
Semiclassical Analysis of Schrödinger

Operators on Closed Manifolds

and Symmetry Reduction

Dissertation

Benjamin Küster
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Zusammenfassung

Sei M eine geschlossene zusammenhängende Riemann’sche Mannigfaltigkeit. Im ersten Teil
der vorliegenden Arbeit entwickeln wir einen Funktionalkalkül für Operatoren der Form
fh(P (h)) im Rahmen der semiklassischen Pseudodi↵erentialoperatoren, wobei {fh}h2(0,1] ⇢
C1

c (R) eine Familie von h-abhängigen Funktionen ist, die gewissen Regularitätsbedingungen
genügt, und P (h) entweder einen geeigneten selbstadjungierten semiklassischen Pseudodif-
ferentialoperator in L2(Rn) oder einen Schrödinger-Operator in L2(M) bezeichnet. Mit Hilfe
unserer Ergebnisse lassen sich semiklassische Spurformeln mit Restgliedabschätzungen be-
weisen, die gut dafür geeignet sind, Bereiche im Spektrum mit einer Breite der Ordnung h�

zu untersuchen, wobei 0  � < 1
2 . Der zweite Teil der Arbeit behandelt die Spektralthe-

orie und Quantenergodizität von Schrödinger-Operatoren auf M unter der Voraussetzung,
dass das zugrunde liegende Hamilton’sche System gewisse Symmetrien besitzt. Genauer
gesagt beweisen wir eine verallgemeinerte äquivariante Version des semiklassischen Weyl-
Gesetzes mit Restgliedabschätzung unter der Annahme, dass auf M eine kompakte, zusam-
menhängende Lie-Gruppe G isometrisch und e↵ektiv wirkt. Wir verwenden dazu einen Satz
aus dem ersten Teil dieser Arbeit sowie kürzlich erzielte Ergebnisse zu singulären äquivari-
anten Asymptotiken, und leiten daraus ein äquivariantes Quantenergodizitätstheorem ab,
sofern der Symmetrie-reduzierte Hamilton’sche Fluss auf dem Hauptstratum der singulären
symplektischen Reduktion von M ergodisch ist. Unter anderem erhalten wir eine äquivari-
ante Version des Shnirelman-Zelditch-Colin-de-Verdière-Theorems, sowie einen darstellungs-
theoretischen Gleichverteilungssatz. In dem Fall, dass M/G eine Orbifaltigkeit ist, erzielte
Kordyukov vor Kurzem ähnliche Ergebnisse. Ist G die triviale Gruppe, so erhalten wir die
bekannten klassischen Resultate.

Summary

Let M be a closed connected Riemannian manifold. In the first part of this thesis, we develop
a functional calculus for operators of the form fh(P (h)) within the theory of semiclassical
pseudodi↵erential operators, where {fh}h2(0,1] ⇢ C1

c (R) denotes a family of h-dependent
functions satisfying some regularity conditions, and P (h) is either an appropriate self-adjoint
semiclassical pseudodi↵erential operator in L2(Rn) or a Schrödinger operator in L2(M). Our
results lead to semiclassical trace formulas with remainder estimates that are well-suited for
studying spectral windows of width of order h�, where 0  � < 1

2 . In the second part of the
thesis, we study the spectral and quantum ergodic properties of Schrödinger operators on M
in case that the underlying Hamiltonian system possesses certain symmetries. More precisely,
if M carries an isometric and e↵ective action of a compact connected Lie group G, we prove a
generalized equivariant version of the semiclassical Weyl law with an estimate for the remain-
der, using a theorem from the first part of this thesis and relying on recent results on singular
equivariant asymptotics. We then deduce an equivariant quantum ergodicity theorem under
the assumption that the symmetry-reduced Hamiltonian flow on the principal stratum of the
singular symplectic reduction of M is ergodic. In particular, we obtain an equivariant version
of the Shnirelman-Zelditch-Colin-de-Verdière theorem, as well as a representation theoretic
equidistribution theorem. If M/G is an orbifold, similar results were recently obtained by
Kordyukov. When G is trivial, one recovers the classical results.
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Introduction

This thesis consists of two parts, Semiclassical functional calculus for h-dependent functions
and Semiclassical analysis and symmetry reduction, each of which has its own introductory
chapter named Overview. The heart of the thesis is the second part. Part I represents the
outcome of a program whose initial goal was solely to provide a detailed explanation and
foundation of the methods of proof used in Part II, and which then developed a life of its
own. The tools from the first part are not restricted in their applications to those in the
second part, which is why Part I is not just a chapter.

The reader who is interested in the spectral theory of invariant Schrödinger operators,
group actions and representations, (singular) symplectic reduction, oscillatory integrals, and
the combination of these topics in relation with quantum ergodicity is encouraged to begin
reading this thesis with the second part. On the other hand, if one prefers to dwell on
semiclassical spectral functional calculus and trace formulas, or insists on a logically correct
order of introducing the necessary tools and background material, Part I is the natural choice
to start with.

The unifying concept that lies behind both Parts I and II is spectral asymptotics. This
means that all main theorems proved in this thesis are of the form

interesting quantity = leading term + remainder term,

where the remainder term becomes negligible when passing to a certain limit related to the
spectrum of an operator or a family of operators, and the rate of the convergence is also
of interest. Semiclassical analysis was invented to deal precisely with such problems, and
therefore we shall use it as our technical framework. As indicated already, the main object of
study in both parts is a semiclassical Schrödinger operator on a closed connected Riemannian
manifold, and the main di↵erence between the two parts is the fact that we assume only in
Part II that the underlying manifold carries a certain Lie group action with respect to which
the considered Schrödinger operator is invariant. We point out that the Overview chapters
in Parts I and II are not just introductory texts, but essential content in the sense that they
introduce the general setup and notation for the whole part, respectively. The detailed expla-
nations of the required concepts are then given in the Background chapters. The Background
chapters from both Part I and Part II are relevant to Part II, which combines methods from
several di↵erent areas of mathematics such as spectral analysis, Lie group theory, ergodic
theory, symplectic geometry, and mathematical physics.

The material presented in this thesis is an amalgamation of the contents of the arXiv
Preprint 1507.06214 by the author and the arXiv Preprints 1508.03540, 1508.07381 by Pablo
Ramacher and the author.
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Conventions and notation

A selection of symbols that appear frequently in this thesis can be found in the Glossary on
page 135. Not all symbols in the Glossary are exclusively used for the purpose explained
there; instead, the Glossary entries hold unless stated otherwise. For example, in large parts
of this thesis, M denotes a compact connected Riemannian manifold without boundary, but
in some paragraphs the same symbol denotes just any smooth manifold, and this is stated
explicitly in those paragraphs.

Additional global conventions and notations

Let us collect a few basic notations and conventions that fit neither in the Glossary nor in the
Chapters 2 and 6. In this thesis, in agreement with common literature, a smooth manifold
is a paracompact Hausdor↵ space locally homeomorphic to real euclidean space by charts
whose transition maps are smooth, together with a collection of equivalent atlases. The word
smooth and the symbol C1 mean “infinitely many times (partially) di↵erentiable”. A closed
smooth manifold is a compact smooth manifold without boundary. A Riemannian manifold
is a smooth manifold X whose tangent bundle TX is equipped with a Riemannian metric,
and the metric is used to identify TX with the co-tangent bundle T ⇤X. More precisely, if
g(x) : TxX ⇥ TxX ! R denotes the symmetric non-degenerate bilinear form defined on TxX
for each x 2 X by the Riemannian metric, the identification is given by the isomorphism

TxX
⇠=�! T ⇤

x X,

v 7�!
�

v0 7! g(x)(v, v0)
�

.

Under this identification, T ⇤X carries a Riemannian metric, too, by setting for ⇠, ⇠0 2 T ⇤
x X

g⇤(x)(⇠, ⇠0) := g(v, v0), where g(x)(v, w) = ⇠(w), g(x)(v0, w) = ⇠0(w) 8 w 2 TxX.

Since Riemannian metrics are usually denoted by g or h, but g denotes an element of a Lie
group in large parts of this thesis and h is the semiclassical parameter, we shall avoid writing
down explicit names for occurring Riemannian metrics. In most cases, the notation

k⇠k2x := g⇤(x)(⇠, ⇠), ⇠ 2 T ⇤
x X (0.0.1)

su�ces for our purposes. In case that X is a topological space, a smooth manifold, or a
Riemannian manifold, function vector spaces like the continuous functions C(X), the smooth
functions C1(X), and the equivalence classes of square-integrable functions L2(X) with re-
spect to the Riemannian volume density, are supposed to be defined over the field of complex
numbers, that is the functions take values in C. To consider a di↵erent co-domain E, we
write C(X, E) and similarly C1(X, E) and so on. Spaces of compactly supported functions
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Conventions and notation

are decorated with the subscript c, for example Cc(X), C1
c (X). When it does not cause

problems, we sometimes confuse the equivalence classes in L2-spaces with functions repre-
senting them, and similarly we omit the related words essential and almost all. For example,
we consider pointwise multiplication operators in L2-spaces which should actually be called
essential multiplication operators. In general, we make no di↵erence in our notation between
a function and the pointwise multiplication operator defined by that function in some oper-
ator space. For two vector spaces V, W , we write L(V, W ) for the linear maps V ! W . If
V, W are normed vector spaces, we write B(V, W ) for the bounded linear operators V ! W
and we set

B(V ) := B(V, V ).

If ' 2 C1
c (U), where U is an open subset of a smooth manifold X, we consider ' as a smooth

function on X without mentioning the extension by zero explicitly. Similarly, we consider a
function in C1(X) as an element of C1(TX) or C1(T ⇤X) without explicitly mentioning the
composition with the (co-)tangent bundle projection. For a chart � : U ! V , V ⇢ Rn, and a
function f 2 C1(T ⇤U), we write f � (��1, (@��1)T ) for the composition of f with ��1 in the
manifold variable and the adjoint of its derivative in the co-tangent space variable. In general,
1S denotes the constant function with value 1 on a set S, and 1S denotes the identity map
S ! S. For a subset T ⇢ S, we write S � T for the set of elements contained in S but not
in T . If S is a finite set, the number of its elements is denoted by #S. The dot · can denote
either scalar multiplication or the standard inner product in Rn. The latter will sometimes
be alternatively written as h·, ·i, not to be confused with the notation h·i :=

p

1 + k · k2 where
the argument is only one vector. In remainder estimates, we occasionally write O•(· · · ) to
emphasize that the implicit constants in the estimate depend on •. All partitions of unity
occurring in this thesis are supposed to be smooth. Sometimes, redundancies will occur in
the text as we repeat attributes that are in fact implicit in our global notation.

14
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for h-dependent functions
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Chapter 1

Overview

1.1 Motivation and setup

The functional calculus for unbounded self-adjoint operators combines well with the symbolic
calculus for semiclassical pseudodi↵erential operators, leading to trace formulas that can be
used to study the spectrum of such operators within a spectral window of fixed h-independent
width. Here, h 2 (0, 1] is the semiclassical parameter, the ubiquitous global variable in the
world of semiclassical analysis, a brief introduction to which is given in Section 2.1. To explain
things more precisely, let X be either the euclidean space Rn or a closed connected Riemannian
manifold of dimension n, endowed with the Riemannian measure dX, and P (h) be the self-
adjoint extension of an essentially self-adjoint semiclassical pseudodi↵erential operator in
L2(X) with real-valued semiclassical principal symbol p. Given a function f 2 C1

c (R),
and assuming that p satisfies reasonable technical ellipticity conditions, f(P (h)) extends to
a bounded semiclassical pseudodi↵erential operator on L2(X) with semiclassical principal
symbol f � p, see [17, 63]. Provided that one has chosen f and p appropriately such that
f(P (h)) is of trace class, one obtains the asymptotic trace formula

(2⇡h)n trL2(X) f(P (h)) =

ˆ

T ⇤X

f � p d(T ⇤X) + O(h) as h ! 0, (1.1.1)

where d(T ⇤X) is the volume form defined by the canonical symplectic form on the co-tangent
bundle T ⇤X. Now, suppose we are in the situation that there are numbers E 2 R and c, " > 0
such that for each h 2 (0, 1] the following holds: p�1([E � ", E + c + "]) is compact, E and
E + c are regular values of p, and P (h) has discrete spectrum in [E � ", E + c + "] consisting
of only finitely many eigenvalues {Ej(h)}j2J(h)⇢N. Then, (1.1.1) can be applied for each
f 2 C1

c ([E �"/2, E +c+"/2]), and by approximating the characteristic function of [E, E +c]
with such functions, one gets the semiclassical Weyl law

(2⇡h)n#
�

j 2 J(h) : Ej(h) 2 [E, E + c]
 

= vol T ⇤X

�

p�1([E, E + c])
�

+ o(1) (1.1.2)

as h ! 0, see [17, Cor. 9.7] and [63, Thm. 14.11]. In general, it is more desirable to study
spectral windows of shrinking width of the form

[E, E + c(h)], lim
h!0

c(h) = 0,

since in this case the leading term in Weyl-type formulas as above turns into an integral over
the compact hypersurface p�1({E}) ⇢ T ⇤X with respect to the induced Liouville measure,

17



Part I. Semiclassical functional calculus for h-dependent functions

and one may drop some technical hypotheses which would be necessary without the localiza-
tion to such a hypersurface. However, this is not possible in the functional calculus approach
sketched above, where the function f is fixed and independent of h.

In this first part of the thesis, we shall develop a semiclassical functional calculus for op-
erators of the form fh(P (h)) within the theory of semiclassical pseudodi↵erential operators,
where fh 2 C1

c (R) is explicitly allowed to depend on h 2 (0, 1].

The largest class of h-dependent functions that we will consider is given by
S

�2[0, 1

2

) Scomp
� ,

where for each � 2 [0, 1
2 ) the symbol Scomp

� denotes the set of all families {fh}h2(0,1] ⇢ C1
c (R)

such that

(1) {fh}h2(0,1] defines an element of the semiclassical symbol class Sh;�(1R), meaning that

�

�

�

f
(j)
h

�

�

�

1
= O(h��j) as h ! 0, j = 0, 1, 2, . . . ,

where f
(j)
h denotes the j-th derivative of fh;

(2) the diameter of the support of fh does not grow faster than polynomially in h�1 as
h ! 0.

The second property means that there is some N � 0 such that diam(supp fh) = O(h�N )
as h ! 0. This is a very mild technical condition; in usual applications the diameter of the
support of fh will be bounded or even tend to zero as h ! 0. It is therefore convenient to
introduce also the subset of Scomp

� given by

Sbcomp
� :=

�

{fh}h2(0,1] 2 Scomp
� : 9 compact interval I ⇢ R with supp fh ⇢ I 8 h 2 (0, 1]

 

.

The class Sbcomp
� is technically easier to handle and we stress again that the loss of generality

from Scomp
� to Sbcomp

� seems to be irrelevant to most applications. In the following, we will

use a shorter notation and just write fh 2 Sbcomp
� or fh 2 Scomp

� .

1.1.1 Goals of Part I

We pursue two main goals. The first is to prove that fh(P (h)) is a semiclassical pseudod-
i↵erential operator, provided that fh 2 Scomp

� and P (h) is the self-adjoint extension of an
appropriate essentially self-adjoint semiclassical pseudodi↵erential operator in Rn. This in-
volves relating the abstract functional calculus to the semiclassical symbolic calculus with
suitable estimates. Our second goal is to provide a detailed treatise of the semiclassical func-
tional calculus for Schrödinger operators on a closed connected n-dimensional Riemannian
manifold M of the form

P (h) = �h2�+ V, V 2 C1(M,R), P (h) : H2(M) ! L2(M), (1.1.3)

where V is a real-valued potential, � is the unique self-adjoint extension of the Laplace-
Beltrami operator �̆ : C1(M) ! C1(M) ⇢ L2(M), and H2(M) denotes the second Sobolev
space. Thus, P (h) is the unique self-adjoint extension of the essentially self-adjoint operator

P̆ (h) := �h2�̆+ V, P̆ (h) : C1(M) ! C1(M) ⇢ L2(M).

18



Chapter 1. Overview 1.2. Summary of main results

As is well known, the spectrum of P (h) is discrete for each h 2 (0, 1] and accumulates only
at +1, see [63, Chapter 14]. We write

p(x, ⇠) := k⇠k2x + V (x), p : T ⇤M ! R,

for the Hamiltonian function associated to P (h), which represents its semiclassical principal
symbol. The notations above will be used in all following chapters. Apart from establish-
ing that fh(P (h)) is a semiclassical pseudodi↵erential operator when fh 2 Scomp

� , we are
interested in an explicit expression for fh(P (h)) in terms of local quantizations of symbol
functions in Rn, which can be used flexibly to prove new semiclassical trace formulas that
are well-suited for studying spectral windows of width of order h�, where 0  � < 1

2 . This
involves relating the abstract functional calculus to the local semiclassical symbolic calculus
with trace norm remainder estimates, which we do under the assumption that fh 2 Sbcomp

� .
While in Rn trace norm estimates have been carried out very precisely for appropriate classes
of operators in [27] and [17], there seems to be no reference where for a Schrödinger operator
P (h) as above the transition from the global operator fh(P (h)) to the locally defined quanti-
zations, obtained by introducing an atlas and a partition of unity, is made in a way such that
the trace norm of the remainder operators is precisely controlled, not even if fh is actually
independent of h.

1.1.2 Methods

To achieve our first goal, we generalize existing theorems for a fixed h-independent function
f 2 C1

c (R) to the classes Scomp
� . The main technical di�culties arise from estimates that

are uniform in h for fixed f , but which depend on f and hence are no longer uniform in
h when f = fh. To achieve our second goal, we apply well-known methods, but in a more
detailed fashion than usually found in literature. Here, a technical di�culty lies in the fact
that semiclassical pseudodi↵erential operators on manifolds are locally not exactly defined
by the quantization of a symbol function, but only up to a remainder with operator norm of
order h1, while we are interested in trace norm estimates.

1.2 Summary of main results

In what follows, the results of this first part of the thesis are presented in a slightly condensed
form. First, we consider semiclassical pseudodi↵erential operators in L2(Rn), with the nota-
tion A for the self-adjoint extension of an essentially self-adjoint operator A, and Oph for the
Weyl quantization. For the other required definitions, in particular those of order functions
and the associated notion of ellipticity, the symbol classes Sk

h;�(m) and Sm
h;�(M), and the op-

erator classes  m
h;�(M), we refer the reader to Section 2.1. To state our results, let � 2 [0, 1

2 ).
The main result of Chapter 3 is

Result 1 (Theorem 3.1.1). Let m : R2n ! (0, 1) be an order function with m � 1, and
let s 2 Sh(m) be a real-valued symbol function such that s + i is m-elliptic. Choose fh 2
Scomp
� . Then, for small h the operator fh

�

Oph(s)
�

: L2(Rn) ! L2(Rn) is a semiclassical
pseudodi↵erential operator. More precisely, there is a symbol function a 2

T

k2N Sh;�(m�k)
and a number h0 2 (0, 1] such that for h 2 (0, h0]

fh

⇣

Oph(s)
⌘

= Oph(a).
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Part I. Semiclassical functional calculus for h-dependent functions

Moreover, if s has an asymptotic expansion in Sh(m) of the form s ⇠
P1

j=0 hjsj, then a has
an expansion in Sh;�(1/m), with explicitly known coe�cients, of the form

a ⇠
1
X

j=0

aj , aj 2 S
j(2��1)
h;� (1/m), a0(y, ⌘, h) = fh(s0(y, ⌘, h)). (1.2.1)

The second result concerns the Schrödinger operator (1.1.3) on a closed connected Rie-
mannian manifold M of dimension n. We obtain in Chapter 4:

Result 2 (Theorem 4.2.1). Choose a function %h 2 Scomp
� . Then, for small h the opera-

tor %h(P (h)) is a semiclassical pseudodi↵erential operator on M of order (�1, �), and its
principal symbol is represented by the function %h � p.

In order to prove trace formulas for a semiclassical pseudodi↵erential operator on a man-
ifold, it is useful to approximate the operator by pullbacks of semiclassical pseudodi↵erential
operators in Rn by introducing an atlas and a partition of unity, up to a trace class remainder
operator with small trace norm. In addition, one would like to localize the leading term in the
obtained trace formulas using an operator B 2  0

h;�(M) with principal symbol represented

by a symbol function b 2 S0
h;�(M). Thus, let us introduce a finite atlas

{U↵, �↵}↵2A, �↵ : U↵
'! Rn, U↵ ⇢ M open.

We choose the whole euclidean space Rn as the image of our charts in order to avoid problems
related to the fact that pseudodi↵erential operators are non-local. Furthermore, in order to
state our next result we require a smooth partition of unity {'↵}↵2A on M subordinate to

{U↵}↵2A and for each ↵ 2 A an associated triple of cuto↵ functions '↵,'↵,'↵ 2 C1
c (U↵)

with
'↵ ⌘ 1 on supp '↵, '↵ ⌘ 1 on supp '↵, '↵ ⌘ 1 on supp '↵.

For each chart, define a local symbol function

u↵,0(y, ⌘, h) :=
�

(%h � p) · b
��

��1
↵ (y), (@��1

↵ )T ⌘, h
�

· '↵
�

��1
↵ (y)

�

where (y, ⌘) 2 R2n, ↵ 2 A, h 2 (0, 1]. Then, one has the following

Result 3 (Theorem 4.3.1). Suppose that %h 2 Sbcomp
� . Then, for each N 2 N, there is a

number h0 2 (0, 1], a collection of symbol functions {r↵,�,N}↵,�2A ⇢ S2��1
h;� (1R2n) and an

operator RN (h) 2 B(L2(M)) such that

• one has for all f 2 L2(M), h 2 (0, h0] the relation

B � %h(P (h))(f) =
X

↵2A
'↵ · Oph(u↵,0)

�

(f · '↵) � ��1
↵

�

� �↵

+
X

↵,�2A
'� · Oph(r↵,�,N )

�

(f · '↵ · '�) � ��1
�

�

� �� + RN (h)(f); (1.2.2)

• the operator RN (h) 2 B(L2(M)) is of trace class and its trace norm fulfills

kRN (h)ktr,L2(M) = O
�

hN
�

as h ! 0;

• for fixed h 2 (0, h0], each symbol function r↵,�,N is an element of C1
c (R2n) that fulfills

supp r↵,�,N ⇢ supp
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ).
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1.3 Discussion

1.3.1 Applications

In general, Result 3 can be used to prove an asymptotic semiclassical trace formula with
non-trivial remainder estimates for an operator of the form

T � B � %h(P (h))

where T : L2(M) ! L2(M) is some bounded, explicitly known operator. For example, T can
be defined using an additional structure on the manifold M . Then, by Result 3, one has for
each N 2 N

trL2(M)

⇥

T � B � %h(P (h))
⇤

= trL2(M)

�

T � LN

�

+ O
�

hN
�

as h ! 0,

where LN is the operator defined by the right hand side of (1.2.2) without RN (h)(f). The
significance of Result 3 is that proving a trace formula for T � B � %h(P (h)) with remainder
of order hN immediately reduces to calculating the leading term trL2(M)(T � LN ), and this
term involves only pullbacks of semiclassical pseudodi↵erential operators in Rn, so that in
the calculations one can rely on the precise symbolic calculus on Rn and needs to deal only
with compactly supported symbol functions.

In the simplest case where T = B = 1L2(M), Corollary 4.3.2 yields the h-dependent
analogue of (1.1.1) given by

(2⇡h)n trL2(M)%h (P (h)) =

ˆ

T ⇤M

%h � p d(T ⇤M) + O
⇣

h1�2�volT ⇤M

�

supp %h � p
�

⌘

as h ! 0.

Provided that � < 1
3 , this leads directly to an improved version of (1.1.2) given by

(2⇡)nhn��#
�

j 2 J(h) : Ej(h) 2 [E, E + h�]
 

= vol p�1({E}) + O
⇣

h� + h
1

3

��
⌘

, (1.3.1)

where the volume is now measured using the induced Liouville measure on p�1({E}), compare
Lemma 6.3.8 and the proof of Theorem 7.2.1 in Part II. Of course, formula (1.3.1) is far from
optimal in terms of its quantitative statement (see Subsection 1.3.2 below), yet it serves as
a simple example of the qualitative fact that due to the localization onto the hypersurface
p�1({E}) it is now enough to assume that p�1([E � ", E + "]) is compact for some small
" > 0 and that E is a regular value of p, i.e. the c = 0 version of the assumptions required
for (1.1.2).

When choosing � > 0, one can use the operator B to perform a localization to small
subsets (for example, single points or geodesics) of T ⇤M in the semiclassical limit. This is
the small-scale approach, see [25]. By choosing T to be the projection onto a linear subspace
V of L2(M) and then taking into account the equality

tr
⇥

T � B � %h(P (h))
⇤

= tr
⇥

B � %h(P (h)) � T
⇤

= tr
⇥

T � B � %h(P (h)) � T
⇤

,

one can use Result 3 to study the spectral properties of the bi-restriction of P (h) to V ,
still possibly localizing the problem using B. As a major application, we use Result 3 in
Section 7.1 in the second part of this thesis to prove a singular equivariant semiclassical
trace formula for Schrödinger operators in case that M carries an isometric e↵ective action
of a compact connected Lie group G, see Theorem 7.1.1. There, one has T = T�, where
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Part I. Semiclassical functional calculus for h-dependent functions

T� : L2(M) ! L2(M) is the projection onto an isotypic component of the left-regular G-

representation in L2(M) associated to a character � 2 bG. The calculation of trL2(M)(T��LN )
reduces to the evaluation of certain oscillatory integrals which can be carried out using a
formula from [46] whose remainder term is of lower order than that in Result 3. Here, knowing
a better remainder estimate in Result 3 would not improve the results, so in this case Result 3
is fully su�cient both qualitatively and quantitatively. The trace formula stated in Theorem
7.1.1 could not be established without a functional calculus for h-dependent functions. It
implies a generalized equivariant semiclassical Weyl law with remainder estimate, as well as
a symmetry-reduced quantum ergodicity theorem, see Chapters 7 and 8.

1.3.2 Previously known results

An h-dependent functional calculus of the form fh(P (h)) has been used in the literature
before, but only in special cases, not systematically, and sometimes only implicitly. For
example, consider a Schwartz function � : R ! R whose Fourier transform has compact
support. Then a common approach in the literature is to study the operator �

�P (h)�E
h

�

in
the context of semiclassical Fourier integral operators, E 2 R being a fixed regular value of
p. Writing fE

h (x) := �
�

x�E
h

�

, this amounts to studying fE
h (P (h)), as in the semiclassical

Gutzwiller trace formula [16, 24] and in the proof of the semiclassical quantum ergodicity
theorem in [20]. Using the same techniques, one can also prove a semiclassical Weyl law
for the smallest possible spectral window [E, E + h] with the best possible O(h)-remainder,
see [17, 20, 32]. However, these techniques are considerably more involved than the simple
semiclassical pseudodi↵erential operator calculus. The only other way known to the author
in which the abstract functional calculus has been used for h-dependent functions in the
literature is of a very basic form. Namely, given any family {fh}h2(0,1] of bounded Borel
functions on R with uniformly bounded supremum norms for h 2 (0, 1], one can use the fact
that fh(P (h)) has uniformly bounded operator norm as h ! 0, an estimate which follows
directly from the spectral theorem. In particular, one considers fh(P (h)) only abstractly as
an h-dependent bounded operator, and not concretely as a semiclassical pseudodi↵erential
operator or Fourier integral operator. See e.g. [20, Proof of Lemma 3.11].

1.3.3 Strengths and weaknesses of methods and outlook

Developing the functional calculus for h-dependent functions within the theory of semi-
classical pseudodi↵erential operators restricts the applications in spectral analysis to spectral
windows of width of order h� with � < 1

2 . In particular, the best possible case � = 1 cannot be
studied. However, qualitatively there is no significant di↵erence between the cases � = 1 and
� > 0, since for any � > 0 the spectral window [E, E+h�] shrinks to a point polynomially fast
in the semiclassical limit, leading to a localization on an energy hypersurface in Weyl-type
formulas, and if the manifold dimension is greater than 1, then by Weyl’s law the number of
eigenvalues in [E, E+h�] grows as h ! 0, regardless whether � = 1 or just � > 0. Thus, going
beyond the theory of semiclassical pseudodi↵erential operators could only lead to quantita-
tive improvements, at the expense of losing the simplicity of the symbolic calculus. Although
non-optimal, the quantitative results presented here are su�cient for many applications, as
outlined above. An obvious possible future line of research consists in developing a functional
calculus for h-dependent functions within more general semiclassical frameworks of operators,
as the theory of semiclassical Fourier integral operators. This will probably yield improved
quantitative results.
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Chapter 2

Background I

2.1 Semiclassical analysis

In what follows, we shall briefly recall the theory of semiclassical symbol classes and pseudod-
i↵erential operators on Rn and on general smooth manifolds. For a detailed introduction, we
refer the reader to [63, Chapters 9 and 14] and [17, Chapters 7 and 8]. Semiclassical analysis
developed out of the theory of pseudodi↵erential operators, a thorough exposition of which
can be found in [53]. An important feature that distinguishes semiclassical analysis from
usual pseudodi↵erential operator theory is that instead of the usual symbol functions and
corresponding operators, one considers families of symbol functions and pseudodi↵erential
operators indexed by a global parameter

h 2 (0, 1].

Essentially, the definitions of those families are obtained from the usual definitions by substi-
tuting in the symbol functions the co-tangent space variable ⇠ by h⇠. To begin, recall that a
Lebesgue-measurable function m : Rn ! (0, 1) is called order function if there are constants
C, N > 0 such that

m(v1)  C hv1 � v2iN m(v2) 8 v1, v2 2 Rn.

Here we used the notation hvi :=
p

1 + kvk2. If m1,m2 are order functions, then m1m2 is also

an order function. For example, m = 1Rn and m(v) = hvik, k > 0, are order functions. Let
m : Rn ! (0, 1) be an order function. For � 2 [0, 1

2 ) and k 2 R, we define the semiclassical
symbol class Sk

h;�(m) as the set of all functions s : Rn ⇥ (0, 1] ! C such that s(·, h) 2 C1(Rn)
for each h 2 (0, 1] and for each non-negative n-dimensional multiindex ↵, there is a constant
C↵,�,k > 0 with

|@↵v s(v, h)|  C↵,�,k m(v) h��|↵|�k 8 (v, h) 2 Rn ⇥ (0, 1]. (2.1.1)

We write

Sk
h(m) := Sk

h;0(m), Sh;�(m) := S0
h;�(m), Sh(m) := S0

h;0(m).

We call an element of a semiclassical symbol class a symbol function. Furthermore, let us
define

S�1
h (m) :=

\

k2R
Sk

h;�(m), � 2 [0, 1/2) arbitrary.
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Part I. Semiclassical functional calculus for h-dependent functions

This set is in fact well-defined (the intersection on the right hand side is independent of �).
S�1

h (m) is the set of functions s : Rn ⇥ (0, 1] ! C such that s(·, h) 2 C1(Rn) for each
h 2 (0, 1] and for each non-negative n-dimensional multiindex ↵ and each N 2 N, there is a
constant C↵,N > 0 with

|@↵v s(v, h)|  C↵,N m(v) hN 8 (v, h) 2 Rn ⇥ (0, 1].

In order to recall the definition of semiclassical asymptotic series, let m : Rn ! (0, 1) be
an order function. Given � 2 [0, 1

2 ), a sequence {kj}j2N ⇢ R with kj ! �1 as j ! 1, a

sequence {sj}j2N with sj 2 S
kj

h;�(m), and a symbol function s 2 Sh;�(m), we say that {sj}j2N
is asymptotic to s in Sh;�(m), in short

s ⇠
1
X

j=0

sj in Sh;�(m),

provided that for each N 2 N one has s �
PN

j=0 sj 2 S
kN+1

h;� (m). We denote by S(Rn) the
vector space of Schwartz functions on Rn, equipped with the semi-norms

|f |↵,� := sup
x2Rn

|x↵@�f(x)|

and denote by S 0(Rn) the topological dual space of S(Rn), i.e. the space of continuous linear
functionals on S(Rn), equipped with the weak-⇤ topology. Let m : R2n ! (0, 1) be an order
function. For s 2 Sk

h;�(m), f 2 S(Rn), and x 2 Rn, define

Oph(s)(f)(x) :=
1

(2⇡h)n

ˆ

Rn

ˆ

Rn

e
i
h (x�y)·⌘s

⇣x + y

2
, ⌘, h

⌘

f(y) dy d⌘. (2.1.2)

Then, by [63, Theorem 4.16] and [17, Theorem 7.8], the function

Oph(s)(f) : x 7! Oph(s)(f)(x)

is an element of S(Rn) and the map

Oph(s) : S(Rn) ! S(Rn), f 7! Oph(s)(f),

is a continuous linear operator. Moreover, by duality Oph(s) extends to a continuous linear
operator

Oph(s) : S 0(Rn) ! S 0(Rn).

This so-called Weyl-quantization is motivated by the fact that the classical Hamiltonian
H(x, ⇠) = ⇠2 should correspond to the quantum Laplacian �h2�, and that real-valued sym-
bol functions should correspond to symmetric or, more desirably, essentially self-adjoint op-
erators. An operator S 0(Rn) ! S 0(Rn) of the form (2.1.2) is called a semiclassical pseudod-
i↵erential operator on Rn. We denote by Oph(Sk

h;�(m)) the set of semiclassical pseudodif-

ferential operators that are quantizations of symbol functions in Sk
h;�(m). For the following

important formula, we introduce the standard symplectic form � : R2n ⇥ R2n ! R given by
�(x, ⇠; y, ⌘) := ⇠ · y � x · ⌘.
Theorem 2.1.1 (Composition formula, [17, Theorem 7.9]). Let m1,m2 : R2n ! (0, 1) be
order functions and sj 2 Sh;�(mj). Then, there is a symbol function s 2 Sh;�(m1m2) such
that Oph(s1) � Oph(s2) = Oph(s), and

s ⇠
1
X

k=0

1

k!

⇣ ih

2
�(Dx, D⇠; Dy, D⌘)

⌘k

s1(x, ⇠, h)s2(y, ⌘, h)|y=x,⌘=⇠ in Sh;�(m1m2). (2.1.3)
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Chapter 2. Background I 2.1. Semiclassical analysis

Let s 2 Sk
h;�(1R2n). Then, by [17, Theorem 7.11], the operator Oph(s) : S 0(Rn) ! S 0(Rn)

bi-restricts1 to a bounded linear operator Oph(s) 2 B(L2(Rn)) which is essentially given by
(2.1.2), and there is a constant C > 0 which is independent of h, such that

kOph(s)kB(L2(Rn))  Ch�k 8 h 2 (0, 1]. (2.1.4)

It will be important for us to know when a semiclassical pseudodi↵erential operator is of trace
class, and to estimate its trace norm. For these tasks, the following results from [17, p. 113,
Lemma 9.3, Theorem 9.4] are very useful. Let s 2 Sk

h;�(1R2n) for some � 2 [0, 1
2 ), k 2 R, and

suppose that the function s(·, h) : R2n ! C, (y, ⌘) 7! s(y, ⌘, h) fulfills

X

|↵|2n+1

k@↵s(·, h)kL1(R2n) < 1.

Then, the operator Oph(s) : L2(Rn) ! L2(Rn) is of trace class with trace norm

kOph(s)ktr,L2(Rn)  Ch�n
X

|↵|2n+1

k@↵s(·, h)kL1(R2n) ,

where C > 0 is independent of h, and its trace is given by

tr L2(Rn)Oph(s) =
1

(2⇡h)n

ˆ

R2n

s(y, ⌘, h) dy d⌘. (2.1.5)

Moreover, the integral kernel estimates on [17, p. 113] and the estimate proved there for the
relation between standard quantization and Weyl quantization imply the following results.
Choose � 2 C1

c (Rn) with support inside some compact set K ⇢ Rn, and denote the operator
L2(Rn) ! L2(Rn) given by pointwise multiplication with � by �.

• Suppose that the function s(y, ·, h) : ⌘ 7! s(y, ⌘, h) is a Schwartz function for each
y 2 Rn and each h 2 (0, 1]. Then, the operator � �Oph(s) is of trace class and its trace
norm fulfills uniformly for h 2 (0, 1] the estimate

k� � Oph(s)ktr,L2(Rn)  Ch�n
X

|↵|2n+1

k@↵(�s)(·, h)kL1(R2n) , (2.1.6)

with a constant C > 0 that is independent of h.

• As a special case of the previous one, we have in particular: Suppose that the function
s(y, ·, h) : ⌘ 7! s(y, ⌘, h) is compactly supported in Rn for each y 2 Rn and each
h 2 (0, 1], and the volume of the support of the function s(y, ·, h) is bounded uniformly
in y 2 Rn by some h-dependent constant Ch > 0. Then,

k� � Oph(s)ktr,L2(Rn)  C�Chh�n
X

|↵|2n+1

max
(y,⌘)2K⇥Rn

|@↵s(y, ⌘, h)|, (2.1.7)

with a constant C� > 0 that depends on � but not on h.

Very useful in combination with the previous lines is also the following observation, which
follows from the statements above and the composition formula (2.1.3), compare [17, Propo-
sition 9.5]. For i 2 {1, 2}, let si 2 Ski

h;�(1R2n) for some � 2 [0, 1
2 ), ki 2 R, and suppose that

1Here, we are regarding L2(Rn) as a subset of S0(Rn).
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Part I. Semiclassical functional calculus for h-dependent functions

for each h 2 (0, 1] the function s1(·, h) : R2n ! C is compactly supported inside the interior
of some h-independent compactum K ⇢ R2n. Let s1]s2 2 Sk

1

+k
2

h;� be the symbol obtained
from s1 and s2 by the composition formula (2.1.3). Then for each N 2 N, R > 0, and each
non-negative 2n-dimensional multiindex ↵, there is a constant C↵,N > 0 such that for all
(y, ⌘) 2 R2n with dist((y, ⌘), K) � R, one has

|@↵(s1]s2)(y, ⌘, h)|  C↵,NhN(1��)�k
1

�k
2

��|↵|dist((y, ⌘), K)�N 8 h 2 (0, 1].

As the function (y, ⌘) 7! hdist((y, ⌘), K)i�N is in L1(R2n) if N > 2n, we can combine the
preceding results to get

Corollary 2.1.2. For i 2 {1, 2}, let si 2 Ski

h;�(1R2n) for some � 2 [0, 1
2 ), ki 2 R, and suppose

that for each h 2 (0, 1] the function s1(·, h) : R2n ! C is compactly supported inside some
h-independent compactum K ⇢ R2n. Then the operator Oph(s1]s2) is of trace class and

kOph(s1]s2)ktr,L2(Rn) = O
�

h�n�k
1

�k
2

�(2n+1)�
�

as h ! 0. (2.1.8)

This corollary is important as it tells us that the trace norm of the composition of two
semiclassical pseudodi↵erential operators, one of which has a symbol supported inside a fixed
compactum, essentially depends only on the norm of the derivatives of the original two sym-
bols near the compactum. Surely, Corollary 2.1.2 could be generalized to h-dependent com-
pactums K(h), but as we are mainly interested in a functional calculus for h-dependent
functions whose support shrinks as h ! 0, it is no big loss of generality to assume that the
shrinking happens inside a fixed h-independent compactum.

Let m : R2n ! (0, 1) be an order function and let s 2 Sh(m). We call the symbol function
s m-elliptic if there is a constant " > 0 such that |s| � "m. Crucial for all what follows is the
following result:

Theorem 2.1.3 (Essential self-adjointness [17, Prop. 8.5]). Let m : R2n ! (0, 1) be an
order function with m � 1, and let s 2 Sh(m) be a real-valued symbol function such that s + i
is m-elliptic, where i denotes the imaginary unit

p
�1. Then, there is a number h0 2 (0, 1]

such that the operator (Oph(s) + i)�1 2 B(L2(Rn)) exists for each h 2 (0, h0]. Furthermore,
the operator Oph(s) : S(Rn) ! S(Rn) ⇢ L2(Rn) is essentially self-adjoint in L2(Rn) for each
h 2 (0, h0], and one obtains the unique self-adjoint extension Oph(s) by equipping Oph(s)
with the domain

(Oph(s) + i)�1L2(Rn) ⇢ L2(Rn).

For example, if m(y, ⌘) = h⌘i2 and s(y, ⌘, h) = k⌘k2, then

(Oph(s) + i)�1L2(Rn) = H2
h(Rn), (2.1.9)

where H2
h(Rn) is the semiclassical equivalent of the Sobolev space H2(Rn), see [63, Thm. 8.10].

Now, the known functional calculus in Rn for fixed h-independent functions is summarized
in

Theorem 2.1.4 ([17, Theorem 8.7 and p. 103]). Let s be a symbol function as in Theorem
2.1.3 and let f 2 C1

c (R). Consider the operator f
�

Oph(s)
�

: L2(Rn) ! L2(Rn) defined by
the spectral calculus for unbounded self-adjoint operators. Then, there is a symbol function
as,f 2

T

k2N Sh(m�k) and a number h0 2 (0, 1] such that for h 2 (0, h0]

f
⇣

Oph(s)
⌘

= Oph(as,f ).
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Chapter 2. Background I 2.1. Semiclassical analysis

Moreover, if s fulfills s ⇠
P1

j=0 hjsj in Sh(m) for some sequence {sj}j=0,1,2,... ⇢ Sh(m),
then there is a sequence of polynomials {qs,j(y, ⌘, t, h)}j=0,1,2,... in one variable t 2 R with
coe�cients h-dependent functions in C1(R2n) and with qs,0 ⌘ 1, such that

as,f ⇠
1
X

j=0

hjas,f,j in Sh(1/m), as,f,j(y, ⌘, h) =
1

(2j)!

⇣ @

@t

⌘2j

(qs,j(y, ⌘, t, h)f(t))t=s
0

(y,⌘,h).

In particular, as,f,0 = f � s0.

A corollary is the following trace formula for semiclassical pseudodi↵erential operators in Rn:

Theorem 2.1.5 ([17, Theorem 9.6]). Let m : R2n ! (0, 1) be an order function with m � 1,
and let s 2 Sh(m) be a real-valued symbol function such that s + i is m-elliptic, with an
asymptotic expansion s ⇠

P1
j=0 hjsj in Sh(m), where {sj}j=0,1,2,... ⇢ Sh(m). Let I ⇢ R be

a bounded open interval with

lim inf
kvk!+1

dist(s(v, h), I) � C 8 h 2 (0, 1]

for a constant C > 0 which is independent of h, and let f 2 C1
c (I) ⇢ C1

c (R) be given. Then,
the operator f

�

Oph(s)
�

: L2(Rn) ! L2(Rn) is of trace class for small h, and as h ! 0, its
trace is asymptotically given by

trL2(Rn)f
⇣

Oph(s)
⌘

=
1

(2⇡h)n

ˆ

R2n

f
�

s0(y, ⌘, h)
�

dy d⌘ + O
�

h�n+1
�

.

In order to introduce semiclassical pseudodi↵erential operators on general smooth mani-
folds, we need the following special type of symbol classes which is invariant under pullbacks
along di↵eomorphisms. For m 2 R and � 2 [0, 1

2 ), one sets

Sm
h;�(Rn) :=

n

a : R2n ⇥ (0, 1] ! C : a(·, h) 2 C1(R2n) 8 h 2 (0, 1], and 8 multiindices s, t

9 Cs,t > 0 : |@s
x@

t
⇠a(x, ⇠, h)|  Cs,t h⇠im�|t|

h��(|s|+|t|) 8 x 2 Rn, h 2 (0, 1]
o

. (2.1.10)

Note that Sm
h;�(Rn) ⇢ Sh;�(mm), where mm : R2n ! (0, 1) is given by mm(x, ⇠) := h⇠im,

but the reverse inclusion is not true. The symbol classes (2.1.10) generalize the classical
Kohn-Nirenberg classes. In the literature one usually encounters only the case � = 0. In our
context it is natural to allow � > 0, since the h-dependent functional calculus is primarily
useful for functions whose derivatives have growing supremum norms as h ! 0. See [20] for
more applications of the symbol class (2.1.10). Let now M be a smooth manifold of dimension
n, and let {(U↵, �↵)}↵2A, �↵ : M � U↵ ! V↵ ⇢ Rn, be an atlas for M . Then one defines

Sm
h;�(M) :=

n

a : T ⇤M ⇥ (0, 1] ! C, a(·, h) 2 C1(T ⇤M) 8 h 2 (0, 1],

(��1
↵ )⇤('↵a) 2 Sm

h;�(Rn) 8 ↵ 2 A, 8 '↵ 2 C1
c (U↵)

o

, (2.1.11)

where (��1
↵ )⇤ denotes the pullback2 along ��1

↵ . The definition is independent of the choice of
atlas, and we call an element of Sm

h;�(M) a symbol function, similarly to the notion of symbol

2The pullback is defined as follows: First, one identifies T ⇤V↵ with V↵⇥Rn. Then, given a : T ⇤M⇥(0, 1] !
C, the function ('↵a) �

�
��1
↵ ⇥ (@��1

↵ )T ⇥ 1(0,1]

�
: V↵ ⇥ Rn ⇥ (0, 1] ! C has compact support inside V↵ in

the first variable, and hence extends by zero to a function R2n ⇥ (0, 1] ! C which is smooth for each fixed h.
This function is defined to be (��1

↵ )⇤('↵a).
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Part I. Semiclassical functional calculus for h-dependent functions

functions on Rn defined above. We use the short hand notations

S�1
h;� (M) :=

\

m2R
Sm

h;�(M), Sm
h (M) := Sm

h;0(M), m 2 R [ {�1}.

For m 2 R[{�1} and � 2 [0, 1
2 ), we call a C-linear map P : C1

c (M) ! C1(M) semiclassical
pseudodi↵erential operator on M of order (m, �) if the following holds:

1. For some (and hence any) atlas {(U↵, �↵)}↵2A, �↵ : M � U↵ ! V↵ ⇢ Rn of M
there exists a collection of symbol functions {s↵}↵2A ⇢ Sm

h;�(Rn) such that for any two
functions '↵,1,'↵,2 2 C1

c (U↵), it holds

'↵,1P ('↵,2f) = '↵,1Oph(s↵)(('↵,2f) � ��1
↵ ) � �↵.

2. For all '1,'2 2 C1
c (M) with supp '1 \ supp '2 = ;, one has

k�1 � P � �2kH�N (M)!HN (M) = O(h1) 8 N = 0, 1, 2, . . . ,

where �j is given by pointwise multiplication with 'j , and HN (M) is the N -th Sobolev
space.

When � = 0, we just say order m instead of order (m, 0). We denote by  m
h;�(M) the C-linear

space of all semiclassical pseudodi↵erential operators on M of order (m, �), and we write

 m
h (M) :=  m

h;0(M),  �1
h (M) =

\

m2Z
 m

h (M).

From the classical theorems about pseudodi↵erential operators one infers in particular the
following relation between symbol functions and semiclassical pseudodi↵erential operators,
see [34, page 86], [63, Theorem 14.1], [20, page 383]. There is a C-linear map

 m
h;�(M) ! Sm

h;�(M)/
�

h1�2�Sm�1
h;� (M)

�

, P 7! �(P ) (2.1.12)

which assigns to a semiclassical pseudodi↵erential operator its principal symbol. Moreover,
for each choice of atlas {(U↵, �↵)}↵2A of M and a partition of unity {'↵}↵2A subordinate to
{U↵}↵2A, there is a C-linear map called quantization, written

Sm
h;�(M) !  m

h;�(M), s 7! Oph,{U↵,'↵}↵2A
(s). (2.1.13)

Any choice of such a map induces the same C-linear bijection

 m
h;�(M)/

�

h1�2� m�1
h;� (M)

�

�
�

Oph

Sm
h;�(M)/

�

h1�2�Sm�1
h;� (M)

�

, (2.1.14)

which means in particular that the bijection exists and is independent from the choice of atlas
and partition of unity. We will call an element in the quotient set

Sm
h;�(M)/

�

h1�2�Sm�1
h;� (M)

�

a principal symbol, whereas we call the elements of Sm
h;�(M) symbol functions, as introduced

above. Operations on principal symbols such as pointwise multiplication with other prin-
cipal symbols or smooth functions and composition with smooth functions are defined by
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Chapter 2. Background I 2.1. Semiclassical analysis

performing the corresponding operations on the level of symbol functions. For a semiclassical
pseudodi↵erential operator A on M , we will use the notation

�(A) = [a]

to express that the principal symbol �(A) is the equivalence class in the quotient set

Sm
h;�(M)/

�

h1�2�Sm�1
h;� (M)

�

defined by the symbol function a 2 Sm
h;�(M). Finally, returning to the setup introduced at

the beginning of this first part of the thesis, the known functional calculus for our Schrödinger
operator P (h) on the closed connected Riemannian manifold M for a fixed h-independent
function is summarized in the following

Theorem 2.1.6 ([63, Theorems 14.9 and 14.10]). Let f 2 S(R). Then, the operator
f(P (h)), defined by the spectral theorem for unbounded self-adjoint operators, is an element of
 �1

h (M). Furthermore, f(P (h)) extends to a bounded operator f(P (h)) : L2(M) ! L2(M)
of trace class, and one has

� (f(P (h))) = [f � p]. (2.1.15)

As h ! 0, the trace of f(P (h)) is asymptotically given by

trL2(M)f(P (h)) =
1

(2⇡h)n

ˆ

T ⇤M

f � p d(T ⇤M) + O(h�n+1).

Remark 2.1.7. Clearly, the habit to decorate the names of the various sets of symbol classes
and semiclassical pseudodi↵erential operators with the lower index h is an abuse of notation
because the sets themselves do not directly depend on the semiclassical parameter. For
example, it would make no sense to ask the question what happens to the whole sets in the
limit h ! 0. The h in the names is there to emphasize that the elements of the sets depend
(pointwise) on h. In particular, if one set h globally to 1, one would recover the usual sets of
pseudodi↵erential operators and symbol functions, compare Chapter 6.
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Chapter 3

Results for Rn

In this chapter, we extend Theorems 2.1.4 and 2.1.5 to functions which depend on the semi-
classical parameter h.

3.1 Relating the functional and symbolic calculi

We begin with the following

Theorem 3.1.1. Let m : R2n ! (0, 1) be an order function with m � 1, and let s 2 Sh(m) be
a real-valued symbol function such that s + i is m-elliptic, where i denotes the imaginary unitp

�1. Choose fh 2 Scomp
� . Then, the operator fh

�

Oph(s)
�

: L2(Rn) ! L2(Rn), defined by
the spectral calculus for unbounded self-adjoint operators, is a semiclassical pseudodi↵erential
operator for small h. More precisely, there is a symbol function a 2

T

k2N Sh;�(m�k) and a
number h0 2 (0, 1] such that for h 2 (0, h0]

fh

⇣

Oph(s)
⌘

= Oph(a).

Moreover, if s fulfills s ⇠
P1

j=0 hjsj in Sh(m) for some sequence {sj}j=0,1,2,... ⇢ Sh(m), then
there is an asymptotic expansion in Sh;�(1/m)

a ⇠
1
X

j=0

aj , aj 2 S
j(2��1)
h;� (1/m), (3.1.1)

where

aj(y, ⌘, h) =
1

(2j)!

⇣ @

@t

⌘2j
�

qj(y, ⌘, t, h)fh(t)
�

t=s
0

(y,⌘,h)
(3.1.2)

for a sequence of polynomials {qj(y, ⌘, t, h)}j=0,1,2,... in one variable t 2 R with coe�cients
being h-dependent functions in C1(R2n) and satisfying q0 ⌘ 1. In particular,

a0(y, ⌘, h) = fh(s0(y, ⌘, h)).

Proof. We will adapt the proof of Dimassi and Sjöstrand of Theorem 2.1.4, extending it to h-
dependent functions fh 2 Scomp

� . Let us briefly recall the main steps in the proof of Theorem

2.1.4. First, one uses the Hel↵er-Sjöstrand formula to express f
�

Oph(s)
�

as a complex

integral which involves the resolvent of the operator Oph(s) and an almost analytic extension
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Part I. Semiclassical functional calculus for h-dependent functions

of f . Then one proves that the resolvent is a semiclassical pseudodi↵erential operator, and
that its symbol has a certain asymptotic expansion whose terms are then plugged into the
Hel↵er-Sjöstrand formula. That the resulting term-wise integrals exist and that they define
elements of appropriate symbol classes is proved using the properties of the almost analytic
extension of f . Finally, the precise algebraic form of the resulting symbol expansion for
f
�

Oph(s)
�

is obtained by replacing the complex integrals in the expansion up to a negligible
remainder by integrals that one can evaluate using the Cauchy integral formula. We will now
precisely study the relevant steps in the proof of Theorem 2.1.4 and check how they need to
be generalized or modified to work also for h-dependent functions fh satisfying our regularity
conditions. As mentioned before, the first step in the proof of Theorem 2.1.4 is the Hel↵er-
Sjöstrand formula, see [17, Theorem 8.1]. Thus, let P be a self-adjoint operator on a Hilbert
space H. Let f 2 C2

c(R) and let f̃ 2 C1
c(C) be an extension of f with @̄z f̃(z) = O(|Im z|),

where @̄z = 1
2 (@x + i@y) with the notation z = x + iy. Then

f(P ) =
�1

⇡

ˆ

C

@̄z f̃(z)(z � P )�1 dz, (3.1.3)

where dz denotes the Lebesgue measure on C, and the integral is a Riemann integral for
functions with values in B(H). The statement (3.1.3) is of course applicable to f = fh 2 C2

c(R)
for each h 2 (0, 1] separately. No generalization is needed here. The second key step in the
proof of Theorem 2.1.4 is the following Lemma, see [17, Prop. 8.6]. Let s be a symbol function
as in Theorem 2.1.3. Then for each z 2 C, Im z 6= 0, there is a symbol function rz 2 Sh(1R2n)
such that

⇣

z � Oph(s)
⌘�1

= Oph(rz). (3.1.4)

The family {rz}, indexed by z, has the property that for each 2n-dimensional non-negative
multiindex ↵, there is a constant C↵ > 0 such that for |z|  const., one has

|@↵v rz(v, h)|  C↵ max
⇣

1,
h1/2

|Im z|
⌘2n+1

|Im z|�|↵|�1 8 v 2 R2n, h 2 (0, h0], (3.1.5)

where the number h0 2 (0, 1] is the same as in Theorem 2.1.3. The lemma does not involve
the function f at all, so obviously it does not need to be modified when f = fh. The third
step, which in combination with the Hel↵er-Sjöstrand formula and (3.1.4), (3.1.5) yields that
f
�

Oph(s)
�

is a semiclassical pseudodi↵erential operator for small h, is given by the assertion
that ˆ

|Im z|h�

@̄z f̃(z) rz dz 2 S�1
h (1R2n) 8 � > 0, 8 f 2 C1

c (R). (3.1.6)

It is proved using (3.1.5) and a particular choice for the extension map f 7! f̃ in the Hel↵er-
Sjöstrand formula. Specifically, one considers the extension1

f̃(x + iy) =
 f (x)�(y)

2⇡

ˆ

R

ei(x+iy)⇠�(y⇠)F(f)(⇠) d⇠, (3.1.7)

where F(f) is the Fourier transform of f , � 2 C1
c (R, [0, 1]) is equal to 1 on [�1, 1], and

 f 2 C1
c (R) is equal to 1 in a neighborhood of supp f . The main feature of the extension

1The multiplication with a cuto↵ function �(y) in front of the integral is only implicitly mentioned at [17,
p. 93/94].
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Chapter 3. Results for Rn 3.1. Functional and symbolic calculus

map C1
c (R) ! C1

c (C) defined by (3.1.7) is that the functions f̃ in its image are almost
analytic, meaning that for each N 2 N there is a constant CN > 0 such that

|@̄z f̃(z)|  CN |Im z|N 8 z 2 C. (3.1.8)

Now suppose that f = fh. This time we cannot just apply the existing results separately
to fh for each h, because (3.1.6) is a statement about uniform estimates in h 2 (0, 1]. Of
course, for each individual h, we obtain an almost analytic extension f̃h for which (3.1.8)
holds. However, the constant CN appearing in the inequality for some f̃h depends on the
function fh, and so in particular CN = CN (h) depends on h. Since we need estimates that
are uniform for h 2 (0, 1], we cannot directly use (3.1.8) when f = fh. Instead, we study the
proof of (3.1.8) to deduce a more precise estimate with constants that are independent of the
function f . In order to do this, let us make the additional assumptions about the function
 f that we have | f |  1, | 0

f |  1, and that  f ⌘ 1 in a closed interval If = [mf , Mf ] ⇢ R
whose endpoints have distance 1 to the support of f , and that  f = 0 outside [mf �2, Mf +2].
As in [17, p. 94], one calculates for each N 2 N and f 2 C1

c (R)

@̄z f̃(x + iy) = yN i

4⇡

⇣

 f (x)

ˆ

R

ei(x+iy)⇠�N (y⇠)⇠N+1F(f)(⇠) d⇠

+  0
f (x)

ˆ

R

ˆ

R

ei(x�ex+iy)⇠ �N (y⇠)

(⇠ + i)2
(i + Dex)2DN

ex

⇣ f(ex)

x � ex + iy

⌘

dex d⇠
⌘

8 y 2 [�1, 1], (3.1.9)

where we used the notation �N (t) := t�N�0(t).2 Due to our assumptions on  f , |x � ex| is
bounded from below by 1 on the support of  0

f (x)f(ex), and we obtain from (3.1.9)

|@̄z f̃(x + iy)|  |y|NCN

⇣

�

�⇠N+1F(f)
�

�

L1(R) + max
0jN+2

�

�

�

f (j)
�

�

�

L1(R)

⌘

8 y 2 [�1, 1], (3.1.10)

where CN > 0 is independent of f . Now we observe (i⇠)N+1F(f) = F
�

f (N+1)
�

, and in
addition we note that for every Schwartz function f on R and every j 2 {0, 1, 2, . . .}

�

�

�

F
�

f (j)
�

�

�

�

L1(R)
 Cj max

0k2

�

�

�

f (j+k)
�

�

�

L1(R)
, (3.1.11)

with Cj > 0 independent of f , see e.g. [63, Lemma 3.5]. Moreover, for a function with support
of finite volume, we have the standard integral estimate

�

�

�

f (l)
�

�

�

L1(R)
 vol(supp f)

�

�

�

f (l)
�

�

�

1
8 l 2 {0, 1, 2, . . .}. (3.1.12)

Taking into account the estimates (3.1.11) and (3.1.12), the result (3.1.10) turns into

|@̄z f̃(z)|  CN |Im z|Nvol(supp f) max
0jN+3

�

�

�

f (j)
�

�

�

1
8 z 2 C, |Im z|  1 (3.1.13)

with new constants CN > 0 that are independent of f . The estimate (3.1.13) is exactly the
modified version of (3.1.8) that we were looking for. Setting f = fh, we get for each N 2 N
and all z 2 C with |Im z|  1

|@̄z f̃h(z)|  CN |Im z|Nvol(supp fh) max
0jN+3

�

�

�

f
(j)
h

�

�

�

1
8 h 2 (0, 1], (3.1.14)

2Note that �0 = 0 in a neighborhood of 0.
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Part I. Semiclassical functional calculus for h-dependent functions

with CN > 0 independent of h. We will now use (3.1.14) to prove
ˆ

|Im z|h�

@̄z f̃h(z) rz dz 2 S�1
h (1R2n) 8 � > �, fh 2 Scomp

� (3.1.15)

which is slightly weaker than the fh-version of (3.1.6), but su�cient for our purposes. Recall
that the statement (3.1.15) means that for each h 2 (0, 1] the function on R2n defined by the
integral is smooth and one has for all v 2 R2n, h 2 (0, 1], � > �, N = 0, 1, . . . :

�

�

�

�

@↵v

ˆ

|Im z|h�

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

 CN,↵,�h
N (3.1.16)

with constants CN,↵,� > 0. As @z f̃h is compactly supported, and the integrand is smooth, we
can interchange integration and di↵erentiation, so that the function on R2n defined by the
integral is indeed smooth for each h. Let now � > �. Then (3.1.5) and (3.1.14) imply that
there is a number h0 2 (0, 1] such that for each N = 0, 1, 2, . . . and each ↵ there is a CN,↵ > 0
such that for all h 2 (0, h0]
�

�

�

�

@↵v

ˆ

|Im z|h�

@̄z f̃h(z) rz(v, h) dz

�

�

�

�


ˆ

|Im z|h�

�

�@̄z f̃h(z) @↵v rz(v, h)
�

� dz

 CN,↵vol(supp fh) max
0jN+3

�

�

�

f
(j)
h

�

�

�

1

ˆ

|Im z|h�

z2supp @̄z f̃h

max
⇣

1,
h1/2

|Im z|
⌘2n+1

|Im z|�|↵|�1|Im z|N dz.

For each N � |↵| + 2n + 2, we can estimate the final integral according to

ˆ

|Im z|h�

z2supp @̄z f̃h

max
⇣

1,
h1/2

|Im z|
⌘2n+1

|Im z|�|↵|�1|Im z|N dz

=

ˆ

h1/2|Im z|h�

z2supp @̄z f̃h

|Im z|�|↵|�1|Im z|N dz + hn+1/2

ˆ

|Im z|<h1/2

z2supp @̄z f̃h

|Im z|�|↵|�2n�2|Im z|N dz

 C 0
↵,NvolC

�

supp @̄z f̃h

��

h�(N�|↵|�1) + hn+1/2(1+N�|↵|�2n�2)
�

 2C 0
↵,NvolC

�

supp @̄z f̃h

��

hmin(�,1/2)N�max(�,1/2)(|↵|+1)
�

.

Turning our attention to the term volC supp @̄z f̃h, note that by construction of the almost
analytic extension f̃h

supp @̄z f̃h ⇢ supp f̃h ⇢ (supp  fh
) ⇥ [L, L]i ⇢ C, (3.1.17)

where L > 0 is some constant depending only on the cuto↵ function �. Due to our assumptions
on the function  fh

in the paragraph before (3.1.9) one has

vol
�

supp  fh

�

 diam(supp fh) + 2 + 2 (3.1.18)

34



Chapter 3. Results for Rn 3.1. Functional and symbolic calculus

and we obtain volC
�

(supp  fh
) ⇥ [L, L]i

�

 2L(diam(supp fh) + 4). Collecting all estimates
together yields for h 2 (0, h0] and N � |↵| + 2n + 2

�

�

�

�

@↵v

ˆ

|Im z|h�

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

 CN,↵hmin(�,1/2)N�max(�,1/2)(|↵|+1)

vol(supp fh)(1 + diam(supp fh)) max
0jN+3

�

�

�

f
(j)
h

�

�

�

1
, (3.1.19)

for some new constant CN,↵ which is independent of h. We now use the regularity conditions
on the function (t, h) 7! fh(t) encoded in the assumption fh 2 Scomp

� . The condition that the
function is in Sh;�(1R) yields

max
0jN+3

�

�

�

f
(j)
h

�

�

�

1
= O

�

h�(N+3)�
�

as h ! 0,

and because the diameter of the support of fh grows at most polynomially in h�1 as h ! 0,
there is a constant r � 0 such that vol(supp fh)(1 + diam(supp fh)) = O

�

h�r) as h ! 0.
Thus, we conclude

�

�

�

�

@↵v

ˆ

|Im z|h�

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

 CN,↵ hN(min(�,1/2)��)�max(�,1/2)(|↵|+1)�3��r (3.1.20)

with a new constant CN,↵. Given N 0 2 N, we can set N(N 0) := dN 0+max(�,1/2)(|↵|+1)+3�+r
min(�,1/2)�� e

to obtain

�

�

�

�

@↵v

ˆ

|Im z|h�

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

 CN(N 0),↵ hN 0 8 h 2 (0, h0]. (3.1.21)

Thus, after performing a global rescaling h0 := h/h0, we have shown (3.1.16), or equivalently
(3.1.15). The next intermediate result in the proof of Theorem 2.1.4 that we want to generalize
involves the integral over the whole complex plane. Namely, one easily obtains

ˆ

C

@̄z f̃(z) rz dz 2 Sh(1R2n) 8 f 2 C1
c (R) (3.1.22)

by taking into account that the integrand has compact support and estimating its L1-norm
using (3.1.5) and (3.1.8). Just as (3.1.6), (3.1.22) is a statement about uniform estimates in
h 2 (0, 1], so it does not directly generalize to h-dependent functions. We would like to prove

ˆ

C

@̄z f̃h(z) rz dz 2 Sh;�(1R2n) 8 fh 2 Scomp
� . (3.1.23)

Let us try to prove (3.1.23) in the same way as (3.1.22) by estimating the L1-norm of the

35



Part I. Semiclassical functional calculus for h-dependent functions

integrand and using that the integrand has compact support. With (3.1.16), we can write

�

�

�

�

@↵v

ˆ

C

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

=

�

�

�

�

@↵v

ˆ

|Im z|h1/2

@̄z f̃h(z) rz(v, h) dz + @↵v

ˆ

|Im z|>h1/2

@̄z f̃h(z) rz(v, h) dz

�

�

�

�


ˆ

|Im z|>h1/2

z2supp @̄z f̃h

�

�@̄z f̃h(z) @↵v rz(v, h)
�

� dz + O(h1),

the O(h1) estimate being uniform in v. Using (3.1.5), (3.1.14), (3.1.17), and (3.1.18), it
follows that with N = |↵| + 1
�

�

�

�

@↵v

ˆ

C

@̄z f̃h(z) rz(v, h) dz

�

�

�

�

 CN,↵vol(supp fh)

max
0jN+3

�

�

�

f
(j)
h

�

�

�

1

ˆ

|Im z|>h1/2

z2supp @̄z f̃h

|Im z|�|↵|�1|Im z|N dz + O(h1)

 C|↵|+1,↵vol(supp fh) max
0j|↵|+1+3

�

�

�

f
(j)
h

�

�

�

1
vol supp @̄z f̃h + O(h1)

 C↵,�vol(supp fh)(1 + diam(supp fh))h��(|↵|+4) + O(h1)

= O
�

h��(|↵|+4)�2r
�

,

where r > 0 is chosen such that the diameter of the support of fh is of order h�r as h ! 0.
Thus, we arrive at the statementˆ

C

@̄z f̃h(z) rz dz 2 S4�+2r
h;� (1R2n) 8 fh 2 Scomp

� (3.1.24)

which is considerably weaker than (3.1.23). Temporarily, (3.1.24) will be su�cient to continue
with the proof, and we will deduce (3.1.23) later. As in the proof of Theorem 2.1.4, we deduce
from (3.1.24) ˆ

C

@̄z f̃h(z) rz dz 2 S4�+2r
h;� (m�k) 8 k 2 {0, 1, 2, . . .} (3.1.25)

by writing fh,k(t) := (t + i)kfh(t) and observing that

fh(Oph(s)) =
�

Oph(s) + i
��k

fh,k

�

Oph(s)
�

,

see [17, Thm. 8.7]. To proceed, fix some � 2 (�, 1
2 ). It is shown in the proof of Theorem 2.1.4

that if |z| � h� , |z|  const., the function rz belongs to the symbol class S�h;�(m
�1) with

estimates that are uniform in z, and rz has an expansion in S�h;�(m
�1) of the form

rz(y, ⌘, h) ⇠
1
X

j=0

hj

2j
X

k=0

qj,k(y, ⌘, h) zk

(z � s0(y, ⌘, h))2j+1
, qj,k 2 Sh(m2j�k), q0,0 ⌘ 1,
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with uniform estimates on the domain |z| � h� , |z|  const., see [17, p. 102]. Thus, by (3.1.3),
(3.1.4), (3.1.16), and (3.1.25) one obtains fh(Oph(s)) = Oph(a) with a 2 S4�+2r

h;� (m�1) having

an asymptotic expansion in S4�+2r
h;� (m�1)

a ⇠
1
X

j=0

hj
eaj , eaj(y, ⌘, h) =

�1

⇡

ˆ

|z|�h�

@̄z f̃h(z)
qj(y, ⌘, z, h)

(z � s0(y, ⌘, h))2j+1
dz, (3.1.26)

where we wrote qj(y, ⌘, z, h) :=
P2j

k=0 qj,k(y, ⌘, h) zk. For the same reason why (3.1.15) holds,
one can replace each eaj up to an error in S�1

h (m�1) by

aj(y, ⌘, h) =
�1

⇡

ˆ

C

@̄z f̃h(z)
qj(y, ⌘, z, h)

(z � s0(y, ⌘, h))2j+1
dz

=
1

(2j)!

⇣ @

@t

⌘2j
�

qj(y, ⌘, t, h)fh(t)
�

t=s
0

(y,⌘,h)
,

where the evaluation of the complex integral between the first and the second line is as in
[17, (8.16) on p. 103]. We obtain

a ⇠
1
X

j=0

hj aj in S4�+2r
h;� (m�1). (3.1.27)

Now, since fh is an element of Sh;�(1R) and only derivatives of fh of order at most 2j occur

in aj , we conclude that aj 2 S2j�
h;� (m�1). Therefore, the expansion (3.1.27) implies that a is in

fact an element of Sh;�(m�1) ⇢ S4�+2r
h;� (m�1) and has the same expansion in Sh;�(m�1). Thus,

the evaluation of the complex integrals in the individual terms of the expansion (3.1.26) has
finally provided a proof for (3.1.23). Just as we deduced (3.1.25) from (3.1.24), we deduce
from (3.1.23) that a 2

T

k2N Sh;�(m�k).

As a corollary, we get a semiclassical trace formula that generalizes Theorem 2.1.5.

Corollary 3.1.2. Let m : R2n ! (0, 1) be an order function with m � 1, and s 2 Sh(m) be
a real-valued symbol function with an asymptotic expansion

s ⇠
1
X

j=0

hjsj in Sh(m)

such that s + i is m-elliptic. Let I ⇢ R be a bounded open interval with

lim inf
kvk!+1

dist(s(v, h), I) � C 8 h 2 (0, 1]

for a constant C > 0 that is independent of h, and let fh 2 C1
c (I) ⇢ C1

c (R) be given such
that the function (t, h) 7! fh(t) is an element of the symbol class Sh;�(1R) for some � 2 [0, 1

2 ).

Then, the operator fh

�

Oph(s)
�

: L2(Rn) ! L2(Rn) is of trace class for small h, and as h ! 0
one has

trL2(Rn)fh

⇣

Oph(s)
⌘

=
1

(2⇡h)n

ˆ

R2n

fh

�

s0(y, ⌘, h)
�

dy d⌘

+ O
⇣

h1�2��nvolR2n

�

supp fh � s0(·, h)
�

⌘

.

Proof. In view of Theorem 3.1.1 and Corollary 2.1.2, one can prove the statements of the
theorem by complete analogy to [17, proof of Theorem 9.6].

37





Chapter 4

Results for closed Riemannian
manifolds

In this chapter, we generalize Theorem 2.1.6 to functions which depend on h, and we establish
explicit statements that can be used to prove trace formulas. For the whole chapter, let us
fix the following setup. As introduced in Chapter 1, let M be a closed connected Riemannian
manifold of dimension n. We choose a finite atlas {U↵, �↵}↵2A with charts �↵ : U↵

'! Rn,
U↵ ⇢ M open, and a subordinate partition of unity {'↵}↵2A. For each ↵ 2 A, we choose
in addition a compact set K↵ ⇢ Rn such that supp '↵ � ��1

↵ ⇢ Int(K↵), and three cuto↵

functions '↵,'↵,'↵ 2 C1(M) with supports contained in ��1
↵ (Int(K↵)) ⇢ U↵ and with

'↵ ⌘ 1 on supp '↵, '↵ ⌘ 1 on supp '↵, and '↵ ⌘ 1 on supp '↵. For a point x 2 U↵, let
y = (y1, . . . , yn) 2 Rn be the coordinates of the point �↵(x). Furthermore, we have a local
metric g↵ := (gij

↵ ) with coe�cients gij
↵ : Rn ! R and inverse matrix (g↵ij), together with an

associated volume density Volg↵(y) :=
p

det g↵(y). Note that limkyk!1 Volg↵
(y) = 0, since

otherwise U↵ would have infinite Riemannian volume in contradiction to the compactness of
M . It follows that the positive function y ! Volg↵(y) is bounded.

4.1 Technical preparations

The Schrödinger operator P̆ (h) acts on a function f 2 C1
c (U↵) ⇢ C1(M) by the formula

P̆ (h)(f)(x) = S̆↵(h)(f � ��1
↵ )(y) :=

�h2

Volg↵(y)

n
X

i,j=1

@

@ yj

✓

g↵ijVolg↵

@(f � ��1
↵ )

@ yi

◆

(y)

+ (V � ��1
↵ )(y) · (f � ��1

↵ )(y) (4.1.1)

for x 2 U↵, and P̆ (h)(f)(x) = 0 for x 2 M � U↵. The so defined operator

S̆↵(h) : C1
c (Rn) ! C1

c (Rn)

is a second order elliptic di↵erential operator on Rn, in the sense that its principal symbol is
nowhere 0. However, S̆↵(h) is not uniformly elliptic in the sense that its principal symbol is
bounded away from 0, because the coe�cients gij

↵ and g↵ij can tend to zero towards infinity.
To circumvent this problem, let ⌧↵ 2 C1

c (Rn, [0, 1]) be a function which fulfills ⌧↵ ⌘ 1 in a
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neighborhood of K↵, and define a new di↵erential operator C1
c (Rn) ! C1

c (Rn) by

P̆↵(h) := ⌧↵S̆↵(h) + (1 � ⌧↵)(�h2�), (4.1.2)

where � =
Pn

i=1
@2

@y2

i
. Clearly, P̆↵(h) agrees with S̆↵(h) on functions supported inside K↵.

The reason why we introduced the new operator P̆↵(h) is

Lemma 4.1.1. Let m : R2 ! (0, 1) be the order function given by (y, ⌘) 7! h⌘i2. Then,
for each ↵, one has P̆↵(h) = Oph(p↵) for a real-valued symbol function p↵ 2 Sh(m) such
that p↵ + i is m-elliptic. Furthermore, P̆↵(h) has a unique self-adjoint extension P↵(h) :
H2

h(Rn) ! L2(Rn), and for z 2 C, Im z 6= 0, the resolvent (P↵(h) � z)�1 : L2(Rn) ! H2
h(Rn)

exists as a bounded operator.

Proof. Fix ↵ 2 A and note that as M is compact we can assume without loss of generality
that all the coe�cients gij

↵ , g↵ij : Rn ! R and their derivatives are bounded. By (4.1.1) and
(4.1.2),

P̆↵(h) = Oph(p↵)

for a function p↵ 2 C1(R2n ⇥ (0, 1]) of the form

p↵(y, ⌘, h) =
n
X

i,j=1

pij
↵ (y)⌘i⌘j + V↵(y)

| {z }

=:p↵,0(y,⌘)

+h

n
X

i=1

pi
↵(y)⌘i, V↵ := V � ��1

↵ , (4.1.3)

where

pi,j
↵ (y) = ⌧↵(y)gij

↵ (y) + (1 � ⌧↵(y))�ij , pi
↵ 2 C1(Rn,R),

and the functions pi
↵ and V↵ are bounded. Here, �ij is the Kronecker delta. Since all the

coe�cients in the polynomial p↵ and all of their derivatives are bounded functions, there is for
each non-negative 2n-dimensional multiindex � a constant C� > 0 such that |@�p↵(y, ⌘, h)| 
C� h⌘i2 holds for all (y, ⌘) 2 R2n and all h 2 (0, 1]. Thus, we conclude that p↵ 2 Sh(m).
It remains to show that there is some constant "↵ > 0 such that |p↵ + i| � "↵m. Let
y 2 Rn. Since g↵(y) is a norm-induced metric on Rn and all norm-induced metrics on
Rn are equivalent, it holds ⌘T g↵(y)⌘ � c↵(y)|⌘|2 for some c↵(y) > 0. Clearly, the function
Rn ! (0, 1), y 7! c↵(y), is smooth and thus assumes a minimum m↵ on the compact support
of ⌧↵. It follows

�

�

�

X

i,j

pi,j
↵ (y)⌘i⌘j

�

�

�

� min(1, m↵)|⌘|2 8 y 2 Rn. (4.1.4)

Now, recall that pi
↵ and V↵ are bounded functions, which in view of (4.1.4) implies that we

can find a constant r↵ > 0 such that
�

�h
P

i pi
↵(y)⌘i + V↵(y)

�

� < 1
2

�

�

P

i,j pi,j
↵ (y)⌘i⌘j

�

� holds for
all ⌘ with |⌘| > r↵ and all y 2 Rn, h 2 (0, 1]. Thus, we conclude for |⌘| > r↵:

�

�p↵(y, ⌘, h) + i
�

�

2 �
⇣1

2
min(1, m↵)|⌘|2

⌘2
+ 1 8 y 2 Rn, h 2 (0, 1].

Now, choose R↵ � r↵ large enough and C↵ > 0 small enough such that

⇣1

2
min(1, m↵)|⌘|2

⌘2
+ 1 � C2

↵

�

|⌘|2 + 1
�2
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for all |⌘| � R↵. Then
�

�p↵(y, ⌘, h) + i
�

� � C↵ h⌘i2 for all |⌘| � R↵ and all y 2 Rn, h 2 (0, 1].
To obtain an analogous statement also for |⌘|  R↵, note that we trivially have |p↵ + i| � 1,
because p↵ is real-valued. Assuming w.l.o.g. that R↵ � 1, we get

�

�p↵(y, ⌘, h) + i
�

� � 1 =
2R2

↵

2R2
↵

� 1

2R2
↵

|⌘|2 +
1

2
� 1

2R2
↵

|⌘|2 +
1

2R2
↵

=
1

2R2
↵

�

|⌘|2 + 1).

We obtain for arbitrary (y, ⌘, h) that
�

�p↵(y, ⌘, h) + i
�

� � eC↵ h⌘i2 with eC↵ := min
�

C↵, 1
2R2

↵

�

,

so that we are done with the proof that p↵ + i is m-elliptic. The remaining statements of the
lemma follow from Theorem 2.1.3 and the observation (2.1.9).

Lemma 4.1.2. For each ↵ 2 A, define the vector space

L2
comp,↵(M) :=

�

f 2 L2(M), ess. supp f � ��1
↵ ⇢ K↵

 

,

and equip it with the norm induced from L2(M). Then

�⇤↵ : B(L2(Rn)) ! B(L2
comp,↵(M), L2(M)), A 7!

�

f 7! A(f � ��1
↵ ) � �↵

0
�

is a bounded linear operator, where u0 denotes continuation of the function u by zero outside
U↵, and the vector spaces B(L2(M)) and B(L2

comp,↵(M), L2(M)) are each equipped with the
operator norm.

Proof. First, note that a function f 2 L2
comp,↵(M) indeed pulls back to a function f � ��1

↵

in L2(Rn): As the volume density Volg↵ is bounded, the only critical issue here is decay at
infinity, and f � ��1

↵ has compact support. It now su�ces to show that there are constants
C↵, C 0

↵ > 0 such that

�

�f � ��1
↵

�

�

L2(Rn)
 C↵ kfkL2(M) 8 f 2 L2

comp,↵(M), (4.1.5)

ka � �↵kL2(M)  C 0
↵ kakL2(Rn) 8 a 2 L2(Rn). (4.1.6)

Then it will follow that

k�⇤↵(A)kB(L2

comp,↵(M),L2(M))  C↵C 0
↵ kAkB(L2(Rn)) 8 A 2 B(L2(Rn)). (4.1.7)

The first relation (4.1.5) can be proved easily by observing that for a function f 2 L2
comp,↵(M)

one has

kfk2L2(M) �
ˆ

U↵

|f |2 dM =

ˆ

Rn

|f(��1
↵ (y))|2Volg↵

(y) dy =

ˆ

K↵

|f(��1
↵ (y))|2Volg↵

(y) dy.

Setting

C�2
↵ := min

y2K↵

Volg↵
(y) > 0,

it follows

kfk2L2(M) � C�2
↵

ˆ

K↵

|f(��1
↵ (y))|2 dy = C�2

↵

ˆ

Rn

|f(��1
↵ (y))|2 dy ⌘ C�2

↵

�

�f � ��1
↵

�

�

2

L2(Rn)
.
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The assertion (4.1.6) follows from the boundedness of the function Volg↵ . Namely, for a 2
L2(Rn) we get

ka � �↵k2L2(M) ⌘
ˆ

M

|a � �↵|2 dM =

ˆ

U↵

|a � �↵|2 dM =

ˆ

Rn

|a(y)|2Volg↵(y) dy


⇣

sup
y2Rn

Volg↵(y)
⌘

| {z }

=:C02
↵

ˆ

Rn

|a(y)|2 dy ⌘ C 02
↵ kak2L2(Rn) .

The following resolvent estimate will be very useful.

Lemma 4.1.3. For z 2 C, Im z 6= 0, consider the resolvent (P↵(h) � z)�1 from Lemma
4.1.1 for some ↵ 2 A. Let r, s 2 C1

c (Rn) have disjoint supports and associated multiplication
operators �r,�s : L2(Rn) ! L2(Rn). Then, for each N 2 N there is a constant CN > 0,
depending on r and s, such that for |z|  const. one has the estimate

�

��r � (P↵(h) � z)�1 � �s

�

�

B(L2(Rn))
 CNhN |Im z|�N�1.

Proof. We owe the trick used in this proof to Maciej Zworski. Fix some N 2 N. Set r1 := r
and choose functions r2 . . . , rN which fulfill ri ⌘ 1 on supp ri�1 and supp ri \ supp s = ;
for i 2 {2, . . . , N}. Let �i : L2(Rn) ! L2(Rn) be the pointwise multiplication operator
associated to ri. Then we have �1 ��2 � · · ·��N = �r. Next, observe that for any operator A
on L2(Rn) the commutators [P↵(h) � z, A] and [P↵(h), A] agree, since z is just a multiple of
the identity operator and hence has zero commutator. In addition, note that �i ��s = 0 for
all i 2 {1, . . . , N}, by choice of the functions ri, and that �k � (P↵(h) � z) � (1 � �k+1) = 0,
since P↵(h)�z is a di↵erential operator and as such a local operator. With those observations,
one verifies easily

(P↵(h) � z)�1 � [P↵(h),�1] � (P↵(h) � z)�1 � [P↵(h),�2]�
· · · � (P↵(h) � z)�1 � [P↵(h),�N ] � (P↵(h) � z)�1 � �s

= �1 � �2 � · · · � �N � (P↵(h) � z)�1 � �s = �r � (P↵(h) � z)�1 � �s.

Each commutator is independent of z, and by [17, top of p. 102] we have for |z|  const. the
estimate

�

�[P↵(h),�i] � (P↵(h) � z)�1
�

�

B(L2(Rn))
= O(h|Im z|�1) 8 i 2 {1, . . . , N}

and
�

�(P↵(h) � z)�1
�

�

B(L2(Rn))
= O(|Im z|�1).

Therefore, we can conclude that
�

��r � (P↵(h) � z)�1 � �s

�

�

B(L2(Rn))


�

�(P↵(h) � z)�1
�

�

B(L2(Rn))

�

�[P↵(h),�1] � (P↵(h) � z)�1
�

�

B(L2(Rn))

· · ·
�

�[P (h),�N ] � (P↵(h) � z)�1
�

�

B(L2(Rn))
k�skB(L2(Rn))

 CNhN (|Im z|�1)N+1.
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4.2 Operator norm estimates

We can now state and prove our first theorem about the semiclassical functional calculus for
h-dependent functions and the Schrödinger operator P (h) on M with associated Hamiltonian
p, relating the functional and symbolic calculi with operator norm remainder estimates. The
theorem we will prove is actually much more explicit than Result 2 from the summary in
Chapter 1, where it was stated in a condensed form. Choose %h 2 Scomp

� . We then obtain for
each h 2 (0, 1] an operator %h(P (h)) 2 B(L2(M)). In addition, we introduce B 2  0

h;�(M) ⇢
B(L2(M)) with principal symbol [b], where b 2 S0

h;�(M).

Theorem 4.2.1. The family of operators {B�%h(P (h))}h2(0,1] ⇢ B(L2(M)) has the following
properties:

• There exists a constant h0 2 (0, 1], a family of symbol functions {e↵}↵2A ⇢ Sh;�(1R2n),
and for each h 2 (0, h0] an operator R(h) 2 B(L2(M)) such that

(B � %h(P (h))(f) =
X

↵2A
'↵ · Oph(e↵)(('↵ · f) � ��1

↵ ) � �↵ + R(h)(f) (4.2.1)

holds for all h 2 (0, h0] and all f 2 L2(M), and

kR(h)kB(L2(M)) = O
�

h1� as h ! 0.

The operator R(h) depends on B, p, %h, and the choice of the functions {'↵,'↵,'↵}↵2A.

• For each ↵ 2 A, the symbol function e↵ has an asymptotic expansion in Sh;�(1R2n) of
the form

e↵ ⇠
1
X

j=0

e↵,j , e↵,j 2 S
j(2��1)
h;� (1R2n), (4.2.2)

where e↵,j is for fixed h 2 (0, h0] an element of C1
c (R2n), and

e↵,0 =
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ). (4.2.3)

Moreover, for each ↵, j and each fixed h one has

supp e↵,j ⇢ supp
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ). (4.2.4)

Proof. Let us first summarize briefly the strategy of the proof, which is divided into four steps.
In Step 0, we use the Hel↵er-Sjöstrand formula to reduce the calculations involving %h(P (h))
to calculations involving the resolvent (P (h)� z)�1 for z 2 C, Im z 6= 0, and estimates which
are valid uniformly in z. In Step 1, we construct a parametrix which approximates (P (h) �
z)�1 up to an explicitly given remainder operator. In order to construct the parametrix,
we localize the problem using the finite atlas {(U↵, �↵)}↵2A for M and the partition of
unity {'↵}↵2A, obtaining a local parametrix for each coordinate chart, and sum up these
local parametrices to a global parametrix. In Step 2, we plug the result of Step 1 into the
Hel↵er-Sjöstrand formula which transforms the leading term in our calculations into a sum of
pullbacks of operators in B(L2(Rn)). Then we can apply the semiclassical functional calculus
on Rn, and in particular Theorem 3.1.1. Finally, in Step 3, we use the concrete form of the
obtained symbol functions from Step 2 to deduce the assertions (4.2.1-4.2.4).
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Part I. Semiclassical functional calculus for h-dependent functions

Step 0. The operator P (h)�z is invertible in B(L2(M)) for z 2 C, Im z 6= 0, see [63, Lemma
14.6], and by the Hel↵er-Sjöstrand formula [17, Theorem 8.1] one has

%h(P (h)) =
1

i⇡

ˆ

C

@̄z %̃h(z)(P (h) � z)�1 dz,

where dz denotes the Lebesgue measure, %̃h : C ! C is the same almost analytic extension
of %h as in (3.1.7), and @̄z = (@x + i@y)/2 when z = x + iy. The Hel↵er-Sjöstrand formula
shows that %h (P (h)) will be expressed as a sum of pullbacks of operators in B(L2(Rn)) once
we establish the same for the resolvent (P (h) � z)�1. This is our strategy. Now, by Lemma
4.1.1, to the three global operators

P̆ (h) : C1(M) ! C1(M), P (h) : H2(M) ! L2(M), (P (h)�z)�1 : L2(M) ! H2(M)

there correspond three families of local operators, indexed by the finite atlas A

P̆↵(h) : C1
c (Rn) ! C1

c (Rn), P↵(h) : H2
h(Rn) ! L2(Rn),

(P↵(h) � z)�1 : L2(Rn) ! H2
h(Rn),

which are related to the global operators according to

P̆ (h)(f) = P̆↵(h)(f � ��1
↵ ) � �↵ 8 f 2 C1

c (M), supp f � ��1
↵ ⇢ K↵. (4.2.5)

Step 1. In this step we will deduce a formula for (P (h) � z)�1 using the family of lo-

cal resolvents {(P↵(h) � z)�1}↵2A. For each ↵ 2 A, denote by �↵,�↵,�↵ the operators

L2(M) ! L2(M) given by pointwise multiplication with '↵,'↵,'↵, and by  ↵, ↵, ↵ the
operators L2(Rn) ! L2(Rn) given by pointwise multiplication with '↵���1

↵ ,'↵���1
↵ ,'↵���1

↵ ,
respectively. We will denote (bi-)restrictions of these operators to linear subspaces of their
domains by the same symbols. Furthermore, let us introduce the pullback maps

�⇤↵ : L(C1
c (Rn), C1

c (Rn)) ! L(C1
c (U↵), C1

c (U↵)), A 7!
�

f 7! A(f � ��1
↵ ) � �↵

�

,

��1
↵

⇤
: L(C1

c (U↵), C1
c (U↵)) ! L(C1

c (Rn), C1
c (Rn)), A 7!

�

f 7! A(f � �↵) � ��1
↵

�

,

which are each other’s inverses. Elliptic regularity implies that the resolvent (P↵(h) � z)�1

induces an operator

(P↵(h) � z)�1|C1
c

(Rn) : C1
c (Rn) ! C1(Rn).

Regarding C1
c (U↵) as a subset of C1(M) for each ↵, we can define an operator C1(M) !

C1(M) by

Y (h, z) :=
X

↵2A
�⇤↵
�

 ↵ � (P↵(h) � z)�1|C1
c

(Rn)

�

� �↵.
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Using that P̆ (h) � z is a local operator and taking into account (4.2.5), one now computes

Y (h, z) � (P̆ (h) � z)

=
X

↵2A
�⇤↵
�

 ↵ � (P↵(h) � z)�1|C1
c

(Rn)

�

� �↵ � (P̆ (h) � z) � �↵

=
X

↵2A

h

�⇤↵
�

 ↵ � (P↵(h) � z)�1|C1
c

(Rn)

�

� �⇤↵
�

P̆↵(h) � z
�

� �↵ (4.2.6)

� �⇤↵
�

 ↵ � (P↵(h) � z)�1|C1
c

(Rn)

�

� (1 � �↵) � (P̆ (h) � z) � �↵
| {z }

=: eR↵(h,z)

i

=
X

↵2A

h

�⇤↵
⇣

 ↵ � (P↵(h) � z)�1|C1
c

(Rn) � (P̆↵(h) � z)
⌘

� �↵ � eR↵(h, z)
i

=
X

↵2A

h

�⇤↵
�

 ↵
�

� �↵ � eR↵(h, z)
i

=
X

↵2A

h

�↵ � eR↵(h, z)
i

= 1C1(M) �
X

↵2A
eR↵(h, z). (4.2.7)

Note how we inserted the additional cuto↵ operator �↵ before (4.2.6) to be able to split o↵
a remainder term which involves an operator that is composed from the left and from the
right with multiplication operators by functions whose supports are disjoint. It immediately
follows from (4.2.7) that

(P (h) � z)�1|C1(M) = Y (h, z) +
X

↵2A
R↵(h, z), (4.2.8)

where
R↵(h, z) := eR↵(h, z) � (P (h) � z)�1|C1(M).

We introduced the pullbacks �⇤↵ and ��1
↵

⇤
for temporary use because they are inverses of

each other and they respect compositions of operators, allowing the easy construction of the
parametrix Y (h, z) on C1(M). To get statements about operators in B(L2(M)), we will work
from now on with the pullback �⇤↵ from Lemma 4.1.2. Taking into account Lemma 4.1.1, we
observe that the bounded operator

X

↵2A
�↵ � �⇤↵

�

(P↵(h) � z)�1
�

� �↵ : L2(M) ! L2(M)

agrees with Y (h, z) on C1(M). As C1(M) is dense in L2(M), it follows from (4.2.8) that

(P (h) � z)�1 =
X

↵2A

h

�↵ � �⇤↵
�

(P↵(h) � z)�1
�

� �↵ + R↵(h, z)
i

, (4.2.9)

where

R↵(h, z) := �↵ � �⇤↵
�

(P↵(h) � z)�1
�

� (1 � �↵) � (P (h) � z) � �↵ � (P (h) � z)�1. (4.2.10)

Step 2. Plugging the result of Step 1 into the Hel↵er-Sjöstrand formula yields

%h(P (h)) =
1

i⇡

ˆ

C

@̄z %̃h(z)
⇣

X

↵2A

h

�↵ � �⇤↵
�

(P↵(h) � z)�1
�

� �↵ + R↵(h, z)
i⌘

dz

=
X

↵2A

h

�↵ � �⇤↵
⇣ 1

i⇡

ˆ

C

@̄z %̃h(z)(P↵(h) � z)�1 dz
⌘

� �↵ + R↵(h)
i

,
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where

R↵(h) =
1

i⇡

ˆ

C

@̄z %̃h(z)R↵(h, z) dz.

For each ↵, the functional calculus for the operator P↵(h) applies (by Lemma 4.1.1 and [17,
Theorem 8.1]) and gives

1

i⇡

ˆ

C

@̄z %̃h(z)(P↵(h) � z)�1 dz = %h (P↵(h)) .

We obtain the result

%h(P (h)) =
X

↵2A

h

�↵ � �⇤↵
�

%h (P↵(h))
�

� �↵ + R↵(h)
i

. (4.2.11)

This formula expresses the bounded operator %h(P (h)) : L2(M) ! L2(M) in terms of the
bounded operators %h (P↵(h)) : L2(Rn) ! L2(Rn), up to the remainder

P

↵2A R↵(h). We
proceed by estimating for fixed ↵ the operator norm of R↵(h). In order to do this, we note
that with (4.2.10)

R↵(h) =
1

i⇡

ˆ

C

@̄z %̃h(z)�⇤↵
⇣

 ↵ � (P↵(h)� z)�1 � (1� ↵)
⌘

� (P (h)� z) ��↵ � (P (h)� z)�1 dz.

Here we have replaced the operators �↵ and (1��↵) by the corresponding operators inside
the pullback. We now want to estimate the operator norm of the remainder operator R↵(h) by
estimating the operator norm of the integrand, which works because the integration domain
is in fact the support of @̄z %̃h(z) which is compact and thus has finite volume. By Lemma
4.1.3 and Lemma 4.1.2, we get for each N 2 N a constant CN > 0 such that for |z|  const.

�

�

�

�⇤↵
⇣

 ↵ � (P↵(h) � z)�1 � (1 � ↵)
⌘

�

�

�

B(L2

comp,↵(M),L2(M))
 CNhN |Im z|�N�1.

This crucial estimate is precisely the reason why it was helpful to split o↵ the remainder term
the way we did in (4.2.6). Moreover, when introducing a commutator, we get for |z|  const.

�

�

�

(P (h) � z) � �↵ � (P (h) � z)�1
�

�

�

B(L2(M))
=
�

�

�

⇥

P (h),�↵
⇤

� (P (h) � z)�1 + �↵
�

�

�

B(L2(M))


�

�

�

⇥

P (h),�↵
⇤

� (P (h) � z)�1
�

�

�

B(L2(M))
+
�

�

�

�↵
�

�

�

B(L2(M))
 Ch(|Im z|)�1 + 1,

so that in total we obtain a new set of constants {C 0
N}, N = 0, 1, 2, . . ., such that for |z| 

const.
�

�

�

�⇤↵
⇣

 ↵ � (P↵(h) � z)�1 � (1 � ↵)
⌘

� (P (h) � z) � �↵ � (P (h) � z)�1
�

�

�

B(L2(M))

 C 0
NhN |Im z|�N�1. (4.2.12)

We thus have successfully estimated the operator norm of R↵(z, h). In order to estimate also
the supremum norm of the function @̄z %̃h(z), recall from (3.1.14) that for N = 0, 1, 2, . . .,
there is a constant CN > 0 such that

|@̄z %̃h(z)|  CN |Im z|Nvol(supp %h) max
0jN+3

�

�

�

%
(j)
h

�

�

�

1
8 z 2 C, 8 h 2 (0, 1].
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Together with (4.2.12), this implies that we get for each N 2 N a new constant CN > 0 such
that for all u 2 L2(M) and for |z|  const.

|@̄z %̃h(z)|2 kR↵(z, h)uk2L2(M)

 CNh2Nvol(supp %h)2 max
0jN+4

�

�

�

%
(j)
h

�

�

�

2

1
kuk2L2(M) 8 h 2 (0, 1]. (4.2.13)

Thus, for all h 2 (0, 1] and N 2 N one has

kR↵(h)uk2L2(M) =

ˆ

M

�

�

�

1

i⇡

ˆ

C

@̄z %̃h(z)R↵(z, h)(u)(x) dz
�

�

�

2
dM(x)

 1

⇡

ˆ

C

ˆ

M

|@̄z %̃h(z)|2
�

�R↵(z, h)(u)(x)
�

�

2
dM(x) dz =

1

⇡

ˆ

C

|@̄z %̃h(z)|2 kR↵(z, h)uk2L2(M) dz

 CNh2NvolC(supp @̄z %̃h)vol(supp %h)2 max
0jN+4

�

�

�

f
(j)
h

�

�

�

2

1
kuk2L2(M) .

Note that (3.1.5) and (3.1.14) imply for each h 2 (0, 1] that the function M ⇥ C ! R given
by

(x, z) 7! |@̄z %̃h(z)|2
�

�R↵(z, h)(u)(x)
�

�

2

has finite L1-norm with respect to the product measure dz dM . This justifies the application
of the Fubini theorem. We are now in essentially the same situation as we were in (3.1.19),
so that with analogous arguments as in the lines following (3.1.19) we conclude

kR↵(h)uk2L2(M) = O(h1) kuk2L2(M)

with estimates independent of u, and as u 2 L2(M) was arbitrary, it follows

kR↵(h)kB(L2(M)) = O(h1).

The estimation of the operator norm of the remainder is now almost complete. Namely, since
A is finite, we can re-write (4.2.11) as

%h(P (h)) =
X

↵2A
�↵ � �⇤↵

�

%h (P↵(h))
�

� �↵ + eR(h), (4.2.14)

where
eR(h) :=

X

↵2A
R↵(h) : L2(M) ! L2(M)

has operator norm of order h1. Next, we compose with the operator B and an additional
cuto↵ operator. That yields

B � %h(P (h)) =
X

↵2A
�↵ � B � �↵ � �⇤↵

�

%h (P↵(h))
�

� �↵ + R(h), (4.2.15)

where

R(h) :=
X

↵2A
(1 � �↵) � B � �↵ � �⇤↵

�

%h (P↵(h))
�

� �↵ + B � eR(h). (4.2.16)
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As '↵ and 1 � '↵ have disjoint supports, the operator norm of (1��↵) � B ��↵ is of order
h1. Moreover, by Lemma 4.1.2 and the spectral theorem, we have

�

��⇤↵
�

%h (P↵(h))
�

�

�

B(L2

comp,↵(M),L2(M))

 C k%h (P↵(h))kB(L2(Rn))  C k%hk1  C 0 8 h 2 (0, 1]

with constants C, C 0 > 0, the last inequality being a consequence of the assumption %h 2
Sh;�(1R). In addition, we know that the operator norm of eR(h) is of order h1. From these
observations, it follows

kR(h)kB(L2(M)) = O(h1).

Step 3. We now express the summands in the leading term of (4.2.15) as pullbacks of
semiclassical pseudodi↵erential operators on Rn. Since B is a semiclassical pseudodi↵erential
operator of order (0, �) with principal symbol [b], one has for each ↵

�↵ � B � �↵ = �↵ � �⇤↵
�

Oph(b↵)
�

� �↵, b↵ 2 Sh;�(1R2n), (4.2.17)

with a symbol function b↵ that has the property

b↵ = b � ��1
↵ + h1�2�

eb↵, eb↵ 2 Sh;�(1R2n). (4.2.18)

To proceed, note that by Lemma 4.1.1, we can apply Theorem 3.1.1 to P↵(h) for each ↵,
which gives us a symbol function s↵ 2

T

k2N Sh;�(m�k), where m(y, ⌘) = h⌘i2, and a number
h0,↵ 2 (0, 1] such that for h 2 (0, h0,↵]

%h (P↵(h)) = Oph(s↵). (4.2.19)

Each local operator %h (P↵(h)) is thus a semiclassical pseudodi↵erential operator. Moreover,
Theorem 3.1.1 implies that there is an asymptotic expansion in Sh;�(1/m)

s↵ ⇠
1
X

j=0

s↵,j , s↵,j(y, ⌘, h) =
1

(2j)!

⇣ @

@t

⌘2j
�

qj(y, ⌘, t, h)%h(t)
�

t=p↵,0(y,⌘)
(4.2.20)

for a sequence of polynomials {qj(t)}j=0,1,2,... in one variable t 2 R with coe�cients being h-

dependent functions in C1(R2n) and with q0 ⌘ 1. In particular, one has s↵,j 2 S
j(2��1)
h;� (1/m)

and
s↵,0(y, ⌘, h) = %h(p↵,0(y, ⌘)), (4.2.21)

where
p↵,0(y, ⌘) = ⌧↵(y)(|⌘|2g↵(y) + V↵(y)) + (1 � ⌧↵(y))|⌘|2 (4.2.22)

is the h0-coe�cient in the full symbol of P̆↵(h), see (4.1.3). Since 1/m  1, it holds

S
j(2��1)
h;� (1/m) ⇢ S

j(2��1)
h;� (1R2n), so that we can replace in the statements above S

j(2��1)
h;� (1/m)

with S
j(2��1)
h;� (1R2n), obtaining in particular s↵ 2 Sh;�(1R2n). Set h0 := min↵2A h0,↵ > 0. By

(4.2.15), (4.2.17), and (4.2.19), we have proved that one has for all h 2 (0, h0]

B � %h(P (h)) =
X

↵2A
�↵ � �⇤↵

�

Oph(b↵) � ↵ � Oph(s↵)
�

� �↵ + R(h). (4.2.23)

Let us now prove that the function s↵,j(y, ·, h) : ⌘ 7! s↵,j(y, ⌘, h) is an element of C1
c (Rn)

for each y, h, j which fulfills

supp s↵,j(�↵(x), ·, h) ⇢ (@�↵)T
�

(supp %h � p) \ T ⇤
x M

�

8 x 2 ��1
↵ (K↵). (4.2.24)
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Indeed, this statement follows from formula (4.2.20). By that formula, at each point (y, ⌘, h) 2
R2n⇥(0, 1] the number s↵,j(y, ⌘, h) is a polynomial in derivatives of %h at p↵,0(y, ⌘). However,
each derivative of %h has compact support inside supp %h, so that for each y, the function
⌘ 7! s↵,j(y, ⌘, h) is supported inside

supp(%h � p↵,0) \ {(y, ⌘) : ⌘ 2 Rn}.

Since ⌧↵ ⌘ 1 on K↵, it holds for x 2 ��1
↵ (K↵)

supp(%h � p↵,0) \ {(�↵(x), ⌘) : ⌘ 2 Rn} = (@�↵)T
�

(supp %h � p) \ T ⇤
x M

�

.

This proves (4.2.24). Now, we apply the composition formula to Oph(b↵) �  ↵ � Oph(s↵),
treating  ↵ here as a zero order h-pseudodi↵erential operator. Theorem 2.1.1 then yields

Oph(b↵) � ↵ � Oph(s↵) = Oph(e↵), e↵ 2 Sh;�(1R2n),

e↵ ⇠
1
X

j=0

e↵,j , e↵,j 2 S
j(2��1)
h;� (1R2n),

e↵,0 =
�

('↵ · b) � (��1
↵ , (@��1

↵ )T )
�

· (%h � p↵,0). (4.2.25)

Here we took (4.2.18) and (4.2.21) into account. The function '↵ is compactly supported
inside ��1

↵ (K↵), and we have seen that s↵ has the expansion (4.2.20) in terms of symbol
functions which are compactly supported in the co-tangent space variable ⌘. The summands
in the expansion (2.1.3) of the composition formula are products of derivatives of the original
symbol functions. Therefore, if one of the functions is compactly supported in the co-tangent
space variable ⌘, and the other one in the manifold variable y, the whole summand is com-
pactly supported in R2n. Taking into account (4.2.24), the statement (4.2.4) follows. To finish
the proof, we recall from (4.2.22) how p↵,0 was defined, and that ⌧↵ 2 C1

c (Rn) is identically
1 on K↵. Since '↵ � ��1

↵ is supported inside K↵, the claim (4.2.3) finally follows.

4.3 Trace norm estimates

Our next goal is to deduce a refined version of Theorem 4.2.1, with a remainder operator of
trace class. In order to achieve this, we need to relate the functional and symbolic calculi
with trace norm remainder estimates. Suppose that we are in the situation introduced at the
beginning of this chapter. For each ↵ 2 A, set

u↵,0 :=
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ), (4.3.1)

with b as in Theorem 4.2.1. Then, one has the following result.

Theorem 4.3.1. Suppose that %h 2 Sbcomp
� . Then, for each N 2 N, there is a number

h0 2 (0, 1], a collection of symbol functions {r↵,�,N}↵,�2A ⇢ S2��1
h;� (1R2n) and an operator

RN (h) 2 B(L2(M)) such that

• one has for all f 2 L2(M), h 2 (0, h0] the relation

B � %h(P (h))(f) =
X

↵2A
'↵ · Oph(u↵,0)

�

(f · '↵) � ��1
↵

�

� �↵

+
X

↵,�2A
'� · Oph(r↵,�,N )

�

(f · '↵ · '�) � ��1
�

�

� �� + RN (h)(f);
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• the operator RN (h) 2 B(L2(M)) is of trace class and its trace norm fulfills

kRN (h)ktr,L2(M) = O
�

hN
�

as h ! 0; (4.3.2)

• for fixed h 2 (0, h0], each symbol function r↵,�,N is an element of C1
c (R2n) that fulfills

supp r↵,�,N ⇢ supp
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ). (4.3.3)

Proof. The proof is divided into five steps. Let the notation be as in the proof of Theorem
4.2.1.
Step 0. Consider the collection of symbol functions {e↵,j} with e↵,j 2 S

j(2��1)
h;� (1R2n)

obtained in the proof of Theorem 4.2.1. Let R(h) 2 B(L2(M)) be the remainder oper-
ator from (4.2.16), whose operator norm is of order h1. The statement (4.2.2) means

e↵ �
PN

j=0 e↵,j 2 S
(N+1)(2��1)
h;� (1R2n), which by (2.1.4) implies

�

�

�

Oph(e↵) �
N
X

j=0

Oph(e↵,j)
�

�

�

B(L2(Rn))
 C↵h(1�2�)(N+1),

with a constant C↵ > 0 independent of h. Since A is finite, and applying analogous arguments
as in the proof of Lemma 4.1.2, we obtain

�

�

�

X

↵2A
'↵Oph(e↵)(('↵f) � ��1

↵ ) � �↵ �
X

↵2A
0jN

'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵

�

�

�

B(L2(M))

 C 0h(1�2�)(N+1)

for some constant C 0 > 0 independent of h. Thus, setting

RN (h) :=
X

↵2A
'↵Oph(e↵)(('↵f) � ��1

↵ ) � �↵ �
X

↵2A
0jN

'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵ + R(h),

we have
kRN (h)kB(L2(M)) = O(h(1�2�)(N+1)), (4.3.4)

and by Theorem 4.2.1 we obtain for su�ciently small h and each f 2 L2(M)

B � %h(P (h))(f) =
X

↵2A
0jN

'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵ + RN (h)(f). (4.3.5)

This looks promising, but since we are interested in trace norm remainder estimates, there is
still some work to do.
Step 1. To proceed, we recall that P (h) has only finitely many eigenvalues

E(h)1, . . . , E(h)N(h)

in supp %h, and the corresponding eigenspaces are all finite-dimensional. By the spectral
theorem,

%h (P (h)) =

N(h)
X

j=1

%h (Ej(h))⇧j(h), (4.3.6)
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where ⇧j(h) denotes the spectral projection onto the eigenspace of P (h) corresponding to
the eigenvalue Ej(h). Hence, %h (P (h)) is a finite sum of projections onto finite-dimensional
spaces and, consequently, a finite rank operator, and therefore of trace class.
Now, we get prepared to use a trick that allows us to partially estimate trace norms by
operator norms. The trick has been used already by Hel↵er and Robert in [27, Proof of Prop.
5.3], and to implement it, we proceed as follows. For h 2 (0, 1], choose %h 2 C1

c (R) such that

%h = 1 on the support of %h, (4.3.7)

and such that the function (t, h) 7! %h(t) is an element of the symbol class1 Sh(1R) and

supp %h ⇢ I 8 h 2 (0, 1] (4.3.8)

for some h-independent closed interval I ⇢ R. The abstract functional calculus given by the
spectral theorem fulfills f(A) � g(A) = (f · g)(A) for any self-adjoint operator A in a Hilbert
space and any two bounded Borel functions f, g on R. We therefore get

%h (P (h)) � %h (P (h)) = (%h · %h) (P (h)) = %h (P (h)) 8 h 2 (0, 1]. (4.3.9)

Now, basic operator theory tells us that for operators Z, S 2 B(L2(M)) of which Z is of trace
class, Z � S and S � Z are also of trace class and it holds

kZ � Sktr,L2(M)  kZktr,L2(M) kSkB(L2(M)) , (4.3.10)

kS � Zktr,L2(M)  kZktr,L2(M) kSkB(L2(M)) . (4.3.11)

The trick is to use the latter estimates together with (4.3.9) to estimate the trace norm
of remainders by operator norms. Indeed, we can apply all our predecing results, and in
particular Theorem 4.2.1, also to the operator %h (P (h)). From now on, choose h0 to be the
minimum of the two h0 we obtain for %h and %h from Theorem 4.2.1. Choosing B = 1L2(M),
one then has by (4.3.5) for N = 0, 1, 2, . . ., f 2 L2(M), and h 2 (0, h0]

%h(P (h))(f) =
X

↵2A
0jN

'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵ + RN (h)(f), (4.3.12)

where RN (h) 2 B(L2(M)) fulfills

�

�RN (h)
�

�

B(L2(M))
= O(hN+1), (4.3.13)

and the symbols e↵,j 2 S�j
h (1R2n) have analogous properties as the symbols {e↵,j}. In

particular,
e↵,0 =

�

(%h � p) · '↵
�

� (��1
↵ , (@��1

↵ )T ) 8 h 2 (0, h0]. (4.3.14)

We now use (4.3.9) and (4.3.12) to get for N = 0, 1, 2, . . . and h 2 (0, h0]:

B � %h(P (h)) = B � %h(P (h)) � %h(P (h))

=
X

↵2A
0jN

B � %h(P (h)) � �↵ � �⇤↵
�

Oph(e↵,j)
�

� �↵ + B � %h(P (h)) � RN (h).

1The larger symbol class Sh;�(1R) would also do. However, as the diameter of the support of %h can be
assumed to be bounded away from 0, the symbol class Sh(1R) is more natural.
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From now on, we fix N and assume h0 to be small enough such that RN (h) has operator
norm less than 1

2 for each h 2 (0, h0], which implies that 1L2(M) � RN (h) is invertible. Note
that this makes h0 depend on N . Using also the corresponding Neumann series, one obtains
for h 2 (0, h0] the equality

B � %h(P (h)) =
X

↵2A
0jN

B � %h(P (h)) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ �
⇣

1L2(M) � RN (h)
⌘�1

=
X

↵2A
0jN

B � %h(P (h)) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ �
⇣

1
X

k=0

RN (h)k
⌘

=
X

↵2A
0jN

B � %h(P (h)) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵

+

:= eRN (h)
z }| {

X

↵2A
0jN

B � %h(P (h)) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ �
⇣

1
X

k=1

RN (h)k
⌘

.

To proceed, we insert (4.3.5) into the first summand, which yields

B � %h(P (h)) =
X

↵,�2A
0j,kN

�⇤�
�

 � � Oph(e�,k)
�

� �� � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ (4.3.15)

+

:=RN (h)
z }| {

X

↵2A
0jN

RN (h) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ + eRN (h) .

We see that a drawback of the trick is that besides a new remainder term, we now also have
a di↵erent leading term for each N .
Step 2. In this step we prove that the operator RN (h) is in fact of trace class and satisfies
a good trace norm estimate. Recall that the function '↵ � ��1

↵ is compactly supported inside
the interior of the compactum K↵ ⇢ Rn. Now, in view of (4.2.24) and (4.3.8), the results
leading to (2.1.7) imply that  ↵ � Oph

�

e↵,j

�

is of trace class, and by (2.1.7) it holds for
h 2 (0, h0]

�

� ↵ � Oph

�

e↵,j

�

�

�

tr,L2(Rn)

 C↵,jh
�n(1 + volT ⇤M (supp %h � p))

X

|�|2n+1

max
(y,⌘)2K↵⇥Rn

|@�e↵,j(·, h)|

for some constant C↵,j > 0 which is independent of h. Next, we use that e↵,j is an element

of S�j
h (1R2n), which implies

X

|�|2n+1

max
(y,⌘)2K↵⇥Rn

|@�e↵,j(·, h)|  eC↵,nhj 8 h 2 (0, h0].

In summary, we obtain the estimate
�

� ↵ � Oph

�

e↵,j

�

�

�

tr,L2(Rn)
 C 0

↵,j(1 + volT ⇤M (supp %h � p))hj�n 8 h 2 (0, h0] (4.3.16)
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for some new constant C 0
↵,j > 0 which is independent of h. To proceed, note that as M

is compact and Volg↵
is bounded and on K↵ also bounded away from zero, our trace norm

estimates in L2(Rn) carry over to trace norm estimates in L2(M) by using Schwartz kernel
estimates similar to [17, (9.1) on p. 112]. Combining now (4.3.10), (4.3.11), (4.3.16), and
(4.3.4), we conclude

�

�

�

RN (h) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵
�

�

�

tr,L2(M)

 C↵,j(1 + volT ⇤M (supp %h � p))h(N+1)(1�2�)+j�n 8 h 2 (0, h0]

with a constant C↵,j > 0 that is independent of h, and it follows from the finiteness of A
that there is C > 0 such that

�

�

�

�

X

↵2A
0jN

RN (h) � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵
�

�

�

�

tr,L2(M)

 C(1 + volT ⇤M (supp %h � p))h(N+1)(1�2�)�n 8 h 2 (0, h0].

Similarly, taking into account that the operator norm of %h(P (h)) is uniformly bounded in h

by the spectral theorem and the assumption that %h 2 Sbcomp
� , and writing

1
X

k=1

RN (h)k = RN (h) �
⇣

1
X

k=0

RN (h)k
⌘

= RN (h) �
⇣

1L2(M) � RN (h)
⌘�1

,

where
�

1L2(M) � RN (h)
��1

has operator norm less than 2 for h 2 (0, h0], it follows from
(4.3.16) and (4.3.13) that there is C 0 > 0 such that

�

�

�

eRN (h)
�

�

�

tr,L2(M)
 C 0(1 + volT ⇤M (supp %h � p))hN+1�n 8 h 2 (0, h0].

By assumption, the diameter of the support of %h is bounded uniformly in h, and M is
compact, so the number volT ⇤M (supp %h � p) is also bounded uniformly in h. From the last
two estimates, we therefore conclude finally

kRN (h)ktr,L2(M)  Ch(N+1)(1�2�)�n 8 h 2 (0, h0] (4.3.17)

with a new constant C > 0 that is independent of h. Our estimation of the trace norm of the
remainder operator RN (h) is finished.
Step 3. We now turn our attention to the leading term in (4.3.15) with summands given
by

�⇤�
�

 � � Oph(e�,k)
�

� �� � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵.

The problem with these terms is that they do not yet have the right form as claimed in
the first statement of Theorem 4.3.1, in particular they involve two pullbacks, one along the
chart �↵ and one along �� , and we need to combine them into a single pullback. This will
be done using a coordinate transformation from the ↵-th chart to the �-th chart. Before we
can perform this transformation, we need to localize further to the intersection of both chart
domains. To this end, note that since '� and 1 � '� have disjoint supports, we have

�� � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ = �� � �⇤↵
�

 ↵ � Oph(e↵,j)
�

� �↵ � �� + R↵,�,j(h),
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for a remainder operator R↵,�,j(h) 2 B(L2(M)) with kR↵,�,j(h)kB(L2(M)) = O(h1). Similarly

as in (4.3.16), it follows that the operator �⇤�
�

 � � Oph(e�,k)
�

is of trace class in L2(M), and

its trace norm is of order (1 + volT ⇤M (supp %h � p))hj(1�2�)�(2n+1)��n. Again, the number
volT ⇤M (supp %h � p) is bounded uniformly in h. Thus, the trace norm of �⇤�

�

 � �Oph(e�,k)
�

is bounded uniformly in h. Therefore, setting

R↵,�,j,k(h) := �⇤�
�

 � � Oph(e�,k)
�

� R↵,�,j(h)

we conclude

kR↵,�,j,k(h)ktr,L2(M)


�

��⇤�
�

 � � Oph(e�,k)
�

�

�

tr,L2(M)
kR↵,�,j(h)kB(L2(M)) = O(h1). (4.3.18)

The reason why we inserted the cuto↵ operator �� corresponding to the function '� is that
we are now prepared to perform the required coordinate transformation. Indeed, one has

('↵'�f) � ��1
↵ = ('↵'�f) � ��1

� � �� � ��1
↵ ,

which leads to

'�Oph(e�,k)
⇣⇣

'�'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵

⌘

� ��1
�

⌘

� ��

= '�Oph(e�,k)
⇣

�

('�'↵) � ��1
�

�⇥

Oph(e↵,j)(('↵'�f) � ��1
� �⇥�1

↵�)
⇤

�⇥↵�
⌘

� ��
+ R↵,�,j,k(h)(f), (4.3.19)

where R↵,�,j,k(h) fulfills kR↵,�,j,k(h)ktr,L2(M) = O(h1), as shown above, and we introduced

⇥↵� := �↵ � ��1
� : ��(U↵ \ U�) ! �↵(U↵ \ U�).

By the coordinate-transformation formula [63, Theorem 9.3], it then holds

�

('�'↵) � ��1
�

�⇥

Oph(e↵,j)(('↵'�f) � ��1
� �⇥�1

↵�)
⇤

�⇥↵� = Oph(u↵,�,j)(('↵'�f) � ��1
� )

for a new symbol function u↵,�,j 2 S�j
h (1R2n) which is for each fixed h a Schwartz function

on R2n and fulfills

u↵,�,j(y, ⌘, h) = ('�'↵) � ��1
� (y) e↵,j(⇥↵�(y), @⇥↵�(⇥↵�(y))T ⌘, h)

| {z }

=:⇥⇤
↵�e↵,j(y,⌘,h)

+ h r↵,�,j(y, ⌘, h), (4.3.20)

with a remainder symbol function r↵,�,j 2 S�j
h (1R2n) that is for each fixed h a Schwartz

function on R2n, too. We thus obtain for f 2 L2(M) the equality

�⇤�
�

 � � Oph(e�,k)
�

⇣

'�'↵Oph(e↵,j)(('↵f) � ��1
↵ ) � �↵

⌘

= �⇤�
⇣

 � � Oph(e�,k) � Oph(u↵,�,j) � ↵�
⌘

� ��(f), (4.3.21)
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where  ↵� : L2(Rn) ! L2(Rn) is the operator given by pointwise multiplication with the
function '↵ � ��1

� . Finally, we can apply the composition formula, described in Theorem
2.1.1. It tells us that

Oph(e�,k) � Oph(u↵,�,j) = Oph(s↵,�,j,k), (4.3.22)

where s↵,�,j,k 2 S
(j+k)(2��1)
h;� (1R2n). Moreover, Theorem 2.1.1 says that s↵,�,j,k has an asymp-

totic expansion in S
(j+k)(2��1)
h;� (1R2n):

s↵,�,j,k ⇠
1
X

l=0

s↵,�,j,k,l, s↵,�,j,k,l 2 S
(j+k+l)(2��1)
h;� (1R2n), (4.3.23)

where
s↵,�,j,k,0 = e�,k · (('� · '↵) � ��1

� ) ·⇥⇤
↵�e↵,j . (4.3.24)

Similarly as in our first application of the composition formula after (4.2.25), we conclude
from the relations

supp e�,k ⇢ supp
�

(%h � p) · b · '�
�

� (��1
� , (@��1

� )T ),

supp e↵,j ⇢ supp
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T )

that s↵,�,j,k,l is compactly supported inside

supp
⇣

�

(%h � p) · b · '�
�

� (��1
� , (@��1

� )T )
⌘

\ supp
⇣

�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T )
⌘

⇢ R2n

for each l and each fixed h 2 (0, h0], and consequently its support fulfills

vol supp s↵,�,j,k,l  C↵,�,j,k,lvolT ⇤M (supp %h � p) 8 h 2 (0, h0]

with some constant C↵,�,j,k,l > 0 that is independent of h. It also follows that s↵,�,j,k is for
each fixed h 2 (0, h0] a Schwartz function on R2n. By (4.3.23), we have for each M 2 N that

R↵,�,j,k,M := s↵,�,j,k �
M
X

l=0

s↵,�,j,k,l 2 S
(j+k+M+1)(2��1)
h;� (1R2n),

and Corollary 2.1.2 says that Oph(R↵,�,j,k,M ) is of trace class, with a trace norm bound for
h 2 (0, h0]

kOph(R↵,�,j,k,M )ktr,L2(Rn)  C↵,�,j,k,Mh(j+k+M+1)(1�2�)�(2n+1)��n, (4.3.25)

where C↵,�,j,k,M > 0 is independent of h. The fact that we need Corollary 2.1.2 here, which
requires the considered symbol functions to be supported inside an h-independent compactum
in R2n, is the only reason why we need the additional assumption in this theorem that
%h 2 Sbcomp

� . Collecting everything together, we get from (4.3.15-4.3.25) for each N, M 2 N:

B � %h(P (h))

=
X

↵,�2A
0j,kN



�⇤�
⇣

 ��Oph

⇣

X

0lM

s↵,�,j,k,l+R↵,�,j,k,M

⌘

� ↵�
⌘

���+R↵,�,j,k(h)

�

+RN (h).
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This is the final result of Step 3. We have transformed the leading term of (4.3.15) into a
more desired form that involves only pullbacks by one chart at a time.
Step 4. We complete the proof by setting

u↵,�,0 := s↵,�,0,0,0, u↵,�,M,N :=
X

0j,kN
0lM

s↵,�,j,k,l � s↵,�,0,0,0,

RM,N (h) :=
X

↵,�2A
0j,kN

h

�⇤�
�

 � � Oph(R↵,�,j,k,M ) � ↵�
�

� �� + R↵,�,j,k(h)
i

+ RN (h).

One then has for each M, N 2 N

B � %h(P (h)) =
X

↵,�2A
�⇤�
⇣

 � � Oph

�

u↵,�,0 + u↵,�,M,N

�

� ↵�
⌘

� �� + RM,N (h),

where u↵,�,0 2 Sh;�(1R2n) and u↵,�,M,N 2 S2��1
h;� (1R2n) are elements of C1

c (K↵ \ K� ⇥Rn) ⇢
C1

c (R2n) for each fixed h 2 (0, h0], and

kRM,N (h)ktr,L2(M) = O
⇣

h(min(N,M)+1)(1�2�)�n�(2n+1)�
⌘

as h ! 0.

Let eN 2 N. Since 1 � 2� > 0, we can find numbers N( eN), M( eN) 2 N large enough such that
�

�

�

RM( eN),N( eN)(h)
�

�

�

tr,L2(M)
= O

�

h
eN� as h ! 0.

Defining

R eN (h) := RM( eN),N( eN)(h), r↵,�, eN := u↵,�,M( eN),N( eN) 2 S2��1
h;� (1R2n),

we arrive for arbitrary eN 2 N at the equality

B � %h(P (h)) =
X

↵,�2A
�⇤�
⇣

 � � Oph(u↵,�,0 + r↵,�, eN ) � ↵�
⌘

� �� + R eN (h).

To finish the proof, recall the identities

e�,0 =
�

(%h � p) · '�
�

� (��1
� , (@��1

� )T ), e↵,0 =
�

(%h � p) · '↵
�

� (��1
↵ , (@��1

↵ )T ).

With these identities and the definition of the pullback by the function ⇥↵� ⌘ �↵ � ��1
� , one

computes

e�,0 ·⇥⇤
↵�e↵,0 = e�,0 ·

⇣

e↵,0 � (⇥↵� , @⇥
T
↵�)
⌘

=
⇣

�

(%h � p) · '�
�

�
�

��1
� , (@��1

� )T
�

⌘

·
⇣

�

(%h � p) · '↵
�

� (��1
↵ , (@��1

↵ )T ) � (⇥↵� , @⇥
T
↵�)
⌘

=
⇣

�

(%h � p) · '�
�

�
�

��1
� , (@��1

� )T
�

⌘

·
⇣

�

(%h � p) · '↵
�

� (��1
↵ , (@��1

↵ )T ) �
�

�↵ � ��1
� , (@�↵)T � (@��1

� )T
�

⌘

=
�

(%h � p) · (%h � p) · '↵ · '�
�

�
�

��1
� , (@��1

� )T
�

.
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Taking finally into account that the functions decorated with a bar are identically 1 on the
supports of the corresponding functions without bar, it holds

u↵,�,0 ⌘ s↵,�,0,0,0 = e�,0 · (('� · '↵) � ��1
� ) ·⇥⇤

↵�e↵,0 =
�

(%h � p) · '↵ · '�
�

�
�

��1
� , (@��1

� )T
�

.

In particular, since
P

↵2A '↵ = 1M , we can set

u�,0 :=
X

↵2A
u↵,�,0 =

�

(%h � p) · '�
�

�
�

��1
� , (@��1

� )T
�

which finally yields

X

↵,�2A
�⇤�
⇣

 � � Oph(u↵,�,0) � ↵�
⌘

� �� =
X

�2A
�⇤�
⇣

 � � Oph(u�,0)
⌘

� �� .

From the previous theorem one immediately deduces

Corollary 4.3.2 (Semiclassical trace formula for Schrödinger operators). In the situation of
the previous theorem, one has in the semiclassical limit h ! 0

tr L2(M)

⇥

B � %h(P (h))
⇤

=
1

(2⇡h)n

ˆ

T ⇤M

b · (%h � p) d(T ⇤M) + O
⇣

h1�2��nvolT ⇤M

⇥

supp
�

b · (%h � p)
�⇤

⌘

. (4.3.26)

Remark 4.3.3. If volT ⇤M

⇥

supp
�

b · (%h � p)
�⇤

6= 0, i.e. in all non-trivial cases, we can divide
both sides of (4.3.26) by volT ⇤M

⇥

supp
�

b · (%h � p)
�⇤

to obtain the equivalent statement

(2⇡h)n tr L2(M)

⇥

B � %h(P (h))
⇤

volT ⇤M

⇥

supp
�

b · (%h � p)
�⇤ =

 

supp b·(%h�p)

b·(%h�p) d(T ⇤M) + O
�

h1�2�
�

as h ! 0

in which the distinction between the leading term and the remainder term is emphasized
more.

Proof. For convenience of the reader, we give the short proof which involves only standard
arguments. By Theorem 4.3.1, there is a number h0 2 (0, 1] and for each N 2 N a collection
of symbol functions {r↵,�,N}↵,�2A ⇢ S2��1

h;� (1R2n) and an operator RN (h) 2 B(L2(M)) such
that for h 2 (0, h0]

B � %h(P (h))(f) =
X

↵2A
'↵ · Oph(u↵,0)

�

(f · '↵) � ��1
↵

�

� �↵

+
X

↵,�2A
'� · Oph(r↵,�,N )

�

(f · '↵ · '�) � ��1
�

�

� �� + RN (h)(f) 8 f 2 L2(M),

where u↵,0 =
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ). Moreover, the operator RN (h) 2 B(L2(M))
is of trace class and its trace norm is of order hN as h ! 0, while for fixed h 2 (0, h0], each
symbol function r↵,�,N is an element of C1

c (R2n) that fulfills

vol supp r↵,�,N  C↵,�,N vol supp
�

(%h � p) · b
�

(4.3.27)
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with a constant C↵,�,N > 0 that is independent of h. In particular, each of the operators

A↵ : f 7! '↵ ·Oph(u↵,0)
�

(f ·'↵)���1
↵

�

, A↵,�,N : f 7! '� ·Oph(r↵,�,N )
�

(f ·'↵ ·'�)���1
�

�

���
has a smooth, compactly supported Schwartz kernel, given by

KA↵
(x1, x2)

=
1

(2⇡h)n
'↵(x1)

ˆ

Rn

e
i
h (y

1

�y
2

)·⌘u↵,0

⇣y1 + y2
2

, ⌘, h
⌘

'↵(��1
↵ (y2)) d⌘

�

Volg↵
(y)
��1

KA↵,�,N
(x1, x2)

=
1

(2⇡h)n
'�(x1)

ˆ

Rn

e
i
h (y

1

�y
2

)·⌘r↵,�,N

⇣y1 + y2
2

, ⌘, h
⌘

('↵ · '�)(��1
� (y2)) d⌘

�

Volg�
(y)
��1

,

where x1, x2 2 M and yi denotes �↵(xi) and ��(xi) in the first line and the second line,
respectively. We obtain for arbitrary N 2 N

tr L2(M)

⇥

B � %h(P (h))
⇤

=
X

↵2A

ˆ

M

KA↵
(x, x) dM(x) +

X

↵,�2A

ˆ

M

KA↵,�,N
(x, x) dM(x) + O(hN ).

Let us consider first the integrals in the second summand. Using (4.3.27) we obtain that
there is a constant C↵,�,N > 0, independent of h, such that
�

�

�

�

ˆ

M

KA↵,�,N
(x, x) dM(x)

�

�

�

�

 C↵,�,N
1

(2⇡h)n

�

�'�
�

�

1 kr↵,�,Nk1
�

�

�

'↵ · '�
�

�

�

1
vol supp

�

(%h � p) · b
�

.

As r↵,�,N is an element of S2��1
h;� (1R2n), one has kr↵,�,Nk1 = O(h1�2�), and so we conclude

�

�

�

�

ˆ

M

KA↵,�,N
(x, x) dM(x)

�

�

�

�

= O
⇣

h1�2��nvol supp
�

(%h � p) · b
�

⌘

as h ! 0.

Since A is finite, it follows

tr L2(M)

⇥

B � %h(P (h))
⇤

=
X

↵2A

ˆ

M

KA↵
(x, x) dM(x) + O

�

h1�2��nvol supp ((%h � p) · b
�

.

To finish the proof, we calculate the leading term to be given by
X

↵2A

ˆ

M

KA↵
(x, x) dM(x) =

X

↵2A

1

(2⇡h)n

ˆ

R2n

'↵(��1
↵ (y))u↵,0(y, ⌘, h)'↵(��1

↵ (y)) d⌘ dy

=
1

(2⇡h)n

X

↵2A

ˆ

R2n

'↵(��1
↵ (y))

�

(%h � p) · b · '↵
�

(��1
↵ (y), (@��1

↵ )T ⌘, h)'↵(��1
↵ (y)) d⌘ dy

=
1

(2⇡h)n

X

↵2A

ˆ

T ⇤M

((%h � p) · b)(x, ⇠) · '↵(x) d(T ⇤M)(x, ⇠)

=
1

(2⇡h)n

ˆ

T ⇤M

((%h � p) · b)(x, ⇠) d(T ⇤M)(x, ⇠).
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Chapter 5

Overview

5.1 Motivation and setup

Let M be a closed connected Riemannian manifold of dimension n with Riemannian vol-
ume density dM , and denote by � the Laplace-Beltrami operator on M . One of the central
problems in spectral geometry consists in studying the properties of eigenvalues and eigen-
functions of �� in the limit of large eigenvalues. Concretely, let {uj} be an orthonormal
basis of L2(M) of eigenfunctions of �� with respective eigenvalues {Ej}, repeated according
to their multiplicity. As Ej ! 1, one is interested among other things in the asymptotic
distribution of eigenvalues, the pointwise convergence of the uj , bounds of the Lp-norms of
the uj for 1  p  1, and the weak convergence of the measures |uj |2dM .

This thesis addresses these problems for Schrödinger operators in case that the underlying
classical system possesses certain symmetries.

In Chapter 7, we shall concentrate on the distribution of eigenvalues. The question is then
how the symmetries of the underlying Hamiltonian system determine the fine structure of the
spectrum. In Chapter 8, we shall concentrate on the ergodic properties of eigenfunctions. In
both chapters, the guiding idea behind is the correspondence principle of semiclassical physics.
To explain this in more detail, consider the unit co-sphere bundle S⇤M , which corresponds to
the phase space of a classical free particle moving with constant energy. Each point in S⇤M
represents a state of the classical system, its motion being given by the geodesic flow in S⇤M ,
and classical observables correspond to functions a 2 C1(S⇤M). On the other hand, by
the Kopenhagen interpretation of quantum mechanics, quantum observables correspond to
self-adjoint operators A in the Hilbert space L2(M). The elements  2 L2(M) are interpreted
as states of the quantum mechanical system, and the expectation value for measuring the
property A while the system is in the state  is given by hA , iL2(M). The transition
between the classical and the quantum-mechanical picture is given by a quantization map

Sk
h(M) 3 a 7�! Oph(a), k 2 R,

where Oph(a) is a pseudodi↵erential operator in L2(M) depending on Planck’s constant h and
the particular choice of the map Oph, and Sk

h(M) ⇢ C1(T ⇤M) denotes a suitable space of
symbol functions. The correspondence principle then says that, in the limit of high energies,
the quantum mechanical system should behave more and more like the corresponding classical
system. The study of the asymptotic distribution of eigenvalues has a history of more than
a hundred years that goes back to work of Weyl [59], Levitan [39], Avacumovič [2], and
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Hörmander [32], the central result being Weyl’s law, which says, in the setup above, that

#
�

j :
p

Ej  E
 

=
⌫n

(2⇡)n
vol (M)En + O

�

En�1
�

as E ! 1, (5.1.1)

where ⌫n denotes the euclidean volume of the unit ball in Rn and vol (M) is the Rieman-
nian volume of M . In comparison, the behavior of eigenfunctions has been examined more
intensively during the last decades. One of the major results in this direction is the quantum
ergodicity theorem for chaotic systems, due to Shnirelman [52], Zelditch [61], and Colin de
Verdière [15]. To explain it, consider the distributions1

µj : C1(S⇤M) �! C, a 7�! hOph(a)uj , ujiL2(M) .

If it exists, the distribution limit µ = limj!1 µj constitutes a so-called quantum limit for
the eigenfunction sequence {uj}. Furthermore, the probability measure on S⇤M defined by a
quantum limit is invariant under the geodesic flow and independent of the choice of Oph. Since
the measure µ projects to a weak limit µ̄ of the measures µ̄j = |uj |2dM , it is called a microlocal
lift of µ̄, and one can reduce the study of the measures µ̄ to the classification of quantum limits.
The quantum ergodicity theorem then says that if the geodesic flow on S⇤M is ergodic with
respect to the Liouville measure d(S⇤M), then there exists a subsequence {ujk

}k2N of density
1 such that the µjk

converge to (vol S⇤M)�1d(S⇤M) as distributions, and consequently the
measures µ̄jk

converge weakly to (vol M)�1dM . Intuitively, the geodesic flow being ergodic
means that the geodesics are distributed on S⇤M in a su�ciently chaotic way, and this
equidistribution of trajectories in the classical system implies asymptotic equidistribution for
a density 1 subsequence of states of the corresponding quantum system.

A large class of manifolds whose geodesic flow is ergodic are closed manifolds with strictly
negative sectional curvature [31, 7], and one of the main conjectures in the field is the Rudnick-
Sarnak conjecture on quantum unique ergodicity (QUE) [49] which says that if M has strictly
negative sectional curvature, the whole sequence |uj |2dM converges weakly to the normalized
Riemannian measure (vol M)�1dM as j ! 1. It has been verified in certain arithmetic
situations by Lindenstrauss [40], but in general, the conjecture is still very open. Sequences of
eigenfunctions with a quantum limit di↵erent from the Liouville measure are called exceptional
subsequences, and it has been shown by Jacobson and Zelditch [35] that any flow-invariant
measure on the unit co-sphere bundle of a standard n-sphere occurs as a quantum limit for the
Laplacian, showing that the family of exceptional subsequences for the Laplacian can be quite
large if the geodesic flow fails to be ergodic. However, it was shown by Faure, Nonnenmacher,
and de Bièvre [22] that ergodicity of the geodesic flow alone is not su�cient to rule out the
existence of exceptional subsequences for particular elliptic operators. Examples of ergodic
billiard systems that admit exceptional subsequences of eigenfunctions were recently found
by Hassel [26].

Chapter 8 addresses the problem of determining quantum limits for sequences of eigenfunc-
tions of Schrödinger operators in case that the underlying classical system possesses certain
symmetries. Due to the presence of conserved quantitites, the corresponding Hamiltonian
flow will in parts be integrable, and not totally chaotic, in contrast to the hitherto examined
chaotic systems. The question is then how the partially chaotic behavior of the Hamiltonian
flow is reflected in the ergodic properties of the eigenfunctions.

1Here one regards s 2 C1(S⇤M) as an element in S0
1(M) ⇢ C1(T ⇤M) by extending it 0-homogeneously

to T ⇤M with the zero-section removed, and then cutting o↵ that extension smoothly near the zero section.
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5.1.1 Setup

To explain things more precisely, let G be a compact connected Lie group that acts e↵ectively
and isometrically on M . Note that there might be orbits of di↵erent dimensions, and that
the orbit space fM := M/G won’t be a manifold in general, but a topological quotient space.

If G acts on M with finite isotropy groups, fM is a compact orbifold, and its singularities are
not too severe. Consider now a Schrödinger operator on M given by

P̆ (h) = �h2�̆+ V, P̆ (h) : C1(M) ! C1(M), h 2 (0, 1],

where �̆ denotes the Laplace-Beltrami operator as di↵erential operator on M with domain
C1(M) and V 2 C1(M,R) a G-invariant potential. As mentioned already in Part I, P̆ (h)
has a unique self-adjoint extension

P (h) : H2(M) ! L2(M) (5.1.2)

as an unbounded operator in L2(M), where H2(M) ⇢ L2(M) denotes the second Sobolev
space, and one calls P (h) a Schrödinger operator, too. For each h 2 (0, 1], the spectrum
of P (h) is discrete, consisting of eigenvalues {Ej(h)}j2N which we repeat according to their
multiplicity and which form a non-decreasing sequence unbounded towards +1. Thus, the
spectrum of P (h) is bounded from below and its eigenspaces are finite-dimensional. The
associated sequence of eigenfunctions {uj(h)}j2N constitutes a Hilbert basis in L2(M), and
each eigenfunction uj(h) is smooth. When studying the spectral asymptotics of Schrödinger
operators, one often uses the semiclassical method, as in Part I of this thesis. Instead of
examining the spectral properties of P (h) for fixed h and high energies, h being Planck’s
constant, one considers fixed energy intervals and allows h 2 (0, 1] to become small, regarding
it no longer as a physical constant. The two methods are essentially equivalent. In the
special case V ⌘ 0, the Schrödinger operator is just a rescaled version of �� so that the
semiclassical method can be used to study the spectral asymptotics of the Laplace-Beltrami
operator. Now, since P (h) commutes with the isometric G-action, one can use representation
theory to describe the spectrum and the eigenspaces of P (h) in a more refined way. Indeed,
by the Peter-Weyl theorem, the unitary left-regular representation of G

G ⇥ L2(M) ! L2(M), (g, f) 7!
�

Lgf : x 7! f(g�1 · x)
�

,

has an orthogonal decomposition into isotypic components according to

L2(M) =
M

�2 bG

L2
�(M), L2

�(M) = T� L2(M), (5.1.3)

where we wrote bG for the set of equivalence classes of irreducible unitary G-representations,
and T� : L2(M) ! L2

�(M) for the associated orthogonal projections. The character belonging

to an element � 2 bG is given by �(g) := trL2(M) ⇡�(g), where ⇡� denotes a representation
of class �. It is also denoted by �, and the projection operators T� are given by the explicit
formula

T� : f 7!
⇣

x 7! d�

ˆ

G

�(g)f(g�1 · x) dg
⌘

, (5.1.4)

where dg is the normalized Haar measure on G, and d� the dimension of an irreducible
representation of class �. Since each eigenspace of the Schrödinger operator P (h) constitutes
a unitary G-module, it has an analogous decomposition into a direct sum of irreducible
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Part II. Semiclassical analysis and symmetry reduction

G-representations, which represents the so-called fine structure of the spectrum of P (h).
To study this fine structure and the eigenfunctions of P (h) asymptotically, consider for a
fixed � 2 bG and any operator A : D ! L2(M) on a G-invariant subset D ⇢ L2(M) the
corresponding reduced operator

A� := T� � A � T�|D. (5.1.5)

Since P (h) commutes with T�, the reduced operator P (h)� corresponds to the bi-restriction
P (h)|� : L2

�(M) \ H2(M) ! L2
�(M). More generally, one can consider the bi-restriction of

P (h) to h-dependent sums of isotypic components of the form

L2
Wh

(M) =
M

�2Wh

L2
�(M), (5.1.6)

choosing for each h 2 (0, 1] an appropriate finite subset Wh ⇢ bG whose cardinality is allowed
to grow in a controlled way as h ! 0. A natural problem is then to examine the spectral
asymptotics and the eigenfunctions of P (h) bi-restricted to L2

Wh
(M). The study of a single

isotypic component corresponds to choosing Wh = {�} for all h and a fixed � 2 bG. Note
that, so far, it is irrelevant whether the group action has various di↵erent orbit types or not.

On the other hand, the principal symbol of the Schrödinger operator (5.1.2) is represented
by the G-invariant Hamiltonian

p : T ⇤M ! R, (x, ⇠) 7! k⇠k2x + V (x), (5.1.7)

on the co-tangent bundle T ⇤M of M with canonical symplectic form !. It describes the clas-
sical mechanical properties of the underlying Hamiltonian system, and defines a Hamiltonian
flow 't : T ⇤M ! T ⇤M , which in the special case V ⌘ 0 corresponds to the geodesic flow on
T ⇤M ⇠= TM . Consider now for a regular value c of p the hypersurface ⌃c := p�1({c}) ⇢ T ⇤M .
It is invariant under the Hamiltonian flow 't, and carries a canonical Liouville measure d⌃c

induced by !. The measure space (⌃c, d⌃c) is related to the asymptotic distribution of the
eigenvalues of P (h) that are close to c by its volume which occurs in the leading term of
the semiclassical Weyl law, and in case that 't is ergodic on (⌃c, d⌃c), the measure space
is also known to be related to the asymptotic equidistribution of the eigenfunctions {uj(h)}
by the semiclassical quantum ergodicity theorem [20, Appendix D, Theorem 5]. Now, as
we are interested in the asymptotic distribution of eigenvalues close to c along subspaces of
L2(M) of the form (5.1.6) and properties of the corresponding eigenfunctions, we can expect
these issues to be related to measure spaces modeled on subsets of ⌃c or quotients of such
subsets by the G-action. Indeed, if G is non-trivial, 't cannot be ergodic on (⌃c, d⌃c) due
to the presence of additional conserved quantities besides the total energy c. To describe
the classical dynamical properties of the system, it is therefore convenient to divide out the
symmetries, which can be done by performing a procedure called symplectic reduction. The
latter is based on the fundamental fact that the presence of conserved quantities or first in-
tegrals of motion leads to elimination of variables, and reduces the given configuration space
with its symmetries to a lower-dimensional one, in which the degeneracies and the conserved
quantitites have been eliminated. Namely, let J : T ⇤M ! g⇤ denote the momentum map of
the induced Hamiltonian G-action on T ⇤M , which represents the conserved quantitites of the
dynamical system, and consider the topological quotient space

e⌦ := ⌦/G, ⌦ := J�1({0}).

In contrast to the situation encountered in the Peter-Weyl theorem, the orbit structure of the
underlying G-action on M is not at all irrelevant to the symplectic reduction. Namely, if the
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G-action is not free the spaces ⌦ and e⌦ need not be manifolds. Nevertheless, they are stratified
spaces, where each stratum is a smooth manifold that consists of orbits of one particular type.
In particular, ⌦ and e⌦ each have a principal stratum ⌦reg and e⌦reg, respectively, which is the
smooth manifold consisting of (the union of) all orbits whose isotropy type is the minimal
of M . Moreover, e⌦reg carries a canonical symplectic structure, and the Hamiltonian flow

on T ⇤M induces a flow e't : e⌦reg ! e⌦reg, which is the Hamiltonian flow associated to the

reduced Hamiltonian ep : e⌦reg ! R induced by p. One calls e't the reduced Hamiltonian

flow. Since the orbit projection ⌦reg ! e⌦reg is a submersion, c is also a regular value of

ep, and we define e⌃c := ep�1({c}) ⇢ e⌦reg. Similarly to (⌃c, d⌃c), the smooth hypersurface
e⌃c = (⌦reg \ ⌃c)/G ⇢ e⌦reg carries a Liouville measure de⌃c induced by the symplectic form

on e⌦reg, and one can interpret the measure space (e⌃c, de⌃c) as the symplectic reduction of
(⌃c, d⌃c). If one prefers a symplectically reduced measure space modeled on a subset of ⌃c

rather than a quotient space, one can use that (e⌃c, de⌃c) corresponds to the measure space
�

⌦reg \⌃c,
dµc

vol O

�

, where dµc denotes the induced volume density on the smooth hypersurface
⌦reg \ ⌃c ⇢ ⌦reg, and the function volO : ⌃c \ ⌦reg ! (0, 1), x 7! vol (G · x) assigns to an
orbit its Riemannian volume. For a detailed exposition of these facts, we refer the reader to
Sections 6.2 and 6.3.

5.1.2 Problem and methods

Let us now come back to our initial questions. Suppose that we have chosen for each h 2 (0, 1]
an appropriate finite set Wh ⇢ bG whose cardinality does not grow too fast as h ! 0, see
Definition 5.2.1 below. Then, in Chapter 7, we shall study the distribution of the eigenvalues
of P (h) along the h-dependent family of isotypic components L2

Wh
(M) in the Peter-Weyl

decomposition of L2(M) as h ! 0, and the way their distribution in a spectral window
[c, c+h�] around a regular value c of p is related to the symplectic reduction (e⌃c, de⌃c) of the
corresponding Hamiltonian system, � > 0 being a suitable small number. Similar problems
were studied for h-pseudodi↵erential operators in Rn in [21], [13], [58], and within the classical
high-energy approach in [18], [10], [28, 29], and [46]. In our approach, we shall combine well-
known methods from semiclassical analysis and symplectic reduction with results on singular
equivariant asymptotics recently developed in [46, 47]. We will also use Theorem 4.3.1 from
the first part of this thesis. In case of the Laplacian, it would also be possible to study the
problem via the original classical approach of Shnirelman, Zelditch and Colin de Verdière.

In Chapter 8, we assume that the reduced Hamiltonian flow e't is ergodic on (e⌃c, de⌃c),
and we then ask whether there is a non-trivial family of index sets {⇤(h)}h2(0,1], ⇤(h) ⇢ N,
such that for j 2 ⇤(h) we have uj(h) 2 L2

�(M) for some � 2 Wh, the associated eigenvalue
Ej(h) is close to c, and the distributions

µj(h) : C1
c (⌃c) �! C, a 7�! hOph(a)uj(h), uj(h)iL2(M)

converge for j 2 ⇤(h) and h ! 0 to a distribution limit with density 1, which would answer the
corresponding question for the measures |uj(h)|2dM . In particular, in the special case V ⌘ 0,
c = 1, the problem is equivalent to finding quantum limits for sequences of eigenfunctions
of the Laplace-Beltrami operator. In case that fM is an orbifold and Wh = {�0} for all h,
where �0 corresponds to the trivial representation, this problem has been dealt with recently
by Kordyukov [38] using classical techniques.

The general idea behind the approach to equivariant quantum ergodicity in this thesis
can be summarized as follows. The existence of symmetries of a classical Hamiltonian system
implies the existence of conserved quantitites and partial integrability of the Hamiltonian
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flow, forcing the system to behave less chaotically. Symplectic reduction divides out the
symmetries, and hence, order, and allows to study the symmetry-reduced spectral and ergodic
properties of the corresponding quantum system. In particular, eigenfunctions should reflect
the partially chaotic behavior of the classical system.

5.2 Summary of main results

To formulate our results, we first need to introduce some additional notation. As explained in
Section 6.2, the G-action on M has a principal isotropy type (H), represented by a principal
isotropy group H, as well as a principal orbit type. We denote by  the dimension of the
principal orbits, which agrees with the maximal dimension of a G-orbit in M , and we assume
throughout the whole second part of this thesis that  < n = dimM . Furthermore, we denote
by ⇤G

M the maximal number of elements of a totally ordered subset of isotropy types of the G-

action on M . For an equivalence class � 2 bG with corresponding irreducible G-representation
⇡�, we write [⇡�|H : 1] for the multiplicity of the trivial representation in the restriction of ⇡�
to H. Let bG0 ⇢ bG denote the subset consisting of those classes of representations that appear
in the decomposition (5.1.3) of L2(M). In order to consider a growing number of isotypic
components of L2(M) in the semiclassical limit, we make the following

Definition 5.2.1. A family {Wh}h2(0,1] of finite sets Wh ⇢ bG0 is called semiclassical char-
acter family if there exists a # � 0 such that for each N 2 {0, 1, 2, . . .} and each di↵erential
operator D on G of order N , there is a constant C > 0 independent of h with

1

#Wh

X

�2Wh

kD �k1
[⇡�|H : 1]

 C h�#N 8 h 2 (0, 1].

We call the smallest possible # the growth rate of the semiclassical character family.

Remark 5.2.1. Note that [⇡�|H : 1] � 1 for � 2 bG0, since the irreducible G-representations
appearing in the decomposition (5.1.3) of L2(M) are precisely those representations appearing
in L2(G/H), and by the Frobenius reciprocity theorem one has [⇡�|H : 1] = [L2(G/H) : ⇡�],
compare [18, Section 2].

Example 5.2.2. For G = SO(2) ⇠= S1 ⇢ C, one has bG ⌘ {�k : k 2 Z}, where the k-th
character �k : G ! C is given by �k

�

ei'
�

= eik'. One then obtains a semiclassical character
family with growth rate less or equal to # by setting Wh := {�k : |k|  h�#}.

Example 5.2.3. More generally, let G be a connected compact semi-simple Lie group with Lie
algebra g and T ⇢ G a maximal torus with Lie algebra t. By the Cartan-Weyl classification
of irreducible finite dimensional representations of reductive Lie algebras over C, bG can be
identified with the set of dominant integral and T -integral linear forms ⇤ on the complex-
ification tC of the Lie algebra t of T . Let therefore denote ⇤� 2 t⇤C the element associated

with a class � 2 bG, and put Wh :=
�

� 2 bG : |⇤�|  h�# , where # � 0, h 2 (0, 1]. Then
{Wh}h2(0,1] constitutes a semiclassical character family with growth rate less or equal to #
in the sense of Definition 5.2.1, see [47, Section 3.2] for details.

Denote by  m
h;�(M), m 2 R[ {�1}, � 2 [0, 1

2 ), the set of semiclassical pseudodi↵erential
operators on M of order (m, �). The principal symbols of these operators are represented by
symbol functions in the classes Sm

h;�(M), where the index � describes the growth properties of
the symbol functions as h ! 0, see Section 2.1 for the precise definitions. An important point
to note is that elements of S0

h;�(M) define operators on L2(M) with operator norm bounded
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uniformly in h. Finally, for any measurable function f with domain D a G-invariant subset
of M or T ⇤M , we write

hfiG(x) :=

ˆ

G

f(g · x) dg, (5.2.1)

and denote by fhfiG the function induced on the orbit space D/G by the G-invariant function
hfiG. In order to begin with the statements of the results, let

� 2
⇣

0,
1

2+ 4

⌘

and choose a semiclassical character family {Wh}h2(0,1] for the G-action on M with growth
rate

# <
1 � (2+ 4)�

2+ 3
.

Furthermore, write

J(h) :=
�

j 2 N : Ej(h) 2 [c, c + h�], �j(h) 2 Wh

 

,

where �j(h) 2 bG is defined by uj(h) 2 L2
�j(h)

(M). We can now state the main result of
Chapter 7.

Result 4 (Generalized equivariant semiclassical Weyl law, Theorem 7.2.1). For an
operator B 2  0

h;�(M) ⇢ B(L2(M)) with principal symbol represented by b 2 S0
h;�(M), one

has in the semiclassical limit h ! 0

(2⇡)n�hn���

#Wh

X

J(h)

hBuj(h), uj(h)iL2(M)

d�j(h) [⇡�j(h)|H : 1]
=

ˆ

⌃c\⌦reg

b
dµc

volO

+ O
⇣

h� + h
1�(2+3)#

2+4

�� �log h�1
�⇤G

M�1
⌘

.

(5.2.2)

When considering only a fixed isotypic component L2
�(M) the statement becomes simpler,

yielding the asymptotic formula

(2⇡)n�hn��� X

j2N:uj(h)2L2

�(M),

Ej(h)2[c,c+h�]

hBuj(h), uj(h)iL2(M) = d� [⇡�|H : 1]

ˆ

e⌃c

fhbiG de⌃c

+ O
⇣

h� + h
1

2+4

�� �log h�1
�⇤G

M�1
⌘

,

see Theorem 7.2.3. Via co-tangent bundle reduction, the integral in the leading term of
(5.2.2) can actually be viewed as an integral over the smooth bundle

S⇤
ep,c(fMreg) :=

�

(x, ⇠) 2 T ⇤(fMreg) : ep(x, ⇠) = c
 

,

where fMreg is the space of principal orbits in M and ep is the function induced by p on

T ⇤(fMreg), compare Lemma 6.2.3. In case that fM is an orbifold, the mentioned integral is

given by an integral over the orbifold bundle S⇤
ep,c(
fM) :=

�

(x, ⇠) 2 T ⇤
fM : ep(x, ⇠) = c

 

,
compare Remark 7.1.2.
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We prove Theorem 7.2.1 by applying a semiclassical trace formula for h-dependent test
functions, which is the content of Theorem 7.1.1. The trace formula established here is
a generalization of [58, Theorem 3.1] for Schrödinger operators to closed G-manifolds, h-
dependent test functions, and h-dependent families of isotypic components. In particular,
the fact that we consider h-dependent test functions is crucial for the applications in Chapter
8 and implicitly involves the technical di�culties whose treatment was outsourced to the
first part of this thesis. Ultimately, the proof of Theorem 7.1.1 reduces to the asymptotic
description of certain oscillatory integrals that have recently been studied in [46, 47] by
Ramacher using resolution of singularities. The involved phase functions are given in terms
of the underlying G-action on M , and if singular orbits occur, the corresponding critical
sets are no longer smooth, so that a partial desingularization process has to be implemented
in order to obtain asymptotics with remainder estimates via the stationary phase principle.
The explicit remainder estimates obtained in [47] do not only account for the quantitative
form of the remainder in (5.2.2). They also provide the qualitative basis for our study of
h-dependent families of isotypic components and the localization to the hypersurface e⌃c.
Without the remainder estimates from [47], only a fixed single isotypic component L2

�(M)
could be studied, and only eigenvalues Ej(h) lying in a non-shrinking energy strip of the form
[c, c + "] with a fixed " > 0 could be considered, compare Remark 7.2.4. Proceeding with our
summary, the main result of Chapter 8 is

Result 5 (Equivariant quantum ergodicity for Schrödinger operators, Theorem
8.2.6). Suppose that the reduced Hamiltonian flow e't is ergodic on e⌃c. Then, there is a
number h0 2 (0, 1] such that for each h 2 (0, h0] we have two subsets ⇤1(h), ⇤2(h) ⇢ J(h)
satisfying

lim
h!0

#⇤1(h)

#J(h)
= 1, lim

h!0

P

j2⇤

2

(h)

1
d�j(h)

[⇡�j(h)

|H :1]

P
j2J(h)

1
d�j(h)

[⇡�j(h)

|H :1]

= 1,

such that for each semiclassical pseudodi↵erential operator A 2  0
h(M) with principal symbol

�(A) = [a], where a is h-independent, the following holds. For all " > 0 there is a h" 2 (0, h0]
such that for all h 2 (0, h"] one has

1
p

d�j(h)

[⇡�j(h)

|H :1]

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

< " 8 j 2 ⇤1(h), (5.2.3)

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

< " 8 j 2 ⇤2(h), (5.2.4)

where the integrals in (5.2.3) and (5.2.4) equal
�
e⌃c

fhaiG de⌃c.

Result 5 shows that when considering general semiclassical character families, one can
choose between two versions of the equivariant quantum ergodicity theorem, corresponding
to the two families of subsets ⇤1(h) and ⇤2(h): Either, one prefers the usual notion of a
density 1 family of subsets, then one has to include the factor 1/

p
d�j(h)

[⇡�j(h)

|H :1] in the
convergence statement; or one accepts a new representation theoretic definition of a density 1
family of subsets of J(h) with respect to the limit h ! 0, and then one can avoid introducing
the seemingly inelegant additional factor in the convergence statement. If Wh consists of
just a single character, the two options agree and the statement of Result 5 is simpler, see
Theorem 8.2.7. Result 5 will be deduced from Result 4. Again, it should be emphasized
that the remainder estimate for the equivariant semiclassical Weyl law proved in Chapter 7,
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and consequently the desingularization process implemented in [46], are crucial for studying
shrinking spectral windows and growing families of representations in Result 5. The obtained
quantum limits

(vol µc
vol O

(⌃c \ ⌦reg))
�1 dµc

volO
describe the ergodic properties of the eigenfunctions in the presence of symmetries. They
are singular measures since they are supported on ⌃c \⌦reg, which is a submanifold of ⌃c of
codimension . In fact, they correspond to Liouville measures on the smooth bundles

S⇤
ep,c(fMreg) :=

�

(x, ⇠) 2 T ⇤(fMreg) : ep(x, ⇠) = c
 

over the space of principal orbits in M ; if fM is an orbifold, they are given by integrals over
the orbifold bundles S⇤

ep,c(
fM) :=

�

(x, ⇠) 2 T ⇤
fM : ep(x, ⇠) = c

 

, see Remark 7.2.2. In the

latter case, the ergodicity of the reduced flow e't on e⌃c is equivalent to the ergodicity of the
corresponding Hamiltonian flow on the orbifold bundle S⇤

ep,c(
fM) with respect to the canonical

Liouville measures.
In the special case of the Laplacian, Result 5 becomes an equivariant version of the classical
quantum ergodicity theorem of Shnirelman [52], Zelditch [61], and Colin de Verdière [15]. To
state it in the version corresponding to the ⇤1(h)-statement of Result 5, let {uj}j2N be an
orthonormal basis in L2(M) of eigenfunctions of �� with associated eigenvalues {Ej}j2N.

Result 6 (Equivariant quantum limits for the Laplacian, Theorem 8.3.2). Assume
that the reduced geodesic flow is ergodic. Choose a semiclassical character family {Wh}h2(0,1]

of growth rate # < 1
2+3 and a partition P of the set {Ej}j2N of order � 2

�

0, 1�(2+3)#
2+4

�

in
the sense of Definition 8.3.1. Define the set of eigenfunctions

�

uW,P
i

 

i2N :=
�

uj : �j 2 W
E

�1/2

P(j)

 

,

where �j is defined by uj 2 L2
�j

(M). Define �W,P
i by uW,P

i 2 L2
�W,P

i

(M). Then, there is a

subsequence
�

uW,P
ik

 

k2N of density 1 in
�

uW,P
i

 

i2N such that for all s 2 C1(S⇤M) one has

1
q

d�W,P
ik

[⇡�W,P
ik

|H : 1]

�

�

�

D

Op(s)uW,P
ik

, uW,P
ik

E

L2(M)
�

 

S⇤M\⌦
reg

s
dµ

volO

�

�

�

�! 0 as k ! 1,

where we wrote µ for µ1 and Op for Op1, which is the ordinary non-semiclassical quantization,
see Chapter 6.

Of course, there is also a second version of Result 6 corresponding to the ⇤2(h)-statement
of Result 5, involving a subsequence with a more complicated density property but a more
elegant convergence statement of the form

D

Op(s)uW,P
ik

, uW,P
ik

E

L2(M)
�!

 

S⇤M\⌦
reg

s
dµ

volO
as k ! 1.

In the special case of a single isotypic component, Result 6 simplifies to the following state-
ment. Let {u�j }j2N be an orthonormal basis of L2

�(M) consisting of eigenfunctions of ��.
Then, by Theorem 8.3.9, there is a subsequence {u�jk

}k2N of density 1 in {u�j }j2N such that
for all s 2 C1(S⇤M) one has

⌦

Op(s)u�jk
, u�jk

↵

L2(M)
�!

 

S⇤M\⌦
reg

s
dµ

volO
as k ! 1.
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Projecting from S⇤M \⌦reg onto M we immediately deduce from Result 6 for any f 2 C(M)

1
q

d�W,P
ik

[⇡�W,P
ik

|H : 1]

�

�

�

�

ˆ

M

f |uW,P
ik

|2dM �
 

M

f
dM

volO

�

�

�

�

�! 0 as k ! 1,

which describes the asymptotic equidistribution of the eigenfunctions in the presence of sym-
metries, see Corollary 8.3.5. If we consider instead the variant of Result 6 corresponding to
the ⇤2(h)-statement of Result 5, where the density property of the obtained subsequence is
more complicated, we arrive at the more elegant assertion that there is a weak convergence
of measures

|uW,P
ik

|2 dM �!
⇣

vol dM
vol O

M
⌘�1 dM

volO
as k ! 1.

Again, for a single isotypic component L2
�(M), the two versions agree and we get a simpler

result, compare Corollary 8.3.10. The fact that the reduced and the non-reduced flow cannot
be simultaneously ergodic is consistent with the QUE conjecture, since otherwise the results
of Chapter 8 would, in principle, imply the existence of exceptional subsequences for ergodic
geodesic flows. In this sense, our results can be understood as complementary to the previ-
ously known results. Applying some elementary representation theory, one can deduce from
Corollary 8.3.5 a statement on convergence of measures on the topological Hausdor↵ space fM
associated to irreducible G-representations. For this, choose an orthogonal decomposition of
L2(M) into a direct sum

L

i2N Vi of irreducible unitary G-modules such that each Vi is con-
tained in an eigenspace of the Laplace-Beltrami operator corresponding to some eigenvalue
Ej(i). Denote by �i 2 bG the class of Vi.

Result 7 (Representation-theoretic equidistribution theorem, Theorem 8.3.8). As-
sume that the reduced geodesic flow is ergodic. Choose a semiclassical character family
{Wh}h2(0,1] of growth rate # < 1

2+3 and a partition P of {Ej}j2N of order � 2 (0, 1�(2+3)#
2+4 ).

Define the set of irreducible G-modules

�

V W,P
l

 

l2N :=
�

Vi : �i 2 W
E

�1/2

P(j(i))

 

.

As in Lemma 8.3.7, assign to each V W,P
l the G-invariant function ⇥l := ⇥V W,P

l
: M !

[0, 1), regard it as a function on M/G = fM , and write �W,P
l for the class of V W,P

l . Then,

there is a subsequence
�

V W,P
lm

 

m2N with

lim
N!1

P

lmN d�W,P
lm

P

lN d�W,P
l

= 1

for which one has in the limit m ! 1

1
q

d�W,P
lm

[⇡�W,P
lm

|H : 1]

�
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�

�

ˆ

fM

f ⇥lm dfM �
 

fM

f
dfM

vol

�

�

�

�

�! 0 8 f 2 C(fM),

where dfM = ⇡⇤dM is the pushforward measure defined by the orbit projection ⇡ : M ! fM
and vol : fM ! (0, 1) assigns to an orbit its Riemannian volume.

For a single isotypic component, one obtains a simpler statement by considering an or-
thogonal decomposition of L2

�(M) into a sum
L

i2N V �
i of irreducible unitary G-modules of
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class � such that each V �
i is contained in some eigenspace of the Laplace-Beltrami operator.

Then, we have the weak convergence of measures

⇥�ik
dfM

k!1�!
⇣

vol d fM
vol

fM
⌘�1 dfM

vol

for a subsequence {V �
ik

}k2N of density 1 in {V �
i }i2N, see Theorem 8.3.11. Note that Result 7

is a statement about limits of representations, or multiplicities, and not eigenfunctions, since
it assigns to each unitary irreducible G-module in L2(M) a measure on the space fM , and then
considers the weak convergence of those measures. In essence, it can therefore be regarded
as a representation-theoretic statement in which the spectral theory for the Laplacian only
enters in choosing a concrete decomposition of each isotypic component. In the case of the
trivial group G = {e}, there is only one isotypic component in L2(M), associated to the trivial
representation, and choosing a family of irreducible G-modules is equivalent to choosing a
Hilbert basis of L2(M) of eigenfunctions of the Laplace-Beltrami operator. Result 7 then
reduces to the classical equidistribution theorem for the Laplacian.

5.3 Discussion

5.3.1 Applications

In Section 8.4 we consider some concrete examples to illustrate the results of Chapter 8. They
include

• compact locally symmetric spaces Y := �\G/K, where G is a connected semisimple Lie
group of rank 1 with finite center, � a discrete co-compact subgroup, and K a maximal
compact subgroup;

• all surfaces of revolution di↵eomorphic to the standard 2-sphere;

• S3-invariant metrics on the 4-sphere.

In the first case, K acts with finite isotropy groups on X := �\G, so that Y is an orbifold. Fur-
thermore, the orbit volume is constant. The reduced geodesic flow on M = X := �\G coincides
with the geodesic flow on Y and is ergodic, since Y has strictly negative sectional curvature.
Our results recover the Shnirelman-Zelditch-Colin-de-Verdière theorem for L2(Y) ' L2(X)K ,
and generalize it to non-trivial isotypic components of L2(X). In the examples of the 2-
and 4-dimensional spheres, the considered actions have two fixed points, and the reduced
geodesic flow is ergodic for topological reasons, regardless of the choice of invariant Rieman-
nian metric and in spite of the fact that the geodesic flow can be totally integrable. Since
the eigenfunctions of the Laplacian on the standard 2-sphere – the spherical harmonics – are
well understood, we can independently verify Result 7 for single isotypic components in this
case.

5.3.2 Previous results

Let us first collect the previously known results comparable to those of Chapter 7. For gen-
eral isometric and e↵ective group actions the asymptotic distribution of the spectrum of an
invariant operator along single isotypic components of L2(M) was studied within the clas-
sical framework via heat kernel methods by Donnelly [18] and Brüning–Heintze [10]. These
methods allow to determine the leading term in the expansion, while remainder estimates or
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growing families of isotypic components are not accessible via this approach. On the other
hand, using Fourier integral operator techniques, remainder estimates were obtained for ac-
tions with orbits of the same dimension by Donnelly [18], Brüning–Heintze [10], Brüning [9],
Hel↵er–Robert [28, 29], and Guillemin–Uribe [23] in the classical setting, and El-Houakmi–
Hel↵er [21] and Cassanas [13] in the semiclassical setting. For general e↵ective group actions,
remainder estimates were derived by Cassanas–Ramacher [14] and Ramacher [46] in the clas-
sical, and by Weich [58] in the semiclassical framework using resolution of singularites. The
idea of considering families of isotypic components that vary with the asymptotic parameter
has been known since the 1980s. Thus, for the Laplacian and free isometric group actions,
so-called ladder subspaces of L2(M) and fuzzy ladders have been considered in [50, 23] and
[62], respectively, see also below.

Let us now collect the previously known results which are comparable to those of Chapter
8. In case that G acts on M with only one orbit type, fM is a compact smooth manifold with
Riemannian metric induced by the G-invariant Riemannian metric on M . By co-tangent
bundle reduction, T ⇤

fM is symplectomorphic to J�1({0})/G, so the ergodicity of the reduced

geodesic flow on M and that of the geodesic flow on fM are equivalent. Under these circum-
stances, one can apply the classical Shnirelman-Zelditch-Colin-de-Verdière equidistribution
theorem to fM , yielding an equidistribution statement for the eigenfunctions of the Laplacian
�fM on fM in terms of weak convergence of measures on fM . On the other hand, one could
as well apply Corollary 8.3.5 and Theorem 8.3.8 to M , yielding also a statement about weak
convergence of measures on fM , but this time with measures related to eigenfunctions of the
Laplacian �M on M in families of isotypic components of L2(M). It is then an obvious
question how these two results are related. The answer is rather di�cult in general, since
– in spite of the presence of the isometric group action – the geometry of M may be much
more complicated than that of fM . Consequently, the eigenfunctions of �M , even those in
the trivial isotypic component, that is, those that are G-invariant, may be much harder to
understand than the eigenfunctions of �fM . Only in case that all orbits are totally geodesic
or minimal submanifolds, or, more generally, do all have the same volume, one can show that
an eigenfunction of �fM lifts to a unique G-invariant eigenfunction of �M [57, 8, 3]. In this
particular situation, it is easy to see that the application of the Shnirelman-Zelditch-Colin-
de-Verdière equidistribution theorem implies the special case of 8.3.8 for the single trivial
isotypic component. The case of a compact locally symmetric space treated in Section 8.4.1
is an example of this in the torsion-free case. In cases where the orbit volume is not constant,
no significant results about the relation between the eigenfunctions of �fM and �M are known
to the author.

An explicitly studied case is that of a general free G-action, when the projection M !
M/G = fM is a Riemannian principal G-bundle. Extending work of Schrader and Taylor
[50], Zelditch [62] obtained quantum limits for sequences of eigenfunctions of �M in so-called
fuzzy ladders. These are subsets of L2(M) associated to a so-called ray of representations
originating from some chosen � 2 bG. The obtained quantums limit are directly related
to the symplectic orbit reduction J�1(O�)/G ' T ⇤

fM , where O� ⇢ g⇤ is the co-adjoint
orbit associated to � by the Borel-Weil theorem. They are given by Liouville measures on
hypersurfaces in J�1(O�)/G, and their projections onto the base manifold agree with those
obtained in Chapter 8.

Further, significant e↵orts were recently made towards the understanding of quantum
(unique) ergodicity for locally symmetric spaces, which are particular manifolds of negative
sectional curvature. As before, let G be a connected, semisimple Lie group with finite center,
G = KAN an Iwasawa decomposition of G, and � a torsion-free, discrete subgroup in G.
Following earlier work of Zelditch and Lindenstrauss, Silberman and Venkatesh introduced
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in [54] certain representation theoretic lifts from Y = �\G/K to X = �\G that substitute
the previously considered microlocal lifts and take into account the additional structure of
locally symmetric spaces. These representation theoretic lifts should play an important role
in solving the QUE conjecture, already settled by Lindenstrauss in particular cases, also for
higher rank symmetric spaces. In case that � is co-compact, their results were generalized
by Bunke and Olbrich [12] to homogeneous vector bundles X ⇥K V� over Y associated to

equivalence classes of irreducible representations � 2 bK of the maximal compact subgroup
K. The constructed representation theoretic lifts are invariant with respect to the action of
A, which corresponds to the invariance of the microlocal lifts under the geodesic flow. Since
� has no torsion, K acts on X only with one orbit type.

To close the summary of previously known results comparable to those of Chapter 8, it
might be appropriate to mention that Marklof and O’Keefe [41] obtained quantum limits in
situations where the geodesic flow is ergodic only in certain regions of phase space. Concep-
tually, this is both similar and contrary to the approach of this thesis, since in this case the
geodesic flow is partially ergodic as well, but not due to symmetries.

Finally, comparable to both Chapters 7 and 8, there has been much work in recent times
concerning the spectral theory of elliptic operators on orbifolds. Such spaces are locally
homeomorphic to a quotient of euclidean space by a finite group while, globally, any (reduced)
orbifold is a quotient of a smooth manifold by a compact Lie group action with finite isotropy
groups, that is, in particular, with no singular isotropy types [1, 43]. As it turns out, the
theory of elliptic operators on orbifolds is essentially equivalent to the theory of invariant
elliptic operators on manifolds carrying the action of a compact Lie group with finite isotropy
groups [11, 19, 56]. In particular, Kordyukov [38] obtained the Shnirelman-Zelditch-Colin-de-
Verdière theorem for elliptic operators on compact orbifolds, using their original high-energy
approach. Result 6 recovers his result for the Laplacian, and generalizes it to singular group
actions and growing families of isotypic components.

Thus, in all the previously examined cases, no singular orbits occur. Actually, this thesis
can be viewed as part of an attempt to develop an equivariant spectral theory of elliptic
operators on general singular G-spaces.

5.3.3 Comments and outlook

Weaker versions of Results 5 and 6 can be proved in the case of a single isotypic component
by the same methods employed here with a less sharp energy localization in a fixed interval
[c, c+"] instead of a shrinking interval [c, c+h�]. The point is that for these weaker statements
no remainder estimate in the semiclassical Weyl law is necessary, see Remark 8.2.5. Thus,
at least the weaker version of Result 6 could have also been obtained within the classical
framework in the late 1970’s using heat kernel methods as in [18] or [10]. In contrast, for
the stronger versions of equivariant quantum ergodicity proved in Results 5 and 6, remainder
estimates in the equivariant Weyl law, and in particular the results obtained in [46] for general
group actions via resolution of singularities, are necessary. However, the weaker versions
would still be strong enough to imply Result 7 for a single isotypic component. Therefore, in
principle, Theorem 8.3.11 could have been proved already when Shnirelman formulated his
theorem more than 40 years ago.

As mentioned above, the idea of considering families of representations that vary with the
asymptotic parameter has been known since the end of the 1980’s, compare [50, 23, 62], and
it is a natural problem to determine what kind of families can be considered in the context
of quantum ergodicity, and study them from a more conceptional point of view. To illustrate
this, consider the standard 2-sphere S2 ⇢ R3, acted upon by the group SO(2) of rotations
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around the z-axis in R3. This action has exactly two fixed points given by the north pole
and the south pole of S2. The orbits of all other points are circles, so in this case we have
 = 1 and H = {e}, the trivial group. The eigenvalues of �� on S2 are given by the numbers
l(l + 1), l = 0, 1, 2, 3 . . . , and the corresponding eigenspaces El are of dimension 2l + 1. They
are spanned by the spherical harmonics, given in spherical polar coordinates by

Yl,m(�, ✓) =
q

2l+1

4⇡
(l�m)!

(l+m)!

Pl,m(cos ✓)eim�, 0  � < 2⇡, 0  ✓ < ⇡, (5.3.1)

where m 2 Z, |m|  l, and Pl,m are the associated Legendre polynomials. Each subspace
C · Ylm corresponds to an irreducible representation of SO(2), and each irreducible represen-
tation with character �k and |k|  l occurs in the eigenspace El with multiplicity 1, where �k

is as in Example 5.2.2. Considering the limit l ! 1 and the Laplacian �� is equivalent to

m\l 0 1 2 3 4 5 · · ·
... . .

.

5 Y
5,5 · · ·

4 Y
4,4 Y

5,4 · · ·
3 Y

3,3 Y
4,3 Y

5,3 · · ·
2 Y

2,2 Y
3,2 Y

4,2 Y
5,2 · · ·

1 Y
1,1 Y

2,1 Y
3,1 Y

4,1 Y
5,1 · · ·

0 Y
0,0 Y

1,0 Y
2,0 Y

3,0 Y
4,0 Y

5,0 · · ·
�1 Y

1,�1

Y
2,�1

Y
3,�1

Y
4,�1

Y
5,�1

· · ·
�2 Y

2,�2

Y
3,�2

Y
4,�2

Y
5,�2

· · ·
�3 Y

3,�3

Y
4,�3

Y
5,�3

· · ·
�4 Y

4,�4

Y
5,�4

· · ·
�5 Y

5,�5

· · ·
...

. . .

Figure 5.3.1: The single trivial isotypic
component in the case M = S2, G =
SO(2), described by m = 0. The k-th
row spans the isotypic component L2

�k
(S2)

and the l-th column represents the l-th
eigenspace of ��.

studying the limit h ! 0 and the semiclassical Laplacian �h2�. Figure 5.3.1 depicts a single
isotypic component, corresponding to a constant semiclassical character family. It means that

m\l 0 1 2 3 4 5 · · ·
... . . .

5 Y5,5 · · ·
4 Y4,4 Y5,4 · · ·
3 Y3,3 Y4,3 Y5,3 · · ·
2 Y2,2 Y3,2 Y4,2 Y5,2 · · ·
1 Y1,1 Y2,1 Y3,1 Y4,1 Y5,1 · · ·
0 Y0,0 Y1,0 Y2,0 Y3,0 Y4,0 Y5,0 · · ·
�1 Y1,�1 Y2,�1 Y3,�1 Y4,�1 Y5,�1 · · ·
�2 Y2,�2 Y3,�2 Y4,�2 Y5,�2 · · ·
�3 Y3,�3 Y4,�3 Y5,�3 · · ·
�4 Y4,�4 Y5,�4 · · ·
�5 Y5,�5 · · ·
...

. . .

Figure 5.3.2: Spherical harmonics on S2

in isotypic components corresponding to a
semiclassical character family with growth
rate 1

6 .

one keeps m fixed and studies the limit l ! 1. In contrast, the semiclassical character family
from Example 5.2.2 for # = 1

6 corresponds to the gray region in Figure 5.3.2. As opposed
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to the results of Chapter 8, Figure 5.3.3 illustrates a cone-like family of representations that
would correspond to subsequences of eigenfunctions of density larger than zero, while Figure
5.3.4 depicts the sequence of zonal spherical harmonics Yl,l, which are known to localize at
the equator of S2 as l ! 1, and therefore yield a di↵erent limit measure than the one im-
plied by Result 7, see Section 8.4.2 and in particular Remark 8.4.5. Hence, di↵erent kinds of
families of representations give rise to qualitatively di↵erent quantum limits, and it would be
illuminating to understand this interrelation in a deeper way.

m\l 0 1 2 3 4 5 · · ·
... . . .

5 Y5,5 · · ·
4 Y4,4 Y5,4 · · ·
3 Y3,3 Y4,3 Y5,3 · · ·
2 Y2,2 Y3,2 Y4,2 Y5,2 · · ·
1 Y1,1 Y2,1 Y3,1 Y4,1 Y5,1 · · ·
0 Y0,0 Y1,0 Y2,0 Y3,0 Y4,0 Y5,0 · · ·
�1 Y1,�1 Y2,�1 Y3,�1 Y4,�1 Y5,�1 · · ·
�2 Y2,�2 Y3,�2 Y4,�2 Y5,�2 · · ·
�3 Y3,�3 Y4,�3 Y5,�3 · · ·
�4 Y4,�4 Y5,�4 · · ·
�5 Y5,�5 · · ·
...

. . .

Figure 5.3.3: Spherical harmonics on S2

in cone-like families of representations.

m\l 0 1 2 3 4 5 · · ·
... . .

.

5 Y
5,5 · · ·

4 Y
4,4 Y

5,4 · · ·
3 Y

3,3 Y
4,3 Y

5,3 · · ·
2 Y

2,2 Y
3,2 Y

4,2 Y
5,2 · · ·

1 Y
1,1 Y

2,1 Y
3,1 Y

4,1 Y
5,1 · · ·

0 Y
0,0 Y

1,0 Y
2,0 Y

3,0 Y
4,0 Y

5,0 · · ·
�1 Y

1,�1

Y
2,�1

Y
3,�1

Y
4,�1

Y
5,�1

· · ·
�2 Y

2,�2

Y
3,�2

Y
4,�2

Y
5,�2

· · ·
�3 Y

3,�3

Y
4,�3

Y
5,�3

· · ·
�4 Y

4,�4

Y
5,�4

· · ·
�5 Y

5,�5

· · ·
...

. . .

Figure 5.3.4: Zonal spherical harmonics
on S2.

As further lines of research, it would be interesting to see whether the results of Chapters
7 and 8 can be generalized to G-vector bundles, as well as manifolds with boundary and
non-compact situations. Also, in view of Result 7, it might be possible to deepen our under-
standing of equivariant quantum ergodicity via representation theory. Finally, one can ask
what could be a suitable symmetry-reduced version of the QUE conjecture. In the particular
case of the SO(2)-action on the standard 2-sphere studied in Section 8.4, we actually see that
in each fixed isotypic component the representation-theoretic equidistribution theorem for
the Laplacian applies to the full sequence of spherical harmonics, so that equivariant QUE
holds in this case. However, even for this simple example it is unclear whether equivariant
QUE holds for growing families of isotypic components.
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Chapter 6

Background II

Here, we explain in more detail the concepts, definitions and techniques that are relevant to
the setup of this second part of the thesis, in addition to those from Chapter 2 in Part I.

Classical pseudodi↵erential operators and symbols While most chapters of this the-
sis use the language of semiclassical analysis introduced in Chapter 2 of Part I, there is the
exception of the Sections 8.3 and 8.4, where we specialize from general Schrödinger opera-
tors to the Laplace-Beltrami operator and maintaining the semiclassical notation would be
artificial. Therefore, we mention here briefly that the corresponding classical quantities are
obtained from the introduced semiclassical definitions by setting h = 1. In order to simplify
the notation when h = 1, we define for m 2 R [ {�1}

Op := Op1,  m
� (M) :=  m

1;�(M),  m(M) :=  m
1;0(M),  (M) :=  0

1;0(M),

Sm
� (M) := Sm

1;�(M), Sm(M) := Sm
1;0(M), S(M) := S0

1;0(M).

6.1 Smooth actions of compact Lie groups

In what follows, we recall some essential facts from the general theory of compact Lie group
actions on smooth manifolds. We will actually need only a small number of results. For
a detailed introduction, we refer the reader to [6, Chapters I, IV, VI]. Let X be a smooth
manifold of dimension n and G a Lie group acting locally smoothly on X. For x 2 X, denote
by Gx the isotropy group and by G · x = Ox the G-orbit through x so that

Gx = {g 2 G, g · x = x}, Ox = G · x = {g · x 2 X, g 2 G}.

Note that G · x and G/Gx are homeomorphic. The equivalence class of an orbit Ox under
equivariant homeomorphisms, written [Ox], is called its orbit type. The conjugacy class of
a stabilizer group Gx is called its isotropy type, and written (Gx). If K1 and K2 are closed
subgroups of G, a partial ordering of orbit and isotropy types is given by

[G/K1]  [G/K2] () (K2)  (K1) () K2 is conjugate to a subgroup of K1.

For any closed subgroup K ⇢ G, one denotes by X(K) := {x 2 X : Gx ⇠ K} the subset of
points of isotropy type (K).

Assume now that G is compact. The set of all orbits is denoted by X/G, and equipped
with the quotient topology it becomes a topological Hausdor↵ space [6, Theorem I.3.1]. In
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Part II. Semiclassical analysis and symmetry reduction

the following we shall assume that it is connected. One of the central results in the theory
of compact group actions is the principal orbit theorem [6, Theorem IV.3.1], which states
that there exists a maximum orbit type [Omax] with associated minimal isotropy type (H).
Furthermore, X(H) is open and dense in X, and its image in X/G is connected. We call
[Omax] the principal orbit type of the G-action on X and a representing orbit a principal orbit.
Similarly, we call the isotropy type (H) and an isotropy group Gx ⇠ H principal. Casually,
we will identify orbit types with isotropy types and say an orbit of type (H) or even an orbit
of type H, making no distinction between equivalence classes and their representants. The
reduced space X(H)/G is a smooth manifold of dimension n � , where  is the dimension
of Omax, since G acts with only one orbit type on X(H).

6.2 Symplectic reduction

Let us now review in some detail the theory of symplectic reduction of Marsden and Weinstein,
Sjamaar, Lerman and Bates. The theory emerged out of classical mechanics, and is based on
the fundamental fact that the presence of conserved quantities or integrals of motion leads
to the elimination of variables. A thorough exposition can be found in [44].

Let (X,!) be a connected symplectic manifold, and assume that (X,!) carries a global
Hamiltonian action of a Lie group G. In particular, we will be interested in the case where
X = T ⇤M is the co-tangent bundle of our closed Riemannian manifold M . Let

J : X ! g⇤, J(⌘)(X) = JX(⌘),

be the corresponding momentum map, where JX : X ! R is a C1-function depending linearly
on X 2 g such that the fundamental vector field eX on X associated to X is given by the
Hamiltonian vector field of JX . It is clear from the definition that Ad⇤(g�1) � J = J � g.
Furthermore, for each X 2 g the function JX is a conserved quantity or integral of motion
for any G-invariant function p 2 C1(X) since in this case

{JX , p} = !(s-grad JX , s-grad p) = �!( eX, s-grad p) = dp( eX) = eX(p) = 0,

where {·, ·} is the Poisson-bracket on X given by !. Now, define

⌦ := J�1({0}), e⌦ := ⌦/G.

Unless the G-action on X is free, the reduced space e⌦ will in general not be a smooth manifold,
but a topological quotient space. Nevertheless, one can show that e⌦ constitutes a stratified
symplectic space in the following sense. A function ef : e⌦ ! R is defined to be smooth, if
there exists a G-invariant function f 2 C1(X)G such that f |⌦ = ⇡⇤

ef , where ⇡ : ⌦ ! e⌦
denotes the orbit map. One can then show that C1(e⌦) inherits a Poisson algebra structure
from C1(X) which is compatible with a stratification of the reduced space into symplectic
manifolds. Moreover, the Hamiltonian flow 't corresponding to f is G-invariant and leaves
⌦ invariant, and consequently descends to a flow e't on e⌦ [55].

More precisely, let µ be a value of J, and Gµ the isotropy group of µ with respect to
the co-adjoint action on g⇤. Consider further an isotropy group K ⇢ G of the G-action
on X, let ⌘ 2 J�1({µ}) be such that G⌘ = K, and X⌘

K be the connected component of
XK := {⇣ 2 X : G⇣ = K} containing ⌘. Then [44, Theorem 8.1.1] the set J�1({µ})\Gµ ·X⌘

K

is a smooth submanifold of X, and the quotient

e⌦(K)
µ :=

�

J�1({µ}) \ Gµ · X⌘
K

��

Gµ
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Chapter 6. Background II 6.2. Symplectic reduction

possesses a di↵erentiable structure such that the projection ⇡(K)
µ : J�1({µ})\Gµ ·X⌘

K ! e⌦(K)
µ

is a surjective submersion. Furthermore, there exists a unique symplectic form e!
(K)
µ on e⌦(K)

µ

such that (◆(K)
µ )⇤! = (⇡(K)

µ )⇤(e!(K)
µ ), where ◆(K)

µ : J�1({µ}) \ Gµ · X⌘
K ,! X denotes the

inclusion. Finally, if p 2 C1(X) is a G-invariant function, Hp := s-grad p its Hamiltonian
vector field, and 't the corresponding flow, then 't leaves the connected components of the
space J�1({µ}) \ Gµ · X⌘

K invariant and commutes with the Gµ-action, yielding a reduced

flow e'µ
t on e⌦(K)

µ given by
⇡(K)

µ � 't � ◆(K)
µ = e'µ

t � ⇡(K)
µ . (6.2.1)

This reduced flow e'µ
t on e⌦(K)

µ turns out to be Hamiltonian, and its Hamiltonian ep
(K)
µ :

e⌦(K)
µ ! R satisfies ep(K)

µ � ⇡(K)
µ = p � ◆(K)

µ .

Remark 6.2.1. With the notation above we have G · XK = X(K). Indeed, for x 2 XK , the
isotropy group of x is K. If g0g · x = g · x for some g, g0 2 G, then g�1g0g · x = x, hence
g�1g0g 2 K, that is g0 2 (K). That shows G ·XK ⇢ X(K). On the other hand, if x 2 X(K),
then (Gx) = (K), hence for every g0 2 Gx, there is a k 2 K and a g 2 G such that g0 = gkg�1.
But then kg�1 · x = g�1 · x, so that g�1 · x 2 XK , and in particular x 2 G · XK .

Example 6.2.2. An important class of examples of Hamiltonian G-actions of a given Lie group
G is given by induced actions on co-tangent bundles of G-manifolds. Thus, let  : G ⇥ M !
M, (g, x) !  g(x) := g · x be a smooth G-action on a smooth manifold M . The induced
action on T ⇤M is given by

(g · ⌘x)(v) = (( g�1)⇤g·x · ⌘x)(v) = ⌘x(( g�1)⇤,g·x · v), ⌘x 2 T ⇤
x M, v 2 Tg·xM,

where ( g)⇤,x : TxM ! Tg·xM denotes the derivative of the map g : M ! M, x 7! g ·x. Now,
if ⌧ : X = T ⇤M!M denotes the co-tangent bundle with standard symplectic form ! = �d✓,
where ✓ is the tautological or Liouville one-form on T ⇤M , then

J : T ⇤M 3 ⌘ 7! J(⌘)(X) := ⌘
�

eX⌧(⌘)

�

, X 2 g, (6.2.2)

defines a momentum map, meaning that the G-action on T ⇤M is Hamiltonian. Here eX⌧(⌘)

denotes the fundamental vector field on M corresponding to X evaluated at the point ⌧(⌘).
In the particular case when M = G is itself a Lie group, and L : G ⇥ G ! G denotes the left
action of G onto itself, there exists a vector bundle isomorphism

T ⇤G '�! G ⇥ g⇤, ⌘g 7! (g, (Lg)
⇤
e · ⌘g), (6.2.3)

called the left trivialization of T ⇤G, and the induced left action takes the form

g · (h, µ) = (gh, µ), g, h 2 G, µ 2 g⇤.

Consequently, the decomposition of T ⇤G into orbit types of this action is given by the one of
G and

(T ⇤G)(H) = T ⇤(G(H)),

H being an arbitrary closed subgroup of G. On the other hand, the momentum map reads
J(g, µ) = Ad⇤

g�1

µ, since with µ = (Lg)⇤e · ⌘g one computes for X 2 g

J(g, µ)(X) = J(⌘g)(X) = (Lg�1)⇤g µ( eXg)

= µ((Lg�1)⇤,g
eXg) = µ

⇣ d

dt
(g�1 etX g)|t=0

⌘

= µ(Ad(g�1)X),

compare [44, Example 4.5.5].
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Let us now apply these general results to the situation of this second part of the thesis.
Thus, let X = T ⇤M , where M is a closed connected Riemannian manifold of dimension
n, carrying an isometric e↵ective action of a compact connected Lie group G. In all what
follows, the principal isotropy type of the action will be denoted by (H), H being a closed
subgroup of G, and the dimension of the principal orbits in M by . Furthermore, we shall
always assume that  < n. T ⇤M constitutes a Hamiltonian G-space when endowed with the
canonical symplectic structure and the G-action induced from the smooth action on M , and
one has

⌦ = J�1({0}) =
G

x2M

Ann Tx(G · x), (6.2.4)

where Ann Vx ⇢ T ⇤
x M denotes the annihilator of a subspace Vx ⇢ TxM . Further, let

Mreg := M(H), ⌦reg := ⌦ \ (T ⇤M)(H),

where M(H) and (T ⇤M)(H) denote the union of orbits of type (H) in M and T ⇤M , re-
spectively. By the principal orbit theorem, Mreg is open in M , hence Mreg is a smooth
submanifold. We then define

fMreg := Mreg/G.

fMreg is a smooth boundaryless manifold, since G acts on Mreg with only one orbit type and
Mreg is open in M . Moreover, because the Riemannian metric on M is G-invariant, it induces

a Riemannian metric on fMreg. On the other hand, by symplectic reduction ⌦reg is a smooth
submanifold of T ⇤M , and the quotient

e⌦reg := ⌦reg/G

possesses a unique di↵erentiable structure such that the projection ⇡ : ⌦reg ! e⌦reg is a

surjective submersion. Furthermore, there exists a unique symplectic form e! on e⌦reg such
that ◆⇤! = ⇡⇤

e!, where ◆ : ⌦reg ,! T ⇤M denotes the inclusion and ! the canonical symplectic

form on T ⇤M . Consider now the inclusion j : (T ⇤Mreg \⌦)/G ,! e⌦reg. The symplectic form

e! on e⌦reg induces a symplectic form j⇤e! on (T ⇤Mreg \ ⌦)/G. We then have the following

Lemma 6.2.3 (Singular co-tangent bundle reduction). Let b! denote the canonical sym-

plectic form on the co-tangent bundle T ⇤
fMreg. Then the two 2(n�)-dimensional symplectic

manifolds
((T ⇤Mreg \ ⌦)/G, j⇤e!) ' (T ⇤

fMreg, b!)

are canonically symplectomorphic.

Remark 6.2.4. If M = Mreg, the previous lemma simply asserts that

T ⇤
fM ' e⌦ = ⌦/G (6.2.5)

as symplectic manifolds. In case that G acts on M only with finite isotropy groups, fM is
an orbifold, and the relation (6.2.5) holds as well, being the quotient presentation of the

co-tangent bundle of fM as an orbifold [38].

Proof. First, we apply [44, Theorem 8.1.1] once to the manifold T ⇤M and once to the man-
ifold T ⇤Mreg. Noting that the momentum map of the G-action on T ⇤Mreg agrees with the
restriction of the momentum map of the G-action on T ⇤M to T ⇤Mreg, we get that j⇤e! is the
unique symplectic form on (T ⇤Mreg \ ⌦reg)/G which fulfills

i⇤! = ⇧⇤j⇤e!, (6.2.6)
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where ⇧ : T ⇤Mreg ! T ⇤Mreg/G is the orbit projection, i : T ⇤Mreg \ ⌦reg ,! T ⇤Mreg is the
inclusion, and ! is the canonical symplectic form on T ⇤Mreg.

What follows now is essentially a proof of the co-tangent bundle reduction theorem [42,
Theorem 2.2.2] for the manifold Mreg. The proof given in [42, Theorem 2.2.2] works in
principle also for our situation. However, in [42, Theorem 2.2.2] the authors assume a free G-
action, which is not necessarily the case here, so that the situation is not completely identical.
For convenience, we therefore provide a detailed proof of our theorem.
We are going to construct in a canonical way a di↵eomorphism � : (T ⇤Mreg \ ⌦reg)/G !
T ⇤
fMreg such that �⇤

b! also fulfills (6.2.6), that is, such that i⇤! = ⇧⇤�⇤
b! holds. We will then

be able to conclude from the uniqueness statement associated to (6.2.6) that j⇤e! = �⇤
b!, so

that � is a symplectomorphism. Denote by ⇡ : Mreg ! fMreg ⌘ Mreg/G the orbit projection.
Together with the pointwise derivatives, ⇡ induces a morphism of smooth vector bundles

@⇡ : TMreg ! TfMreg,

which has the fiberwise kernel ker @⇡|x = Tx(G · x). The Riemannian metrics on Mreg and
fMreg provide us with the usual isomorphisms of smooth vector bundles ↵ : TMreg ' T ⇤Mreg

and � : TfMreg ' T ⇤
fMreg. For each x 2 Mreg, we have

↵�1(Ann Tx(G · x)) = (Tx(G · x))?,

so that @⇡ is fiberwise injective when restricted to ↵�1(T ⇤Mreg \ ⌦reg). However, the di-

mensions of (Tx(G · x))? and T⇡(x)fMreg are both n � . So denoting the restriction of @⇡ to

↵�1(T ⇤Mreg \ ⌦reg) by @⇡ it follows that

@⇡ : ↵�1(T ⇤Mreg \ ⌦reg) ! TfMreg

together with the map ⇡ : Mreg ! fMreg is a morphism of smooth vector bundles which is
fiberwise an isomorphism. For x 2 Mreg, denote the restriction of @⇡ to Tx(G · x)? by �x.

That defines an isomorphism �x : (Tx(G · x))? '! T⇡(x)fMreg. Looking at the definition of

@⇡, we see that @⇡ is G-invariant and that for each ⇠ 2 T⇡(x)fMreg, @⇡�1({⇠}) = G · ��1
x (⇠),

the orbit of ��1
x (⇠) under the G-action on TMreg induced from the G-action on Mreg. We

conclude that @⇡ induces a di↵eomorphism

f@⇡ : (↵�1(T ⇤Mreg \ ⌦reg))/G ! TfMreg.

Because the G-action on M is isometric, ↵ is G-invariant. Therefore, @⇡ �↵�1 is G-invariant
and induces a di↵eomorphism

^@⇡ � ↵�1 : (T ⇤Mreg \ ⌦reg)/G ! TfMreg.

Composition with � yields the map

� := � � ^@⇡ � ↵�1 : (T ⇤Mreg \ ⌦reg)/G ! T ⇤
fMreg. (6.2.7)

As a composition of di↵eomorphisms, � is a di↵eomorphism. Moreover, the Riemannian
metric on fMreg that is used to define � is defined as the induced Riemannian metric obtained
from the G-invariant Riemannian metric on Mreg. Therefore, one can check that the map
� is actually independent from the choice of G-invariant metric on Mreg. That makes the
definition of � canonical. Now, in view of (6.2.6), we want to show that �⇤

b! fulfills

i⇤! = ⇧⇤�⇤
b!, (6.2.8)
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where b! is the canonical symplectic form on T ⇤
fMreg. Since b! = �db%, with b% the tautological

one-form on T ⇤
fMreg, the desired equation (6.2.8) would follow, by applying the exterior

derivative d to both sides and using compatibility of pullbacks with d, from the more basic
relation

i⇤% = ⇧⇤�⇤
b%, (6.2.9)

where % is the tautological one-form on T ⇤Mreg. We will now show that (6.2.9) is in fact true.

Since by definition ^@⇡ � ↵�1 �⇧ = @⇡ � ↵�1, we have

� �⇧ = � � @⇡ � ↵�1 : T ⇤Mreg \ ⌦reg ! T ⇤
fMreg.

Taking into account that ⇧⇤�⇤ = (�⇧)⇤, what we have to show is

%|⌘(v) = ((� � @⇡ � ↵�1)⇤b%)|⌘(v) 8 ⌘ 2 T ⇤Mreg \ ⌦reg, v 2 T⌘(T
⇤Mreg \ ⌦reg). (6.2.10)

Let ⌧ : T ⇤Mreg ! Mreg and b⌧ : T ⇤
fMreg ! fMreg be the co-tangent bundles. By definition of

the tautological one-forms on the two bundles we have

%|⌘(v) = ⌘(@⌧ |⌘(v)), ⌘ 2 T ⇤Mreg, v 2 T⌘T
⇤Mreg, (6.2.11)

b%|e⌘(ev) = e⌘(@b⌧ |e⌘(ev)), e⌘ 2 T ⇤
fMreg, ev 2 Te⌘T

⇤
fMreg. (6.2.12)

Using the definition of the pullback of di↵erential forms and inserting definition (6.2.12) into
the right hand side of (6.2.10) we obtain for ⌘ 2 T ⇤Mreg, v 2 T⌘(T ⇤Mreg \ ⌦reg)

((� � @⇡ � ↵�1)⇤b%)|⌘(v) = b%|��@⇡�↵�1(⌘)(@(� � @⇡ � ↵�1)v)

= (� � @⇡ � ↵�1)(⌘)(@b⌧ |��@⇡�↵�1(⌘)@(� � @⇡ � ↵�1)v).
(6.2.13)

Denote the Riemannian metrics on Mreg and fMreg by g and eg, respectively, so that ↵(v) =

g|x(v, ·) for v 2 TxMreg, x 2 Mreg and �(ev) = eg|ex(ev, ·) for ev 2 TexfMreg, ex 2 fMreg. Inserting
the definition of � into (6.2.13), we obtain for ⌘ 2 T ⇤Mreg, v 2 T⌘(T ⇤Mreg \ ⌦reg)

((� � @⇡ � ↵�1)⇤b%)|⌘(v)

= eg|b��@⇡�↵�1(⌘)

�

(@⇡ � ↵�1)(⌘), @b⌧ |��@⇡�↵�1(⌘)@(� � @⇡ � ↵�1)v)
�

, (6.2.14)

where we wrote b� : TfMreg ! fMreg for the tangent bundle. Consider now the commutative
diagram
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TTMreg TTfMreg

TMregTT ⇤Mreg TfMreg TT ⇤
fMreg

T ⇤Mreg Mreg fMreg T ⇤
fMreg

@(@⇡)

@� = can. @b� = can.
@�@↵

@⌧ = can.

can.

@⇡

� = can.
b� = can.

�

@b⌧ = can.

can.
↵

⌧ = can. ⇡

b⌧ = can.

In the diagram, “can.” denotes the canonical projection of a tangent or co-tangent bundle.
The other maps have been introduced in the paragraph above. That the triangles and the
square in the bottom row of the diagram commute is a consequence of the relevant pairs of
maps being morphisms of vector bundles. The triangles and the square in the top row of the
diagram are just the derivatives of the corresponding triangles and the square in the bottom
row. Therefore, they commute. From the commutativity of the top row of the diagram we
get

@b⌧ � @� � @(@⇡) � @↵�1 = @⇡ � @⌧. (6.2.15)

We can simplify (6.2.14) using (6.2.15), which leads to

((� � @⇡ � ↵�1)⇤b%)|⌘(v) = eg|b��@⇡�↵�1(⌘)

�

@⇡ � ↵�1(⌘), @⇡ � @⌧(v)
�

.

By definition of the metric eg, this can be rewritten as

((� � @⇡ � ↵�1)⇤b%)|⌘(v) = g��↵�1(⌘)

�

↵�1(⌘), @⌧(v)
�

.

Moreover, by definition of ↵�1, this simplifies into

((� � @⇡ � ↵�1)⇤b%)|⌘(v) = ⌘ (@⌧(v)) . (6.2.16)

In view of (6.2.11), we have shown (6.2.10), and so we have proved (6.2.9). By the discussion
at the beginning of the proof and in the lines above (6.2.9), we are done.

6.3 Relevant measure spaces

This section contains a listing of the spaces and measures that will be relevant in the upcoming
sections, followed by a technical subsection in which some basic properties and interrelations
of the introduced measure spaces are studied. If not stated otherwise, measures are not
assumed to be normalized. As before, let M be a closed connected Riemannian manifold of
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dimension n with Riemannian volume density dM , carrying an isometric e↵ective action of
a compact connected Lie group G with Haar measure dg. Let  be the dimension of an orbit
of principal type. Note that if dim G > 0, dg is equivalent to the normalized Riemannian
volume density on G associated to any choice of left-invariant Riemannian metric on G. If
dim G = 0, which in our case implies that G is trivial, dg is the normalized counting measure.
Consider further T ⇤M with its canonical symplectic form !, endowed with the natural Sasaki
metric. Then the Riemannian volume density d(T ⇤M) given by the Sasaki metric coincides
with the symplectic volume form !n/n!, see [36, page 537]. Next, if ⌦ := J�1({0}) denotes
the zero level of the momentum map J : T ⇤M ! g⇤ of the underlying Hamiltonian action,
we regard ⌦reg ⇢ T ⇤M as a Riemannian submanifold with Riemannian metric induced by
the Sasaki metric on T ⇤M , and denote the associated Riemannian volume density by d⌦reg.
Similarly, let

C := {(⌘, g) 2 ⌦⇥ G : g · ⌘ = ⌘}. (6.3.1)

As ⌦, the space C is not a manifold in general. We consider therefore the space Reg C of all
regular points in C, that is, all points that have a neighborhood which is a smooth manifold.
Reg C is a smooth, non-compact submanifold of T ⇤M ⇥ G of co-dimension 2, and it is not
di�cult to see that

Reg C = {(⌘, g) 2 ⌦⇥ G, g · ⌘ = ⌘, ⌘ 2 ⌦reg},

see e.g. [46, (17)]. We then regard Reg C ⇢ T ⇤M ⇥ G as a Riemannian submanifold with
Riemannian metric induced by the product metric of the Sasaki metric on T ⇤M and some
left-invariant Riemannian metric on G, and denote the corresponding Riemannian volume
density by d(Reg C). In the same way, if x 2 M and ⌘ 2 T ⇤M are points, the orbits G · x
and G · ⌘ are smooth submanifolds of M and T ⇤M , respectively, and if they have dimension
greater than 0, we endow them with the corresponding Riemannian orbit measures, denoted
by dµG·x and dµG·⌘, respectively. If the dimension of an orbit is 0, it is a finite collection
of isolated points, since G is compact, and we define dµG·x and dµG·⌘ to be the counting
measures. Further, for any Riemannian G-space X, we define the orbit volume functions

volO : X ! (0, 1), x 7! vol Ox = vol (G · x), vol : X/G ! (0, 1), O 7! vol O.

Note that by definition we have vol > 0, volO > 0 for all orbits, singular or not, since the orbit
volume is defined using the induced Riemannian measure for smooth orbits and the counting
measure for finite orbits. An important property of the orbit measures is their relation to
the normalized Haar measure on G. Namely, for any orbit G · x and any continuous function
f : G · x ! C, we have

ˆ

G·x
f(x0) dµG·x(x0) = vol (G · x)

ˆ

G

f(g · x) dg. (6.3.2)

To see why (6.3.2) holds, recall that there is a G-equivariant di↵eomorphism � : G·x ! G/Gx.
Then �⇤(dµG·x) is a G-invariant finite measure on G/Gx. Similarly, if ⇧ : G ! G/Gx

denotes the canonical projection, ⇧⇤(dg) is also a G-invariant finite measure on G/Gx. Hence,
�⇤(dµG·x) = C ·⇧⇤(dg) for some constant C which is precisely given by vol(G·x), since ⇧⇤(dg)
is normalized. Observing that

´
G

f(gx) dg =
´

G/Gx
f(gGxx)⇧⇤(dg), (6.3.2) follows.

We describe now the quotient spaces and measures on them that will be relevant to us.
Let dfMreg be the Riemannian volume density on fMreg associated to the Riemannian metric

on fMreg induced by the G-invariant metric on M . Regarding the co-tangent bundle T ⇤
fMreg,

84



Chapter 6. Background II 6.3. Relevant measure spaces

we endow it with the canonical symplectic structure and let d(T ⇤
fMreg) be the correspond-

ing symplectic volume form. Again, it coincides with the Riemannian volume form given
by the natural Sasaki metric on T ⇤

fMreg. Similarly, the symplectic stratum e⌦reg carries a

canonical symplectic form e! from [44, Theorem 8.1.1], and de⌦reg = e!(n�)/(n � )! denotes

the corresponding symplectic volume form. One can then show that de⌦reg agrees with the

Riemannian volume density associated to the Riemannian metric on e⌦reg induced by the Rie-
mannian metric on ⌦reg, see Lemma 6.3.1. Since orbit projections on principal strata define
fiber bundles [6, Theorem IV.3.3], Lemma 6.3.1 implies that dµG·x and dµG·⌘ are the unique
measures on the orbits in Mreg and ⌦reg such that

ˆ

M
reg

f(x) dM(x) =

ˆ

fM
reg

ˆ

G·x
f(x0) dµG·x(x0) dfMreg(G · x) 8 f 2 C(Mreg), (6.3.3)

ˆ

⌦
reg

f(⌘) d(⌦reg)(⌘) =

ˆ

e⌦
reg

ˆ

G·⌘
f(⌘0) dµG·⌘(⌘0) de⌦reg(G · ⌘) 8 f 2 C(⌦reg). (6.3.4)

Next, hypersurfaces given by the inverse image of a regular value c of (maps induced by)
our Hamiltonian function p : T ⇤M ! R will be endowed with the Liouville measure induced
by the measure on the ambient manifold, see Lemma 6.3.8 and Corollary 6.3.9. Thus, there
is a canonical measure d⌃c on the hypersurface ⌃c = p�1({c}), induced by the symplectic
volume form on T ⇤M , or equivalently, by the Riemannian volume density associated to the
Sasaki metric. In the case ⌃c = S⇤M it is denoted by d(S⇤M). Similarly, for S⇤

fMreg, the

unit co-sphere bundle over fMreg, the induced Liouville measure is denoted by d(S⇤
fMreg),

and for the hypersurface e⌃c := ep�1({c}), where ep is induced by p and e⌦reg is endowed with

the measure de⌦reg, we denote the induced Liouville measure by de⌃c. Furthermore, since
the intersection is transversal, ⌃c \ ⌦reg = p|�1

⌦
reg

({c}) is a smooth hypersurface of ⌦reg, and

carries a Liouville measure µc induced by d⌦reg. As the orbit projection ⌃c \ ⌦reg ! e⌃c is
a fiber bundle, µc fulfills

ˆ

⌃c\⌦reg

f(⌘) dµc(⌘) =

ˆ

e⌃c

ˆ

G·⌘
f(⌘0) dµG·⌘(⌘0) de⌃c(G · ⌘) 8 f 2 C(⌃c \ ⌦reg). (6.3.5)

Finally, let dfM := ⇡⇤dM be the pushforward of dM along the canonical projection ⇡ : M !
fM := M/G. This means that, for f 2 C(fM), we have

ˆ

fM

f(O) dfM(O) =

ˆ

M

f � ⇡(x) dM(x).

In what follows, we will use the orbit volume functions vol and volO together with the
previously defined measures to form new measures. This way we obtain on fM the measure
dfM
vol , and on ⌃c \ ⌦reg the measure µc

vol O
. These measures are of fundamental importance

in the following chapters. Finally, for a measure space (X, µ) with 0 < µ(X) < 1 and a
measurable function f on X, we shall use the common notation

 

X

f dµ :=
1

µ(X)

ˆ

X

f dµ.
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6.3.1 Interrelations and properties of the measure spaces

In this subsection, we shall collect a few useful technical facts related to the spaces and
measures introduced above. As before, we are not assuming that the considered measures
are normalized, unless otherwise stated. With the notation as above, we have

Lemma 6.3.1. The measure de⌦reg agrees with the Riemannian volume density defined by

the Riemannian metric on e⌦reg that is induced by the Sasaki metric on T ⇤M .

Proof. By [4, Theorem 4.6] all metrics on e⌦reg which are associated to the symplectic form e!
by an almost complex structure define the same Riemannian volume density, and that density
agrees with the one defined by the symplectic form e!. Hence, it su�ces to show that the
Riemannian metric on e⌦reg induced by the G-invariant Sasaki metric on T ⇤M is associated
to e! by an almost complex structure. Now, the Sasaki metric gS on T ⇤M is associated to the
canonical symplectic form ! on T ⇤M by an almost complex structure J : TT ⇤M ! TT ⇤M .
Consequently, the Riemannian metric ◆⇤gS on ⌦reg is associated to the symplectic form ◆⇤!
by the almost complex structure ◆⇤J , where ◆ : ⌦reg ! T ⇤M is the inclusion. Since both
◆⇤gS and ◆⇤! are G-invariant, ◆⇤J : T⌦reg ! T⌦reg is G-equivariant, and therefore induces

an almost complex structure g◆⇤J : T e⌦reg ! T e⌦reg which associates the metric induced by

◆⇤gS on e⌦reg with e!.

Lemma 6.3.2. M � Mreg is a null set in (M, dM), and ⌦reg � (T ⇤Mreg \⌦) is a null set in
(⌦reg, d⌦reg).

Proof. The proof is completely analogous to the proof of [14, Lemma 3].

Similarly, on fM = M/G we have

Corollary 6.3.3. fM � fMreg is a null set in (fM, dfM), and e⌦reg � (T ⇤Mreg \⌦)/G is a null

set in (e⌦reg, de⌦reg).

Proof. The first claim is true by definition of the measure dfM and Lemma 6.3.2. Concerning
the second claim, note that

(⌦reg � (T ⇤Mreg \ ⌦reg))/G = e⌦reg � (T ⇤Mreg \ ⌦reg)/G.

Consequently, (6.3.4) and Lemma 6.3.2 together yield

vol
⇣

e⌦reg � (T ⇤Mreg \ ⌦reg)/G
⌘

=

ˆ

⌦
reg

�(T ⇤M
reg

\⌦
reg

)

1

vol (G · ⌘)d⌦reg(⌘) = 0.

Lemma 6.3.4. The orbit volume function volO|M
reg

: Mreg ! R, x 7! vol (G · x), is smooth.
Moreover, if the dimension of the principal orbits is at least 1, the function volO|M

reg

can be

extended by zero to a continuous function volO : M ! R.

Proof. See [45, Proposition 1].

Remark 6.3.5. The function volO : M ! R from the previous lemma is in general di↵erent
from the original orbit volume function volO : M ! R, x 7! vol(G · x). The latter function
is by definition nowhere zero and not continuous if there are some orbits of dimension 0 and
some of dimension > 0.
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Lemma 6.3.6. On fM = M/G we have

dfM

vol

�

�

�fM
reg

= dfMreg,
dfM

vol

�

�

�fM�fM
reg

⌘ 0.

Proof. Considering (6.3.3), (6.3.2), and Corollary 6.3.3, the claimed relations are obvious.

Corollary 6.3.7. The following two measures on (T ⇤Mreg \ ⌦reg)/G agree:

1. the measure j⇤de⌦reg, where j is the inclusion j : (T ⇤Mreg \⌦reg)/G ,! e⌦reg and de⌦reg

the symplectic volume form on e⌦reg;

2. the measure �⇤d(T ⇤
fMreg), where � : (T ⇤Mreg \ ⌦reg)/G ! T ⇤

fMreg is the canonical

symplectomorphism from Lemma 6.2.3 and d(T ⇤
fMreg) the symplectic volume form on

T ⇤
fMreg.

Proof. The measures de⌦reg and d(T ⇤
fMreg) are defined by the volume forms e!n�/(n � )!

and b!n�/(n � )!, respectively, which implies that the measures j⇤de⌦reg and �⇤d(T ⇤
fMreg)

are defined by the volume forms j⇤e!n�/(n � )! and �⇤
b!n�/(n � )!, respectively. Using

compatibility of the wedge product with pullbacks and Lemma 6.2.3 we obtain

j⇤e!n� = (j⇤e!)n� = (�⇤
b!)n� = �⇤(b!n�).

The next lemma describes the Liouville measures on hypersurfaces that we use frequently.

Lemma 6.3.8. Let c 2 R be a regular value of our Hamiltonian function p. For each � > 0,
let I� ⇢ [c � �, c + �] be a non-empty interval. Then, for all f 2 C(T ⇤M) the limit

lim
�!0

1

vol R(I�)

ˆ

p�1(I�)

f d(T ⇤M) =:

ˆ

p�1({c})

f d⌃c (6.3.6)

exists, and defines a finite measure d⌃c on the hypersurface ⌃c := p�1({c}). Furthermore,
for each f 2 C(T ⇤M), one has in the limit � ! 0 the estimate

1

vol R(I�)

ˆ

p�1(I�)

f d(T ⇤M) �
ˆ

p�1({c})

f d⌃c = O(�). (6.3.7)

Proof. Since M is compact, p�1([c � r, c + r]) ⇢ T ⇤M is compact for every r > 0. Thus, we
can find " > 0 such that each t 2 [c�", c+"] is a regular value of p. This implies that there is
an atlas for T ⇤M such that the intersection of any chart with p�1({t}) is given by the points
whose last coordinate is equal to t�c for each t 2 [c�", c+"]. As p�1([c�", c+"]) is compact,
we can reduce such an atlas to a finite collection of charts that still cover p�1([c � ", c + "]).
Denote the so obtained finite collection of charts by {U↵, �↵}↵2A, �↵ : U↵ ! V↵ ⇢ R2n,
U↵ ⇢ T ⇤M . W.l.o.g. we can assume that V↵ ⇢ Rn is bounded. Let {'↵}↵2A be a partition
of unity subordinated to the family {U↵}↵2A. Then, by definition, it holds for � < " and an
interval I� ⇢ [c � �, c + �]:

ˆ
p�1(I�)

f d(T ⇤M) =
X

↵2A

ˆ
�↵(U↵\p�1(I�))

(f · '↵)
�

��1
↵ (y)

�

D↵(y) dy 8 f 2 C(T ⇤M),
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where D↵ : U↵ ! R is the smooth function defining the restriction of the volume density
d(T ⇤M) to the chart U↵ in our local coordinates. (In fact, here D↵ =

p

det(g↵(y)), where
g↵ is the local matrix defined by the Sasaki metric on T ⇤M). Due to our special choice of
coordinates in the chart U↵, we get for f 2 C(T ⇤M):
ˆ

p�1(I�)
f d(T ⇤M) =

X

↵2A

ˆ
V↵

(f · '↵)
�

��1
↵ (y1, . . . , y2n)

�

D↵(y1, . . . , y2n) dy1 . . . dy2n�1 dy2n

=
X

↵2A

ˆ
I�

ˆ
V↵\R2n�1

(f · '↵)
�

��1
↵ (y1, . . . , y2n�1, t)

�

D↵(y1, . . . , y2n�1, t) dy1 . . . dy2n�1 dt,

where we used the Fubini theorem for the Lebesgue integral. Since p�1([c � ", c + "]) is
compact, we can assume w.l.o.g. that the function D↵ is uniformly continuous. Furthermore,
we know that the functions f and '↵ are uniformly continuous on p�1([c � ", c + "]). This
implies for each ↵ 2 A and y 2 V↵:

�

�

�

(f · '↵)
�

��1
↵ (y1, . . . , y2n�1, t)

�

D↵(y1, . . . , y2n�1, t)

� (f · '↵)
�

��1
↵ (y1, . . . , y2n�1, c)

�

D↵(y1, . . . , y2n�1, c)
�

�

�

 C↵(|t � c|) 8 t 2 I�,

with some constant C↵ > 0 that is independent of y. To shorten the notation, set

I(c,↵) :=

ˆ

V↵\R2n�1

(f · '↵)
�

��1
↵ (y1, . . . , y2n�1, c)

�

D↵(y1, . . . , y2n�1, c) dy1 . . . dy2n�1

With |t � c|  � we then get
ˆ

I�

ˆ
V↵\R2n�1

(f · '↵)
�

��1
↵ (y1, . . . , y2n�1, t)

�

D↵(y1, . . . , y2n�1, t) dy1 . . . dy2n�1 dt

=

ˆ

I�

�

I(c,↵) + O↵(|t � c|)|
�

dt = vol R(I�)I(c,↵) +

ˆ
I�

O↵(|t � c|)| dt = vol R(I�)
�

I(c,↵) + O↵(�)
�

.

Since A is finite, we conclude

1

vol R(I�)

ˆ
p�1(I�)

f d(T ⇤M) =
X

↵2A
I(c,↵) + O↵(�) =:

ˆ

p�1({c})

f dµc + O(�).

As the left hand side of the equation above is a global expression independent of any choice
of coordinates, the definition of

´
p�1({c}) f dµc is independent of the chosen coordinates.

From the previous lemma, one immediately obtains a symmetry-reduced version, defining
Liouville measures on the reduced hypersurfaces occuring in this thesis.

Corollary 6.3.9. Let c 2 R be a regular value of our Hamiltonian function p : T ⇤M ! R,
and consider the induced maps

p|⌦reg : ⌦reg ! R, ep : e⌦reg ! R, 0
ep : T ⇤(fMreg) ! R,

for which c is also a regular value, as well as the smooth hypersurfaces

⌃c \ ⌦reg = p|�1
⌦reg

({c}) ⇢ ⌦reg, e⌃c := ep�1({c}) ⇢ e⌦reg,
0
e⌃c :=0

ep�1({c}) ⇢ T ⇤(fMreg).
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For each � > 0, let I� ⇢ [c � �, c + �] be a non-empty interval. Then, for all G-invariant
f 2 C(T ⇤M), inducing

f |⌦reg 2 C(⌦reg), ef 2 C(e⌦reg),
0
ef 2 C(T ⇤(fMreg)),

the limits

lim
�!0

1

vol R(I�)

ˆ

p|�1

⌦reg
(I�)

f |⌦reg de⌦reg =:

ˆ

⌃c\⌦reg

f |⌦reg dµc

lim
�!0

1

vol R(I�)

ˆ

ep�1(I�)

ef de⌦reg =:

ˆ

e⌃c

ef de⌃c

lim
�!0

1

vol R(I�)

ˆ
0ep�1(I�)

0
ef d(T ⇤(fMreg)) =:

ˆ

0e⌃c

0
ef d 0

e⌃c

exist, and define finite measures on the corresponding hypersurfaces. Furthermore, for each
G-invariant f 2 C(T ⇤M), one has in the limit � ! 0 the estimates

1

vol R(I�)

ˆ

p|�1

⌦reg
(I�)

f |⌦reg de⌦reg �
ˆ

⌃c\⌦reg

f |⌦reg dµc = O(�),

1

vol R(I�)

ˆ

ep�1(I�)

ef d⌦reg �
ˆ

e⌃c

ef de⌃c = O(�),

1

vol R(I�)

ˆ
0ep�1(I�)

0
ef d(T ⇤(fMreg)) �

ˆ

0e⌃c

0
ef d 0

e⌃c = O(�).

Proof. Since the functions p|⌦
reg

, ep, 0
ep, f |⌦

reg

, ef , 0
ef , and the volume densities on ⌦reg, e⌦reg,

and T ⇤(fMreg) are all induced by G-invariance from their counterparts on T ⇤M , we can

proceed by analogy to the proof of Lemma 6.3.8, even though ⌃c \⌦reg, e⌃c, and 0
e⌃c are not

compact. In particular, we can find " > 0 such that each t 2 [c � ", c + "] is a regular value of
p|⌦

reg

, ep, and 0
ep, we can cover p|�1

⌦
reg

([c� ", c+ "]), ep�1([c� ", c+ "]), and 0
ep�1([c� ", c+ "]) by

finitely many charts, and on these “"-thickened hypersurfaces”, the maps p|⌦
reg

, ep, 0
ep, f |⌦

reg

,
ef , and 0

ef , as well as the corresponding volume densities are uniformly continuous. Thus, we
can perform analogous calculations and estimates as in the proof of Lemma 6.3.8.

Remark 6.3.10. When V ⌘ 0 and c = 1, the Liouville measure on 0
ep�1({1}) = S⇤

fMreg

obtained in Corollary 6.3.9 agrees with the Liouville measure d(S⇤
fMreg) induced by the

canonical symplectic form on T ⇤(fMreg).

Remark 6.3.11. Suppose we regard the hypersurfaces ⌃c, ⌃c \ ⌦reg, and 0
e⌃c as Riemannian

submanifolds of T ⇤M , ⌦reg, resp. T ⇤
fMreg, where the latter spaces are equipped with the

(induced) Sasaki metrics. Then the induced Riemannian measures d⌃R
c , dµR

c , d0e⌃R
c are

related to the Liouville measures defined above by the norm of the gradient of the defining
functions:

d⌃c =
1

krpkd⌃R
c , dµc =

1
�

�rp|⌦
reg

�

�

dµR
c , d0e⌃c =

1

kr0
epkd0e⌃

R

c .
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The following simple yet important lemma tells us that taking averages over certain subsets
of the co-tangent bundle of functions which actually depend only on the base manifold variable
is equivalent to averaging the functions over the corresponding base manifold.

Lemma 6.3.12. Denote by ⌧ : T ⇤M ! M the co-tangent bundle projection, and by ⌧ :
(T ⇤Mreg \⌦reg)/G ! fMreg the smooth map induced by the G-equivariant map ⌧ |T ⇤M

reg

\⌦
reg

.

Let f 2 C(M) be G-invariant, inducing ef 2 C(M/G), and let p : T ⇤M ! R be the G-
invariant map given by p(x, ⇠) = k⇠k2x, inducing ep 2 C1(e⌦reg). Then we have for all a, b 2 R
with 0 < a < b  

ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G)

ef(⌧(G · ⌘)) de⌦reg(G · ⌘) =

 

fM
reg

ef(G · x) dfMreg(G · x). (6.3.8)

Proof. For convenience, and because the resulting Corollary 6.3.13 is important for the appli-
cations in Section 8.3, we provide a detailed proof. Using the canonical symplectomorphism
� : (T ⇤Mreg \ ⌦reg)/G ! T ⇤

fMreg from Lemma 6.2.3 and Corollary 6.3.7, we obtain
ˆ

ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G)

ef(⌧(G · ⌘)) de⌦reg(G · ⌘)

=

ˆ

�(ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G))

ef � ⌧ � ��1 d(T ⇤
fMreg).

(6.3.9)

Now that we can work with the co-tangent bundle T ⇤
fMreg together with its natural symplectic

volume form as our ambient measure space, the situation is simpler and the rest of the proof
could in principle be written down for an arbitrary Riemannian manifold instead of fMreg.

Let  : U
⇠=! V be a chart, where U ⇢ fMreg, V ⇢ Rn� are open. Together with its

derivative @ , the chart defines an isomorphism of vector bundles TU ⇠= V ⇥ Rn�. Let
(e1, . . . , en�) be the standard orthonormal basis of Rn�. Then we obtain for each x 2 U a
basis {(@ )|�1

x e1, . . . , (@ )|�1
x en�} of TxU , and an associated dual basis {dq1|x, . . . , dqn�|x}

for T ⇤
x U , where dqi|x is defined on the chosen basis vectors of TxU by

dqi|x
�

(@ )|�1
x ej

�

:=

(

1, j = i,

0, j 6= i.
(6.3.10)

Fixing this choice of frame for T ⇤U yields an isomorphism of vector bundles  : T ⇤U ⇠=
V ⇥ Rn� which is at the same time a chart on T ⇤

fMreg with domain T ⇤U . For a co-vector
⌘ 2 T ⇤

x U , let (q1, . . . , qn�, p1, . . . , pn�) 2 V ⇥ Rn� be its coordinates with respect to the

chart  . In these coordinates, the pullback of the canonical volume form d(T ⇤
fMreg) restricted

to T ⇤U along  �1 is given by

( �1)⇤d(T ⇤
fMreg)(q, p) ⌘ 1

(n � )!
dq1 ^ . . .^dqn�^dp1 ^ . . .^dpn�, (q, p) 2 V ⇥Rn�,

and the local Riemannian volume density on U reads

( �1)⇤dfMreg(q) =
p

det m(q) |dq1 ^ . . . ^ dqn�|, q 2 V,

where m(q) is the matrix representing the Riemannian metric on TxU , where x =  �1(q).
The choice (6.3.10) of basis for T ⇤

x U is the natural one for considering the local pullback of the
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Chapter 6. Background II 6.3. Relevant measure spaces

volume form d(T ⇤
fMreg), since the obtained expression for ( �1)⇤d(T ⇤

fMreg)(q, p) is invariant
under a change of coordinates on U and hence independent of the initial choice of the chart
 . However, in order to identify the co-tangent bundle globally with the tangent bundle,
we need to use the Riemannian metric to relate each tangent space with its dual space, as
explained in the Conventions and notation at the beginning of this thesis. This means in our
context that we choose a di↵erent basis {bx

1 , . . . , b
x
n�} for T ⇤

x U given by

bx
i

�

(@ )|�1
x ej

�

:= m(q)i,j = m(q)j,i.

Denote the coordinates of ⌘ 2 T ⇤
x U with respect to this new choice of basis by

(q1, . . . , qn�, ⇣1, . . . , ⇣n�) 2 V ⇥ Rn�.

Clearly, they are related to the other coordinates according to

0

B

@

p1
...

pn�

1

C

A

= m(q)

0

B

@

⇣1
...

⇣n�

1

C

A

. (6.3.11)

Let A ⇢ T ⇤U be measurable and ⌅ : A ! C be an integrable function. Then, one has

ˆ

A

⌅ d(T ⇤
fMreg) ⌘

ˆ

 (A)

( �1)⇤
�

⌅ d(T ⇤
fMreg)

�

=
1

(n � )!

ˆ

 (A)

⌅ � �1(q, p) dq1 ^ . . . ^ dqn� ^ dp1 ^ . . . ^ dpn�

=
1

(n � )!

ˆ

b⌧( (A))

1
p

det m(q)

ˆ

{q}⇥Rn�\ (A)

⌅ � �1(q, p) |dp1 ^ . . . ^ dpn�|( �1)⇤dfMreg(q),

where b⌧ : V ⇥ Rn� ! V denotes the projection onto V . In order to switch from the p-
coordinates to the ⇣-coordinates, we perform now for each q 2 V the linear substitution
(6.3.11). The transformation formula for the Lebesgue integral then gives us

ˆ

{q}⇥Rn�\ (A)

⌅ � �1(q, p) |dp1 ^ . . . ^ dpn�|

=

ˆ

m(q)�1

�

{q}⇥Rn�\ (A)
�

⌅ � �1(q, m(q)⇣)|det m(q)| |d⇣1 ^ . . . ^ d⇣n�|,

which combined with the previous calculations leads to

ˆ

A

⌅ d(T ⇤
fMreg) =

1

(n � )!

ˆ

b⌧( (A))

p

det m(q)

ˆ

m(q)�1

�

{q}⇥Rn�\ (A)
�

⌅ � �1(q, m(q)⇣) d⇣ ( �1)⇤dfMreg(q), (6.3.12)
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where we introduced the short hand notation d⇣ := |d⇣1 ^ . . . ^ d⇣n�|, and the notation
m(q)�1

�

{q} ⇥Rn� \ (A)
�

means that the vectors in Rn� \ (A) are multiplied with the
inverse matrix. Now, we apply the general result (6.3.12) to the concrete integral (6.3.9). By
the definition of � we have  � ⌧ � ��1 � �1 = b⌧ , obtaining

(n � )!

ˆ

T ⇤U\�(ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G))

ef � ⌧ � ��1 d(T ⇤
fMreg)

=

ˆ

 �⌧
�

��1(T ⇤U)\ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G)
�

ˆ

m(q)�1

⇥

{q}⇥Rn�\ ��
�

ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G)
�⇤

ef
�

 �1(q)
�

d⇣ ( �1)⇤dfMreg(q). (6.3.13)

Similarly, taking into account the definitions of � and ep, one easily sees using (6.2.4) that

⌧
�

��1(T ⇤U) \ ep�1([a, b]) \ ((T ⇤Mreg \ ⌦reg)/G)
�

= U

holds as well as

m(q)�1
⇥

{q}⇥Rn�\ ��
�

ep�1([a, b])\ ((T ⇤Mreg \⌦reg)/G)
�⇤

=
�

(q, ⇣) : a  ⇣T m(q)⇣  b
 

,

compare (0.0.1). With these observations, and considering that the integrand does not depend
on ⇣, the right hand side of (6.3.13) simplifies tremendously toˆ

 (U)

ef
�

 �1(q)
�

p

det m(q)vold⇣
�

{⇣ : a  ⇣T m(q)⇣  b}
�

( �1)⇤dfMreg(q). (6.3.14)

We now calculate vold⇣
�

{⇣ : a  ⇣T m(q)⇣  b}
�

to be given by

vold⇣{⇣ : a  ⇣T m(q)⇣  b} =

ˆ

{⇣:a⇣T m(q)⇣b}

d⇣

=

ˆ
�p

m(q)
�1

⇣0:a⇣0T ⇣0b
 

d⇣ =

ˆ

{⇣0:a⇣0T ⇣0b}

�

�det
p

m(q)
�1�
� d⇣ 0

=
p

det m(q)
�1

Vn�(a, b), (6.3.15)

where
p

m(q)
�1

is the inverse of the square root of the positive definite matrix m(q) which
fulfills

det
⇣

p

m(q)
�1
⌘

=
p

det m(q)
�1

,

and we wrote Vn�(a, b) for the euclidean volume of Bn�p
b

� Bn�p
a

, Bn�
r denoting the

standard ball of radius r around 0 in Rn�. By (6.3.14) and (6.3.15), line (6.3.13) becomes
ˆ

T ⇤U\�(ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G))

ef � ⌧ � ��1 d(T ⇤
fMreg)

=
Vn�(a, b)

(n � )!

ˆ

 (U)

ef
�

 �1(q)
�

( �1)⇤dfMreg(q) ⌘ Vn�(a, b)

(n � )!

ˆ

U

ef dfMreg. (6.3.16)
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The result above holds for an arbitrary chart domain U ⇢ fMreg. Using a locally finite
partition of unity, we can establish the global result

ˆ

�(ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G))

ef � ⌧ � ��1 d(T ⇤
fMreg) =

Vn�(a, b)

(n � )!

ˆ

fM
reg

ef d(fMreg). (6.3.17)

In view of (6.3.9) we have shown
ˆ

ep�1([a,b])\((T ⇤M
reg

\⌦
reg

)/G)

ef(⌧(G · ⌘)) de⌦reg(G · ⌘) =
Vn�(a, b)

(n � )!

ˆ

fM
reg

ef(G · x) d(fMreg)(G · x).

Taking averages finally yields the assertion (6.3.8).

Corollary 6.3.13. Let ⇡ : S⇤M ! M be the canonical projection of the co-sphere bundle.
Then, for every f 2 C(M), one has

 

S⇤M\⌦
reg

f � ⇡ dµ

volO
=

 

M

f
dM

volO
.

Proof. A consequence of (6.3.5), Corollaries 6.3.9, 6.3.7, 6.3.3 and Lemmas 6.3.6, 6.3.12.

6.4 Singular equivariant asymptotics

As it will become apparent in the next chapter, the results proved in this second part of
the thesis rely on the description of the asymptotic behavior of certain oscillatory integrals
that were already examined in [46, 47] while studying the spectrum of an invariant elliptic
operator. Thus, let M be a Riemannian manifold of dimension n carrying a smooth e↵ective
action of a connected compact Lie group G. Consider a chart � : M � U

'! V ⇢ Rn on M ,
and write (x, ⇠) for an element in T ⇤U ' U ⇥ Rn with respect to the canonical trivialization
of the co-tangent bundle over the chart domain. Let aµ 2 C1

c (T ⇤U ⇥ G) be an amplitude
that might depend on a parameter µ 2 R>0 such that (x, ⇠, g) 2 supp aµ implies g · x 2 U ,
and assume that there is a compact µ-independent set K ⇢ T ⇤U ⇥ G such that supp aµ ⇢ K
for each µ. Further, consider the phase function

�(x, ⇠, g) := h�(x) � �(g · x), ⇠i , (x, ⇠, g) 2 supp aµ, (6.4.1)

where h·, ·i denotes the euclidean scalar product on Rn. It represents a global analogue of
the momentum map, and oscillatory integrals with phase function given by the latter have
been examined in [48] in the context of equivariant cohomology. The phase function � has
the critical set [46, equation following (3.3)]

Crit(�) =
�

(x, ⇠, g) 2 T ⇤U ⇥ G : (�⇤)(x,⇠,g) = 0
 

= {(x, ⇠, g) 2 (⌦ \ T ⇤U) ⇥ G : g · (x, ⇠) = (x, ⇠)} = C \ T ⇤U,

with C as in (6.3.1), and the central question is to describe the asymptotic behavior as
µ ! +1 of oscillatory integrals of the form

I(µ) =

ˆ

T ⇤U

ˆ

G

eiµ�(x,⇠,g)aµ(x, ⇠, g) dg d (T ⇤U) (x, ⇠). (6.4.2)
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Part II. Semiclassical analysis and symmetry reduction

The major di�culty here resides in the fact that, unless the G-action on T ⇤M is free, the
considered momentum map is not a submersion, so that the zero set ⌦ of the momentum
map and the critical set of the phase function � are not smooth manifolds. The stationary
phase theorem can therefore not immediately be applied to the integrals I(µ). Nevertheless,
it was shown in [46] that by constructing a strong resolution of the set

N = {(p, g) 2 M ⇥ G : g · p = p}

a partial desingularization Z : eX ! X := T ⇤M ⇥ G of the critical set C can be achieved,
and by applying the stationary phase theorem in the resolution space eX, an asymptotic
description of I(µ) can be obtained. Indeed, the map Z yields a partial monomialization of
the local ideal I� = (�) generated by the phase function (6.4.1) according to

Z⇤(I�) · Ex̃,eX =
Y

j

�
lj
j · Z�1

⇤ (I�) · Ex̃,eX,

where EeX denotes the structure sheaf of rings of eX, Z⇤(I�) the total transform, and Z�1
⇤ (I�)

the weak transform of I�, while the �j are local coordinate functions near each x̃ 2 eX and
the lj natural numbers. As a consequence, the phase function factorizes locally according to

� � Z ⌘
Q

�
lj
j · �̃wk, and one shows that the weak transforms �̃wk have clean critical sets.

Asymptotics for the integrals I(µ) are then obtained by pulling them back to the resolution

space eX, and applying the stationary phase theorem to the �̃wk with the variables �j as
parameters. Thus, with  and ⇤G

M as in Section 5.2 one has

Theorem 6.4.1 ([47, Theorem 2.1]). In the limit µ ! +1 one has

�

�

�

I(µ) �
✓

2⇡

µ

◆ ˆ

Reg C

aµ(x, ⇠, g)
�

�

�

det�00(x, ⇠, g)|N
(x,⇠,g)

Reg C
�

�

�

1/2
d(Reg C)(x, ⇠, g)

�

�

�

 C sup
l2+3

�

�Dlaµ

�

�

1 µ��1(log µ)⇤
G
M�1,

(6.4.3)

where Dl is a di↵erential operator of order l independent of µ and aµ and C > 0 a constant
independent of µ and aµ, too. The expression �00(x, ⇠, g)N

(x,⇠,g)

Reg C denotes the restriction
of the Hessian of � to the normal space of Reg C inside T ⇤U ⇥ G at the point (x, ⇠, g). In
particular, the integral in (6.4.3) exists.

The precise form of the remainder estimate in the previous theorem will allow us to give
remainder estimates also in the case when the amplitude depends on µ. To conclude, let us
note the following

Lemma 6.4.2. Let b 2 C1
c (⌦ \ T ⇤U) and � 2 bG. Then

ˆ

Reg C

�(g)b(x, ⇠)
�

�

�

det�00(x, ⇠, g)|N
(x,⇠,g)

Reg C
�

�

�

1/2
d(Reg C)(x, ⇠, g) = [⇡�|H : 1]

ˆ

⌦
reg

b(x, ⇠)
d⌦reg(x, ⇠)

volO (G · (x, ⇠))
.

Proof. By using a partition of unity, the proof essentially reduces to the one of [14, Lemma
7], which is based on a result of [13, Section 3.3.2], and involves only local calculations.
Furthermore, b 2 C1

c (⌦reg) is required there. However, similarly as in [46, Lemma 9.3], one
can use Fatou’s Lemma to show that it su�ces to require only b 2 C1

c (⌦).
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Chapter 7

Generalized equivariant
semiclassical Weyl law

7.1 An equivariant semiclassical trace formula

In this section, we generalize the semiclassical trace formula (4.3.26) to an equivariant semi-
classical trace formula, which will be crucial for proving the generalized equivariant Weyl
law in the next section. As before, let M be a closed connected Riemannian manifold of
dimension n, carrying an isometric e↵ective action of a compact connected Lie group G such
that the dimension  of the principal orbits is strictly smaller than n. Recall the Peter-Weyl
decomposition (5.1.3) of the left-regular G-representation in L2(M), as well as the function
class Sbcomp

� , see Section 1.1, semiclassical character families, see Definition 5.2.1, and the
Notation (5.1.5). Consider then a Schrödinger operator (5.1.2) with G-invariant potential
and Hamiltonian (5.1.7).

Theorem 7.1.1 (Equivariant semiclassical trace formula for Schrödinger opera-

tors). Let � 2
⇥

0, 1
2+3

�

, %h 2 Sbcomp
� , and choose an operator B 2  0

h;�(M) ⇢ B(L2(M))

with principal symbol [b] represented by b 2 S0
h;�(M). Consider further for each h 2 (0, 1] the

trace-class operator
%h(P (h)) � B : L2(M) ! L2(M).

Then, for each semiclassical character family {Wh}h2(0,1] with growth rate # < 1
2+3 � � one

has in the semiclassical limit h ! 0 the asymptotic formula

(2⇡h)n�

#Wh

X

�2Wh

trL2(M)

�

%h(P (h)) � B
�

�

d� [⇡�|H : 1]

=

ˆ

⌦
reg

b · (%h � p)
d⌦reg

volO
+ O

⇣

h1�(2+3)(�+#)
�

log h�1
�⇤G

M�1
⌘

. (7.1.1)

Remark 7.1.2. The integral in the leading term can also be written as

ˆ

T ⇤ fM
reg

(%h � ep)fhbiG d(T ⇤
fMreg),
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Part II. Semiclassical analysis and symmetry reduction

with notation as in (5.2.1). To see this, one has to take into account (6.3.2), (6.3.4) and the

G-invariance of p, and apply Lemma 6.2.3 and Corollary 6.3.3. In case that fM = M/G is an
orbifold, the mentioned integral is given by an integral over the orbifold co-tangent bundle
T ⇤
fM , see Remark 6.2.4.

Remark 7.1.3. If G is trivial, the result agrees almost completely with (4.3.26), the only
di↵erence being that the remainder estimate in (4.3.26) is of order h1�2�, while (7.1.1) yields
for trivial G (i.e.  = # = 0, ⇤G

M = 1) only the weaker order h1�3�.

Proof. Let us consider first a fixed � 2 bG. Introduce a finite atlas {U↵, �↵}↵2A, �↵ : U↵
'! Rn,

with a subordinate compactly supported partition of unity {'↵}↵2A on M and a family of

functions {'↵,'↵,'↵}↵2A ⇢ C1
c (M) such that supp '↵, supp '↵, supp '↵ ⇢ U↵ and '↵ ⌘ 1

on supp '↵, '↵ ⌘ 1 on supp '↵, and '↵ ⌘ 1 on supp '↵. For each ↵ 2 A, set

u↵,0 :=
�

(%h � p) · b · '↵
�

� (��1
↵ , (@��1

↵ )T ).

Clearly, u↵,0 2 S0
h;�(Rn). Then, by Theorem 4.2.1, there is for each N 2 N a number

h0 > 0 and a collection of symbol functions {r↵,�,N}↵,�2A ⇢ h1�2�S0
h;�(Rn) and an operator

RN (h) 2 B(L2(M)) such that for h 2 (0, h0]

⇥

T� � B � %h(P (h))
⇤

(f) =
X

↵2A
T�

⇣

'↵ · Oph(u↵,0)
�

(f · '↵) � ��1
↵

�

� �↵
⌘

+
X

↵,�2A
T�

⇣

'� · Oph(r↵,�,N )
�

(f · '↵ · '�) � ��1
�

�

� ��
⌘

+ T� � RN (h)(f)

for all f 2 L2(M). Moreover, the operator RN (h) 2 B(L2(M)) is of trace class, its trace
norm fulfills

kRN (h)ktr,L2(M) = O
�

hN
�

as h ! 0,

and for fixed h 2 (0, h0] each symbol function r↵,�,N is an element of C1
c (R2n) satisfying

supp r↵,�,N ⇢ supp
�

(%h � p) · '↵
�

� (��1
↵ , (@��1

↵ )T ). (7.1.2)

Inserting the definition (5.1.4) of the projection T� one sees with (2.1.2) that each of the
operators

A�
↵ : f 7! T�

⇣

'↵ · Oph(u↵,0)
�

(f · '↵) � ��1
↵

�

� �↵
⌘

,

A�
↵,�,N : f 7! T�

⇣

'� · Oph(r↵,�,N )
�

(f · '↵ · '�) � ��1
�

�

� ��
⌘

has a smooth, compactly supported Schwartz kernel given respectively by

KA�
↵
(x1, x2) =

d�
(2⇡h)n

ˆ

G

ˆ

Rn

�(g)'↵(g�1 · x1)e
i
h h�↵(g�1·x

1

)��↵(x
2

),⌘i

u↵,0

⇣�↵(g�1 · x1) + �↵(x2)

2
, ⌘, h

⌘

'↵(x2) d⌘ dg
�

Volg↵(�↵(x2))
��1

,

KA�
↵,�,N

(x1, x2) =
d�

(2⇡h)n

ˆ

G

ˆ

Rn

�(g)'�(g
�1 · x1)e

i
h h��(g

�1·x
1

)���(x2

),⌘i

r↵,�,N

⇣��(g�1 · x1) + ��(x2)

2
, ⌘, h

⌘

('↵ · '�)(x2) d⌘ dg
�

Volg�
(��(x2))

��1
,
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Chapter 7. Equivariant Weyl law 7.1. A trace formula

where x1, x2 2 M , and Volg↵ : Rn ! (0, 1) denotes the Riemannian volume density function
in local coordinates, given by

Volg↵(y) =
p

det g↵(y),

g↵ being the matrix representing the Riemannian metric on M over the chart U↵. Conse-
quently, we obtain for arbitrary N 2 N that

trL2(M)

�

%h(P (h)) � B
�

�
= trL2(M)

⇥

T� � B � %h(P (h))
⇤

=
X

↵2A

ˆ

M

KA�
↵
(x, x) dM(x) +

X

↵,�2A

ˆ

M

KA�
↵,�,N

(x, x) dM(x) + O(hN ), (7.1.3)

where we took into account that the trace is invariant under cyclic permutations and T� com-
mutes with %h(P (h)). Furthermore, | trL2(M) Q|  kQktr,L2(M) for any trace class operator
Q, and because T� is a projection one has

kT� � RN (h)ktr,L2(M)  kRN (h)ktr,L2(M) kT�kB(L2(M))  kRN (h)ktr,L2(M)

so that the O(hN )-estimate in (7.1.3) is independent of �. Let us consider first the integrals
in the second summandˆ

M

KA�
↵,�,N

(x, x) dM(x) =
d�

(2⇡h)n

ˆ

G

ˆ

T ⇤U�

e
i
h h��(x)���(g·x),⇠iu�,N

↵,� (x, ⇠, g, h) dg d(T ⇤U�)(x, ⇠),

where u�,N
↵,� (·, h) 2 C1

c (T ⇤U� ⇥ G) is given by

u�,N
↵,� (x, ⇠, g, h) = �(g)'�(x)r↵,�,N

⇣��(x) + ��(g · x)

2
, ⇠, h

⌘

('↵ · '�)(g · x)J(x, g), (7.1.4)

J(x, g) being the Jacobian of the substitution x = g · x0. By definition of the class Sbcomp
�

there is a compact interval I ⇢ R with supp %h ⇢ I for all h 2 (0, 1]. Taking into account
(7.1.2) and the definition (5.1.7) of p we see that the function u�,N

↵,� (·, h) is supported inside a
compact h-independent subset of T ⇤U� ⇥ G. Theorem 6.4.1 now implies for each N 2 N the
estimate

�

�

�

�

(2⇡h)n

ˆ

M

KA�
↵,�,N

(x, x) dM(x)

� d� (2⇡h)
ˆ

Reg C�

u�,N
↵,� (x, ⇠, g, h)

�

�

�

det�00(x, ⇠, g)|N
(x,⇠,g)

Reg C�

�

�

�

1/2
d(Reg C�)(x, ⇠, g)

�

�

�

�

 C↵,�,N d� sup
l2+3

�

�Dlu�,N
↵,�

�

�

1h+1
�

log h�1
�⇤G

M�1
, (7.1.5)

where
Reg C� = {(x, ⇠, g) 2 (⌦ \ T ⇤U�) ⇥ G, g · (x, ⇠) = (x, ⇠), x 2 M(H)},

Dl is a di↵erential operator of order l, and �00(x, ⇠, g)|N
(x,⇠,g)

Reg C�
denotes the restriction of

the Hessian of the function

�(x, ⇠, g) = h��(x) � ��(g · x), ⇠i
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to the normal space of Reg C� inside T ⇤U� ⇥ G at the point (x, ⇠, g). Note that the domain
of integration of the integral

A�↵,�,N (h) :=

ˆ

Reg C�

u�,N
↵,� (x, ⇠, g, h)

�

�

�

det�00(x, ⇠, g)|N
(x,⇠,g)

Reg C�

�

�

�

1/2
d(Reg C�)(x, ⇠, g)

contains only such g and x for which g · x = x, so that it simplifies to

A�↵,�,N (h) =

ˆ

Reg C�

�(g)r↵,�,N (��(x), ⇠, h)('↵ · '�)(x)
�

�

�

det�00(x, ⇠, g)|N
(x,⇠,g)

Reg C�

�

�

�

1/2
d(Reg C�)(x, ⇠, g). (7.1.6)

Here we used that J(x, g) = 1 in the domain of integration, since the substitution x0 = g · x

is the identity when g · x = x, and that '� ⌘ 1 on supp '� . By Lemma 6.4.2 this simplifies
further to

A�↵,�,N (h) = [⇡�|H : 1]

ˆ

⌦
reg

r↵,�,N (��(x), ⇠, h)('↵ · '�)(x)
d⌦reg(x, ⇠)

vol (G · (x, ⇠))
.

We obtain that there is a constant C↵,�,N > 0, independent of h and �, such that

�

�A�↵,�,N (h)
�

�  C↵,�,N [⇡�|H : 1] kr↵,�,Nk1
�

�('↵ · '�)
�

�

1 .

As r↵,�,N is an element of h1�2�S0
h;�(Rn) we have that

kr↵,�,Nk1 = O(h1�2�),

so that we conclude
�

�A�↵,�,N (h)
�

�

[⇡�|H : 1]
= O

�

h1�2�
�

as h ! 0,

the estimate being independent of �. Now, we combine this result with (7.1.5) and the
relation r↵,�,N 2 h1�2�S0

h;�(Rn) to obtain the estimate

�

�

�

ˆ

M

KA�
↵,�,N

(x, x) dM(x)
�

�

�

= O
⇣

d� [⇡�|H : 1] h1�2��n+ +

d� sup
l2+3

�

� eDl�
�

�

1h�n++1��(2+3)+1�2�
�

log h�1
�⇤G

M�1
⌘

, (7.1.7)

where eDl is a di↵erential operator of order l on G and the constant in the estimate is inde-
pendent of �. Since A is finite, we conclude from (7.1.3) and (7.1.7) that

trL2(M)

�

%h(P (h)) � B
�

�
=
X

↵2A

ˆ

M

KA�
↵
(x, x) dM(x)

+ O
⇣

h1�2��n+d�

h

[⇡�|H : 1] + sup
l2+3

�

� eDl�
�

�

1h1��(2+3)
�

log h�1
�⇤G

M�1
i⌘

,

(7.1.8)
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with the constant in the estimate being independent of �. Let us now calculate the integrals
in the leading term. Again, we can apply Theorem 6.4.1, and by steps analogous to those
above we arrive at
�

�

�

�

(2⇡h)n

ˆ

M

KA�
↵
(x, x) dM(x) � d� (2⇡h) [⇡�|H : 1]

ˆ

⌦
reg

u↵,0(�↵(x), ⇠, h)'↵(x)
d⌦reg(x, ⇠)

vol (G · (x, ⇠))

�

�

�

�

 C↵d� sup
l02+3

�

� eDl0�
�

�

1 sup
l2+3

�

�D̂lu↵,0

�

�

1h+1
�

log h�1
�⇤G

M�1
,

where C↵ is independent of h and �, and D̂l is a di↵erential operator on R2n of order l. Since
%h is an element of Sbcomp

� one has

sup
l2+3

�

�D̂lu↵,0

�

�

1 = O(h�(2+3)�),

yielding the estimate
�

�

�

�

(2⇡h)n

ˆ

M

KA�
↵
(x, x) dM(x) � d� (2⇡h) [⇡�|H : 1]

ˆ

⌦
reg

�

(%h � p) · b · '↵
�

(x, ⇠)
d⌦reg(x, ⇠)

vol (G · (x, ⇠))

�

�

�

�

= O
⇣

h1+�(2+3)� d� sup
l2+3

�

� eDl�
�

�

1
�

log h�1
�⇤G

M�1
⌘

as h ! 0. Summing over the finite set A, and using (7.1.8) together with '↵ ⌘ 1 on supp '↵
and

P

↵2A '↵ = 1 we finally obtain

(2⇡h)n� trL2(M)

�

%h(P (h)) � B
�

�

d� [⇡�|H : 1]
=

ˆ

⌦
reg

�

(%h � p) · b
�

(x, ⇠)
d⌦reg(x, ⇠)

vol (G · (x, ⇠))

+ O
⇣

h1�2� + W(�)h1��(2+3)
�

log h�1
�⇤G

M�1
⌘

, (7.1.9)

where the constant in the estimate is independent of � and we introduced the notation

W(�) :=
supl2+3

�

� eDl�
�

�

1
[⇡�|H : 1]

. (7.1.10)

Now, having established the result (7.1.9) for a fixed �, we know precisely how the remainder
estimate depends on � and we see that the leading term is independent of �. Thus, we can
average for each h 2 (0, 1] each summand in (7.1.9) over the finite set Wh to obtain the result

(2⇡h)n�

#Wh

X

�2Wh

trL2(M)

�

%h(P (h)) � B
�

�

d� [⇡�|H : 1]
=

ˆ

⌦
reg

�

(%h � p) · b
�

(x, ⇠)
d⌦reg(x, ⇠)

vol (G · (x, ⇠))

+ O
⇣

h1�2� +
h 1

#Wh

X

�2Wh

W(�)
i

h1��(2+3)
�

log h�1
�⇤G

M�1
⌘

.

To finish the proof, it su�ces to observe that since the growth rate of the family {Wh}h2(0,1]

is # we have 1
#Wh

P

�2Wh
W(�) = O

�

h�(2+3)#
�

as h ! 0, and the assertion (7.1.1) follows.
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Part II. Semiclassical analysis and symmetry reduction

7.2 A generalized equivariant Weyl law

Let the notation be as in the previous sections and the Overview in Chapter 5. We are now
in the position to state and prove the main result of this chapter.

Theorem 7.2.1 (Generalized equivariant semiclassical Weyl law). Let � 2
�

0, 1
2+4

�

and choose an operator B 2  0
h;�(M) ⇢ B(L2(M)) with principal symbol represented by

b 2 S0
h;�(M) and a semiclassical character family {Wh}h2(0,1] with growth rate # < 1�(2+4)�

2+3 .
Write

J(h) :=
�

j 2 N : Ej(h) 2 [c, c + h�], �j(h) 2 Wh

 

,

where �j(h) 2 bG is defined by uj(h) 2 L2
�j(h)

(M). Then, one has in the semiclassical limit
h ! 0

(2⇡)n�hn���

#Wh

X

J(h)

hBuj(h), uj(h)iL2(M)

d�j(h) [⇡�j(h)|H : 1]

=

ˆ

⌃c\⌦reg

b
dµc

volO
+ O

⇣

h� + h
1�(2+3)#

2+4

�� �log h�1
�⇤G

M�1
⌘

.

Remark 7.2.2. Note that the second summand in the remainder dominates the estimate if
and only if � � 1�(2+3)#

4+8 . Further, the integral in the leading term equals
´
e⌃c

fhbiG de⌃c,
compare Section 6.3, and it can actually be viewed as an integral over the smooth bundle

S⇤
ep,c(fMreg) :=

n

(x, ⇠) 2 T ⇤(fMreg) : ep(x, ⇠) = c
o

,

where ep is the function on T ⇤(fMreg) induced by p via Lemma 6.2.3. In case that fM is an

orbifold, the mentioned integral is given by an integral over the orbifold bundle S⇤
ep,c(
fM) :=

�

(x, ⇠) 2 T ⇤
fM : ep(x, ⇠) = c

 

, compare Remark 7.1.2.

In the special case of a constant semiclassical character family, corresponding to the study
of a single fixed isotypic component, we obtain as a direct corollary

Theorem 7.2.3. Choose a fixed � 2 bG. Then for each � 2 (0, 1
2+4 ) one has the asymptotic

formula

(2⇡)n�hn��� X

j2N:uj(h)2L2

�(M),

Ej(h)2[c,c+h�]

hBuj(h), uj(h)iL2(M) = d� [⇡�|H : 1]

ˆ

⌃c\⌦reg

b
dµc

volO

+ O
⇣

h� + h
1

2+4

�� �log h�1
�⇤G

M�1
⌘

, h ! 0.

(7.2.1)

Remark 7.2.4. A weaker version of Theorem 7.2.3 can be proved if instead of the spectral
window [c, c + h�] one considers a fixed interval [r, s], the numbers r, s being regular values
of p. One can then show that

(2⇡h)n� X

j2N:uj(h)2L2

�(M),

Ej(h)2[r,s]

hBuj(h), uj(h)iL2(M) = d� [⇡�|H : 1]

ˆ

p�1([r,s])\⌦
reg

b
d⌦reg

volO

+ O
⇣

h
1

2+4 (log h�1)⇤
G
M�1

⌘

,
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which is proven by complete analogy. The even weaker statement

lim
h!0

(2⇡h)n� X

j2N:uj(h)2L2

�(M),

Ej(h)2[r,s]

hBuj(h), uj(h)iL2(M) = d� [⇡�|H : 1]

ˆ

p�1([r,s])\⌦
reg

b
d⌦reg

volO

could in principle also be obtained without the remainder estimates from [47] using heat kernel
methods as in [18] or [10], adapted to the semiclassical setting. Nevertheless, for the study of
growing families of isotypic components and shrinking spectral windows as in Theorem 7.2.1
remainder estimates are necessary due to the lower rate of convergence.

Proof of Theorem 7.2.1. The proof is an adaptation of the proof of [63, Theorem 15.3] to our
situation, but with a sharper energy localization. Again, we consider first a single character
� 2 bG. Let h 2 (0, 1] and fix a positive number � < 1

2+3��. Choose f�,h, g�,h 2 C1
c (R, [0, 1])

such that supp f�,h ⇢ [� 1
2 + h�, 1

2 � h�], f�,h ⌘ 1 on [� 1
2 + 3h�, 1

2 � 3h�], supp g�,h ⇢
[� 1

2 � 3h�, 1
2 + 3h�], g�,h ⌘ 1 on [� 1

2 � h�, 1
2 + h�], and

| @j
y f�,h(y)|  Cj h��j , | @j

y g�,h(y)|  Cj h��j , (7.2.2)

compare [33, Theorem 1.4.1 and (1.4.2)]. Put c(h) := ch�� + 1
2 , so that x 7! h��x � c(h)

defines a di↵eomorphism from [c, c+h�] to [�1/2, 1/2], and set f�,�,h(x) := f�,h(h��x�c(h)),
g�,�,h(x) := g�,h(h��x � c(h)). Let ⇧� be the projection onto the span of {uj(h) 2 L2

�(M) :

Ej(h) 2 [c, c + h�]}. Then

f�,�,h(P (h))� �⇧� = ⇧� � f�,�,h(P (h))� = f�,�,h(P (h))�,

g�,�,h(P (h))� �⇧� = ⇧� � g�,�,h(P (h))� = ⇧�.
(7.2.3)

Note that f�,�,h(P (h)), g�,�,h(P (h)), ⇧� are finite rank operators. For that elementary reason,
all operators we consider in the following are trace class. In particular, by (7.2.3) we have

X

j2N:uj(h)2L2

�(M)

Ej(h)2[c,c+h�]

hBuj(h), uj(h)iL2(M) = trL2(M)⇧� � B � ⇧�

= trL2(M) f�,�,h(P (h))� � B� + trL2(M)⇧� � g�,�,h(P (h))� � (1 � f�,�,h(P (h))�) � B� �⇧�
= trL2(M)

�

f�,�,h(P (h)) � B
�

�

+ trL2(M)⇧� �
�

g�,�,h(P (h)) � (1 � f�,�,h(P (h))) � B
�

�
�⇧�

| {z }

=:R�,�,h

. (7.2.4)

In what follows, we shall show that the first summand in (7.2.4) represents the main con-
tribution, while R�,�,h becomes small as h goes to zero. For this, we estimate R�,�,h using
the trace norm. Recall that if L 2 B(L2(M)) is of trace class and M 2 B(L2(M)), then
kLMktr,L2(M)  kLktr,L2(M) kMkB(L2(M)), see e.g. [63, p. 337]. By the spectral functional
calculus this implies

|R�,�,h| 
�

�

�

⇧� � (g�,�,h(P (h)) � (1 � f�,�,h(P (h))) � B)� �⇧�
�

�

�

tr,L2(M)


�

�

�

(g�,�,h(P (h)) � (1 � f�,�,h(P (h))))�

�

�

�

tr,L2(M)
kBkB(L2(M))

= kv�,�,h(P (h))�ktr,L2(M) kBkB(L2(M)) ,

(7.2.5)
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where we set
v�,�,h := g�,�,h(1 � f�,�,h) 2 C1

c (R, [0, 1]).

In particular, v�,�,h is non-negative. By the spectral functional calculus, v�,�,h(P (h)) is a
positive operator. T� is a projection, hence positive as well. Moreover, by the spectral func-
tional calculus, v�,�,h(P (h))� commutes with T�, as P (h) does. It follows that v�,�,h(P (h))�
is positive as the composition of positive commuting operators. For a positive operator, the
trace norm is identical to the trace. Therefore (7.2.5) implies

|R�,�,h|  kBkB(L2(M)) trL2(M) v�,�,h(P (h))�. (7.2.6)

By construction of the supports of f�,h and g�,h, we have

supp v�,�,h ⇢ [c � 3h�h�, c + 3h�h�] [ [c + h� � 3h�h�, c + h� + 3h�h�]. (7.2.7)

Now, note that the functions f�,�,h, g�,�,h, v�,�,h are elements of Sbcomp
�+� . Since we chose �

such that �+ � < 1
2+3 , we can apply (7.1.9) with B = 1L2(M) to conclude

�

�

�

�

(2⇡h)n� trL2(M) v�,�,h (P (h))�
d� [⇡�|H : 1]

�
ˆ

⌦
reg

(v�,�,h � p)
d⌦reg

volO

�

�

�

�

 C
⇣

h1�2(�+�) + W(�)h1�(�+�)(2+3)
�

log h�1
�⇤G

M�1
⌘

, (7.2.8)

where C is independent of h and �, and W(�) was defined in (7.1.10). On the other hand,
applying (7.1.9) to the first summand on the right hand side of (7.2.4) yields

�

�

�

�

(2⇡h)n� trL2(M) (f�,�,h (P (h)) � B)�
d� [⇡�|H : 1]

�
ˆ

⌦
reg

(f�,�,h � p) b
d⌦reg

volO

�

�

�

�

 C
⇣

h1�2(�+�) + W(�)h1�(�+�)(2+3)
�

log h�1
�⇤G

M�1
⌘

, (7.2.9)

where C is a new constant independent of h and �. Next, we use that Corollary 6.3.9 implies

�

�

�

ˆ
⌦

reg

(v�,�,h � p)
d⌦reg

volO

�

�

�

=
�

�

�

ˆ
e⌦

reg

(v�,�,h � ep) d(e⌦reg)
�

�

�

= O(h�+�) as h ! 0. (7.2.10)

Combining (7.2.4)-(7.2.10) leads to

(2⇡h)n� X

j2N:uj(h)2L2

�(M)

Ej(h)2[c,c+h�]

hBuj(h), uj(h)iL2(M)

d� [⇡�|H : 1]
=

ˆ

⌦
reg

(f�,�,h � p) b
d⌦reg

volO

+ O
⇣

h�+� + h1�2(�+�) + W(�)h1�(�+�)(2+3)
�

log h�1
�⇤G

M�1
⌘

, (7.2.11)

the constant in the estimate being independent of �. We proceed by observing
�

�

�

�

ˆ

⌦
reg

(f�,�,h � p) b
d⌦reg

volO
�

ˆ

⌦
reg

\p�1([c,c+h�])

b
d⌦reg

volO

�

�

�

�


�

�

�

�

ˆ

T ⇤ fM
reg

(v�,�,h � ep) b d(T ⇤
fMreg)

�

�

�

�

= O(h�+�).
(7.2.12)
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Furthermore, with

⌃c = p�1({c}), e⌃c = ep�1({c}),

and the notation from (5.2.1) one computes

1

h�

ˆ
⌦

reg

\p�1([c,c+h�])
b

d⌦reg

volO
=

1

h�

ˆ
ep�1([c,c+h�])

fhbiG de⌦reg

=

ˆ
e⌃c

fhbiG de⌃c + O(h�) =

ˆ

⌃c\⌦reg

b
dµc

volO
+ O(h�),

(7.2.13)

where we took again Corollary 6.3.9 into account. Combining (7.2.11)-(7.2.13) then yields
for a fixed � 2 bG

(2⇡)n�hn��� X

j2N:uj(h)2L2

�(M)

Ej(h)2[c,c+h�]

hBuj(h), uj(h)iL2(M)

d� [⇡�|H : 1]
�

ˆ

⌃c\⌦reg

b
dµc

volO

= O
⇣

h� + h� + W(�)h1�(�+�)(2+3)�� �log h�1
�⇤G

M�1
⌘

.

(7.2.14)

Here, the constant in the estimate is independent of �. Just as at the end of the proof of
Theorem 7.1.1, we can now take for each h 2 (0, 1] the average over the finite set Wh, and
knowing that Wh has growth rate #, we get

(2⇡)n�hn���

#Wh

X

J(h)

hBuj(h), uj(h)iL2(M)

d�j(h)

⇥

⇡�j(h)|H : 1
⇤ �

ˆ

⌃c\⌦reg

b
dµc

volO

= O
⇣

h� + h� + h1�(�+�+#)(2+3)�� �log h�1
�⇤G

M�1
⌘

.

(7.2.15)

Finally, we choose � such that the remainder estimate is optimal for the given constants �
and #. This is the case i↵ � = 1 � (�+ � + #)(2+ 3) � �, which is equivalent to

� =
1 � (2+ 3)#

2+ 4
� �.

This choice for � is compatible with the general technical requirement that � < 1
2+3 � �,

and the assertion of Theorem 7.2.1 follows.
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As consequence of the previous theorem we obtain in particular

Theorem 7.2.5 (Equivariant Weyl law for semiclassical character families). For
each � 2 bG, denote by mult�(Ej(h)) the multiplicity of the irreducible representation ⇡� in
the eigenspace Ej(h) corresponding to the eigenvalue Ej(h). Then one has in the limit h ! 0
the asymptotic formula

(2⇡)n�hn���

#Wh

X

�2Wh, j2N:
Ej(h)2 [c,c+h�]

mult�(Ej(h))

dim Ej(h) · [⇡�|H : 1]

= vol de⌃c

e⌃c + O
⇣

h� + h
1�(2+3)#

2+4

�� �log h�1
�⇤G

M�1
⌘

. (7.2.16)

Again, in the special case that Wh = {�} for all h 2 (0, 1] and some fixed � 2 bG we obtain

Theorem 7.2.6 (Equivariant Weyl law for single isotypic components). Choose a
fixed � 2 bG. Then one has in the limit h ! 0

(2⇡)n�hn��� X

j2N:
Ej(h)2 [c,c+h�]

mult�(Ej(h))

dim Ej(h)

= [⇡�|H : 1]vol de⌃c

e⌃c + O
⇣

h� + h
1

2+4

�� �log h�1
�⇤G

M�1
⌘

. (7.2.17)

Remark 7.2.7. Note that the leading terms in the formulas above are non-zero. Indeed, if c is
a regular value of p and consequently of ep, both ⌃c and e⌃c are non-degenerate hypersurfaces,
which implies that their volumes are non-zero.

As mentioned before, the proof of the generalized equivariant semiclassical Weyl law in
Theorem 7.2.1 relies on the singular equivariant asymptotics which are the content of Theorem
6.4.1. Hereby one cannot assume that the considered integrands are supported away from
the singular part of ⌦, in particular when localizing to ⌃c \⌦reg in (7.2.13). This means that
for general group actions a desingularization process is indeed necessary, as the following
examples illustrate.

Examples 7.2.8.

1. Let G be a compact Lie group of dimension at least 1, acting e↵ectively and locally
smoothly on the n-sphere Sn with precisely one orbit type. Then G either acts transi-
tively or freely on Sn [6, Theorem IV.6.2]. In the latter case, G is either S1, S3, or the
normalizer of S1 in S3. Consequently, if M is an arbitrary compact G-manifold, S⇤M
will contain non-principal isotropy types in general. As a simple example, consider the
linear action of G = S1 on the standard 3-sphere M = S3 = {x 2 R4 : kxk = 1} given
by

S1 =
�

z = ei�, � 2 [0, 2⇡)
 

3 z 7�! R(z) =

0

B

B

@

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

1

C

C

A

2 SO(4)
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with isotropy types ({e}) and (S1). The induced action on the tangent bundle

TS3 =
G

x

TxS3 =
G

x

�

(x, v) 2 R8 : x 2 S3, v ? x
 

,

which we identify with T ⇤S3 via the induced metric, is given by

z · (x, v) 7! (R(z)x, R(z)v),

and has the same isotropy types. Let now x 2 S3(S1) be of singular orbit type. Then
x3 = x4 = 0 and S1 acts on

SxS3 =
�

(x, v) 2 S3 ⇥ S3 : v1x1 + v2x2 = 0
 

with isotropy types ({e}) and (S1). In particular, the S1-action on SxS3 ' S⇤
xS3 is

neither transitive nor free.

2. Let M = G be a Lie group with a left-invariant Riemannian metric and K ⇢ G a
compact subgroup. Consider the left action of G on itself and the decomposition of
T ⇤G into isotropy types with respect to the induced left K-action. Taking into account
the left trivialization T ⇤G ' G ⇥ g⇤ explained in [44, Example 4.5.5] one has

(S⇤G)(H) = S⇤(G(H))

for an arbitrary closed subgroup H ⇢ K. Thus, in general, the co-sphere bundle of G
will contain non-principal isotropy types. Assume now that G is compact and consider
a Schrödinger operator P (h) on G with K-invariant symbol function p. Let c 2 R be a
regular value of p and ⌃c = p�1({c}). Then the results of Theorem 7.2.1 apply. By the
previous considerations,

S⇤G \ ⌦reg = ⌦ \ S⇤(G(H)), ⌦ = J�1
K (0),

where JK : T ⇤G ! k⇤ is the momentum map of the K-action, and H a principal isotropy
group. Consequently, the closure of S⇤G \ ⌦reg, and more generally of ⌃c \ ⌦reg, will
contain non-principal isotropy types in general.

In case that G acts on M with finite isotropy groups, G-invariant pseudodi↵erential op-
erators on M correspond to pseudodi↵erential operators on the orbifold fM , and vice versa.
In fact, the spectral theory of elliptic operators on compact orbifolds has attracted quite
much attention recently [19, 56, 38] and, as mentioned earlier, the work presented here can
be viewed as part of an attempt to develop a spectral theory of elliptic operators on general
singular G-spaces.
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Chapter 8

Equivariant quantum ergodicity

8.1 Symmetry-reduced classical ergodicity

We begin now with our study of ergodicity, and first turn to the examination of classical er-
godicity in the presence of symmetries within the framework of symplectic reduction. As we
already mentioned, the latter is based on the fundamental fact that the presence of conserved
quantities or first integrals of motion leads to the elimination of variables, and reduces the
given configuration space with its symmetries to a lower-dimensional one, in which the degen-
eracies and the conserved quantitites have been eliminated. In particular, the Hamiltonian
flows associated to G-invariant Hamiltonians give rise to corresponding reduced Hamiltonian
flows on the di↵erent symplectic strata of the reduction. Therefore, the concept of ergodicity
can be studied naturally in the context of symplectic reduction, leading to a symmetry-
reduced notion of ergodicity.

Recall that, in general, a measure-preserving transformation T : X ! X on a finite
measure space (X, ⌫) is called ergodic if T�1(A) = A implies ⌫(A) 2 {0, ⌫(X)} for every
measurable set A ⇢ X. Consider now a connected, symplectic manifold (X,!) with a global
Hamiltonian action of a Lie group G, and let J : X ! g⇤, J(⌘)(X) = JX(⌘) be the corre-
sponding momentum map. As already noted in Section 6.2, for each X 2 g the function JX

is a conserved quantity for any G-invariant function p 2 C1(X,R), so that {JX , p} = 0. This
implies that for any value µ of J, the fiber J�1({µ}) is invariant under the Hamiltonian flow
of p, which means that J fulfills Noether’s condition. In particular, if c 2 R is a regular value
of p and ⌃c := p�1({c}), the pre-image under J of any open proper subset in J(⌃c) will be
an open proper subset in ⌃c that is invariant under the Hamiltonian flow of p, so the latter
cannot be ergodic with respect to the induced Liouville measure on ⌃c, unless G is trivial.

Let now p and µ be fixed, K ⇢ G an isotropy group of the G-action on X, and ⌘ 2
J�1({µ}). With the notation as in Section 6.2, let c 2 R, and put e⌃(K)

µ,c := (ep(K)
µ )�1({c}). Let

eg be a Riemannian metric on e⌦(K)
µ and J : T e⌦(K)

µ ! T e⌦(K)
µ the almost complex structure

determined by e!(K)
µ and eg, so that (e⌦(K)

µ , J , eg) becomes an almost Hermitian manifold. We
then make the following

Assumption 1. c is a regular value of ep(K)
µ .

Note that this assumption is implied by the condition that for all ⇠ 2 J�1({µ})\Gµ ·X⌘
K \⌃c

one has
Hp(⇠) /2 gµ · ⇠,
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where gµ denotes the Lie algebra of Gµ. Indeed, assume that there exists some [⇠] 2 e⌃(K)
µ,c

such that grad ep(K)
µ ([⇠]) = 0. Since

e!(K)
µ (s-grad ep(K)

µ ,X) = dep(K)
µ (X) = eg(grad ep(K)

µ ,X) 8 X 2 T e⌦(K)
µ ,

we infer that Hep(K)

µ
([⇠]) = s-grad ep(K)

µ ([⇠]) = 0, which means that [⇠] 2 e⌃(K)
µ,c is a stationary

point for the reduced flow, so that e'µ
t ([⇠]) = [⇠] for all t 2 R. By (6.2.1), this is equivalent to

⇡(K)
µ � 't � ◆(K)

µ (⇠0) = e'µ
t ([⇠]) 8 t 2 R, ⇠0 2 Gµ · ⇠,

which in turn is equivalent to 't � ◆(K)
µ (⇠0) 2 Gµ · ⇠0. Thus, there exists a Gµ-orbit in

J�1({µ}) \ Gµ · X⌘
K \ ⌃c which is invariant under 't. In particular one has Hp(⇠0) 2 gµ · ⇠0

for all ⇠0 2 Gµ · ⇠.
Assumption 1 ensures that e⌃(K)

µ,c is a smooth submanifold of e⌦(K)
µ . Equipping e⌦(K)

µ with

the symplectic volume form defined by the unique symplectic form on e⌦(K)
µ described in

Section 6.2, there is a unique induced Liouville measure ⌫(K)
µ,c on e⌃(K)

µ,c , compare Corollary

6.3.9. Moreover, ⌫(K)
µ,c is invariant under the reduced flow e'µ

t , since the latter constitutes a
symplectomorphism due to Cartan’s homotopy formula. Suppose now that the hypersurface
e⌃(K)

µ,c has finite volume with respect to the measure ⌫(K)
µ,c . It is then natural to make the

following

Definition 8.1.1. The reduced flow e'µ
t is called ergodic on e⌃(K)

µ,c if for any measurable subset

A ⇢ e⌃(K)
µ,c with e'µ

t (A) = A one has

⌫(K)
µ,c (A) = 0 or ⌫(K)

µ,c (A) = ⌫(K)
µ,c (e⌃(K)

µ,c ).

We can now formulate

Theorem 8.1.1 (Symmetry-reduced mean ergodic theorem). Let Assumption 1 above

be fulfilled, and suppose that e⌃(K)
µ,c has finite, non-zero volume with respect to its hyper-

surface measure ⌫
(K)
µ,c , and that the reduced flow e'µ

t is ergodic on e⌃(K)
µ,c . Then, for each

f 2 L2
�

e⌃(K)
µ,c , d⌫

(K)
µ,c

�

we have

hfiT
T!1�! 1

⌫
(K)
µ,c (e⌃(K)

µ,c )

ˆ

e⌃(K)

µ,c

f d⌫(K)
µ,c

with respect to the norm topology of L2
�

e⌃(K)
µ,c , d⌫

(K)
µ,c

�

, where

hfiT ([µ]) :=
1

T

T̂

0

f (e'µ
t ([µ])) dt, [µ] 2 e⌃(K)

µ,c .

Proof. The proof is completely analogous to the existing proofs of the classical mean ergodic
theorem, compare e.g. [63, Theorem 15.1].

In what follows, we shall apply the general results outlined above to the case where
X = T ⇤M with M and G as in Chapter 5, µ = 0, K = H is given by a principal isotropy
group, and p is the Hamiltonian function (5.1.7). We shall then use the simpler notation

e⌦reg = e⌦(H)
0 , e't = e'0

t , e⌃c = e⌃(H)
0,c , de⌃c = d⌫

(H)
0,c , ep = ep

(H)
0 .

As a special case of Theorem 8.1.1 we get the following
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Theorem 8.1.2. Suppose that the reduced flow e't is ergodic on
�

e⌃c, de⌃c

�

. Then for each

f 2 L2
�

e⌃c, de⌃c

�

,

lim
T!1

ˆ

e⌃c

⇣

hfiT �
 

e⌃c

f de⌃c

⌘2
de⌃c = 0.

Remark 8.1.3. Note that if fM is an orbifold, the ergodicity of the reduced flow e't on
�

e⌃c, de⌃c

�

is equivalent to the ergodicity of the corresponding Hamiltonian flow on the orbifold bundle
S⇤
ep,c(
fM) =

�

(x, ⇠) 2 T ⇤(fM) : ep(x, ⇠) = c
 

with respect to Liouville measure.

Next, we examine the relation between classical time evolution and symmetry reduction.
Let a 2 C1(T ⇤M). For a G-equivariant di↵eomorphism � : T ⇤M ! T ⇤M , we have

ha � �iG (⌘) =

ˆ

G

a(�(g · ⌘)) dg =

ˆ

G

a(g · �(⌘)) dg = haiG (�(⌘)),

so that ha � �iG = haiG � � and consequently (ha � �iG)e = (haiG � �)e holds. Now, we
apply this result to the case � = 't, where 't is the Hamiltonian flow associated to the
symbol function p of the Schrödinger operator. If i : ⌦reg ,! T ⇤M denotes the inclusion and

⇡ : ⌦reg ! e⌦reg the projection onto the G-orbit space, we have ⇡ � 't � i = e't � ⇡. Since

haiG � 't � i = (haiG � 't)
e � ⇡, haiG � i = fhaiG � ⇡,

we get

fhaiG � e't � ⇡ = fhaiG � ⇡ � 't � i = haiG � i � 't � i = haiG � 't � i = (haiG � 't)
e � ⇡,

where we used that i � 't � i = 't � i. Since ⇡ is surjective, we have shown

Lemma 8.1.4. Let a 2 C1(T ⇤M) and 't be the flow on T ⇤M associated to the Hamiltonian
p. Let e't be the reduced flow on e⌦reg associated to ep. Then time evolution and reduction
commute:

(haiG � 't)
e = fhaiG � e't.

8.2 Equivariant quantum ergodicity

We are now ready to formulate our first quantum ergodic theorem in a symmetry-reduced
context. Let the notation be as in the previous sections and Chapter 5.

Theorem 8.2.1 (Integrated equivariant quantum ergodicity). Suppose that the re-
duced flow e't corresponding to the reduced Hamiltonian function ep is ergodic on e⌃c =
ep�1({c}). Let A 2  0

h(M) be a semiclassical pseudodi↵erential operator with principal sym-
bol �(A) = [a], where a 2 S0

h(M) is independent of h. For a number � 2
�

0, 1
2+4

�

and a

semiclassical character family {Wh}h2(0,1] with growth rate # < 1�(2+4)�
2+3 set

J(h) := {j 2 N : Ej(h) 2 [c, c + h�], �j(h) 2 Wh},

where �j(h) is defined by uj(h) 2 L2
�j(h)

(M). Then, one has

lim
h!0

hn���

#Wh

X

J(h)

1

d�j(h)[⇡�j(h)|H : 1]

�

�

�

hAuj(h), uj(h)iL2(M)�
 

⌃c\⌦reg

a
dµc

volO

�

�

�

2
= 0. (8.2.1)
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Remark 8.2.2. Again, the integral in (8.2.1) can also we written as
�
e⌃c

fhaiG de⌃c, and if fM is

an orbifold, it can be written as an integral over S⇤
ep,c(
fM), compare Remark 7.2.2.

Proof. We shall adapt the existing proofs of quantum ergodicity to the equivariant situation,
following mainly [63, Theorem 15.4]. Let us write uj(h) = uj and Ej(h) = Ej , and choose a
function % 2 C1

c (R, [0, 1]) with % ⌘ 1 in a neighborhood of c. Without loss of generality we
may assume for the rest of the proof that h is small enough so that % ⌘ 1 on [c, c + h�]. Set

B := %(P (h)) �
�

A � ↵1L2(M)

�

, ↵ :=

 

⌃c\⌦reg

a
dµc

volO
=

 

e⌃c

fhaiG de⌃c, (8.2.2)

where fhaiG was defined in (5.2.1). Note that by the semiclassical calculus we have B 2
 �1

h (M). Furthermore,

�(B) = (% � �(P (h)))�
�

A � ↵1L2(M)

�

= [(% � p) (a � ↵ 1T ⇤M )] 2 S�1
h (M)/hS�1

h (M).

Let us write b := (% � p) (a � ↵ 1T ⇤M ), so that �(B) = [b]. Clearly,

fhbiG = ((% � p) (haiG � ↵ 1T ⇤M ))e

= (% � ep) (haiG � ↵ 1T ⇤M )e = (% � ep)
⇣

fhaiG � ↵ 1e⌦
reg

⌘

. (8.2.3)

Next, we define

L(h) :=
(2⇡)n�hn���

#Wh

X

J(h)

1

d�j(h)[⇡�j(h)|H : 1]

�

�

�

hBuj , ujiL2(M)

�

�

�

2
. (8.2.4)

By the spectral theorem, %(P (h))uj = uj for Ej 2 [c, c+h�], since % ⌘ 1 on [c, c+h�]. Taking
into account the self-adjointness of %(P (h)) one sees that for Ej 2 [c, c + h�]

hBuj , ujiL2(M) = hAuj , ujiL2(M) � ↵. (8.2.5)

Consequently, we will be done with the proof if we can show that

lim
h!0

L(h) = 0. (8.2.6)

In order to do so, one considers the time evolution operator

Fh(t) : L2(M) ! L2(M), Fh(t) := e�itP (h)/h, t 2 R,

which by Stone’s theorem [60, Section XI.13] is a well-defined bounded operator. One then
sets

B(t) := Fh(t)�1BFh(t).

In order to make use of classical ergodicity, one notes that the expectation value

hBuj , ujiL2(M) =
D

Be�itEj/huj , e
�itEj/huj

E

L2(M)
=
D

Be�itP (h)/huj , e
�itP (h)/huj

E

L2(M)

= hB(t)uj , ujiL2(M) , t 2 [0, T ],
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is actually time-independent. This implies for each T > 0

hBuj , ujiL2(M) = hhBiT uj , ujiL2(M) ,

where we set hBiT = 1
T

´ T

0 B(t)dt 2  �1
h (M). Taking into account kujk2L2(M) = 1 and the

Cauchy-Schwarz inequality one arrives at

�

�

�

hBuj , ujiL2(M)

�

�

�

2
 khBiT ujk2L2(M) .

We therefore conclude from (8.2.4) for each T > 0 that

�

�L(h)
�

�  (2⇡)n�hn���

#Wh

X

J(h)

1

d�j(h)[⇡�j(h)|H : 1]
hhB⇤iT hBiT uj , ujiL2(M) . (8.2.7)

Next, let B(t) be an element in  �1
h (M) with principal symbol �(B) � 't. By the weak

Egorov theorem [63, Theorem 15.2] one has
�

�B(t) � B(t)
�

�

B(L2(M))
= O(h) uniformly for t 2 [0, T ],

which implies
hBiT =

⌦

B
↵

T
+ OT

B(L2(M))(h). (8.2.8)

From the definition of B we get

�
�⌦

B
↵

T

�

=

"

1

T

T̂

0

b � 't dt

#

.

Furthermore, the symbol map is a ⇤-algebra homomorphism from  �1
h (M) with involution

given by the adjoint operation to S�1
h (M)/hS�1

h (M) with involution given by pointwise
complex conjugation. That leads to

�
⇣

⌦

B
⇤↵

T

⌦

B
↵

T

⌘

=

"

�

�

�

1

T

T̂

0

b � 't dt
�

�

�

2
#

.

Now, note that by Lemma 8.1.4

*

1

T

T̂

0

b � 't dt

+e

G

=
1

T

T̂

0

(hbiG � 't)
e

dt =
1

T

T̂

0

fhbiG � e't dt = hfhbiGiT , (8.2.9)

which is where the transition from the flow 't to the reduced flow e't takes place. We can
then apply the generalized equivariant Weyl law, Theorem 7.2.1, which together with (8.2.9)
yields

(2⇡)n�hn���

#Wh

X

J(h)

1

d�j(h)[⇡�j(h)|H : 1]

⌦⌦

B
⇤↵

T

⌦

B
↵

T
uj , uj

↵

L2(M)

=

ˆ

e⌃c

|hfhbiGiT |2 de⌃c + OT

⇣

h� + h
1�(2+3)#

2+4

��(log h�1)⇤
G
M�1

⌘

.
(8.2.10)
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From (8.2.3) we see that over e⌃c = ep�1({c}) we have fhbiG|e⌃c
= fhaiG|e⌃c

�↵ · 1e⌃c
=: ebc. With

(8.2.7), (8.2.8) and (8.2.10) we deduce for each T > 0

�

�L(h)
�

� 
ˆ

e⌃c

|hebciT |2 de⌃c + OT

⇣

h� + h
1�(2+3)#

2+4

��(log h�1)⇤
G
M�1

⌘

+

2

4

hn���

#Wh

X

J(h)

1

d�j(h)[⇡�j(h)|H : 1]

3

5 · OT (h).

By Theorem 7.2.1, the factor in front of the OT (h)-remainder is convergent and therefore

bounded as h ! 0. Moreover, the number
´
e⌃c

|hebciT |2 de⌃c is independent of h, as we assume
that a is independent of h. Thus,

lim sup
h!0

�

�L(h)
�

� 
ˆ

e⌃c

|hebciT |2 de⌃c 8 T > 0. (8.2.11)

This is now the point where symmetry-reduced classical ergodicity is used. Since ebc fulfills�
e⌃c

ebc de⌃c = 0, Theorem 8.1.2 yields limT!1
´
e⌃c

|hebciT |2de⌃c = 0. Because the left hand side
of (8.2.11) is independent of T , it follows that it must be zero, yielding (8.2.6).

Remark 8.2.3. Note that one could have still exhibited the Weyl law remainder estimate in
(8.2.11). But since the rate of convergence in Theorem 8.1.2 is unknown in general, it is
not possible to give a remainder estimate in Theorem 8.2.1 with the methods employed here.
Nevertheless, in certain dynamical situations, the rate could probably be made explicit.

In the special case of a constant semiclassical character family, corresponding to the study
of a single fixed isotypic component, we obtain as a direct consequence

Theorem 8.2.4 (Integrated equivariant quantum ergodicity for single isotypic
components). Suppose that the reduced flow e't corresponding to the reduced Hamiltonian
function ep is ergodic on e⌃c := ep�1({c}). Let A 2  0

h(M) be a semiclassical pseudodi↵erential
operator with principal symbol �(A) = [a], where a 2 S0

h(M) is independent of h. Choose

� 2
�

0, 1
2+4

�

and � 2 bG. Then, one has

lim
h!0

hn��� X

J�(h)

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

2
= 0, (8.2.12)

where
J�(h) :=

�

j 2 N : Ej(h) 2 [c, c + h�], uj(h) 2 L2
�(M)

 

. (8.2.13)

Remark 8.2.5. A weaker version of Theorem 8.2.4 can be proved with a less sharp energy
localization in an interval [r, s] with r < s by the same methods employed here. In fact,
under the additional assumption that the mean value ↵ introduced in (8.2.2) is the same for
all c 2 [r, s] and all considered c are regular values of p, the reduced flow being ergodic on
each of the contemplated hypersurfaces e⌃c, one can show that

lim
h!0

hn� X

j2N:uj(h)2L2

�(M),

Ej(h)2[r,s]

�

�

�

hAuj(h), uj(h)iL2(M) �
 

p�1([r,s])\⌦
reg

a
d⌦reg

volO

�

�

�

2
= 0. (8.2.14)
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The proof of this relies on a corresponding semiclassical Weyl law for the interval [r, s] and
single isotypic components, see Remark 7.2.4. The point is that for the weaker statement
(8.2.14) a remainder estimate of order o(hn�) is su�cient in Weyl’s law, since the rate of
convergence in (8.2.14) is the one of the leading term. Thus, in principle, this weaker result
could have also been obtained using heat kernel methods as in [18] or [10] adapted to the
semiclassical setting, at least for the Laplacian. Nevertheless, for the stronger version proved
in Theorem 8.2.4, remainder estimates of order O(hn���) in Weyl’s law and in particular
the results of [46] are necessary.

In what follows, we shall use our previous results to prove the main result of this chapter,
a symmetry-reduced quantum ergodicity theorem for Schrödinger operators.

Theorem 8.2.6 (Equivariant quantum ergodicity for Schrödinger operators). With
the notation and assumptions as in Theorem 8.2.1, there is a h0 2 (0, 1] such that for each
h 2 (0, h0] we have two subsets ⇤1(h), ⇤2(h) ⇢ J(h) satisfying

lim
h!0

#⇤1(h)

#J(h)
= 1, lim

h!0

P

j2⇤

2

(h)

1
d�j(h)

[⇡�j(h)

|H :1]

P
j2J(h)

1
d�j(h)

[⇡�j(h)

|H :1]

= 1, (8.2.15)

such that for each semiclassical pseudodi↵erential operator A 2  0
h(M) with principal symbol

�(A) = [a], where a is h-independent, the following holds. For all " > 0 there is a h" 2 (0, h0]
such that for all h 2 (0, h"] one has

1
q

d�j(h)[⇡�j(h)|H : 1]

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

< " 8 j 2 ⇤1(h), (8.2.16)

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

< " 8 j 2 ⇤2(h), (8.2.17)

where the integrals in (8.2.16) and (8.2.17) equal
�
e⌃c

fhaiG de⌃c.

Proof. Again, this proof is an adaptation of existing proofs like [63, Theorem 15.5] to the
equivariant setting, only that we do not need the technical condition that the value of the
integral

�
e⌃c
ea de⌃c must stay the same when varying c in some interval, which slightly simplifies

the proof. On the other hand, the consideration of semiclassical character families adds a few
subtleties.

Write uj(h) = uj and Ej(h) = Ej . By Theorem 7.2.1 we can choose a h0 2 (0, 1] such
that J(h) 6= ; for all h 2 (0, h0], and suppose that h 2 (0, h0]. With the notation as in (5.2.1),
we set for any smooth function s on T ⇤M

↵(s) :=

 

e⌃c

fhsiG de⌃c.

Let ⌧ 2 C1
c (R, [0, 1]) be such that ⌧ ⌘ 1 in a neighborhood of c. Without loss of generality,

we assume for the rest of the proof that h0 is small enough so that ⌧ ⌘ 1 on [c, c + h�0]. Now,
for any operator A as in the statement of the theorem set

B := A � ↵(a) ⌧ (P (h)) .

By the semiclassical calculus we know that the principal symbol of B is given by �(B) = [b]
with b := a �↵(a) ⌧ � p. Clearly, ↵(b) = 0, since ⌧ � ep ⌘ 1 on e⌃c. Let us now assume that the
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statement of the theorem holds for all operators A with ↵(a) = 0. Then, there are subsets
⇤1(h), ⇤2(h) fulfilling (8.2.15) such that for all " > 0 there is a h" 2 (0, h0] with

p

⌅i(j, h)
�

�

�

hBuj , ujiL2(M)

�

�

�

< " 8 h 2 (0, h"], 8 j 2 ⇤i(h), i 2 {1, 2}, (8.2.18)

where we introduced the notation

⌅i(j, h) :=

(

1
d�j(h)

[⇡�j(h)

|H :1] , i = 1,

1, i = 2.

Due to the choice of the function ⌧ we have ⌧ (P (h)) (uj) = uj for all uj with Ej 2 [c, c+h�].
Consequently, (8.2.18) implies for each i 2 {1, 2} that for all " > 0 there is h" 2 (0, h0] such
that

p

⌅i(j, h)
�

�

�

hAuj , ujiL2(M) � ↵(a)
�

�

�

< " 8 h 2 (0, h"], 8 j 2 ⇤i(h),

and we obtain the statement of the theorem for general A. We are therefore left with the
task of proving (8.2.18) for arbitrary operators B with ↵(b) = 0, and shall proceed in a
similar fashion to parts 1 - 5 of the proof of [63, Theorem 15.5], pointing out only the main
arguments. By Theorem 8.2.1 we have for fixed B

hn���

#Wh

X

j2J(h)

�

�

⌦

Buj , uj

↵

L2(M)

�

�

2

d�j(h)[⇡�j(h)|H : 1]
=: r(h) ! 0

as h ! 0. We then define for h 2 (0, h0] and i 2 {1, 2} the following B-dependent subsets:

⇤i(h) := J(h) � �i(h), �i(h) :=
n

j 2 J(h) : ⌅i(j, h)|hBuj , ujiL2(M)|2 �
p

r(h)
o

.

Clearly, with the notation

bi :=

(

2, i = 1,

1, i = 2,

one has for each i 2 {1, 2}

X

j2�i(h)

⌅bi (j, h) 
X

j2J(h)

|hBuj , ujiL2(M)|2

d�j(h)[⇡�j(h)|H : 1]
p

r(h)
=

#Wh

p

r(h)

hn��� ,

and taking B = 1L2(M) in Theorem 7.2.1 one computes

#Wh

p

r(h)

hn���#J(h)
 #Wh

p

r(h)

hn��� P

j2J(h)

1
d�j(h)

[⇡�j(h)

|H :1]

=

p

r(h)

(2⇡)�nvol de⌃c

e⌃c + O
�

h� + h
1�(2+3)#

2+4

�� (log h�1)⇤
G
M�1 �

�! 0.

On the other hand,

p

⌅i(j, h)
�

�

�

hBuj , ujiL2(M)

�

�

�

< r(h)1/4 8 j 2 ⇤i(h), i 2 {1, 2},

yielding (8.2.18) for these particular ⇤1(h),⇤2(h) and B.
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Consider now a family {Ak}k2N of semiclassical pseudodi↵erential operators in  0
h(M)

with principal symbols represented by h-independent symbol functions. By our previous
considerations, for i 2 {1, 2} and each k there are subsets ⇤i

k(h) ⇢ J(h) such that (8.2.15-
8.2.17) hold for each particular Ak and ⇤i

k(h). One then shows that for su�ciently small
h there are subsets ⇤i

1(h) ⇢ J(h) fulfilling (8.2.15) such that ⇤i
k(h) ⇢ ⇤i

1(h) for each k.
Hence, the theorem is true for countable families of operators. To obtain it for all operators
in  �1

h (M), it su�ces to find a sequence of operators {Ak}k2N which is dense in the set of
operators in  �1

h (M) whose principal symbols are represented by an h-independent symbol
function, in the sense that for any given A 2  �1

h (M) of the mentioned form and any " > 0
there exists a k such that

kA � AkkB(L2(M)) < ",

 

e⌃c

^ha � akiG de⌃c < "

for su�ciently small h. To find such a sequence {Ak}k2N ⇢  �1
h (M), note that for two

symbol functions a and b and the corresponding semiclassical quantizations A and B, one has

kA � BkB(L2(M))  ka � bkL1(T ⇤M) + C
p

h,

 

e⌃c

ĥa � biG de⌃c  Cka � bkL1(T ⇤M).

Consequently, we only need to find a sequence of h-independent symbol functions that is
dense in S�1

h (M) equipped with the L1-norm. That such a sequence exists follows directly
from the facts that C1

c (T ⇤M) is L1-norm dense in the Banach space C0(T ⇤M) � S�1
h (M)

of continuous functions vanishing at infinity, and that C1
c (T ⇤M) is separable. This proves the

theorem for operators A in  �1
h (M) with principal symbol represented by an h-independent

symbol function. Finally, if A 2  0
h(M) is a general operator with principal symbol repre-

sented by an h-independent symbol function, one composes A with the smoothing operator
%(P (h)), where % 2 C1

c (R) equals 1 near c. This completes the proof of the theorem.

Again, in the special case that Wh = {�} for all h 2 (0, 1] and some fixed � 2 bG, we
obtain a simpler statement:

Theorem 8.2.7 (Equivariant quantum ergodicity for Schrödinger operators and
single isotypic components). With the notation and assumptions as in Theorem 8.2.4,
let � 2 bG, � 2

�

0, 1
2+4

�

be fixed, and let J�(h) be as in (8.2.13). Then, there is a h0 2 (0, 1]
such that for each h 2 (0, h0] we have a subset ⇤�(h) ⇢ J�(h) satisfying

lim
h!0

#⇤�(h)

#J�(h)
= 1

such that for each semiclassical pseudodi↵erential operator A 2  0
h(M) with principal symbol

�(A) = [a], a being h-independent, the following holds. For all " > 0 there is a h" 2 (0, h0]
such that

�

�

�

hAuj(h), uj(h)iL2(M) �
 

⌃c\⌦reg

a
dµc

volO

�

�

�

< " 8 j 2 ⇤�(h), 8 h 2 (0, h"].
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8.3 Equivariant quantum limits for the Laplacian

We shall now apply the semiclassical results from the previous section to study the distribution
of eigenfunctions of the Laplace-Beltrami operator on a closed connected Riemannian G-
manifold M in the limit of large eigenvalues, G being a compact connected Lie group acting
isometrically and e↵ectively on M , with principal orbits of dimension  < n = dim M . For
simplicity of presentation, we will apply in this chapter only the version of Theorem 8.2.6
corresponding to the statement for the family ⇤1(h), which means that we keep the classical
notion of a density 1 family of subsets and introduce a representation theoretic correction
factor in the convergence statements.

8.3.1 Eigenfunctions of the Laplace-Beltrami operator

Let � be the unique self-adjoint extension of the Laplace-Beltrami operator �̆ on M , and
choose an orthonormal basis {uj}j2N of L2(M) of eigenfunctions of �� with correspond-
ing eigenvalues {Ej}j2N, repeated according to their multiplicity. Consider further the
Schrödinger operator P (h) given by (5.1.2) with V ⌘ 0 and principal symbol defined by
the symbol function p = k·k2T ⇤M . Clearly, P (h) = �h2�, and each uj is an eigenfunction
of P (h) with eigenvalue Ej(h) = h2Ej . Furthermore, under the identification T ⇤M ' TM
given by the Riemannian metric, the Hamiltonian flow 't induced by p corresponds to the
geodesic flow of M . Each c > 0 is a regular value of p, and since V ⌘ 0 the dynamics of
the reduced geodesic flow e't are equivalent on any two hypersurfaces e⌃c and e⌃c0 . In the
following, we shall therefore choose c = 1 without loss of generality, and call the reduced
geodesic flow ergodic if it is ergodic on e⌃1 = ep�1({1}). The following construction will allow
a simpler formulation of the subsequent theorems.

Definition 8.3.1. Let {aj}j2N be a non-decreasing unbounded sequence of real numbers and
j0 2 N be an index such that aj

0

> 0. For � > 0, the partition of {aj}j2N of order � with initial
index j0 is the non-decreasing sequence P = {P(j)}j2N ⇢ N defined as follows. Consider the
subsequence {jk}k2N ⇢ N of indices given by the inductive rule

j1 = j0, jk+1 := min
�

j 2 N : ajk
(1 + a

��/2
jk

) < aj

 

.

Then, P(j) := jk, where jk is uniquely defined by ajk
 aj < ajk+1

.

Example 8.3.1. If aj = Ej = j(j + 1), the j-th eigenvalue of the Laplacian on the standard
2-sphere S2, then the partition of {Ej}j2N of order 1

6 with initial index 1 is given by

{jk}k2N = {1, 2, 3, 5, 7, 10, 14, . . .}, {P(j)}j2N = {1, 2, 3, 3, 5, 5, 7, 7, 7, 10, 10, 10, 10, 14, . . .}.

We are now prepared to state and prove an equivariant version of the classical Shnirelman-
Zelditch-Colin-de-Verdière quantum ergodicity theorem [52, 61, 15]. In the special case that
fM = M/G is an orbifold, a similar statement has been proved by Kordyukov [38] for the
trivial isotypic component.

Theorem 8.3.2 (Equivariant quantum limits for the Laplacian). With the notation
as above, assume that the reduced geodesic flow is ergodic. Choose a semiclassical character
family {Wh}h2(0,1] of growth rate # < 1

2+3 and a partition P of {Ej}j2N of order � 2
�

0, 1�(2+3)#
2+4

�

. Define the set of eigenfunctions

�

uW,P
i

 

i2N :=
�

uj : �j 2 W
E

�1/2

P(j)

 

,

116



Chapter 8. EQE 8.3. Equivariant quantum limits for the Laplacian

where �j is defined by uj 2 L2
�j

(M). Define �W,P
i by uW,P

i 2 L2
�W,P

i

(M). Then, there is a

subsequence
�

uW,P
ik

 

k2N of 1 density 1 in
�

uW,P
i

 

i2N such that for all s 2 C1(S⇤M) one has
in the limit k ! 1

1
q

d�W,P
ik

[⇡�W,P
ik

|H : 1]

�

�

�

D

Op(s)uW,P
ik

, uW,P
ik

E

L2(M)
�

 

S⇤M\⌦
reg

s
dµ

volO

�

�

�

�! 0, (8.3.1)

where we wrote µ for µ1 and Op for Op1, which is the ordinary non-semiclassical quantization,
see Chapter 6.

Remark 8.3.3. While the maximal order of the partition P is restricted in the theorem, the
initial index is arbitrary. In fact, the need to partition the eigenfunction sequence to apply our
results is just an artefact from the semiclassical formulation of the original general theorems.

Remark 8.3.4. The integral in (8.3.1) can also be written as
�

S⇤ fM
reg

s0 d(S⇤
fMreg), where s0 2

C1(S⇤
fMreg) is the function corresponding to fhsiG under the di↵eomorphism e⌃1 ' S⇤

fMreg

up to a null set, and d(S⇤
fMreg) is the Liouville measure on the unit co-sphere bundle, see

Lemma 6.2.3, Corollary 6.3.3, and Remark 6.3.10. In the orbifold case, this integral is given
by an integral over the orbifold co-sphere bundle S⇤

fM .

Proof. First, we extend s to a function s 2 S0
h(M) ⇢ C1(T ⇤M) with s|S⇤M = s as follows.

Set bs(x, ⇠) := s(x, ⇠/ k⇠kx) for x 2 M , ⇠ 2 T ⇤
x M � {0}. Choose a small � > 0 and a smooth

cut-o↵ function ' : T ⇤M ! [0, 1] with

'(x, ⇠) = 1 8 x 2 M, 8 ⇠ 2 T ⇤
x M with k⇠kx � 1 � �,

'(x, ⇠) = 0 8 x 2 M, 8 ⇠ 2 T ⇤
x M with k⇠kx  �.

Now set s(x, ⇠) := '(x, ⇠) · bs(x, ⇠) for ⇠ 2 T ⇤
x M � {0} and s(x, 0) := 0. Then Op(s) is a

pseudodi↵erential operator in  0(M). Because s is polyhomogenous of degree 0 and therefore
independent of |⇠| for large ⇠, the ordinary non-semiclassical quantization Op(s) di↵ers only
by an operator in h1 �1

h (M) from the semiclassical pseudodi↵erential operator Oph(s) 2
 0

h(M) with principal symbol �(Oph(s)) = [s]. Thus, when applying Theorem 8.2.6 to P (h) =

�h2�, we are allowed to replace Oph(s) by Op(s) in the results. Fix some � 2
�

0, 1�(2+3)#
2+4

�

.

With c = 1 and Ej(h) = h2Ej one has

J(h) = {j 2 N : Ej(h) 2 [c, c + h�], �j(h) 2 Wh}

=

⇢

j 2 N : Ej 2


1

h2
,

1

h2
+

1

h2��

�

, �j 2 Wh

�

.

Now, by Theorem 8.2.6, there is a number h0 2 (0, 1] together with subsets ⇤(h) := ⇤1(h) ⇢
J(h), h 2 (0, h0], satisfying

lim
h!0

#⇤(h)

#J(h)
= 1, (8.3.2)

and for each s 2 C1(S⇤M) and arbitrary " > 0 there is a h" 2 (0, h0] such that

1
p

d�j [⇡�j |H : 1]

�

�

�

hOp(s)uj , ujiL2(M) �
 

S⇤M\⌦
reg

s
dµ1

volO

�

�

�

< "

8 j 2 ⇤(h), 8 h 2 (0, h"]. (8.3.3)

1The expression of density 1 means that limm!1 #{k : ik  m}/m = 1.
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Next, consider the partition P of {Ej}j2N of order � with j0, jk, P(j) as in Definition 8.3.1.
Since there are only finitely many eigenvalues Ej with j < j0 and h0 < 1p

Ej

, there is a k0 2 N

such that hk := 1p
Ejk

 h0 for all k � k0. Let us apply the results above to the sequence

{hk}k�k
0

. By construction, k 6= k0 implies J(hk) \ J(hk0) = ; since

J(hk) =

⇢

j 2 N : Ej 2
h

Ejk
, Ejk

�

1 + E
��/2
jk

�

i

, �j 2 W
E

�1/2

jk

�

=

⇢

j 2 N : Ej 2
⇥

Ejk
, Ejk+1

�

, �j 2 W
E

�1/2

P(j)

�

.

Now, if (aq)q2N and (bq)q2N are sequences of real numbers such that 0 < aq  bq for all q,
and lim infq!1 bq > 0, limq!1

aq

bq
= 1, the Stolz-Cesaro lemma implies that

lim
N!1

PN
q=1 aq

PN
q=1 bq

= 1.

Applied to our situation and taking into account that J(hk) \ J(hk0) = ; when k 6= k0 we
deduce from (8.3.2) that

lim
N!1

#
SN

k=k
0

⇤(hk)

#
SN

k=k
0

J(hk)
= lim

N!1

PN
k=k

0

#⇤(hk)
PN

k=k
0

#J(hk)
= 1. (8.3.4)

If we therefore set

J :=
[

k�k
0

J(hk) =
n

j 2 N : j � j0,
1

p

Ej

 h0, �j 2 W
E

�1/2

P(j)

o

, ⇤ :=
[

k�k
0

⇤(hk),

we obtain from (8.3.4)

lim
N!1

#{� 2 ⇤ : �  N}
#{j 2 J : j  N} = 1.

Consequently, {ik}k2N := ⇤ is a density 1 subsequence of {j 2 N : �j 2 W
E

�1/2

P(j)

}, since the

latter set di↵ers from J by only finitely many elements. From (8.3.3) we conclude that the
sequence

�

uW,P
ik

 

k2N fulfills (8.3.1), completing the proof.

Projecting from S⇤M \ ⌦reg onto M we obtain

Corollary 8.3.5 (Equidistribution of eigenfunctions of the Laplacian). In the situa-
tion of Theorem 8.3.2, we have for any f 2 C(M)

1
q

d�W,P
ik

[⇡�W,P
ik

|H : 1]

�

�

�

�

ˆ

M

f |uW,P
ik

|2dM �
 

M

f
dM

volO

�

�

�

�

�! 0 as k ! 1.

Proof. Let ⇡ : T ⇤M ! M be the co-tangent bundle projection and consider for f 2 C1(M)
the pseudodi↵erential operator Op(f �⇡), which corresponds to pointwise multiplication with
f up to lower order terms. Since the Sasaki metric on T ⇤M projects onto the Riemannian
metric on M and is fiber-wise just the euclidean metric, and the Sasaki metric induces dµ,
we have  

S⇤M\⌦
reg

f � ⇡ dµ

volO
=

 

M

f
dM

volO
,

see Corollary 6.3.13. Consequently, the assertion follows directly from Theorem 8.3.2 by
approximating continuous functions on M by smooth functions.
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8.3.2 Limits of representations

Corollary 8.3.5 immediately leads to a statement about measures on the topological Hausdor↵
space fM = M/G and to a representation-theoretic formulation of our results.

Corollary 8.3.6. In the situation of Theorem 8.3.2, we have for any f 2 C(fM)

1
q

d�W,P
ik

[⇡�W,P
ik

|H : 1]

�

�

�

�

ˆ

fM

f
^D

|uW,P
ik

|2
E

G
dfM �

 

fM

f
dfM

vol

�

�

�

�

�! 0 as k ! 1.

Proof. Let f 2 C(fM), ⇡ : M ! fM be the canonical projection, and denote by f := f � ⇡ 2
C(M) the lift of f to a G-invariant function. With (6.3.3) and Corollary 6.3.3 one deduces
for any u 2 C1(M)

ˆ

M

f(x)|u(x)|2 dM(x) =

ˆ

M
reg

f(x)|u(x)|2 dM(x) =

ˆ

fM
reg

ˆ

G·x
f(x0)|u(x0)|2 dµG·x(x0) dfMreg(G · x)

=

ˆ

fM
reg

f(G · x)

ˆ

G·x
|u(x0)|2 dµG·x(x0) dfMreg(G · x)

=

ˆ

fM
reg

f(G · x)vol (G · x)

ˆ

G

|u(g · x)|2 dg dfMreg(G · x)

=

ˆ

fM

f(G · x)ĥ|u|2iG(G · x) dfM(G · x),

as well as
�

M
f dM

vol O
=

�
fM

reg

f dfMreg =
�
fM f dfM

vol . The claim now follows from Corollary

8.3.5.

Next, let us state a simple fact from elementary representation theory.

Lemma 8.3.7. Let V ⇢ L2(M) be an irreducible G-module of class � 2 bG. Let further
{v1, . . . , vd�} denote an L2-orthonormal basis of V , and a 2 V \C1(M) have L2-norm equal
to 1. Then, for any x 2 M ,

⌦

|a|2
↵

G
(x) = d�1

�

d�
X

k=1

|vk(x)|2. (8.3.5)

In particular, the function

⇥V : M ! R, x 7! d�1
�

d�
X

k=1

|vk(x)|2,

is a G-invariant element of C1(M) that is independent of the choice of orthonormal basis,
and the left hand side of (8.3.5) is independent of the choice of a.

Proof. Since the left hand side of (8.3.5) is clearly G-invariant, smooth, and independent of

the choice of orthonormal basis, it su�ces to prove (8.3.5). Now, one has a =
Pd�

j=1 ajvj with
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aj 2 C,
Pd�

j=1 |aj |2 = 1, and

(Lga)(x) = a(g�1 · x) =

d�
X

j=1

ajvj(g
�1 · x) =

d�
X

j,k=1

ajcjk(g)vk(x), g 2 G, x 2 M,

where {cjk}1j,kd� denote the matrix coe�cients of the G-representation on V . This yields

ˆ

G

|a(g�1 · x)|2 dg =

ˆ

G

a(g�1 · x)a(g�1 · x) dg

=

ˆ

G

 

d�
X

j,k=1

ajcjk(g)vk(x)

! 

d�
X

l,m=1

alclm(g)vm(x)

!

dg,

and we obtain (8.3.5) by taking into account the Schur orthogonality relations [37, Corollary
1.10] ˆ

G

cjk(g)clm(g) dg = d�1
� �jl�km,

and the fact that the substitution g 7! g�1 leaves the Haar measure invariant.

We can now restate Corollary 8.3.5 in representation-theoretic terms.

Theorem 8.3.8 (Representation-theoretic equidistribution theorem). Assume that
the reduced geodesic flow is ergodic. By the spectral theorem, choose an orthogonal decompo-
sition L2(M) =

L

i2N Vi into irreducible unitary G-modules such that each Vi is contained
in an eigenspace of the Laplace-Beltrami operator corresponding to some eigenvalue Ej(i).

Denote by �i 2 bG the class of Vi. Choose a semiclassical character family {Wh}h2(0,1] of

growth rate # < 1
2+3 and a partition P of {Ej}j2N of order � 2

�

0, 1�(2+3)#
2+4

�

. Define the
set of irreducible G-modules

�

V W,P
l

 

l2N :=
�

Vi : �i 2 W
E

�1/2

P(j(i))

 

.

As in Lemma 8.3.7, assign to each V W,P
l the G-invariant function ⇥l := ⇥V W,P

l
: M !

[0, 1), regard it as a function on M/G = fM , and write �W,P
l for the class of V W,P

l . Then,

there is a subsequence
�

V W,P
lm

 

m2N with

lim
N!1

P

lmN d�W,P
lm

P

lN d�W,P
l

= 1

for which one has in the limit m ! 1

1
q

d�W,P
lm

[⇡�W,P
lm

|H : 1]

�

�

�

�

ˆ

fM

f ⇥lm dfM �
 

fM

f
dfM

vol

�

�

�

�

�! 0 8 f 2 C(fM),

where dfM = ⇡⇤dM is the pushforward measure defined by the orbit projection ⇡ : M ! fM
and vol : fM ! (0, 1) assigns to an orbit its Riemannian volume.
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Proof. Consider the set of eigenfunctions

�

uW,P
i

 

i2N =
�

uj : �(uj) 2 W
E

�1/2

P(j)

 

from Theorem 8.3.2, where we have replaced the notation �j by �(uj) to avoid confusion. For

each l 2 N one has V W,P
l = span

�

uW,P
i : i 2 Jl

 

for a unique index set Jl with #Jl = d�W,P
l

.

Without loss of generality, we can assume min(J1) = 1 and min(Jl+1) = max(Jl)+1 for each
l 2 N. By Corollary 8.3.6, there is a subsequence

�

uW,P
ik

 

k2N of density 1 in
�

uW,P
i

 

i2N such

that we have for any f 2 C(fM)

1
q

d�(uW,P
ik

)[⇡�(uW,P
ik

)|H : 1]

�

�

�

ˆ

fM

f
^D

|uW,P
ik

|2
E

G
dfM �

 

fM

f
dfM

vol

�

�

�

�! 0 as k ! 1,

and by Lemma 8.3.7,
^D

|uW,P
ik

|2
E

G
= ⇥l if ik 2 Jl. (8.3.6)

Let now {lm}m2N be the sequence of those indices l occurring in (8.3.6) when k varies over
all of N. Then, due to the way how we indexed our sets Jl, we have for each N 2 N

X

lmN

d�W,P
lm

�
X

lmN

#{k : ik 2 Jlm} = #
n

k : ik 
X

lN

d�W,P
l

o

Passing to the limit N ! 1 we obtain

1 � lim sup
N!1

P

lmN d�W,P
lm

P

lN d�W,P
l

� lim inf
N!1

P

lmN d�W,P
lm

P

lN d�W,P
l

� lim
N!1

#
n

k : ik 
P

lN d�W,P
l

o

P

lN d�W,P
l

= 1,

where the final equality holds because
�

uW,P
ik

 

k2N has density 1 in
�

uW,P
i

 

i2N. This concludes
the proof of the theorem.

Note that Theorem 8.3.8 is a statement about limits of representations, or multiplicities,
in the sense that it assigns to each irreducible G-module in the character family a measure
on fM , and then considers the limit measure.

To conclude this section, let us notice that in the special case that Wh = {�} for all
h 2 (0, 1] and some fixed � 2 bG, the partitioning of the eigenfunction sequence {Ej} is not
necessary, and the statements proved in this section become much simpler. Thus, as a direct
consequence of Theorem 8.3.2 we obtain

Theorem 8.3.9 (Equivariant quantum limits for the Laplacian and single isotypic

components). Assume that the reduced geodesic flow is ergodic, and choose � 2 bG. Let
{u�j }j2N be an orthonormal basis of L2

�(M) consisting of eigenfunctions of ��. Then, there
is a subsequence {u�jk

}k2N of density 1 in {u�j }j2N such that for all s 2 C1(S⇤M) one has

⌦

Op(s)u�jk
, u�jk

↵

L2(M)
�! 1

vol µ
vol O

(S⇤M \ ⌦reg)

ˆ

S⇤M\⌦
reg

s
dµ

volO
as k ! 1. (8.3.7)

121



Part II. Semiclassical analysis and symmetry reduction

Next, recall that a sequence of measures µj on a metric space X is said to converge weakly
to a measure µ, if for all bounded and continuous functions f on X one has

ˆ

X

f dµj �!
ˆ

X

f dµ as j ! 1.

We immediately deduce from Corollary 8.3.5

Corollary 8.3.10 (Equidistribution of eigenfunctions of the Laplacian for single
isotypic components). In the situation of Theorem 8.3.9 we have the weak convergence of
measures

|u�jk
|2 dM �!

�

vol dM
vol O

M
��1 dM

volO
as k ! 1.

On the other hand, Theorem 8.3.8 directly implies

Theorem 8.3.11 (Representation-theoretic equidistribution theorem for single iso-

typic components). Assume that the reduced geodesic flow is ergodic, and let � 2 bG.
By the spectral theorem, choose an orthogonal decomposition L2

�(M) =
L

i2N V �
i into irre-

ducible unitary G-modules of class � such that each V �
i is contained in some eigenspace of the

Laplace-Beltrami operator. As in Lemma 8.3.7, assign to each V �
i the G-invariant function

⇥i := ⇥V �
i

: M ! [0, 1), and regard it as a function on M/G = fM . Then, there is a
subsequence {V �

ik
}k2N of density 1 in {V �

i }i2N such that we have the weak convergence

⇥�ik
dfM

k!1�!
⇣

vol d fM
vol

fM
⌘�1 dfM

vol
.

8.4 Applications

In what follows, we apply our results for the Laplacian to some concrete situations where
a closed connected Riemannian manifold carries an e↵ective isometric action of a compact
connected Lie group such that the principal orbits are of lower dimension than the manifold,
and the reduced geodesic flow is ergodic.

8.4.1 Compact locally symmetric spaces

Let G be a connected semisimple Lie group with finite center and Lie algebra g, and � a
discrete co-compact subgroup. Consider a Cartan decomposition

g = k � p

of g, and denote the maximal compact subgroup of G with Lie algebra k by K. Choose a
left-invariant metric on G given by an Ad(K)-invariant bilinear form on g. The quotient
M = X := �\G is a closed smooth manifold, and by requiring that the projection G ! X is
a Riemannian submersion, we obtain a Riemannian structure on X. K acts on G and on X
from the right in an isometric and e↵ective way, and the isotropy group of a point �g 2 X
is conjugate to the finite group gKg�1 \ �. Hence, all K-orbits in X are either principal
or exceptional. Since the maximal compact subgroups of G are precisely the conjugates of
K, exceptional K-orbits arise from elements in � of finite order. Now, let JG : T ⇤X ! g⇤

be the momentum map of the right G-action on X and res : g⇤ ! k⇤ the natural restriction
map. Then JK = res � JG is the momentum map of the right K-action on X. As usual,
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G

X = �\G G/K

Y = �\G/K

⌦

e⌦ = ⌦/K ' T ⇤Y ' Y ⇥ p⇤

X ⇥ g⇤ ' T ⇤X
◆

Figure 8.4.1: Co-tangent bundle reduction for a locally symmetric space

let ⌦ := J�1
K ({0}). Let us consider first the case when � has no torsion, meaning that no

non-trivial element � 2 � is conjugate in G to an element of K. In this case, there are
no exceptional orbits, the action of � on G/K is free, and Y := �\G/K becomes a closed
manifold of dimension n � d, where n = dimX and d = dim K. Furthermore, by co-tangent
bundle reduction,

T ⇤Y ' ⌦/K =: e⌦ (8.4.1)

as symplectic manifolds, compare Lemma 6.2.3 and Figure 8.4.1. In what follows, we give a
more intrinsic description of this symplectomorphism. The left trivialization T ⇤G ' G ⇥ g⇤

described in (6.2.3) induces the trivialization

T ⇤X '�! X ⇥ g⇤, ⇠�g 7�! (�g, (Lg)
⇤
e · ⌘g), pr⇤(⇠�g) = ⌘g, ⌘g 2 T ⇤

g G,

pr : G ! �\G being a submersion. The right G-action on T ⇤X then takes the form

T ⇤
�gh(X) 3 ⇠�g · h = (Rh�1)⇤�gh ⇠�g 7�! (�gh, (Lgh)⇤e � (Rh�1)⇤gh ⌘g),

so that with µ = (Lg)⇤e · ⌘g we have

(�g, µ) · h = (�gh, Ad⇤(h)µ), h 2 G. (8.4.2)

Now, for X 2 g one computes

JG(�g, µ)(X) = JG(⇠�g)(X) = (Lg�1)⇤g µ( eXR
g )

= µ((Lg�1)⇤,g
eXR

g ) = µ
⇣ d

dt
(g�1g etX )|t=0

⌘

= µ(X),

where eXR
g denotes the vector field generated by the right action of X, compare Example

6.2.2, so that the momentum map reads

JG(�g, µ) = µ, (�g, µ) 2 T ⇤X.

If ⌘ = (�g, µ) 2 J�1
K ({0}) ⇢ T ⇤X, the last equality implies µ = JG(�g, µ) 2 p⇤. Furthermore,

in view of the Cartan decomposition G = PK, where P is the parabolic subgroup with Lie
algebra p, one has the di↵eomorphism G/K ' P . Consequently, we can choose as representant
of the class [⌘] 2 e⌦ an element ⌘ = (�g, µ) with g 2 P and µ 2 p⇤, yielding the identification

e⌦ ' (�\P ) ⇥ p⇤ ' Y ⇥ p⇤. (8.4.3)
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On the other hand, the left trivialization T ⇤P ' P ⇥ p⇤ and the previous arguments imply
the trivialization

T ⇤Y ' Y ⇥ p⇤. (8.4.4)

Comparing (8.4.3) and (8.4.4) then yields the desired intrinsic realization of the symplecto-
morphism (8.4.1).

Let us now assume that G has real rank 1. In this case, the orbit space Y has strictly
negative sectional curvature inherited from G/K. Consequently, its geodesic flow  t is er-
godic. Since the measures on the spaces T ⇤Y ' e⌦ are given by the corresponding symplectic
forms, this implies that the reduced geodesic flow e't on e⌦, which corresponds to  t under
the symplectomorphism (8.4.1), is ergodic, and the results from Section 8.3 apply.

Next, let us consider a discrete co-compact subgroup �1 with torsion. In this case K
acts on X1 := �1\G with non-conjugated finite isotropy groups, so that Y1 := �1\G/K is no
longer a manifold, but an orbifold. Now, by a theorem of Selberg [51], any finitely generated
linear group contains a torsion-free subgroup of finite index. More generally, Borel [5] showed
that every finitely generated group of isometries of a simply connected Riemannian symmetric
manifold has a normal torsion-free subgroup of finite index. Let therefore � ⇢ �1 be a normal
torsion-free co-compact subgroup of finite index [10]. In this case, Y = �\G/K is a smooth
manifold and a finite covering of Y1, and

X1 ' F\X, Y1 ' F\Y,

where F denotes the finite group F := �1/�. Next, let J1G : T ⇤X1 ! g⇤ be the momentum
map of the right G-action on X1, J1K := res � J1G, and ⌦1 := (J1K)�1({0}). As in the torsion-
free case we have the left trivialization T ⇤X1 ' X1 ⇥ g⇤ as smooth manifolds, and by analogy
to (8.4.1) one shows that as symplectic orbifolds

T ⇤Y1 ' e⌦1, (8.4.5)

which represents the quotient presentation of the co-tangent bundle of Y1. Furthermore, with
(8.4.4) we obtain

T ⇤Y1 ' e⌦1 ' F\e⌦ ' F\(T ⇤Y) ' Y1 ⇥ p⇤.

Consequently, we have a diagram analogous to Figure 8.4.1 with � being replaced by �1.
Besides, if X0

1 denotes the stratum of orbits of principal type of X1, notice that singular
co-tangent bundle reduction (Lemma 6.2.3) implies

T ⇤Y1 � T ⇤(X0
1/K) '

�

(J1K)�1({0}) \ T ⇤X0
1

�

/K ⇢ (e⌦1)reg,

the measures on these spaces being given by the corresponding symplectic forms, and the
complements of the inclusions having measure zero. Consider now the commutative diagram
in Figure 8.4.2, where ⇡K and ⇡F denote the projections of the K- and F -actions, respectively.

T ⇤X � ⌦ e⌦ ' T ⇤Y

T ⇤X1 � ⌦1 e⌦1 ' T ⇤Y1

⇡K

⇡K

⇡F ⇡F

Figure 8.4.2: Orbit projections and symplectic quotients

To relate the dynamics on the symplectic quotients e⌦ and e⌦1, let ep1 2 C1(e⌦1) be a smooth
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function. By definition, there exists a function p1 2 C1(T ⇤X1)K such that p1|⌦
1

= ⇡⇤
Kep1.

The Hamiltonian flow '1
t of p1 then induces a Hamiltonian flow e'1

t on e⌦1, compare Section
6.2. On the other hand, ep1 yields a function ep 2 C1(e⌦)F with Hamiltonian flow e't induced
by the corresponding flow 't on T ⇤X. Since 't induces the flow '1

t , it is clear that e't induces

a flow on e⌦1 given precisely by e'1
t . Indeed, for ef1 2 C1(e⌦1) and e⌘1 = ⇡K(⌘1) = ⇡F �⇡K(⌘) =

⇡F (e⌘) 2 e⌦1 one computes for ef1(e'1
t (e⌘1))

⇡⇤
K
ef1('

1
t (⌘1)) = (⇡⇤

F � ⇡⇤
K
ef1)('t(⌘)) = (⇡⇤

K � ⇡⇤
F
ef1)('t(⌘)) = ⇡⇤

F
ef1(e't(e⌘)).

Furthermore, in view of (8.4.5), e'1
t yields a flow  1

t on Y1.
Let now  t be the geodesic flow on Y, and assume that the rank of G is 1, so that  t

is ergodic. Then the induced flow  1
t on Y1 is ergodic, too, with respect to the orbifold

symplectic measure on T ⇤Y1. More precisely, by our previous considerations the ergodicity
of the flow e't on e⌦ implies that

(e'1
t )|(e⌦

1

)
reg

,

which is precisely the reduced geodesic flow on the symplectic stratum (e⌦1)reg given by (6.2.1),

must be ergodic with respect to the symplectic measure d((e⌦1)reg). Summing up, our results
from Section 8.3 apply. For simplicity, let us state here only the results for single isotypic
components. Then, Theorem 8.3.9 and Corollary 8.3.10 yield

Proposition 8.4.1. Let G be a connected semisimple Lie group of rank 1 with finite center, K
a maximal compact subgroup, and � a discrete co-compact subgroup, possibly with torsion. Let
� be the Laplace–Beltrami operator on X = �\G, � 2 bK, and let {u�j }j2N be an orthonormal

basis of L2
�(X) of eigenfunctions of ��. Then, there is a subsequence {u�jk

}k2N of density 1
in {u�j }j2N such that for all s 2 C1(S⇤X) one has

⌦

Op(s)u�jk
, u�jk

↵

L2(X)
k!1�!

 

S⇤X\⌦
reg

s
dµ

volO
, (8.4.6)

as well as

|u�jk
|2 dX k!1�!

�

vol dX
vol O

X
��1 dX

volO
, ^⌦|u�jk

|2
↵

G
dY k!1�!

⇣

vol dY
vol

Y
⌘�1 dY

vol
, (8.4.7)

where Y = �\G/K is in general an orbifold, and dY is the pushforward of the measure dX
along the orbit projection X ! Y, see Section 6.3.

Notice that the limit integral in (8.4.6) represents an integral over the orbifold co-sphere
bundle S⇤Y. Since the orbit volume function is constant in this case, eigenfunctions of the
Laplacian �Y on Y correspond to K-invariant eigenfunctions of � on X, compare Section
5.3.2. Furthermore, up to the constant given by the orbit volume, the pushforward measure
dY agrees in the orbifold case with the orbifold volume form. Consequently, in the special
case that � corresponds to the trivial representation, Proposition 8.4.1 yields the following
result already implied by the work of Kordyukov [38].

Corollary 8.4.2 (Shnirelman-Zelditch-Colin-de-Verdière equidistribution theorem
for Y). With the assumptions of Proposition 8.4.1, let {vj}j2N be an orthonormal basis of
L2(Y) of eigenfunctions of ��Y. Then, there is a subsequence {vjk

}k2N of density 1 in
{vj}j2N such that we have the weak convergence of measures

|vjk
|2 dY k!1�! (vol dYY)�1

dY.
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Notice that in view of the left trivialization T ⇤X ' X⇥g⇤ and (8.4.2), K acts on ⌦ ⇢ X⇥p⇤

by right multiplication according to

⌦ 3 (�g, µ) · k = (�gk, Ad⇤(k)µ), k 2 K,

p being Ad(K)-invariant. In particular, regarding the decomposition of T ⇤X into isotropy
types with respect to the right K-action, whenever � contains non-trivial elliptic elements,
the closure of S⇤X \ ⌦reg in ⌦ will contain exceptional isotropy types, which means that in
the proofs of Theorems 8.2.1 and 8.3.2 one cannot assume that one can stay away from the
singular points of ⌦, compare also Examples 7.2.8.

8.4.2 Invariant metrics on spheres in dimensions 2 and 4

In contrast to genuinely chaotic cases, it can happen that the reduced geodesic flow is ergodic
simply for topological reasons. Namely, when the singular symplectic reduction of the co-
sphere-bundle is just 1-dimensional, a single closed orbit of the reduced flow can have full
measure. Although non-generic, this situation is topologically invariant, so that if it occurs
for some particular G-space, it occurs for any choice of G-invariant Riemannian metric on that
space, leading to a whole class of examples which might well be complicated geometrically.

In what follows, we will show that the spheres in dimensions 2 and 4, with appropriate
group actions and invariant Riemannian metrics, are examples of the form just described.
The reason why we consider only the dimensions 2 and 4 is that, in general, the n-sphere is
topologically the suspension of the (n � 1)-sphere, but only for n 2 {2, 4}, the (n � 1)-sphere
has the structure of a compact connected Lie group. Thus, let G be a compact connected Lie
group. The suspension of G is the topological quotient space

SG :=
�

[�1, 1] ⇥ G
�

/ ⇠,

where the equivalence relation is defined by

(t, g) ⇠ (t0, g0) ()

8

>

<

>

:

(t, g) = (t0, g0) or

t = t0 = 1 or

t = t0 = �1.

SG is a compact connected Hausdor↵ space that carries an e↵ective G-action induced by the
G-action on G by left-multiplication and the trivial action on [�1, 1]. We will call this induced
action the suspension of the G-action. It has exactly two fixed points N := [{1}⇥G] and S :=
[{�1}⇥G] which we may call north pole and south pole. Now, in general, SG does not possess
a di↵erentiable structure. However, if G is an n-sphere, then SG is homeomorphic to the
(n+1)-sphere, and consequently carries a canonical smooth structure making it di↵eomorphic
to the standard (n + 1)-sphere. As is well-known, the only connected Lie groups that are
spheres are SO(2) ⇠= S1 and SU(2) ⇠= S3.

Note that S2, with the S1-action given by the suspension of left-multiplication on S1 and
equipped with an S1-invariant Riemannian metric, is just a surface of revolution di↵eomorphic
to the standard 2-sphere. Similarly, for G = S3, we equip the suspension S4 ⇠= SS3 with the
S3-action given by the suspension of left-multiplication on S3 and an S3-invariant Riemannian
metric, obtaining a class of 4-dimensional examples. We now have the following

Proposition 8.4.3. For n 2 {2, 4}, equip the n-sphere Sn ⇠= SSn�1 with the Sn�1-action
given by the suspension of left-multiplication on Sn�1. Then the reduced geodesic flow with
respect to any Sn�1-invariant Riemannian metric on Sn is ergodic.
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Proof. First, we prove the result for S2. It will then become clear that the situation is entirely
analogous for S4. Thus, let G = S1 ⇠= SO(2). Then, for any choice of SO(2)-invariant metric
on M := SS1, we can identify M with a surface of revolution in R3 di↵eomorphic to the
2-sphere and endowed with the induced metric from R3. We assume that the poles are
given by the points N = (0, 0, 1) and S = (0, 0, �1). The corresponding meridians are
orthogonal to the SO(2)-orbits, and since the metric is SO(2)-invariant, each meridian is a
closed geodesic. Now, for (x, ⇠) 2 T ⇤M , set p(x, ⇠) := k⇠k2x. Let c > 0 and put ⌃c := p�1({c})

and e⌃c := ep�1({c}), where ep 2 C1(e⌦reg) is the function induced by p|⌦
reg

. Clearly, c is a

regular value of p. To examine whether the reduced geodesic flow is ergodic on e⌃c, note that
with the identification T ⇤M ' TM given by the Riemannian metric one has

⌦ = J�1({0}) '
G

x2M

Tx(G · x)?, (8.4.8)

compare (6.2.4), so that

⌦reg '
⇣

[

x2M
reg

{x} ⇥ Tx(G · x)?
⌘

[
⇣

{N} ⇥ (TNM\{0})
⌘

[
⇣

{S} ⇥ (TSM\{0})
⌘

,

e⌦reg '
�

(�1, 1) ⇥ R
�

[
�

{1} ⇥ (0, 1)
�

[
�

{�1} ⇥ (0, 1)
�

' R2\{(0, 1), (0, �1)},

where Mreg = M\ {N, S}, Mreg/G ' (�1, 1). The di↵eomorphism e⌦reg ' R2\{(0, 1), (0, �1)}
is illustrated in Figures 8.4.3 and 8.4.4 on the next page for S2 with the round metric,
which is the generic case since M is SO(2)-equivariantly di↵eomorphic to it. Under the
di↵eomorphism e⌦reg ' R2\{(0, 1), (0, �1)}, the hypersurface e⌃c corresponds to an ellipse

with radii determined by c, as illustrated in Figure 8.4.4. Let now G · (x, ⇠) 2 e⌃c. Since
⇠ 2 Tx(G ·x)?, the geodesic flow 't transports (x, ⇠) around curves in T ⇤M that project onto
meridians through N and S, so that the reduced geodesic flow e't(G · (x, ⇠)) ⌘ G · 't(x, ⇠)
through G ·(x, ⇠) corresponds to a periodic flow around the ellipse e⌃c. Consequently, the only
subsets of e⌃c which are invariant under e't are the whole ellipse and the empty set, implying
that the reduced flow e't on e⌃c is ergodic for arbitrary c > 0. Besides, note that the points
on the segment between (0, 1) and (0, �1) are stationary under e't.

Next, let us check what happens for a general compact connected Lie group G. Due to
the definition of SG and its G-action, it is clear that SG/G is homeomorphic to [�1, 1] and,
due to (8.4.8), that e⌦reg is di↵eomorphic to R2\{(0, 1), (0, �1)} whenever SG is a smooth
manifold, so that we always obtain not only an analogous but essentially the same picture
as in Figure 8.4.4. Hence, for G = S3, the reduced geodesic flow is given by a periodic flow
around an ellipse, and therefore ergodic.

We shall now apply some of our results from Section 8.3 to a surface of revolution di↵eo-
morphic to the standard 2-sphere. Thus, let M ⇢ R3 be given by rotating a suitable smooth
curve � : [0, L] ! R2

x�0 in the xz-half plane around the z-axis in R3. In particular, �0(t)
has to be perpendicular to the z-axis at �(0) and �(L). We assume that �(0) = (0, �1) and
�(L) = (0, 1) and that � is parametrized by arc length, so that � : [0, L] 3 ✓ 7! (R(✓), z(✓)),
where R : [0, L] ! [0, 1), R(0) = R(L) = 0, R(✓) > 0 for ✓ 2 (0, L) corresponds to the
distance to the z-axis, and z : [0, L] ! R is smooth. This leads to a parametrization of M
according to

M =
�

(R(✓) cos�, R(✓) sin�, z(✓)), ✓ 2 [0, L], � 2 [0, 2⇡)
 

.
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Figure 8.4.3: The space T ⇤
NS2\{0} (red) and three co-tangent spaces (blue) with arrows that

represent elements of ⌦reg. The three circles in each plane (brown, teal, green) correspond to
the intersection of the plane with ⌃c for three di↵erent values of c.

Figure 8.4.4: Under the projection ⌦reg ! e⌦reg, T ⇤
NS2\{0} and T ⇤

SS2\{0} collapse to open
half-lines (red) and for every x 2 S2\{N, S}, T ⇤

x S2 \ ⌦reg collapses to a line (blue). The

ellipses (brown, teal, green) depict e⌃c for three di↵erent values of c.
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Now, let M be endowed with the induced metric from R3. The Laplace-Beltrami operator �
on M commutes with @�, so that separation of variables leads to a Hilbert basis of L2(M) of
joint eigenfunctions of both operators of the form

el,m(�, ✓) = fl,m(✓)eim�, (l,m) 2 I ⇢ Z ⇥ Z. (8.4.9)

The irreducible representations of SO(2) ' S1 = {ei', ' 2 [0, 2⇡)} ⇢ C are all 1-dimensional,
and given by the characters �k(ei�) = e�ik�, k 2 Z. Thus, each subspace C ·el,m corresponds
to an irreducible representation of SO(2), and {el,m}l: (l,m)2I is a Hilbert basis of L2

�m
(M).

Furthermore, |el,m|2 is manifestly SO(2) invariant. Theorem 8.3.11 then yields for each

m 2 Z ' \SO(2) a subsequence {elk,m}k2N of density 1 in {el,m}l: (l,m)2I such that for all

a 2 C(fM)

ˆ

fM

a|elk,m|2 dfM
k!1�!

 ˆ
fM

dfM

vol

!�1 ˆ

fM

a
dfM

vol
, (8.4.10)

where as before fM = M/SO(2). Let us write (8.4.10) more explicitly. An SO(2)-orbit of a
point x 2 M with coordinates (�, ✓) is of the form {(�0, ✓) : 0 < �0 < 2⇡}, up to a set of
measure zero with respect to the induced orbit measure dµSO(2)·x ⌘ R(✓) d�, and we obtain

vol(SO(2) · x) =
´ 2⇡
0 R(✓) d� = 2⇡R(✓). Furthermore, fM is homeomorphic to the closed

interval [0, L] ⇢ R, and the pushforward measure on fM is given by dfM(✓) ⌘ 2⇡R(✓) d✓,
where we identified SO(2) · x and ✓. Summing up, (8.4.10) yields

2⇡

L̂

0

a(✓)|flk,m|2(✓)R(✓) d✓
k!1�! 1

L

L̂

0

a(✓) d✓, a 2 C([0, L]), (8.4.11)

which is a result about weak convergence of measures on fM ⇠= [0, L]. Formulated on M ,
Corollary 8.3.10 yields that for each m there is a subsequence {flk,m}k2N of density 1 in
{fl,m}l: (l,m)2I such that one has the weak convergence of measures

|flk,m|2 dM
k!1�! 1

2⇡L

dM

R
. (8.4.12)

Here, dM
R is to be understood as the extension by zero of the smooth measure dM(�, ✓)/R(�, ✓)

from {(�, ✓), ✓ 2 (0, L)} to {(�, ✓), ✓ 2 [0, L]}, and we used that vol dM
R

M = 2⇡L. In
particular, the obtained quantum limit on M is, up to a constant, related to the Riemannian
volume density on M by the reciprocal of the distance function R, which tends to infinity
towards the poles. This is illustrated in Figure 8.4.5 on the next page, where the function
1/R is plotted on a surface of revolution.

So far, for simplicity of presentation, we have restricted ourselves to the special case of
considering a single fixed isotypic component, which means keeping the index m fixed. Even
in this case, we do not know whether the results (8.4.11) and (8.4.12) are known for general
surfaces of revolution di↵eomorphic to the standard 2-sphere. Having actually the more
general Theorem 8.3.8 at hand, the results (8.4.11) and (8.4.12) directly generalize to the
situation of a semiclassical character family of growth rate # < 1

5 as illustrated in Figure
5.3.2 since the dimensions of the irreducible representations are all 1 in this case, and all

principal isotropy groups are trivial, so that [⇡�|H : 1] = d� = 1 for all � 2 \SO(2).
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Figure 8.4.5: A quantum limit on a surface of revolution.

Physically, one can interprete these results as follows. For each family of symmetry types
that does not grow too fast in the high-energy limit, there is a sequence of quantum states
such that the corresponding sequence of probability densities on M converges weakly and
with density 1 in the high-energy limit to the probability density of finding within a certain
surface element of M a classical particle with known energy and zero angular momentum
with respect to the z-axis, but unknown momentum.

In the simplest case of the standard 2-sphere M = S2 with the round metric, the eigen-
functions are explicitly known, and we show in the following that at least our simplest result
(8.4.11) for fixed isotypic components is implied by the classical theory of spherical harmon-
ics. In fact, we will see that one does not need to pass to a subsequence of density 1. Recall
from Section 5.3.3 that the eigenvalues of �� on S2 are given by the numbers l(l + 1),
l = 0, 1, 2, 3 . . . , and the corresponding eigenspaces El are of dimension 2l + 1 and spanned
by the spherical harmonics

Yl,m(�, ✓) =
q

2l+1

4⇡
(l�m)!

(l+m)!

Pl,m(cos ✓)eim�, 0  � < 2⇡, 0  ✓ < ⇡, (8.4.13)

where m 2 Z, |m|  l, and Pl,m are the associated Legendre polynomials

Pl,m(x) =
(�1)m

2ll!

�

1 � x2
�

m
2

dl+m

dxl+m

�

x2 � 1
�l

, (8.4.14)

compare (8.4.9). Each subspace C · Yl,m corresponds to an irreducible representation of
SO(2), and each irreducible representation �k with |k|  l occurs in the eigenspace El with
multiplicity 1. The situation is illustrated in Figure 5.3.1. For each m, the result (8.4.11)
now turns into the statement about Legendre polynomials that for all f 2 C([0,⇡]) one has

2lk + 1

2

(lk � m)!

(lk + m)!

⇡̂

0

f(✓) sin(✓)|Plk,m(cos ✓)|2 d✓
k!1�! 1

⇡

⇡̂

0

f(✓) d✓. (8.4.15)

We conclude this section by proving
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Proposition 8.4.4. For fixed m, (8.4.15) holds for the full sequence of Legendre polynomials,
that is, if lk is replaced by l and “k ! 1” is replaced by “l ! 1”.

Proof. Let us begin by recalling the following classical result about the asymptotic behavior
of Legendre polynomials [30, page 303]. For fixed m 2 Z and each small " > 0 one has

1

lm
Pl,m(cos ✓) =

✓

2

l⇡ sin ✓

◆1/2

cos

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

+ O
�

l�3/2
�

(8.4.16)

as l ! 1 uniformly for ✓ 2 (",⇡ � "). From (8.4.13) and (8.4.16) we therefore obtain

|̂Yl,m|(✓)2 =

�

�

�

�

�

s

2l + 1

4⇡

(l � m)!

(l + m)!
Pl,m(cos ✓)

�

�

�

�

�

2

=
2l + 1

4⇡

(l � m)!

(l + m)!
l2m

�

�

�

�

1

lm
Pl,m(cos ✓)

�

�

�

�

2

=
2l + 1

4⇡

(l � m)!

(l + m)!
l2m

�

�

�

�

�

✓

2

l⇡ sin ✓

◆1/2

cos

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

+ O
�

l�3/2
�

�

�

�

�

�

2

=
2l + 1

4⇡

(l � m)!

(l + m)!
l2m

✓

2

l⇡ sin ✓
cos2

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

+ O
�

l�2
�

◆

.

The asymptotic relation

(l � m)!/(l + m)! ⇠ l�2m as l ! 1 (8.4.17)

implies that (l�m)!
(l+m)! l

2m is bounded in l, so we can use the simple relation 2l+1
l = 2 + O(l�1)

to obtain

|̂Yl,m|(✓)2 =
(l � m)!

(l + m)!
l2m 1

⇡2 sin ✓
cos2

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

+ O
�

l�1
�

, (8.4.18)

uniformly for ✓ 2 (",⇡ � ") and each small " > 0. Now let f 2 C([0,⇡],R) and choose " > 0.
Due to the uniform estimate (8.4.18) and boundedness of the integration domain we get

2⇡

⇡�"ˆ
"

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓

= 2⇡

⇡�"ˆ
"

f(✓)
(l � m)!

(l + m)!
l2m 1

⇡2 sin(✓)
cos2

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

sin(✓) d✓ + O
�

l�1
�

=
2

⇡

(l � m)!

(l + m)!
l2m

⇡�"ˆ
"

f(✓) cos2
✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

d✓ + O
�

l�1
�

. (8.4.19)

The oscillatory integral in (8.4.19) has the limit

lim
l!1

⇡�"ˆ
"

f(✓) cos2
✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

d✓

= lim
l!1

⇡�"ˆ
"

f(✓) cos2(l✓) d✓ =
1

2

⇡�"ˆ
"

f(✓) d✓, (8.4.20)
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where the final equality is true because

lim
l!1

⇡�"ˆ
"

f(✓) cos2(l✓) d✓ = lim
l!1

⇡�"ˆ
"

f(✓) sin2(l✓) d✓

and sin2 + cos2 = 1. Using (8.4.20) and (8.4.17) we conclude from (8.4.19) for each small
" > 0 that

lim
l!1

2⇡

⇡�"ˆ
"

f(✓)|̂Yl,m|(✓)2 sin(✓) d✓ =
1

⇡

⇡�"ˆ
"

f(✓) d✓. (8.4.21)

On the other hand, (8.4.17) and (8.4.18) imply the pointwise asymptotic property

lim sup
l!1

|̂Yl,m|(✓)2 = lim sup
l!1

(l � m)!

(l + m)!
l2m 1

⇡2 sin ✓
cos2

✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

=
1

⇡2 sin ✓
lim
l!1

✓

(l � m)!

(l + m)!
l2m

◆

lim sup
l!1

cos2
✓✓

l +
1

2

◆

✓ � ⇡

4
+

m⇡

2

◆

 1

⇡2 sin ✓
8 ✓ 2 (0,⇡).

Now, Fatou’s Lemma implies that for each small " > 0 one has the estimate

lim sup
l!1

2⇡

"ˆ
0

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓  2⇡

"ˆ
0

lim sup
l!1

|f(✓)||̂Yl,m|(✓)2 sin ✓ d✓

 2⇡

"ˆ
0

|f(✓)| 1

⇡2 sin ✓
sin ✓ d✓  2"

⇡
kfk1 ,

and analogously for the integral over (⇡ � ",⇡). In a similar way one computes

lim inf
l!1

2⇡

"ˆ
0

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓ � 2⇡

"ˆ
0

lim inf
l!1

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓

� �2⇡

"ˆ
0

|f(✓)| lim sup
l!1

|̂Yl,m|(✓)2 sin ✓ d✓ � �2⇡

"ˆ
0

|f(✓)| 1

⇡2 sin ✓
sin ✓ d✓

� �2"

⇡
kfk1

and again analogously for the integral over (⇡ � ",⇡). Together with (8.4.21) this allows us
to conclude that

lim sup
l!1

2⇡

⇡̂

0

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓  lim sup
l!1

2⇡

"ˆ
0

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓

+ lim
l!1

2⇡

⇡�"ˆ
"

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓ + lim sup
l!1

2⇡

⇡̂

⇡�"
f(✓)|̂Yl,m|(✓)2 sin ✓ d✓

 2"

⇡
kfk1 +

1

⇡

⇡�"ˆ
"

f(✓) d✓ +
2"

⇡
kfk1 =

1

⇡

⇡�"ˆ
"

f(✓) d✓ +
4"

⇡
kfk1 (8.4.22)
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and similarly

lim inf
l!1

2⇡

⇡̂

0

f(✓)|̂Yl,m|(✓)2 sin ✓ d✓ � 1

⇡

⇡�"ˆ
"

f(✓) d✓ � 4"

⇡
kfk1 . (8.4.23)

The left hand sides of (8.4.22) and (8.4.23) are independent of ", so that passing to the limit
" ! 0 we obtain

lim
l!1

2⇡

⇡̂

0

f(✓)|̂Yl,m|(✓)2 sin(✓) d✓ =
1

⇡

⇡̂

0

f(✓) d✓. (8.4.24)

Remark 8.4.5. We do not know whether for the standard 2-sphere Theorem 8.3.8 is directly
implied by the classical theory of Legendre polynomials. Moreover, it is crucial that m grows
slower than l as l ! 1. Indeed, if one considers the diagonal sequence Yl,l of zonal spherical
harmonics, it is not di�cult to see that, contrasting with our results, they concentrate along
the equator in S2 as l ! 1 in the sense that for a given " > 0 there is a constant c(") > 0
such that ˆ

S2�B"

|Yl,l|2 dS2 = O
�

e�c(")l
�

,

where B" denotes the tubular neighborhood of the equator of width ", compare [15] and
Figure 5.3.4, yielding qualitatively quite di↵erent limit measures.
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Glossary

� Isomorphism class of irreducible complex G-representations, identified with the associated
character G ! C.

Dx ⌘ 1
i (@x

1

, . . . , @xm), x 2 Rm, m 2 N.

d� Dimension of the irreducible G-representations of class �; in character notation one has
d� = �(e), e 2 G denoting the neutral element.

�̆ Laplace-Beltrami operator on M , mapping C1(M) ! C1(M) ⇢ L2(M).

� Unique self-adjoint extension of �̆, mapping H2(M) ! L2(M), also called Laplace-
Beltrami operator or just Laplacian.

G Compact connected Lie group.

bG Set of isomorphism classes of irreducible complex G-representations, identified with the
character ring of G.

H Principal isotropy group of the G-action on M .

 Dimension of the principal orbits of the G-action on M .

⇤G
M Maximal number of elements in a totally ordered set of isotropy types of the G-action

on M .

M Compact connected Riemannian manifold without boundary.

Mreg ⌘ M(H) ⇢ M , the principal stratum of M .

fMreg ⌘ Mreg/G, a smooth manifold.

fM ⌘ M/G, in general not a manifold.

n Dimension of the manifold M .

⌦ ⌘ J�1({0}), the zero set of the momentum map J : T ⇤M ! g⇤. In general not a manifold.

⌦reg ⌘ ⌦ \ T ⇤M(H), where T ⇤M(H) denotes the union of all orbits of type H in T ⇤M . A
smooth manifold.
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e⌦reg ⌘ ⌦reg/G, a smooth manifold.

p Given by p(x, ⇠) = k⇠k2x + V (x), the Hamiltonian function T ⇤M ! R with the potential
V 2 C1(M,R).

P̆ (h) Schrödinger operator C1(M) ! C1(M) ⇢ L2(M) with principal symbol represented
by p.

P (h) Unique self-adjoint extension of P̆ (h), mapping H2(M) ! L2(M), also called Schrödin-
ger operator.

[⇡�|H : 1] Frobenius factor: the multiplicity of the trivial representation in the H-representa-
tion ⇡�|H .

Scomp
� , Sbcomp

� See Section 1.1.

⌃c ⌘ p�1({c}), the smooth hypersurface associated to a regular value c of the Hamiltonian
function p.

e⌃c ⌘
�

⌃c \ ⌦reg

�

/G, a smooth manifold.

T� Projection operator in L2(M) onto the isotypic component L2
�(M), see (5.1.3) and (5.1.4).

Wh Semiclassical character family, see Definition 5.2.1.
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4. Dezember 2015 Abschluss: Promotion (Dr. rer. nat.)

März 2014 - Dez. 2015 Promotionsstudium der Mathematik am Fachbereich
Mathematik und Informatik der Philipps-Universität Marburg
Arbeitsgruppe Di↵erentialgeometrie und Analysis
Betreuer: Prof. Dr. Pablo Ramacher

Oktober 2012 - Sept. 2013 Qualification Fellow im Graduiertenkolleg 1150 Homotopy and
Cohomology der Bonn International Graduate School in Mathematics
am Hausdor↵ Center for Mathematics, Universität Bonn
Betreuer: Prof. Dr. Wolfgang Lück

21. Juli 2012 Abschluss: Master of Advanced Study (MASt) in Mathematics

Oktober 2011 - Juli 2012 Masterstudium im Programm Master of Advanced Study in
Mathematics (Part III of the Mathematical Tripos),
University of Cambridge, Vereinigtes Königreich

11. Juli 2011 Abschluss: Bachelor of Science (BSc) in Physik,
Betreuer: Prof. Dr. Manfred Salmhofer

Wintersemester 2008/09 Bachelorstudium der Physik und Mathematik,
- Sommersemester 2011 Universität Heidelberg
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