs, " Appl. Phys. B, vol. 83, 2006.
  66. Scheller, M., Yarborough, J. M., Moloney, J. V., Fallahi, M., Koch, M., and Koch, S. W., "Room temperature continuous wave milliwatt terahertz source," Opt. Express 18(26), 27112–27117 (2010).
  67. J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, " 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser, " Opt.
  68. F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi- Iman, W. Stolz, and M. Koch, " 23-watt single-frequency vertical-external-cavity surface-emitting laser, " Opt. Express, vol. 22, no. 11, 2014.
  69. Seger, K., Meiser, N., Choi, S. Y., Jung, B. H., Yeom, D.-I., Rotermund, F., Okhotnikov, O., Laurell, F., and Pasiskevicius, V., "Carbon nanotube mode-locked optically-pumped semiconductor disk laser," Opt. Express 21(15), 17806–17813 (2013).
  70. M Scheller, T.-L. Wang, B Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, " 85.7 MHz repetition rate modelocked semiconductor disk laser: fundamental and soliton bound states, " Electron. Lett, vol. 48, no. 10, 2012.
  71. Zhang, F., Heinen, B., Wichmann, W., Möller, C., Kunert, B., Rahimi-Iman, A., Stolz, W. and Koch, M., "A 23- watt single-frequency vertical-external-cavity surface-emitting laser," Opt. Express 22, 12817-12822 (2014).
  72. Moloney, J.V., Kilen, I., Bäumner, A., Scheller, M., and Koch, S.W., "Nonequilibrium and thermal effects in mode- locked VECSELS," Opt. Express 22(6), 6422–6427 (2014).

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten