Publikationsserver der Universitätsbibliothek Marburg

Titel:Localized transition states in many-particle systems
Autor:Pfeifer, Jens Christian
Weitere Beteiligte: Eckhardt, Bruno (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0467
DOI: https://doi.org/10.17192/z2015.0467
URN: urn:nbn:de:hebis:04-z2015-04670
DDC: Physik
Titel (trans.):Lokalisierte Übergangszustände in Vielteilchensystemen
Publikationsdatum:2016-05-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Shear, Kristall, Simulation, Melting, Physics, Scherung, Physik, Transition State, Simulation, Kondensierte Materie, Konfigurationsraum, Übergangszustand, Schmelzen, Phasenumwandlung

Summary:
This thesis addresses the investigation of the transition from order to chaos in two different systems. In this context, both numerical simulations and theoretical considerations are applied. Popular examples of such transitions are, among others, the melting of a crystal or the transition from a laminar flow to turbulence. They have in common that the variation of an external parameter, for example temperature, results in an abrupt change in the properties of the system: The ordered, well-defined structure of a crystal transforms to the unordered, random configuration of a liquid. In the first part of this thesis, we investigate the influence of a linear, periodic shear on a system of mutually repelling particles. This can be considered as a model for a well known phenomenon, the mixing of a blob of dye in a liquid confined between two concentric cylinders. If the cylinders are rotated back and forth slowly enough so that the flow remains in the laminar regime, a demixing is possible and after one period we retrieve the original blob. Something similar occurs in the simple two-dimensional model system that we investigate: For small shear rates, we observe a self-organization of the particles, ending up in a lattice configuration. Above a critical shear rate, an abrupt change takes place, and the system is found - and remains - in an unordered, chaotic state. We are able to associate the transition with a loss of stability of the sheared lattice. In the chaotic regime, the spatially resolved correlations reveal more details and allow us to extract phase information. Additionally, they provide a possible explanation why diffusion parallel to the shear is enhanced beyond the known advection-diffusion coupling. In the further course of this work, we turn toward a transition known from everyday life, the melting of a solid. There, we again restrict ourselves to a two-dimensional model similar to the one in the first part. We are especially interested in the microscopic processes which eventually result in the melting of the crystal. Therefore, we perform molecular-dynamics (MD) simulations which confirm a two-step process of melting. Furthermore, the computed trajectories allow us deeper insights into the dynamics of the system. In the critical temperature range, we initially observe isolated localized processes where several particles exchange their positions. With the help of a projection on the energetically lowest configuration, these transitions can be identified as hopping events on the hexagonal lattice. As temperature is increased, more processes occur simultaneously, and eventually secondary, more complex transitions are stimulated which result in the melting of the solid. On this account, we investigate the melting transition in view of a rate activated process induced by localized reorganizations of a few particles. We identify possible transitions and the corresponding transition states which comprise up to 18 particles and only affect up to approximately 25 particles, implying that the states are well localized. We characterize the states, both by their arrangement in configuration space as well as by their thermodynamically relevant properties such as the energy barriers. We determine the dependence of the transition rates on the temperature, and compare them to the melting temperature of the system. Apparently, the rates are too low to explain melting on their own. Nevertheless, this is in accordance with previous observations in the simulations, where localized reorganizations lead to secondary transitions which break up the lattice structure and hence initiate the melting process. In the course of our studies, we also investigate the elastic properties of the system. The crystal, consisting of individual particles, can be described by the elastic constants of a continuous solid body. We show that the displacement field induced by the local disturbance of the transition state can be approximated by a superposition of several displacement fields of singular forces acting on an elastic medium. The screening of the potential not only gives rise to a rescaling of the energy of the system, but alters its elastic properties as well. This is partly reflected in the transition states. Though their basic configuration remains unaffected, energy barriers and displacement fields change considerably. We once again refer to the rate model in order to determine the transition rate at the critical temperature. A concluding comparison with results from MD-simulations and other predictions reveals that the model captures the dependence of the melting temperature on the screening parameter of the potential very well.

Bibliographie / References

  1. Qi, W.-K., Qin, S.-M., Zhao, X.-Y., and Chen, Y. (2008). Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems. J. Phys. Condens. Matter, 20(24):245102.
  2. Okuma, S., Suzuki, Y., and Tsugawa, Y. (2010). Reversible to irreversible flow transition in driven vortices. Phys. C, 470:S842–S843.
  3. Menon, G. I. and Ramaswamy, S. (2009). Universality class of the reversible-irreversible transition in sheared suspensions. Phys. Rev. E, 79(6):061108.
  4. Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F., and Eckhardt, B. (2008). Laminar- turbulent boundary in plane Couette flow. Phys. Rev. E, 78(3):037301.
  5. Bibliography Guasto, J. S., Ross, A. S., and Gollub, J. P. (2010). Hydrodynamic irreversibility in particle suspensions with nonuniform strain. Phys. Rev. E, 81(6):061401.
  6. Keim, N. C. and Nagel, S. R. (2011). Generic Transient Memory Formation in Disordered Systems with Noise. Phys. Rev. Lett., 107(1):010603.
  7. Hartmann, P., Sándor, M. C., Kovács, A., and Donkó, Z. (2011). Static and dynamic shear viscosity of a single-layer complex plasma. Phys. Rev. E, 84(1):016404.
  8. Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M., and Losert, W. (2012). Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E, 85(2):021309.
  9. Radzvilavičius, A. (2012). Geometrical defects in two-dimensional melting of many-particle Yukawa systems. Phys. Rev. E, 86(5):051111.
  10. Dasgupta, R., Hentschel, H. G. E., and Procaccia, I. (2012). Microscopic Mechanism of Shear Bands in Amorphous Solids. Phys. Rev. Lett., 109(25):255502.
  11. Regev, I., Lookman, T., and Reichhardt, C. (2013). Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E, 88(6):062401.
  12. Schreck, C. F., Hoy, R. S., Shattuck, M. D., and O'Hern, C. S. (2013). Particle-scale reversibility in athermal particulate media below jamming. Phys. Rev. E, 88(5):052205.
  13. Fiocco, D., Foffi, G., and Sastry, S. (2013). Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E, 88(2):020301.
  14. Keim, N. C. and Arratia, P. E. (2013). Yielding and microstructure in a 2D jammed material under shear deformation. Soft Matter, 9(27):6222.
  15. Deutschländer, S., Horn, T., Löwen, H., Maret, G., and Keim, P. (2013). Two-Dimensional Melting under Quenched Disorder. Phys. Rev. Lett., 111(9):098301.
  16. Derzsi, A., Kovács, A. Z., Donkó, Z., and Hartmann, P. (2014). On the metastability of the hexatic phase during the melting of two-dimensional charged particle solids. Phys. Plasmas, 21(2):023706.
  17. Keim, N. C., Paulsen, J. D., and Nagel, S. R. (2013). Multiple transient memories in sheared suspensions: Robustness, structure, and routes to plasticity. Phys. Rev. E, 88(3):032306.
  18. Keim, N. C. and Arratia, P. E. (2014). Mechanical and Microscopic Properties of the Reversible Plastic Regime in a 2D Jammed Material. Phys. Rev. Lett., 112(2):028302.
  19. van der Meer, B., Qi, W., Fokkink, R. G., van der Gucht, J., Dijkstra, M., and Sprakel, J. (2014). Highly cooperative stress relaxation in two-dimensional soft colloidal crystals. Proc. Natl. Acad. Sci. U. S. A., 111(43):15356–61.
  20. Swayamjyoti, S., Löffler, J. F., and Derlet, P. M. (2014). Local structural excitations in model glasses. Phys. Rev. B, 89(22):224201.
  21. Kapfer, S. C. and Krauth, W. (2015). Two-Dimensional Melting: From Liquid-Hexatic Coexistence to Continuous Transitions. Phys. Rev. Lett., 114(3):035702.
  22. Jeanneret, R. and Bartolo, D. (2014). Geometrically protected reversibility in hydrody- namic Loschmidt-echo experiments. Nat. Commun., 5:3474.
  23. E, W., Ren, W., and Vanden-Eijnden, E. (2002). String method for the study of rare events. Phys. Rev. B, 66(5):052301.
  24. Trygubenko, S. A. and Wales, D. J. (2004). A doubly nudged elastic band method for finding transition states. J. Chem. Phys., 120(5):2082–94.
  25. Libál, A., Reichhardt, C., and Olsen Reichhardt, C. J. (2007). Point-defect dynamics in two-dimensional colloidal crystals. Phys. Rev. E, 75(1):011403.
  26. Keim, P., Maret, G., and von Grünberg, H. H. (2007). Frank's constant in the hexatic phase. Phys. Rev. E, 75(3):031402.
  27. DaSilva, L. C., Cândido, L., da F. Costa, L., and Oliveira, O. N. (2007). Formation energy and interaction of point defects in two-dimensional colloidal crystals. Phys. Rev. B, 76(3):035441.
  28. Pastawski, H. M., Levstein, P. R., and Usaj, G. (1995). Quantum Dynamical Echoes in the Spin Diffusion in Mesoscopic Systems. Phys. Rev. Lett., 75(23):4310–4313.
  29. Mousseau, N. and Barkema, G. T. (1998). Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique. Phys. Rev. E, 57(2):2419– 2424.
  30. Jain, S. and Nelson, D. R. (2000). Statistical mechanics of vacancy and interstitial strings in hexagonal columnar crystals. Phys. Rev. E, 61(2):1599–1615.
  31. Schneider, T. M., Eckhardt, B., and Yorke, J. A. (2007). Turbulence Transition and the Edge of Chaos in Pipe Flow. Phys. Rev. Lett., 99(3):034502.
  32. Sun, H., Kang, N., Zhang, J., and Carlson, E. S. (2003). A fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation. Math. Comput. Simul., 63(6):651–661.
  33. Plimpton, S. (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys., 117(1):1–19.
  34. Löwen, H., Allahyarov, E., Likos, C. N., Blaak, R., Dzubiella, J., Jusufi, A., Hoffmann, N., and Harreis, H. M. (2003). Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems. J. Phys. A, 36(22):5827–5834.
  35. Thomas, H. M. and Morfill, G. E. (1996). Melting dynamics of a plasma crystal. Nature, 379(6568):806–809.
  36. Barkema, G. T. and Mousseau, N. (1996). Event-Based Relaxation of Continuous Disor- dered Systems. Phys. Rev. Lett., 77(21):4358–4361.
  37. Michell, J. H. (1899). On the Direct Determination of Stress in an Elastic Solid, with application to the Theory of Plates. Proc. London Math. Soc., s1-31(1):100–124.
  38. Siders, C. W., Cavalleri, A., Sokolowski-Tinten, K., Tóth, C., Guo, T., Kammler, M., Horn von Hoegen, M., Wilson, K. R., von der Linde, D., and Barty, C. P. J. (1999). Detection of Nonthermal Melting by Ultrafast X-ray Diffraction. Science, 286:1340–1342.
  39. Guennebaud, G., Jacob, B., and Others (2010). Eigen v3. http://eigen.tuxfamily.org.
  40. Konopka, U., Morfill, G. E., and Ratke, L. (2000). Measurement of the Interaction Poten- tial of Microspheres in the Sheath of a rf Discharge. Phys. Rev. Lett., 84(5):891–894.
  41. Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B., and Möhlmann, D. (1994). Plasma Crystal: Coulomb Crystallization in a Dusty Plasma. Phys. Rev. Lett., 73(5):652–655.
  42. Corté, L., Gerbode, S. J., Man, W., and Pine, D. J. (2009). Self-Organized Criticality in Sheared Suspensions. Phys. Rev. Lett., 103(24):248301.
  43. Mohan, L., Pellet, C., Cloitre, M., and Bonnecaze, R. (2013). Local mobility and mi- crostructure in periodically sheared soft particle glasses and their connection to macro- scopic rheology. J. Rheol., 57(3):1023–1046.
  44. Casati, G., Chirikov, B. V., Guarneri, I., and Shepelyansky, D. L. (1986). Dynami- cal Stability of Quantum " Chaotic " Motion in a Hydrogen Atom. Phys. Rev. Lett., 56(23):2437–2440.
  45. Jin, Z. H., Gumbsch, P., Lu, K., and Ma, E. (2001). Melting Mechanisms at the Limit of Superheating. Phys. Rev. Lett., 87(5):055703.
  46. Oswald, P. (2009). Rheophysics. Cambridge University Press, ISBN: 978-0-521-88362-7.
  47. Fiocco, D., Foffi, G., and Sastry, S. (2014). Encoding of Memory in Sheared Amorphous Solids. Phys. Rev. Lett., 112(2):025702.
  48. Knapek, C. A., Samsonov, D., Zhdanov, S., Konopka, U., and Morfill, G. E. (2007). Recrystallization of a 2D Plasma Crystal. Phys. Rev. Lett., 98(1):015004.
  49. 2D Melting of Plasma Crystals: Equilibrium and Nonequilibrium Regimes. Phys. Rev. Lett., 103(1):015001.
  50. Henkelman, G., Uberuaga, B. P., and Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22):9901.
  51. Henkelman, G. and Jónsson, H. (1999). A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys., 111(15):7010.
  52. Toh, S. and Itano, T. (2003). A periodic-like solution in channel flow. J. Fluid Mech., 481:67–76.
  53. Bell, R. J. and Dean, P. (1970). Atomic vibrations in vitreous silica. Discuss. Faraday Soc., 50:55.
  54. Boltzmann, L. (1877). BemerkungenüberBemerkungen¨Bemerkungenüber einige Probleme der mechanischen Wärmethe- orie. Sitzungsber. Kais. Akad. Wiss. Wien, 75:62 – 100.
  55. Peierls, R. (1934). BemerkungenüberBemerkungen¨Bemerkungenüber Umwandlungstemperaturen. Helv. Phys. Acta, 7:81–83.
  56. Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304.
  57. Roberts, J. A. G. and Quispel, G. R. W. (1992). Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep., 216(2-3):63–177.
  58. Metzger, B. and Butler, J. E. (2012). Clouds of particles in a periodic shear flow. Phys. Fluids, 24(2):021703.
  59. Henderson, M. E. (2005). Computing Invariant Manifolds by Integrating Fat Trajectories. SIAM J. Appl. Dyn. Syst., 4(4):832–882.
  60. Grimvall, G. and Sjödin, S. (1974). Correlation of Properties of Materials to Debye and Melting Temperatures. Phys. Scr., 10(6):340–352.
  61. Price, R. and Platzman, P. M. (1991). Defect configurations in a two-dimensional classical Wigner crystal. Phys. Rev. B, 44(5):2356–2357.
  62. Munro, L. J. and Wales, D. J. (1999). Defect migration in crystalline silicon. Phys. Rev. B, 59(6):3969–3980.
  63. Fisher, D. S., Halperin, B. I., and Morf, R. (1979). Defects in the two-dimensional electron solid and implications for melting. Phys. Rev. B, 20(11):4692–4712.
  64. Chu, J. H. and I, L. (1994). Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett., 72(25):4009–4012.
  65. Nelson, D. R. and Halperin, B. I. (1979). Dislocation-mediated melting in two dimensions. Phys. Rev. B, 19(5):2457–2484.
  66. Merlino, R. L. and Goree, J. A. (2004). Dusty plasmas in the laboratory, industry, and space. Phys. Today, 57(7):32–38.
  67. Zahn, K. and Maret, G. (2000). Dynamic Criteria for Melting in Two Dimensions. Phys. Rev. Lett., 85(17):3656–3659.
  68. Franceschini, A., Filippidi, E., Guazzelli, E., and Pine, D. J. (2014). Dynamics of non- Brownian fiber suspensions under periodic shear. Soft Matter, 10(35):6722–31.
  69. Schneider, T. and Stoll, E. (1978). Dynamics of the Sine-Gordon Chain. Phys. Rev. Lett., 41(21):1429–1432.
  70. Eckhardt, B. (2003). Echoes in classical dynamical systems. J. Phys. A, 36(2):371–380.
  71. Skufca, J. D., Yorke, J. A., and Eckhardt, B. (2006). Edge of Chaos in a Parallel Shear Flow. Phys. Rev. Lett., 96(17):174101.
  72. Carr, H. Y. and Purcell, E. M. (1954). Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev., 94(3):630–638.
  73. Hartmann, P., Kalman, G. J., Donkó, Z., and Kutasi, K. (2005). Equilibrium properties and phase diagram of two-dimensional Yukawa systems. Phys. Rev. E, 72(2):026409.
  74. Likhachev, V. N., Astakhova, T. Y., Ebeling, W., and Vinogradov, G. A. (2009). Equilib- rium thermodynamics and thermodynamic processes in nonlinear systems. Eur. Phys.
  75. Eckmann, J.-P. and Ruelle, D. (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57(3):617–656.
  76. Sykes, M. F. and Essam, J. W. (1964). Exact Critical Percolation Probabilities for Site and Bond Problems in Two Dimensions. J. Math. Phys., 5(8):1117.
  77. Melzer, A., Homann, A., and Piel, A. (1996a). Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E, 53(3):2757–2766.
  78. Murray, C. A. and Van Winkle, D. H. (1987). Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system. Phys. Rev. Lett., 58(12):1200–1203.
  79. Chaiken, J., Chevray, R., Tabor, M., and Tan, Q. M. (1986). Experimental Study of Lagrangian Turbulence in a Stokes Flow. Proc. R. Soc. A, 408(1834):165–174.
  80. Quinn, R. A. and Goree, J. (2001). Experimental test of two-dimensional melting through disclination unbinding. Phys. Rev. E, 64(5):051404.
  81. Berry, R. S., Davis, H. L., and Beck, T. L. (1988). Finding saddles on multidimensional potential surfaces. Chem. Phys. Lett., 147(1):13–17.
  82. Tang, Y., Armstrong, A. J., Mockler, R. C., and O'Sullivan, W. J. (1989). Free-expansion melting of a colloidal monolayer. Phys. Rev. Lett., 62(20):2401–2404.
  83. Berry, R. S. and Wales, D. J. (1989). Freezing, melting, spinodals, and clusters. Phys. Rev. Lett., 63(11):1156–1159.
  84. Vineyard, G. H. (1957). Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids, 3(1-2):121–127.
  85. Bausch, A. R., Bowick, M. J., Cacciuto, A., Dinsmore, A. D., Hsu, M. F., Nelson, D. R., Nikolaides, M. G., Travesset, A., and Weitz, D. A. (2003). Grain boundary scars and spherical crystallography. Science, 299(5613):1716–8.
  86. Chui, S. T. (1982). Grain-Boundary Theory of Melting in Two Dimensions. Phys. Rev. Lett., 48(14):933–935.
  87. Brooks, B. R., Janežič, D., and Karplus, M. (1995). Harmonic analysis of large systems. I. Methodology. J. Comput. Chem., 16(12):1522–1542.
  88. Stillinger, F. H. and Weber, T. A. (1982). Hidden structure in liquids. Phys. Rev. A, 25(2):978–989.
  89. Dash, J. G. (1999). History of the search for continuous melting. Rev. Mod. Phys., 71(5):1737–1743.
  90. Berry, R. S. (1990). Introductory lecture. Clusters, melting, freezing and phase transitions. J. Chem. Soc. Faraday Trans., 86(13):2343.
  91. Metzger, B. and Butler, J. E. (2010). Irreversibility and chaos: Role of long-range hydro- dynamic interactions in sheared suspensions. Phys. Rev. E, 82(5):051406.
  92. Düring, G., Bartolo, D., and Kurchan, J. (2009). Irreversibility and self-organization in hydrodynamic echo experiments. Phys. Rev. E, 79(3):030101.
  93. Zhang, W., Zhou, W., and Luo, M. (2010). Irreversibility of two-dimensional vortex systems with random pinning. Phys. Lett. A, 374(35):3666–3670.
  94. Frenkel, J. (1946). Kinetic Theory of Liquids. Oxford University Press.
  95. Nosenko, V., Goree, J., and Piel, A. (2006). Laser method of heating monolayer dusty plasmas. Phys. Plasmas, 13(3):032106.
  96. Van Winkle, D. H. and Murray, C. A. (1986). Layering transitions in colloidal crystals as observed by diffraction and direct-lattice imaging. Phys. Rev. A, 34(1):562–573.
  97. Landau, L. D. and Lifschitz, E. M. (1966). Lehrbuch der theoretischen Physik VII - Elastizitätstheorie. Akademie Verlag Berlin, 2. edition.
  98. Taylor, G. I. (1960). Low Reynolds Number Flow. Published in Homsy (2008).
  99. Politi, A. (2013). Lyapunov exponent. Scholarpedia, 8(3):2722.
  100. Penner, S. S. (1948). Melting and Evaporation as Rate Processes. J. Phys. Colloid Chem., 52(6):949–954.
  101. Wales, D. J. and Berry, R. S. (1990). Melting and freezing of small argon clusters. J. Chem. Phys., 92(7):4283.
  102. Young, A. P. (1979). Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B, 19(4):1855–1866.
  103. Qi, W.-K., Wang, Z., Han, Y., and Chen, Y. (2010). Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation. J. Chem. Phys., 133(23):234508.
  104. Naidoo, K. J. and Schnitker, J. (1994). Melting of two-dimensional colloidal crystals: A simulation study of the Yukawa system. J. Chem. Phys., 100(4):3114.
  105. Hartmann, P., Donkó, Z., Bakshi, P. M., Kalman, G. J., and Kyrkos, S. (2007). Molecular Dynamics Studies of Solid–Liquid Phase Transition in 2-D Yukawa Systems. IEEE Trans. Plasma Sci., 35(2):332–336.
  106. Tobochnik, J. and Chester, G. V. (1982). Monte Carlo study of melting in two dimensions. Phys. Rev. B, 25(11):6778–6798.
  107. Homsy, G. M., editor (2008). Multimedia Fluid Dynamics. Cambridge University Press, 2nd edition, ISBN: 978052172169.
  108. Ott, T., Stanley, M., and Bonitz, M. (2011). Non-invasive determination of the parameters of strongly coupled 2D Yukawa liquids. Phys. Plasmas, 18(6):063701.
  109. Guckenheimer, J. and Holmes, P. (2002). Nonlinear Oscillations, Dynamical Systems, and Bifurcation Theory. Springer-Verlag New York Berlin Heidelberg, 7th edition, ISBN: 978-0-387-90819-9.
  110. Bedanov, V. M., Gadiyak, G. V., and Lozovik, Y. E. (1985b). On a modified Lindemann- like criterion for 2D melting. Phys. Lett. A, 109(6):289–291.
  111. Cassak, P. A., Drake, J. F., Shay, M. A., and Eckhardt, B. (2007). Onset of Fast Magnetic Reconnection. Phys. Rev. Lett., 98(21):215001.
  112. Wigner, E. (1934). On the Interaction of Electrons in Metals. Phys. Rev., 46(11):1002– 1011.
  113. Sheppard, D., Terrell, R., and Henkelman, G. (2008). Optimization methods for finding minimum energy paths. J. Chem. Phys., 128(13):134106.
  114. Kosterlitz, J. M. and Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys., 6(7):1181–1203.
  115. Chicone, C. (2006). Ordinary Differential Equations with Applications, volume 34 of Texts in Applied Mathematics. Springer New York, ISBN: 978-0-387-30769-5.
  116. Vaulina, O. S. and Vasilieva, E. V. (2014). Orientational order and topological defects in two-dimensional Yukawa systems. Phys. Lett. A, 378(9):719–722.
  117. Lozovik, Y. E. and Farztdinov, V. M. (1985). Oscillation spectra and phase diagram of two-dimensional electron crystal: " New " (3+4)-self-consistent approximation. Solid State Commun., 54(8):725–728.
  118. Stillinger, F. H. and Weber, T. A. (1984a). Packing structures and transitions in liquids and solids. Science, 225(4666):983–9.
  119. Knapek, C. (2010). Phase Transitions in Two-Dimensional Complex Plasmas. PhD thesis, Ludwig-Maximilians-Universität München.
  120. Schweigert, V. A., Schweigert, I. V., Melzer, A., Homann, A., and Piel, A. (1998). Plasma Crystal Melting: A Nonequilibrium Phase Transition. Phys. Rev. Lett., 80(24):5345– 5348.
  121. Motohashi, A. and Okuma, S. (2011). Plastic depinning in superconducting vortices. J. Phys. Conf. Ser., 302:012029.
  122. Stillinger, F. H. and Weber, T. A. (1984b). Point defects in bcc crystals: Structures, transition kinetics, and melting implications. J. Chem. Phys., 81(11):5095.
  123. Berry, R. S. (1993). Potential surfaces and dynamics: what clusters tell us. Chem. Rev., 93(7):2379–2394.
  124. Corté, L., Chaikin, P. M., Gollub, J. P., and Pine, D. J. (2008). Random organization in periodically driven systems. Nat. Phys., 4(5):420–424.
  125. Wales, D. J. (1994). Rearrangements of 55-atom Lennard-Jones and (C60)55 clusters. J. Chem. Phys., 101(5):3750.
  126. Mangan, N., Reichhardt, C., and Olson Reichhardt, C. J. (2008). Reversible to Irreversible Flow Transition in Periodically Driven Vortices. Phys. Rev. Lett., 100(18):187002.
  127. Ionova, I. V. and Carter, E. A. (1993). Ridge method for finding saddle points on potential energy surfaces. J. Chem. Phys., 98(8):6377.
  128. Vaulina, O. S. and Khrapak, S. A. (2000). Scaling law for the fluid-solid phase transition in Yukawa systems (dusty plasmas). J. Exp. Theor. Phys., 90(2):287–289.
  129. Young, W. R., Rhines, P. B., and Garrett, C. J. R. (1982). Shear-Flow Dispersion, Internal Waves and Horizontal Mixing in the Ocean. J. Phys. Oceanogr., 12(6):515–527.
  130. E, W., Ren, W., and Vanden-Eijnden, E. (2007). Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys., 126(16):164103.
  131. Hahn, E. L. (1950). Spin Echoes. Phys. Rev., 80(4):580–594.
  132. Meissner, G., Namaizawa, H., and Voss, M. (1976). Stability and image-potential-induced screening of electron vibrational excitations in a three-layer structure. Phys. Rev. B, 13(4):1370–1376.
  133. Löwen, H. (1992). Structure and Brownian dynamics of the two-dimensional Yukawa fluid. J. Phys. Condens. Matter, 4(50):10105–10116.
  134. Melzer, A., Schweigert, V. A., Schweigert, I. V., Homann, A., Peters, S., and Piel, A. (1996b). Structure and stability of the plasma crystal. Phys. Rev. E, 54(1):R46–R49.
  135. Murrell, J. N. and Laidler, K. J. (1968). Symmetries of activated complexes. Trans. Faraday Soc., 64:371.
  136. Gupta, R. P. and Sharma, P. K. (1968). Test of a Melting Criterion for Cubic Metals. J. Chem. Phys., 48(6):2451.
  137. Kleinert, H. (1989). Test of new melting criterion. Angular stiffness and order of 2D melting in Lennard-Jones and Wigner lattices. Phys. Lett. A, 136(9):468–471.
  138. Eyring, H. (1935a). The Activated Complex and the Absolute Rate of Chemical Reactions. Chem. Rev., 17(1):65–77.
  139. Eyring, H. (1935b). The Activated Complex in Chemical Reactions. J. Chem. Phys., 3(2):107.
  140. Barkema, G. T. and Mousseau, N. (2001). The activation–relaxation technique: an efficient algorithm for sampling energy landscapes. Comput. Mater. Sci., 20(3-4):285–292.
  141. Rapaport, D. C. (1997). The art of molecular dynamics simulation. Cambridge University Press, ISBN: 0-521-59942-3.
  142. Lees, A. W. and Edwards, S. F. (1972). The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys., 5(15):1921–1928.
  143. Gilvarry, J. J. (1956). The Lindemann and Grüneisen Laws. Phys. Rev., 102(2):308–316.
  144. Halperin, B. I. and Nelson, D. R. (1978). Theory of Two-Dimensional Melting. Phys. Rev. Lett., 41(2):121–124.
  145. Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483.
  146. Vaulina, O. S. and Koss, X. G. (2014). Thermodynamics and phase transitions in two- dimensional Yukawa systems. Phys. Lett. A, 378(46):3475–3479.
  147. Miron, R. A. and Fichthorn, K. A. (2001). The Step and Slide method for finding saddle points on multidimensional potential surfaces. J. Chem. Phys., 115(19):8742.
  148. Okuma, S., Tsugawa, Y., and Motohashi, A. (2011). Transition from reversible to irre- versible flow: Absorbing and depinning transitions in a sheared-vortex system. Phys. Rev. B, 83(1):012503.
  149. Vanden-Eijnden, E. and Tal, F. A. (2005). Transition state theory: variational formulation, dynamical corrections, and error estimates. J. Chem. Phys., 123(18):184103.
  150. Franceschini, A., Filippidi, E., Guazzelli, E., and Pine, D. J. (2011). Transverse Alignment of Fibers in a Periodically Sheared Suspension: An Absorbing Phase Transition with a Slowly Varying Control Parameter. Phys. Rev. Lett., 107(25):250603.
  151. Strandburg, K. J. (1988). Two-dimensional melting. Rev. Mod. Phys., 60(1):161–207.
  152. Zahn, K., Lenke, R., and Maret, G. (1999). Two-Stage Melting of Paramagnetic Colloidal Crystals in Two Dimensions. Phys. Rev. Lett., 82(13):2721–2724.
  153. Loschmidt, J. (1876). ¨ Uber den Zustand des Wärmegleichgewichts eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Sitzungsber. Kais. Akad. Wiss. Wien, 73:128 – 142.
  154. Lindemann, F. A. (1910). Ueber die Berechnung molekularer Eigenfrequenzen. Phys Z., 11(14):609–612.
  155. Slawinski, M. A. (2010). Waves and Rays in Elastic Continua. World Scientific Publishing Co. Pte. Ltd, 2nd edition, ISBN: 978-9814289009.
  156. Dasgupta, R., Hentschel, H. G. E., and Procaccia, I. (2013). Yield strain in shear banding amorphous solids. Phys. Rev. E, 87(2):022810.
  157. Weinberger, C., Cai, W., and Barnett, D. (2005). Lecture Notes–Elasticity of Microscopic Structures. http://micro.stanford.edu/˜caiwei/me340b/content/me340b-notes v01.pdf.
  158. Dillmann, P., Maret, G., and Keim, P. (2012). Comparison of 2D melting criteria in a colloidal system. J. Phys. Condens. Matter, 24(46):464118.
  159. Bedanov, V. M., Gadiyak, G. V., and Lozovik, Y. E. (1985a). Melting of two-dimensional crystals. Zh. ´ Eksp. Teor. Fiz, 88:1622.
  160. Jónsson, H., Mills, G., and Jacobsen, K. W. (1998). Nudged elastic band method for finding minimum energy paths of transitions. In Berne, B., Ciccotti, G., and Coker, D., editors, Class. Quantum Dyn. Condens. Phase Simulations -Proc. Int. Sch. Phys., pages 385–404, Singapore. World Scientific Publishing Co. Pte. Ltd.
  161. Hänggi, P., Talkner, P., and Borkovec, M. (1990). Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys., 62(2):251–341.
  162. Binder, K., Sengupta, S., and Nielaba, P. (2002). The liquid-solid transition of hard discs: first-order transition or Kosterlitz-Thouless-Halperin-Nelson-Young scenario? J. Phys. Condens. Matter, 14(9):2323–2333.
  163. Pine, D. J., Gollub, J. P., Brady, J. F., and Leshansky, A. M. (2005). Chaos and threshold for irreversibility in sheared suspensions. Nature, 438(7070):997–1000.
  164. Lehoucq, R. R. B., Sorensen, D. D. C., and Yang, C.-C. (1998). Arpack User's Guide: Solution of Large-Scale Eigenvalue Problems With Implicityly Restarted Arnoldi Methods. Siam, 6 edition, ISBN: 978-0-89871-407-4. Library available online at http://www.caam.rice.edu/software/ARPACK/.
  165. Galassi et al., M. (2010). GNU Scientific Library Reference Manual -Third Edi- tion. Network Theory Ltd., ISBN: 0954612078. Library available online at http://www.gnu.org/software/gsl/.
  166. Royer, J. R. and Chaikin, P. M. (2014). Precisely cyclic sand: Self-organization of peri- odically sheared frictional grains. Proc. Natl. Acad. Sci., 112(1):49–53.
  167. Peierls, R. (1935). Quelques propriétés typiques des corps solides. Ann. Inst. Henri Poincaré, 5(3):177–222.
  168. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature, 410(6824):65–8.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten