Publikationsserver der Universitätsbibliothek Marburg

Titel:Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser
Autor:Gaafar, Mahmoud
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0403
DOI: https://doi.org/10.17192/z2015.0403
URN: urn:nbn:de:hebis:04-z2015-04037
DDC: Physik
Titel (trans.):Verwirklichung einer Kerr-Linsen-Modenkopplung von Halbleiterscheibenlasern
Publikationsdatum:2016-06-30
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Optisch gepumpter Halbleiterlaser, Modelocking ,VECSEL, Halbleiterlaser, Kerr-Effekt, pulsed laser

Summary:
Besides continuous wave (cw) operation, where light is emitted continuously over time, specially designed lasers can also generate short or even ultrashort pulses of light, the latter referred to as ultrafast lasers. So far, ultrafast laser systems have been used in different industrial and research areas such as biology, metrology or medicine. But these systems are subject to high costs and great complexity, limiting their use in new application areas that demand for low-cost and compact ultrafast laser sources, such as the optical clocking of microprocessors or free-space data communication. Semiconductor laserswould be ideally suited to meet this demand, however conventional semiconductor lasers are edge-emitters and their power cannot simply be scaled. The same is true for microcavity-based surfaceemitters. Moreover, the more powerful edge-emitters feature strongly asymmetric beam profiles, which makes them unsuitable for many ultrafast applications. Vertical-external-cavity surface-emitting lasers (VECSELs), also known as semiconductor disk lasers (SDLs), are powerful and very flexible coherent light sources. They can be considered as a hybrid system between ion-doped solid state lasers and conventional semiconductor lasers. SDLs combines the advantages of semiconductor gain, e.g. wavelength versatility, high gain cross sections, and simple fabrication, with the benefits of the ion-doped bulk lasers, such as a high-Q external cavity and excellent beam quality. Furthermore, due to the 1-D heat flow, resulting from the arrangement as a thin film laser, very efficient heat removal enables power scaling via the pump area as well as the mode size. SDLs have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multimode or single-frequency cw operation, and on the other hand two-color as well as mode-locked emission. Mode-locked SDLs offer numerous advantages over their solid-state pendants, such as their low-complexity, compactness, cost-efficiency, and an extremely wide range of accessible emission wavelengths (from visible to mid-infrared, based on the employed material system) and repetition rates. This makes ultrafast SDLs very interesting for various applications that rely on a compact, cost-efficient and mass-producible laser technology. SDLs can be passively mode-locked using different mode-locking techniques. While previously saturable absorbers such as semiconductor saturable-absorber mirrors (SESAMs)- either external, or even internal, like in a mode-locked integrated external-cavity surface emitting laser (MIXSEL) - and recently novel-material-based carbon-nanotube or graphene saturable absorbers were employed. Up to date, the presented mode-locking techniques have led to a great enhancement in average powers, peak powers and repetition rates that can be achieved with passively mode-locked SDLs. However, the power-sensitive, complex and costly absorber mirrors, which have to be carefully designed for a certain wavelength range, naturally impose limitations on the device performance. Fortunately, on the other hand, a newmode-locking methodwas presented and discussed in recent years which is referred to as self-mode-locking (SML) or saturable-absorber-free operation of mode-locked SDLs. In this context, motivated by the demand for overcoming the aforementioned limitations, the goal of this thesis was to further exploit the potential of mode-locked SDLs. Particularly, focus on the SML or saturable-absorber-free operation technique, which is considered a promising technique for the realization of compact, robust and cost-efficient modelocked devices. In this thesis, experimental results of SML operation of SDLs in the subpicosecond regime will be presented. We show that the SML scheme is not only applicable to quantum-well-based SDLs, but also to quantum-dot-based devices. Moreover, harmonic mode-locking with sub-ps pulses is demonstrated at discrete power levels. Furthermore, to extend the applications of ultrafast SDLs, we realized an ultra-bright single-photon-source by optically exciting a deterministically integrated single quantum-dot microlens using a mode-locked SDL. The compact and stable laser system allows for overcoming the limited repetition rates of commercial mode-locked Ti:sapphire lasers and to excite the single quantum-dot microlens with a pulse repetition rate close to 500 MHz and a pulse width of 4.2 ps at a wavelength of 508 nm, utilizing second-harmonic generation in an external nonlinear crystal.

Bibliographie / References

  1. C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, U. Keller: Gigahertz self-referenceable frequency comb from a semiconductor disk laser. Optics Express 22 (2014) 13, 1332-1334.
  2. C. H. Henry: Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics 18 (1982), 259-264.
  3. A. Yariv: Internal modulation in multimode laser oscillators. Journal Of Applied Physics (1965)
  4. E. U. Rafailov, Ed., The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics. Hoboken, NJ, USA: Wiley, 2013.
  5. W. Koechner and M. Bass: Solid-State Lasers: A Graduate Text. New York, USA: Springer 2003.
  6. Connolly, M. Jansen, F. Fang, R. F. Nabiev: 8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers. Applied Physics Letters 69 (1996), 1532-1534.
  7. M. Butkus, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, and E. U. Rafailov, " 1270 nm quantum dot based semiconductor disk lasers, " in Proc. 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Sep. 2010, pp. 71–72.
  8. Wilcox, K.G., Tropper, A.C., Beere, H.E., Ritchie, D.A., Kunert, B., Heinen, B., Stolz, W., "4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation," Opt. Express 21(2), 1599–1605 (2013)
  9. M. Butkus et al., " 85.7 MHz repetition rate mode-locked semiconductor disk laser: Fundamental and soliton bound states, " Opt. Exp., vol. 21, no. 21, pp. 25526–25531, 2013.
  10. M. Butkus et al., " High-power quantum-dot-based semiconductor disk laser, " Opt. Lett., vol. 34, no. 11, pp. 1672–1674, 2009.
  11. J. Rautiainen, I. Krestnikov, M. Butkus, E. U. Rafailov, and O. G. Okhotnikov, " Optically pumped semiconductor quantum dot disk laser operating at 1180 nm, " Opt. Lett., vol. 35, no. 5, pp. 694–696, Mar. 2010.
  12. K. G. Wilcox, A. C. Tropper: Comment on SESAM-free mode-locked semiconductor disk laser. Laser and Photonics Review 7 (2013) 3, 422-423.
  13. L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, " SESAM-free mode-locked semiconductor disk laser, " Laser Photon. Rev., vol. 6, no. 6, pp. L20–L23, 2012.
  14. Keller: High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation. Electronics Letters 48 (2012) 18, 1144-1145.
  15. A. Härkonen: Optically-Pumped Semiconductor Disk Lasers for Generating visible and Infrared Radiation, Ph.D. dissertation, Tampere University of technology, Tampere, Finland, 2008.
  16. R. Kovsh, T. S ¨ udmeyer, U. Keller: Modelocked quantum dot vertical external cavity surface emitting laser. Applied Physics B 93 (2008) 4, 733-736.
  17. O. D. Sieber, M. Hoffmann, V. J. Wittwer, M. Mangold, M. Golling, B. W. Tilma, T. S ¨ udmeyer, U. Keller: Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B 113 (2013) 1, 133-145.
  18. O. SIEBER: Scaling high-power ultrafast VECSELs into the femtosecond regime, Ph.D. dissertation, ETH Zurich, 2013.
  19. [71] A. Giesen, H. H ¨ ugel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B: Lasers and Optics 58 (1994) 5, 365-372.
  20. D. Al Nakdali et al., " High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8 W, " IEEE Photon. Technol. Lett., vol. 26, no. 15, pp. 1561–1564, Aug. 1, 2014.
  21. M. Gaafar et al., " Self-mode-locking semiconductor disk laser, " Opt. Exp., vol. 22, no. 23, pp. 28390–28399, Nov. 2014.
  22. R. Paschotta, R. Haring, U. Keller, A. Garnache, S. Hoogland, A. C. Tropper: Soliton- like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Applied Physics B 75 (2002), 445-451.
  23. K. G. Wilcox, M. Butkus, I. Farrer, D. A. Ritchie, A. Tropper, E. U. Rafailov: Subpicosec- ond quantum dot saturable absorber mode-locked semiconductor disk laser. Applied Physics Letters 94 (2009) 25, 251105.
  24. U. Keller and A. C. Tropper, " Passively modelocked surface-emitting semiconductor lasers, " Phys. Rep., vol. 429, no. 2, pp. 67–120, 2006.
  25. Hoogland, S., Dhanjal, S., Tropper, A. C., Roberts, S. J., Häring, R., Paschotta, R., and Keller, U., "Passively mode- locked diode-pumped surface-emitting semiconductor laser," IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
  26. K. G. Wilcox, A. H. Quarterman, Harvey Beere, D. A. Ritchie, A. C. Tropper: High Peak Power Femtosecond Pulse Passively Mode-Locked Vertical-External-Cavity Surface-Emitting Laser. IEEE Photonics Technology Letters 22 (2010) 14, 1021-1023.
  27. A. Gamache, S. Hoogland, A. Trooper, I. Sagnes, G. Saint-Girons, J. S. Roberts: Sub- 500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. Applied Physics Letters 80 (2002) 21, 3892-3894.
  28. A. C. Tropper, S. Hoogland: Extended cavity surface-emitting semiconductor lasers. Progress in Quantum Electronics 30 (2006), 1-43.
  29. Farrer, D. A. Ritchie, A. Tropper: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics 3 (2009), 729-731.
  30. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, A. C. Tropper: 10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photonics Technology Letters 17 (2005) 2, 267-269.
  31. L. Fan et al., " Tunable high-power high-brightness linearly polar- ized vertical-external-cavity surface-emitting lasers, " Appl. Phys. Lett., vol. 88, no. 2, p. 021105, 2006.
  32. Liang, H. C., Tsou, C. H., Lee, Y. C., Huang, K. F. and Chen, Y. F., "Observation of self-mode-locking assisted by high-order transverse modes in optically pumped semiconductor lasers," Laser Phys. Lett. 11, 105803 (2014).
  33. Chen, Y. F., Lee, Y. C., Liang, H. C., Lin, K. Y., Su, K. W. and Huang, K. F., "Femtosecond high-power spontaneous mode-locked operation in vertical-external cavity surface-emitting laser with gigahertz oscillation," Opt. Lett. 36(23), 4581–4583 (2011).
  34. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies: Generation of 5-fs pulses and octaves- panning spectra directly from a Ti:sapphire laser. Optics Letters 26 (2001), 373-375.
  35. B. Heinen et al., " 106 W continuous-wave output power from vertical- external-cavity surface-emitting laser, " Electron. Lett., vol. 48, no. 9, pp. 516–517, Apr. 2012.
  36. S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, " 1180 nm VECSEL with output power beyond 20 W, " Electron. Lett., vol. 49, no. 1, pp. 59–60, Jan. 2013.
  37. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, " 15 W single frequency optically pumped semiconductor laser with sub-megahertz linewidth, " IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 131–133, Jan. 15, 2014.
  38. A. Garnache et al., " 2-2.7 µm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and external cavity VCSELs, DFB, " Proc. SPIE, vol. 6184, pp. 61840N-1–61840N-15, Apr. 2006.
  39. J. Rautiainen, I. Krestnikov, J. Nikkinen, and O. G. Okhotnikov, " 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser, " Opt. Lett., vol. 35, no. 12, pp. 1935–1937, Jun. 2010.
  40. Honninger, M. Kumkar, U. Keller: 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Optics Letters 28 (2003), 367-9.
  41. F. Zhang et al., " A 23-watt single-frequency vertical-external-cavity surface-emitting laser, " Opt. Exp., vol. 22, no. 11, pp. 12817–12822, Jun. 2014.
  42. M. Hoffmann et al., " All quantum dot based femtosecond VECSEL, " Proc. SPIE, vol. 7919, pp. 79190X-1–79190X-6, Feb. 2011.
  43. D. Babic, S. Corzine: Analytic expressions for the reflection delay, penetration depth, and ab- Bibliography 140
  44. Seger, K., Meiser, N., Choi, S. Y., Jung, B. H., Yeom, D.-I., Rotermund, F., Okhotnikov, O., Laurell, F., and Pasiskevicius, V., "Carbon nanotube mode-locked optically-pumped semiconductor disk laser," Opt. Express 21(15), 17806–17813 (2013).
  45. Walmsley: Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric field reconstruction. Optics Letters 24 (1999), 1314-1316.
  46. F.-Q. Li et al., " Compact 7.8-W 1-GHz-repetition-rate passively mode- locked TEM 00 Nd: YVO 4 laser under 880 nm diode direct-in-band pumping, " Opt. Commun., vol. 284, no. 19, pp. 4619–4622, 2011. [16] B. Heinen et al., " 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser, " Electron. Lett., vol. 48, no. 9, pp. 516–517, Apr. 2012.
  47. Y. Kaneda et al., " Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser, " Opt. Lett., vol. 34, no. 22, pp. 3511–3513, 2009.
  48. Hänsch, and F. Krausz: Controlling the phase evolution of few-cycle light pulses. Physical Review Letter 85 (2000), 740-743.
  49. G. P. Agrawal and N. K. Dutta: Long-Wavelength Semiconductor Lasers. Van Nostrand Reinhold Co., New York 1986.
  50. E. Saarinen, R. Herda, O. G. Okhotnikov: Dynamics of pulse formation in mode-locked semiconductor disk lasers. Journal of the Optical Society of America B 24 (2007) 11, 2784- 2790.
  51. N. Schulz, M. Rattunde, C. Ritzenthaler, B. Rosener, C. Manz, K. Kohler, J. Wagner: Ef- fect of the cavity resonance-gain offset on the output power characteristics of GaSb-based VEC- SELs. IEEE Photonics Technology Letters 19 (2007) 21, 1741-1743.
  52. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, G. Erbert: Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express 17 (2009) 13, 10820-10834.
  53. M. Wichmann et al., " Evolution of multi-mode operation in vertical- external-cavity surface-emitting lasers, " Opt. Exp., vol. 21, no. 26, pp. 31940–31950, Dec. 2013.
  54. Keller: Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs. Optics Express 18 (2010) 10, 10143-10153.
  55. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. S ¨ udmeyer, U. Keller: Femtosecond high-power quantum dot vertical external cavity surface emitting laser. Optics Express 19 (2011) 9, 8108-8116.
  56. U. Keller, G. W. Hooft, W. H. Knox, J. E. Cunningham: Femtosecond Pulses from a Continuously Self-Starting Passively Mode-Locked Ti:Sapphire Laser. Optics Letters 16 (1991),1022-1024.
  57. Mangold, M., Wittwer, V. J., Zaugg, C. A., Link, S. M., Golling, M., Tilma, B. W., and Keller, U., "Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)," Opt. Express 21(21), 24904–24911 (2013).
  58. A. Rantamäki et al., " Flip chip quantum-dot semiconductor disk laser at 1200 nm, " IEEE Photon. Technol. Lett., vol. 24, no. 15, pp. 1292–1294, Aug. 1, 2012.
  59. J. A. Lott, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, " GaAs-based InAs/InGaAs quantum dot vertical cavity and vertical external cavity surface emitting lasers emitting near 1300 nm, " in Proc. Pacific Rim Conf. Lasers Electro-Opt. (CLEO/Pacific Rim), Aug. 2005, pp. 160–161.
  60. Husaini, S., and Bedford, R. G., "Graphene saturable absorber for high power semiconductor disk laser mode- locking," Appl. Phys. Lett. 104(16), 161107 (2014).
  61. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, A. Guandalini: 40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode. Optics Express 20 (2012), 10077-10082.
  62. M. Gaafar et al., " Harmonic self-mode-locking of optically pumped semiconductor disc laser " Electron. Lett., vol. 50, no. 7, pp. 542–543, Mar. 2014.
  63. F. J. McClung, R. W. Hellwarth: Giant optical pulsations from ruby. Applied Optics (1962)
  64. M. Scheller et al., " Heterodyne detection of intracavity generated terahertz radiation, " IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 3, pp. 271–277, May 2012.
  65. E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, " High-efficiency 20 W yellow VECSEL, " Opt. Exp., vol. 22, no. 6, pp. 6372–6380, 2014.
  66. Keller: Highly efficient optically pumped vertical emitting semiconductor laser with more than 20-W average output power in a fundamental transverse mode. Optics Letters 33 (2008) (22), 2719-2721.
  67. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, " High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams, " IEEE Photon. Technol. Lett., vol. 9, no. 8, pp. 1063–1065, Aug. 1997.
  68. A. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, J. C. Connolly: High-power (> 10 W) continuous-wave operation from 100 µm aperture 0.97 µm emitting Al- free diode lasers. Applied Physics Letters 73 (1998), 1182-1184.
  69. A. R. Albrecht et al., " High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure, " Proc. SPIE, vol. 7919, pp. 791904-1–791904-6, Feb. 2011.
  70. T. Schwarzbäck et al., " High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W, " Appl. Phys. Lett., vol. 102, no. 9, pp. 092101-1–092101-4, Mar. 2013.
  71. R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, U. Keller: High- power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Elec- tronics 38 (2002) 9, 1268-1275.
  72. M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith: High single-transverse mode output from external-cavity surface-emitting laser diodes. Applied Physics Letters 63 (1993), 1607-1609.
  73. T. Udem, R. Holzwarth, T. W. Hänsch: Optical frequency metrology. Nature(2002)
  74. M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, " Interferometric characterization of a semiconductor disk laser driven terahertz source, " J. Infr. Millim. Terahertz Waves, vol. 35, nos. 6–7, pp. 503–508, Jul. 2014.
  75. A.Aschwanden, D. Lorenser, HJ. Unold, R. Paschotta, E. Gini, U. Keller: 2.1-W pi- cosecond passively mode-locked external-cavity semiconductor laser. Optics Letters 30 (2005), 272-274.
  76. Ebling, U. Keller: 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE Journal of Quantum Electronics 42 (2006) 7, 838-847.
  77. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. S ¨ udmeyer, U. Keller: High-power MIXSEL: an integrated ultrafast semicon- ductor laser with 6.4 W average power. Optics Express 18 (2010) 26, 27582-27588.
  78. T. Brabec, C. Spielmann, P. F. Curley, F. Krausz: Kerr lens mode locking. Optics Letters 17 (1992), 1292-1294.
  79. M. Arrigoni, B. Morioka, A. Lepert: Optically pumped semiconductor lasers: Green OPSLs poised to enter scientific pump-laser market. Laser FocusWorld, Oct. 2009.
  80. S. Kaspar et al., " Linewidth narrowing and power scaling of single- frequency 2.X µm GaSb-based semiconductor disk lasers, " IEEE J. Quantum Electron., vol. 49, no. 3, pp. 314–324, Mar. 2013.
  81. L. E. Hargrove, R. L. Fork, M. A. Pollack: Locking of NeNe laser modes induced by syn- chronous intracavity modulation. Applied Physics Letters 5 (1964).
  82. L. A. Coldren, S. W. Corzine, M. L. Mašanovi´Mašanovi´c: Diode Lasers and Photonic Integrated Circuits. Hoboken, NJ, USA: John Wiley & Sons 2012.
  83. R. Bek, G. Kersteen, H. Kahle, T. Schwarzbäck, M. Jetter, P. Michler: All quantum dot mode-locked semiconductor disk laser emitting at 655 nm. Applied Physics Letters 105 (2014), 082107.
  84. R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, P. Michler: Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses. Applied Physics Letters 103 (2013), 242101.
  85. D. A. B. Miller: Optical interconnects to silicon. IEEE Journal of Selected Topics in Quan- tum Electronics 6 (2000), 1312-1317.
  86. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, " Mode-locked quantum-dot lasers, " Nature Photon., vol. 1, no. 7, pp. 395–401, 2007.
  87. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian: Design and characteristics of high- power (>0.5-W CW) diode-pumped vertical external-cavity surface emitting semiconductor lasers with circular TEM 00 beams. IEEE Journal of Selected Topics in Quantum Electronics 5 (1999), 561-573.
  88. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian: High-power (> 0.5-W CW) diode- pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams. IEEE Photonics Technology Letters 9 (1997), 1063-1065.
  89. A. R. Albrecht et al., " Multi-watt 1.25 µm quantum dot VECSEL, " Electron. Lett., vol. 46, no. 12, pp. 856–857, Jun. 2010.
  90. Moloney, J.V., Kilen, I., Bäumner, A., Scheller, M., and Koch, S.W., "Nonequilibrium and thermal effects in mode- locked VECSELS," Opt. Express 22(6), 6422–6427 (2014).
  91. E. Kuhn, A. Thranhardt, C. Buckers, S. W. Koch, J. Hader, J. Moloney: Numerical study of the influence of an antireflection coating on the operating properties of vertical-external-cavity surface-emitting lasers. Journal of Applied Physics 106 (2009) 6, 063105.
  92. J. Rautiainen, J. Lyytikainen, L. Toikkanen, J. Nikkinen, A. Sirbu, A. Mereuta, A. Cali- man, E. Kapon, O. G. Okhotnikov: 1.3 µm Mode-Locked Disk Laser with Wafer Fused Gain and SESAM Structures. IEEE Photonics Technology Letters 22 (2010) 11, 748-750.
  93. J. Rautiainen, I. Krestnikov, J. Nikkinen, O. G. Okhotnikov: 2.5 W orange power by fre- quency conversion from a dual-gain quantum-dot disk laser. Optics Letters 35 (2010) 12, 1935- 1937.
  94. Guina, O. G. Okhotnikov: Harmonically mode-locked VECSELs for multi-GHz pulse train generation. Optics Express 15 (2007) 3, 955-964.
  95. O. G. Okhotnikov: Semiconductor Disk Lasers: Physics and Technology, ED. Wein- heim: Wiley-VCH 2010.
  96. Hader, J., Wang, T.-L., Moloney, J. V., Heinen, B., Koch, M., Koch, S. W., Kunert, B., and Stolz, W., "On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers," J. Appl. Phys., 113(15), 153102 (2013).
  97. Heinen, B., Zhang, F., Sparenberg, M., Kunert, B., Koch, M., and Stolz, W., "On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)," IEEE J. Quantum Electron., 48(7), 934–940 (2012).
  98. L. Fan et al., " Over 3 W high-efficiency vertical-external-cavity surface- emitting lasers and application as efficient fiber laser pump sources, " Appl. Phys. Lett., vol. 86, no. 21, p. 211116, 2005.
  99. Pacific Rim conference on lasers and electro-optics, CLEO/Pacific Rim (2005), 160-161.
  100. J. A. Lott, A. R. Kovsh, N. N. Ledentsov, and D. Bimberg, Pacific Rim conference on lasers and electro-optics, CLEO/Pacific Rim 2005, pp. 160–161 (2005).
  101. Laurell, V. Pasiskevicius: Carbon nanotube mode-locked optically-pumped semicon- ductor disk laser. Optics Express 21 (2013) 15, 17806-17813.
  102. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, " Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power, " Electron. Lett., vol. 48, no. 10, pp. 588–589, May 2012.
  103. R. Paschotta, U. Keller: Passive mode locking with slow saturable absorbers. Applied Physics B 73 (2001), 653âĂŞ662.
  104. R. Haring, R. Paschotta, E. Gini, F. Morier-Genoud, D. Martin, H. Melchior, U. Keller: Picosecond surface-emitting semiconductor laser with > 200 mW average power. Elec- tronics Letters 37 (2001) 12, 766-767.
  105. R. Bedford, M. Kolesik, J. Chilla, M. Reed, T. Nelson, J. Moloney: Power-limiting mech- anisms in VECSELs. Proc. SPIE, 5814 (2005), 199-208.
  106. O. Svelto: Principles of Lasers. Boston, MA: Springer US 2010.
  107. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller: Pulse repeti- tion rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Optics Express 22 (2014) 5, 6099-6107.
  108. P. Klopp, U. Griebner, M. Zorn, M. Weyers: Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser. Applied Physics Letters 98 (2011) 7, 071103-071103.
  109. Wang, T.-L., Heinen, B., Hader, J., Dineen, C., Sparenberg, M., Weber, A., Kunert, B., Koch, S. W., Moloney, J. V., Koch, M., and Stolz, W., "Quantum design strategy pushes high-power vertical-external-cavity surface-emitting lasers beyond 100 W," Laser Photonic Rev., 6(5), L12–L14 (2012)
  110. Mikhrin, I. L. Krestnikov, D. A. Livshits, E. U. Rafailov: Quantum dot based semiconductor 139 Bibliography disk lasers for 1-1.3 µm. IEEE Journal of Selected Topics in Quantum Electronics, 17 (2011) 6, 1763-1771.
  111. M. Butkus: Quantum Dot Based Semiconductor Disk Lasers, Ph.D. dissertation, Uni- versity of Dundee, England, 2012.
  112. M. Butkus et al., " Quantum dot based semiconductor disk lasers for 1–1.3 µm, " IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1763–1771, Nov./Dec. 2011.
  113. T. Germann et al., " Quantum-dot semiconductor disk lasers, " J. Cryst. Growth, vol. 310, no. 23, pp. 5182–5186, 2008.
  114. Rafailov: 85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states. Optics Express 21 (2013) 21, 25526-25531.
  115. J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, " Recent advances in optically pumped semiconductor lasers, " Proc. SPIE, vol. 6451, pp. 645109-1–645109-10, Feb. 2007.
  116. U. Keller: Recent developments in compact ultrafast lasers. Nature 424 (2003), 831-838.
  117. L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, C. J. Hamilton: Reply to comment on SESAM-free mode-locked semiconductor disk laser. Laser and Photonics Review 7 (2013) 4, 555-556.
  118. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, " Room temperature continuous wave milliwatt terahertz source, " Opt. Exp., vol. 18, no. 26, pp. 27112–27117, 2010.
  119. M. Gaafar et al., " Self-mode-locked quantum-dot vertical-external- cavity surface-emitting laser, " Opt. Lett., vol. 39, no. 15, pp. 4623–4626, 2014.
  120. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, " Semiconductor disk lasers for the generation of visible and ultraviolet radiation, " Laser Photon. Rev., vol. 3, no. 5, pp. 407–434, 2009. [14] Y. Kaneda et al., " Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser, " Opt. Lett., vol. 34, no. 22, pp. 3511–3513, Nov. 2009.
  121. W. Chow, S. W. Koch: Semiconductor Laser Fundamentals. Berlin: Springer 1999.
  122. Z. Liau: Semiconductor wafer bonding via liquid capillarity. Applied Physics Letters 77 (2000) 5, 651âĂŞ653.
  123. E. U. Rafailov, M. A. Cataluna, W. Sibbett: Mode-locked quantum-dot lasers. Nature Pho- tonics 1 (2007), 395-401.
  124. M. DiDomenico: Small-Signal Analysis of Internal (Coupling-Type) Modulation of Lasers. Journal Of Applied Physics (1964).
  125. W. Koechner: Solid-State Laser Engineering. New York, USA: Springer 2006.
  126. sorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics 28 (1992) 2, 514-524.
  127. A. Giesen, J. Speiser: Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics 13 (2007) 3, 598-609.
  128. T. H. Maiman: Stimulated Optical Radiation in Ruby. Nature 187 (1960) 4736, 493-494.
  129. Moloney, M. Koch, W. Stolz: 106 W continuous-wave output power from vertical-external- cavity surface-emitting laser. Electronics Letters 48 (2012) 9, 516-517.
  130. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz: 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation. Optics Express 21 (2013) 2, 1599-1605.
  131. T.-L. Wang, Y. Kaneda, J. Hader, J. Moloney, B. Kunert, W. Stolz, S. Koch: Strategies for power scaling VECSELs. Proceedings of SPIE, 8242 (2012), 8242091-8242098.
  132. J.-L. Oudar: Subpicosecond pulse generation from a 1.56 µm mode-locked VECSEL.
  133. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, U. Keller: Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers. Applied Physics B 79 (2004) 8, 927-932.
  134. U. Keller, A. C. Tropper: Passively modelocked surface-emitting semiconductor lasers. Physics Reports 429 (2006), 67-120.
  135. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller: Ultra- fast and widely tunable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector. Optics Express 21 (2013) 25, 31548- 31559.
  136. Zaugg, C. A., Sun, Z., Wittwer, V. J., Popa, D., Milana, S., Kulmala, T. S., Sundaram, R. S., Mangold, M., Sieber, O. D., Golling, M., Lee, Y., Ahn, J. H., Ferrari, A. C., and Keller, U., "Ultrafast and widely tuneable vertical- external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector," Opt. Express 21(25), 31548–31559 (2013).
  137. GrünerGr¨Grüner-Nielsen, T. Veng: Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters 25 (2000), 704- 706.
  138. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. SÃijdmeyer, U. Keller: Vertical integration of ultrafast semiconductor lasers. Applied Physics B 88 (2007) 4, 493-497.
  139. Zorn, M. Weyers: Blue 489-nm picosecond pulses generated by intracavity frequency doubling in a passively mode-locked optically pumped semiconductor disk laser. Ap- plied Physics B 81 (2005) 4, 443-446.
  140. A. H. Zewail: Laser femtochemistry. Science 242 (1988), 1645-1653.
  141. M. Rahim, M. Arnold, F. Felder, K. Behfar, H. Zogg: Midinfrared lead-chalcogenide verti- cal external cavity surface emitting laser with 5 mm wavelength. Applied Physics Letters 91 (2007), 151102.
  142. Albrecht, A. R., Wang, Y., Ghasemkhani, M., Seletskiy, D. V., Cederberg, J. G. and Sheik-Bahae, M., "Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers," Opt. Express 21(23), 28801–28808 (2013).
  143. Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms [5] Heinen, B., Wang, T. L., Sparenberg, M., Weber, A., Kunert, B., Hader, J., Koch, S. W., Moloney, J. V., Koch, M. and Stolz, W., "106 W continuous-wave output power from vertical-external-cavity surface-emitting laser," Electron. Lett. 48 (9), 516-517 (2012).
  144. C. Borgentun, J. Bengtsson, A. Larsson, F. Demaria, A. Hein, P. Unger: Optimization of a broadband gain element for a widely tunable high-power semiconductor disk laser. IEEE Photonics Technology Letters 22 (2010) 13, 978-980.
  145. H. Lindberg, A. Strassner, E. Gerster, A. Larsson: 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters 40 (2004), 601- 602.
  146. A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, A. Larsson: Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photonics Technology Letters 16 (2004), 368-370.
  147. H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, S. Marcinke- vicius: Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters 30 (2005) 20, 2793-2795.
  148. Cundiff: Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis. Science 288 (2000), 635-639.
  149. S. Calvez, J. E. Hastie, M. Guin, O. G. Okhotnikov, and M. D. Dawson, " Semiconductor disk lasers for the generation of visible and ultraviolet radiation, " Laser Photon. Rev., vol. 3, no. 5, pp. 407–434, 2009.
  150. P. J. Schlosser, J. E. Hastie, S. Calvez, A. B. Krysa, and M. D. Dawson, " InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM 00 emission at 716–755 nm, " Opt. Exp., vol. 17, no. 24, pp. 21782–21787, Nov. 2009.
  151. J. E. Hastie et al., " 0.5-W single transverse-mode operation of an 850- nm diode-pumped surface-emitting semiconductor laser, " IEEE Photon. Technol. Lett., vol. 15, no. 7, pp. 894–896, Jul. 2003.
  152. J. Hastie, S. Calvez, M. Dawson, T. Leinonen, A. Laakso, J. Lyytikäinen, M. Pessa: High power CW red VECSEL with linearly polarized TEM 00 output beam. Optics Express 13 (2005), 77-81.
  153. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, J. S. Roberts: Tun- able ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity sur- faceemitting laser. Applied Physics Letters 89 (2006), 061114.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten