Publikationsserver der Universitätsbibliothek Marburg

Titel:Decomposition driven by invertebrates in tropical rice ecosystems: impacts of management strategies
Autor:Schmidt, Anja
Weitere Beteiligte: Brandl, Roland (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0477
DOI: https://doi.org/10.17192/z2015.0477
URN: urn:nbn:de:hebis:04-z2015-04776
DDC: Biowissenschaften, Biologie
Titel (trans.):Zersetzung von organischem Material durch Invertebraten in tropischen Reis-Ökosystemen
Publikationsdatum:2015-11-11
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Litter mass loss, Bodentiere, Tropen, litterbags, Philippines, detritivores, Fruchtwechsel, Reisanbau, Philippinen, Wassertiere, nutrient supply, Nährstoff, Wirbellose, Zersetzung, Oryza sativa, Tiere

Summary:
My thesis provides insights into the composition of aquatic and soil-dwelling animal assemblages in flooded paddy fields and their potential role in nutrient cycling processes. Decomposition is an essential ecosystem service which provides natural supply of nutrients for plant growth and decreases the need for applying artificial fertilizers. In flooded rice ecosystems invertebrates are of particular importance for an efficient decay of organic matter as microbial decomposition is considerably decelerated under anaerobic conditions. The experiments presented in this thesis substantiate the value of invertebrate detritivores for an effective breakdown of crop residues and therefore, for a sufficient nutrient availability in paddy soils. Further, my experiments revealed that the role of invertebrates in decomposition processes has to be seen in the context of field management. Thus, the development of sustainable management practices in rice agro-ecosystems should also be based on the knowledge about the mediating effects of different cultivation methods on decomposition as an ecologically and economically relevant ecosystem function. Continued efforts to reveal the link between the assemblage of animals in rice fields and their role in decomposition processes are crucial to extend our understanding of the mechanisms behind nutrient utilization promoted by rice straw decomposition. Exploiting the full fertilization potential of rice straw residuals will help to establish sustainable methods for productive rice agriculture.

Bibliographie / References

  1. Weber, S., S. Stubner, and R. Conrad. 2001. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Applied and Environmental Microbiology 67:1318- 1327.
  2. Fairhurst, T., C. Witt, R. Buresh, and A. Dobermann. 2007. Rice: A practical guide to nutrient management. 2nd edition edition. International Rice Research Institute, International Plant Nutrition Institute, and International Potash Institute.
  3. Cuevas, S. C., A. R. R. Banatin, and M. N. G. Pua. 1993. Lethal effects of rice straw ash on golden snails. Bato Balani Junior 13:16-18.
  4. Houghton, R. A. 1995. Changes in the storage of terrestrial carbon since 1850. Pages 45-66 in R. Lal, J. Kimball, E. Levine, and B. A. Stewart, editors. Soils and global change. CRC Press, Boca Raton, Florida.
  5. Dillon, R. T. 2004. The ecology of freshwater molluscs. Cambridge University Press, Cambridge.
  6. Reicosky, D. C., J. L. Hatfield, and R. L. Sass. 2000. Agricultural contributions to greenhouse gas emissions. Pages 37-55 in M. V. Reddy and H. F. Hodges, editors. Climate Change and Global Crop Productivity. CABI Publishing, Wallingford, UK.
  7. Roger, P. A. 1996. Biology and management of the floodwater ecosystem in ricefields. lnternational Rice Research Institute, Manila.
  8. Bambaradeniya, C. N. B., and F. P. Amarasinghe. 2003. Biodiversity associated with the rice field agroecosystem in Asian countries: A brief review. Working Paper 63, Colombo, Sri Lanka: International Water Management Institute.
  9. Estebenet, A. L. 1995. Food and feeding in Pomacea canaliculata (Gastropoda: Ampullariidae). The Veliger 38:277-283.
  10. Proffitt, C. E., and D. J. Devlin. 2005. Grazing by the intertidal gastropod Melampus coffeus greatly increases mangrove leaf litter degradation rates. Marine Ecology Progress Series 296:209-218.
  11. Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346-363.
  12. Evans, M. A. 2012. Impacts of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) as leaf litter decomposers. University of California Davis.
  13. Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7.
  14. Joshi, R. C., and L. S. Sebastian. 2006. Global advances in ecology and management of golden apple snails. Philippine Rice Research Institute, Munoz.
  15. Lekha, A., G. Chopra, and S. R. Gupta. 1989. Role of soil fauna in decomposition of rice and sorghum straw. Proceedings of the Indian Academy of Sciences 98:275-284.
  16. Cucu, M. A., D. Said-Pullicino, V. Maurino, E. Bonifacio, M. Romani, and L. Celi. 2014. Influence of redox conditions and rice straw incorporation on nitrogen availability in fertilized paddy soils. Biology and fertility of soils 50:755-764.
  17. Swan, C. M., and M. A. Palmer. 2006. Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147:469-478.
  18. Youens, A. K., and R. L. Burks. 2008. Comparing applesnails with oranges: the need to standardize measuring techniques when studying Pomacea. Aquatic Ecology 42:679- 684.
  19. Davis, S. E., III, D. L. Childers, and G. B. Noe. 2006. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569:87-97.
  20. Tanaka, M. O., A. C. A. Ribas, and A. L. T. de Souza. 2006. Macroinvertebrate succession during leaf litter breakdown in a perennial karstic river in Western Brazil. Hydrobiologia 568:493-498.
  21. Schaller, J., and E. Struyf. 2013. Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709:201-212.
  22. Chen, H.-L., J.-M. Zhou, and B.-H. Xiao. 2010. Characterization of dissolved organic matter derived from rice straw at different stages of decay. Journal of Soils and Sediments 10:915-922.
  23. Villegas-Pangga, G., G. Blair, and R. Lefroy. 2000. Measurement of decomposition and associated nutrient release from straw (Oryza sativa L.) of different rice varieties using a perfusion system. Plant and Soil 223:1-11.
  24. Wassmann, R., H. U. Neue, R. S. Lantin, K. Makarim, N. Chareonsilp, L. V. Buendia, and H. Rennenberg. 2000. Characterization of Methane Emissions from Rice Fields in Asia. II. Differences among Irrigated, Rainfed, and Deepwater Rice. Nutrient Cycling in Agroecosystems 58:13-22.
  25. Lach, L., D. K. Britton, R. J. Rundell, and R. H. Cowie. 2000. Food preference and reproductive plasticity in an invasive freshwater snail. Biological Invasions 2:279–288.
  26. Singh, B., K. F. Bronson, Y. Singh, T. S. Khera, and E. Pasuquin. 2001. Nitrogen-15 balance as affected by rice straw management in a rice–wheat rotation in northwest India. Nutrient Cycling in Agroecosystems 59:227-237.
  27. Nentwig, W. 2007. Biological Invasions: why it Matters. Springer-Verlag, Berlin Heidelberg.
  28. Cowie, R. H. 2002. Apple Snails (Ampullariidae) as Agricultural Pests: their Biology, Impacts and Management. Pages 145-193 in G. M. Barker, editor. Molluscs as crop pests. CAB International, Wallingford.
  29. Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2015. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-25.
  30. Samra, J. S., B. Singh, and K. Kumar. 2003. Managing crop residues in the rice-wheat system of the Indo-Gangetic plain.in J. K. Ladha, editor. Improving the productivity and sustainability of rice–wheat systems: Issues and impacts. ASA Spec. Publ. 65. ASA, CSSA, and SSSA, Madison, WI.
  31. Widyastuti, R. 2002. Soil fauna in rainfed paddy field ecosystems: their role in organic matter decomposition and nitrogen mineralization. Ecology and Development Series Band 3. Cuvillier Verlag, Göttingen.
  32. Qiu, J.-W., M. T. Chan, K. L. Kwong, and J. Sun. 2011. Consumption, survival and growth in the invasive freshwater snail Pomacea canaliculata: does food freshness matter? . Journal of Molluscan Studies 77:189-195.
  33. Kurihara, Y. 1989. Ecology of Some Ricefields in Japan as Exemplified by Some Benthic Fauna, with Notes on Management. Internationale Revue der Gesamten Hydrobiologie 74:507-548.
  34. Wolters, V. 1991. Soil Invertebrates -Effects on Nutrient Turnover and Soil Structure -A Review. Zeitschrift für Pflanzenernährung und Bodenkunde 154:389-402.
  35. Kuehn, K. A., and K. Suberkropp. 1998. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus. Freshwater Biology 40:717-727.
  36. Olk, D. C., M. I. Samson, and P. Gapas. 2007. Inhibition of nitrogen mineralization in young humic fractions by anaerobic decomposition of rice crop residues. European Journal of Soil Science 58:270-281.
  37. Canhoto, C., and M. A. S. Graça. 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34:209-214.
  38. Qiu, J.-W., and K.-L. Kwong. 2009. Effects of macrophytes on feeding and life-history traits of the invasive apple snail Pomacea canaliculata. Freshwater Biology 54:1720-1730.
  39. Joshi, R. C., E. C. Martin, T. Wada, and L. S. Sebastian. 2006. Role of golden apple snails in organic rice cultivation and weed management. Pages 483-488 in R. C. Joshi and L. S. Sebastian, editors. Global advances in ecology and management of golden apple snails. Philippine Rice Research Institute, Nueva Ecija.
  40. Ehrenfeld, J. G. 2010. Ecosystem Consequences of Biological Invasions. Annual Review of Ecology, Evolution, and Systematics 41:59-80.
  41. Dallinger, R., B. Berger, R. Triebskorn-Köhler, and H. Köhler. 2001. Soil biology and ecotoxicology. Pages 489–525 in G. M. Barker, editor. The biology of terrestrial molluscs. CABI Publishing, Wallingford.
  42. Carlsson, N. O. L., C. Bronmark, and L. A. Hansson. 2004. Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85:1575-1580.
  43. Hanafi, E. M., H. H. El Khadrawy, W. M. Ahmed, and M. M. Zaabal. 2012. Some observations on rice straw with emphasis on updates of its management. World Applied Sciences Journal 16:354-361.
  44. Ferreira, V., A. C. Encalada, and M. A. S. Graça. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31:945-962.
  45. Mueller, N. D., J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty, and J. A. Foley. 2012. Closing yield gaps through nutrient and water management. Nature 490:254-257.
  46. R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  47. Tavares, D. S., R. C. Maia, and C. A. Rocha-Barreira. 2011. Contribution of Melampus coffeus (Gastropoda, Ellobiidae) to leaf litter decomposition in the middle estuary of the Pacoti river, Ceara, Brazil. Iheringia. Série Zoologia 101:56-60.
  48. López van Oosterom, M. V., C. S. Ocón, F. Brancolini, M. E. Maroñas, E. D. Sendra, and A. Rodrigues Capítulo. 2013. Trophic relationships between macroinvertebrates and fish in a pampean lowland stream (Argentina). Iheringia. Série Zoologia 103:57-65.
  49. Tian, G., L. Brussaard, and B. T. Kang. 1993. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biology & Biochemistry 25:731-737.
  50. Tian, G., L. Brussaard, and B. T. Kang. 1995. Breakdown of Plant Residues with Contrasting Chemical-Compositions under Humid Tropical Conditions -Effects of Earthworms and Millipedes. Soil Biology & Biochemistry 27:277-280.
  51. Ibrahima, A., R. Joffre, and D. Gillon. 1995. Changes in Litter during the Initial Leaching Phase -an Experiment on the Leaf-Litter of Mediterranean Species. Soil Biology & Biochemistry 27:931-939.
  52. Litsinger, J. A., and D. B. Estano. 1993. Management of the golden apple snail Pomacea canaliculata (Lamarck) in rice. Crop Protection 12:363-370.
  53. Jenkins, B. M., R. R. Bakker, and J. B. Wei. 1996. On the properties of washed straw. Biomass and Bioenergy 10:177-200.
  54. Koelbl, and M. Schloter. 2010. Biogeochemistry of paddy soils. Geoderma 157:1-14.
  55. Lu, Y. H., A. Watanabe, and M. Kimura. 2003. Carbon dynamics of rhizodeposits, root-and shoot-residues in a rice soil. Soil Biology & Biochemistry 35:1223-1230.
  56. Singh, Y., B. Singh, and J. Timsina. 2005. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in Agronomy 85:269-407.
  57. Bouman, B. A. M., E. Humphreys, T. P. Tuong, and R. Barker. 2007. Rice and Water. Pages 187-237 in L. S. Donald, editor. Advances in Agronomy. Academic Press.
  58. Xu, Y., L. Nie, R. J. Buresh, J. Huang, K. Cui, B. Xu, W. Gong, and S. Peng. 2010. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management. Field Crops Research 115:79-84.
  59. Haefele, S. M., N. P. M. Banayo, S. T. Amarante, J. D. L. C. Siopongco, and R. L. Mabesa. 2013. Characteristics and management options for rice–maize systems in the Philippines. Field Crops Research 144:52-61.
  60. Abdulla, H. M., and S. A. El-Shatoury. 2007. Actinomycetes in rice straw decomposition. Waste Management 27:850-853.
  61. Horgan, F. G., A. M. Stuart, and E. P. Kudavidanage. 2012. Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecologica Published online.
  62. Klotzbücher, T., A. Marxen, D. Vetterlein, J. Schneiker, M. Türke, N. van Sinh, N. H. Manh, H. van Chien, L. Marquez, S. Villareal, J. V. Bustamante, and R. Jahn. 2015. Plant- available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic and Applied Ecology.
  63. Schmidt, A., H. Auge, R. Brandl, K. L. Heong, S. Hotes, J. Settele, S. Villareal, and M. Schädler. 2015. Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic and Applied Ecology.
  64. Mulholland, P. J., J. W. Elwood, J. D. Newbold, and L. A. Ferren. 1985. Effect of a leaf- shredding invertebrate on organic-matter dynamics and phosphorus spiraling in heterotrophic laboratory streams. Oecologia 66:199-206.
  65. Golden Apple Snail | 149
  66. Asari, N., R. Ishihara, Y. Nakajima, M. Kimura, and S. Asakawa. 2007. Succession and phylogenetic composition of eubacterial communities in rice straw during decomposition on the surface of paddy field soil. Soil Science and Plant Nutrition 53:56-65.
  67. Eagle, A. J., J. A. Bird, J. E. Hill, W. R. Horwath, and C. van Kessel. 2001. Nitrogen dynamics and fertilizer use efficiency in rice following straw incorporation and winter flooding. Agronomy Journal 93:1346-1354.
  68. Thuy, N. H., Y. Shan, B. Singh, K. Wang, Z. Cai, Y. Singh, and R. J. Buresh. 2008. Nitrogen Supply in Rice-Based Cropping Systems as Affected by Crop Residue Management. Soil Sci. Soc. Am. J. 72:514-523.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten