Publikationsserver der Universitätsbibliothek Marburg

Titel:Characterization of a minimal Type I CRISPR-Cas system found in Shewanella putrefaciens CN-32
Autor:Dwarakanath, Srivatsa
Weitere Beteiligte: Randau, Lennart (Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0393
URN: urn:nbn:de:hebis:04-z2015-03935
DOI: https://doi.org/10.17192/z2015.0393
DDC: Biowissenschaften, Biologie
Titel (trans.):Charakterisierung eines minimalen Typ I CRISPR-Cas Systems aus Shewanella putrefaciens CN-32
Publikationsdatum:2016-04-14
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
CRISPR-Cas, Bakterien, Shewanella putrefaciens CN-32, Shewanella putrefaciens CN-32, Mikrobiologie, CRISPR-Cas, RNS, Immunsystem

Summary:
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) is an adaptive immune system in prokaryotes that uses small CRISPR RNA (crRNA) to detect and degrade foreign DNA or RNA. CRISPR-Cas systems consist of a CRISPR array and a set of cas genes. Individual crRNAs are generated from CRISPR array transcripts and are incorporated into CRISPR ribonucleoprotein (crRNP) surveillance complexes that include different Cas proteins. The Type I CRISPR-Cas systems are identified by the presence of the signature protein Cas3 and utilize a crRNP surveillance complex termed Cascade. The Cas protein content of Cascade differs between the CRISPR-Cas subtypes. A minimal variant of the Type I-F subtype was identified in Shewanella putrefaciens CN-32. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. This system contains Cas1, an integrase that mediates spacer acquisition, Cas3, the target DNA nuclease and Cas6f, the endonuclease that generates mature crRNAs. Two additional proteins, Cas1821 and Cas1822, show no apparent sequence similarity to any known Cas protein families. A large subunit protein responsible for target recognition in other subtypes is absent. RNA-Seq analyses showed that the CRISPR array is transcribed and that mature crRNAs are generated. In vivo interference activity was demonstrated for this minimal system using a plasmid conjugation assay. The interference activity was dependent on the recognition of a dinucleotide GG sequence, termed Protospacer Adjacent Motif (PAM). The deletion of cas1821 and cas1822 in S. putrefaciens CN-32 abolished the in vivo interference activity and resulted in the loss of a stable crRNA pool. A minimal Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. Recombinant Cas1821 formed helical filaments upon RNA binding and the analysis of mutant strains demonstrated that DNA interference depended on conserved arginine residues of Cas1822. Cas1822 and Cas3, which contains a conserved Cas2-like N-terminus, are discussed to compensate for the absence of the large and small subunits present in other Cascade assemblies. These results provide insights into the evolution of reduced CRISPR-Cas systems and demonstrate Cascade functionality without a large subunit.

Bibliographie / References

  1. De Castro, E., Sigrist, C.J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A. and Hulo, N. (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic acids research, 34, W362-W365. 89. Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. and Siksnys, V. (2011) Cas3 is a single‐stranded DNA nuclease and ATP‐ dependent helicase in the CRISPR/Cas immune system. The EMBO journal, 30, 1335-1342.
  2. Garneau, J.E., Dupuis, M.-È., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A.H. and Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71.
  3. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W. and Li, S.-m. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica et Cosmochimica Acta, 62, 3239-3257.
  4. Richter, H., Zoephel, J., Schermuly, J., Maticzka, D., Backofen, R. and Randau, L. (2012) Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic acids research, 40, 9887-9896.
  5. Su, A.A., Tripp, V. and Randau, L. (2013) RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri. Nucleic acids research, gkt317.
  6. Carte, J., Wang, R., Li, H., Terns, R.M. and Terns, M.P. (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & development, 22, 3489-3496.
  7. Sternberg, S.H., Haurwitz, R.E. and Doudna, J.A. (2012) Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA, 18, 661-672.
  8. Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak‐ Amikam, Y., Afik, S., Ofir, G. and Sorek, R. (2015) BREX is a novel phage resistance system widespread in microbial genomes. The EMBO journal, 34, 169-183.
  9. Richter, H., Randau, L. and Plagens, A. (2013) Exploiting CRISPR/Cas: interference mechanisms and applications. International journal of molecular sciences, 14, 14518-14531.
  10. Westra, E.R., Pul, Ü., Heidrich, N., Jore, M.M., Lundgren, M., Stratmann, T., Wurm, R., Raine, A., Mescher, M. and Van Heereveld, L. (2010) H‐NS‐ mediated repression of CRISPR‐based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Molecular microbiology, 77, 1380-1393.
  11. Jore, M.M., Lundgren, M., van Duijn, E., Bultema, J.B., Westra, E.R., Waghmare, S.P., Wiedenheft, B., Pul, Ü., Wurm, R. and Wagner, R. (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature structural & molecular biology, 18, 529-536.
  12. Louwen, R., Horst-Kreft, D., De Boer, A., Van Der Graaf, L., de Knegt, G., Hamersma, M., Heikema, A., Timms, A., Jacobs, B. and Wagenaar, J. (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barre syndrome. European journal of clinical microbiology & infectious diseases, 32, 207-226.
  13. Judith, R., James, H.N. and Malcolm, F.W. (2013) CRISPR interference: a structural perspective. Biochemical Journal, 453, 155-166.
  14. Cass, S., Haas, K.A., Stoll, B., Alkhnbashi, O., Sharma, K., Urlaub, H., Backofen, R., Marchfelder, A. and Bolt, E.L. (2015) The role of Cas8 in type I CRISPR interference. Bioscience reports.
  15. Remaut, E., Tsao, H. and Fiers, W. (1983) Improved plasmid vectors with a thermoinducible expression and temperature-regulated runaway replication. Gene, 22, 103-113.
  16. Jackson, R.N. and Wiedenheft, B. (2015) A Conserved Structural Chassis for Mounting Versatile CRISPR RNA-Guided Immune Responses. Molecular Cell. 69. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. and Siksnys, V. (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research, gkr606. 70. Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F. and Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935-949.
  17. Lilie, H., Schwarz, E. and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Current opinion in biotechnology, 9, 497-501.
  18. Haft, D.H., Selengut, J., Mongodin, E.F. and Nelson, K.E. (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology, 1, e60. 19. Plagens, A., Richter, H., Charpentier, E. and Randau, L. (2015) DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiology Reviews, fuv019. 20. Savitskaya, E., Semenova, E., Dedkov, V., Metlitskaya, A. and Severinov, K. (2013) High-throughput analysis of type IE CRISPR/Cas spacer acquisition in E. coli. RNA biology, 10, 716-725.
  19. Sesto, N., Touchon, M., Andrade, J.M., Kondo, J., Rocha, E.P., Arraiano, C.M., Archambaud, C., Westhof, É., Romby, P. and Cossart, P. (2014) A PNPase dependent CRISPR system in Listeria. PLoS genetics, 10, e1004065. 99. Rollins, M.F., Schuman, J.T., Paulus, K., Bukhari, H.S. and Wiedenheft, B. (2015) Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic acids research, 43, 2216-2222.
  20. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821.
  21. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.
  22. Labrie, S.J., Samson, J.E. and Moineau, S. (2010) Bacteriophage resistance mechanisms. Nature Reviews Microbiology, 8, 317-327.
  23. Carte, J., Pfister, N.T., Compton, M.M., Terns, R.M. and Terns, M.P. (2010) Binding and cleavage of CRISPR RNA by Cas6. Rna, 16, 2181-2188. 28. Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J. and Charpentier, E. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471, 602-607.
  24. Nam, K.H., Haitjema, C., Liu, X., Ding, F., Wang, H., DeLisa, M.P. and Ke, A. (2012) Cas5d protein processes pre-crRNA and assembles into a cascade- like interference complex in subtype IC/Dvulg CRISPR-Cas system. Structure, 20, 1574-1584.
  25. Hochstrasser, M.L., Taylor, D.W., Bhat, P., Guegler, C.K., Sternberg, S.H., Nogales, E. and Doudna, J.A. (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proceedings of the National Academy of Sciences, 111, 6618-6623.
  26. Chylinski, K., Makarova, K.S., Charpentier, E. and Koonin, E.V. (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic acids research, 42, 6091-6105.
  27. Samai, P., Pyenson, N., Jiang, W., Goldberg, G.W., Hatoum-Aslan, A. and Marraffini, L.A. (2015) Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell, 161, 1164-1174.
  28. Levy, A., Goren, M.G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U. and Sorek, R. (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 520, 505-510. 22. Nuñez, J.K., Lee, A.S., Engelman, A. and Doudna, J.A. (2015) Integrase- mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature. 23. Mojica, F., Diez-Villasenor, C., Garcia-Martinez, J. and Almendros, C. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155, 733-740.
  29. Makarova, K.S. and Koonin, E.V. (2013), CRISPR-Cas Systems. Springer, pp. 61-91.
  30. Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167-170. 10. Bhaya, D., Davison, M. and Barrangou, R. (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics, 45, 273-297.
  31. Sorek, R., Lawrence, C.M. and Wiedenheft, B. (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual review of biochemistry, 82, 237-266. 12. Pourcel, C., Salvignol, G. and Vergnaud, G. (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653-663.
  32. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712.
  33. Osawa, T., Inanaga, H., Sato, C. and Numata, T. (2015) Crystal Structure of the CRISPR-Cas RNA Silencing Cmr Complex Bound to a Target Analog. Molecular cell, 58, 418-430.
  34. Jackson, R.N., Golden, S.M., van Erp, P.B., Carter, J., Westra, E.R., Brouns, S.J., van der Oost, J., Terwilliger, T.C., Read, R.J. and Wiedenheft, B. (2014) Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli. Science, 345, 1473-1479.
  35. Przybilski, R., Richter, C., Gristwood, T., Clulow, J.S., Vercoe, R.B. and Fineran, P.C. (2011) Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum. RNA biology, 8, 517-528.
  36. Daume, M., Plagens, A. and Randau, L. (2014) DNA binding properties of the small cascade subunit csa5. PloS one, 9, e105716.
  37. Maier, L.-K., Lange, S.J., Stoll, B., Haas, K.A., Fischer, S.M., Fischer, E., Duchardt-Ferner, E., Wöhnert, J., Backofen, R. and Marchfelder, A. (2013) Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system IB. RNA biology, 10, 865-874.
  38. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I. and Yakunin, A.F. (2011) Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9, 467-477.
  39. Hatoum-Aslan, A., Maniv, I., Samai, P. and Marraffini, L.A. (2014) Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. Journal of bacteriology, 196, 310-317.
  40. Breitbart, M. and Rohwer, F. (2005) Here a virus, there a virus, everywhere the same virus? Trends in microbiology, 13, 278-284.
  41. Inoue, H., Nojima, H. and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23-28.
  42. Pul, Ü., Wurm, R., Arslan, Z., Geißen, R., Hofmann, N. and Wagner, R. (2010) Identification and characterization of E. coli CRISPR‐cas promoters and their silencing by H‐NS. Molecular microbiology, 75, 1495-1512.
  43. Wu, J., Kasif, S. and DeLisi, C. (2003) Identification of functional links between genes using phylogenetic profiles. Bioinformatics, 19, 1524-1530. 91. Biswas, A., Gagnon, J.N., Brouns, S.J., Fineran, P.C. and Brown, C.M. (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA biology, 10, 817-827.
  44. Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. and Li, H. (2011) Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure, 19, 257-264. 51. Niewoehner, O., Jinek, M. and Doudna, J.A. (2014) Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic acids research, 42, 1341-1353.
  45. Mojica, F.J., García-Martínez, J. and Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular evolution, 60, 174-182.
  46. Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. The FASEB Journal, 10, 49-56.
  47. Richter, C., Gristwood, T., Clulow, J.S. and Fineran, P.C. (2012) In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype IF CRISPR/Cas System. PLoS One, 7, e49549. 63. Koo, Y., Ka, D., Kim, E.-J., Suh, N. and Bae, E. (2013) Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system. Journal of molecular biology, 425, 3799-3810.
  48. Abboud, R., Popa, R., Souza-Egipsy, V., Giometti, C.S., Tollaksen, S., Mosher, J.J., Findlay, R.H. and Nealson, K.H. (2005) Low-temperature growth of Shewanella oneidensis MR-1. Applied and environmental microbiology, 71, 811-816.
  49. Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature, 399, 541-548.
  50. Myers, C.R. and Nealson, K.H. (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochimica et Cosmochimica Acta, 52, 2727-2732.
  51. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning. Cold spring harbor laboratory press New York.
  52. Grissa, I., Vergnaud, G. and Pourcel, C. (2009), Molecular Epidemiology of Microorganisms. Springer, pp. 105-116.
  53. Storts, D. (1993) Promega technical manual 24 fmol DNA sequencing system (TM024). Promega Corporation, Madison.
  54. Stratmann, T., Pul, Ü., Wurm, R., Wagner, R. and Schnetz, K. (2012) RcsB‐ BglJ activates the Escherichia coli leuO gene, encoding an H‐NS antagonist and pleiotropic regulator of virulence determinants. Molecular microbiology, 83, 1109-1123.
  55. Gesner, E.M., Schellenberg, M.J., Garside, E.L., George, M.M. and MacMillan, A.M. (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nature structural & molecular biology, 18, 688- 692.
  56. Wilson, G.G. and Murray, N.E. (1991) Restriction and modification systems. Annual review of genetics, 25, 585-627.
  57. Samson, J.E., Magadán, A.H., Sabri, M. and Moineau, S. (2013) Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology, 11, 675-687.
  58. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. and Doudna, J.A. (2010) Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329, 1355-1358.
  59. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Site- directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51-59.
  60. Pagani, L., Lang, A., Vedovelli, C., Moling, O., Rimenti, G., Pristera, R. and Mian, P. (2003) Soft tissue infection and bacteremia caused by Shewanella putrefaciens. Journal of clinical microbiology, 41, 2240-2241. 80. DiChristina, T.J., Moore, C.M. and Haller, C.A. (2002) Dissimilatory Fe (III) and Mn (IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. Journal of bacteriology, 184, 142-151.
  61. Maniatis, T., Fritsch, E. and Sambrook, J. (1989) Strategies for cloning in plasmid vectors, p. 1.53–1.73. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  62. Lintner, N.G., Kerou, M., Brumfield, S.K., Graham, S., Liu, H., Naismith, J.H., Sdano, M., Peng, N., She, Q. and Copié, V. (2011) Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). Journal of Biological Chemistry, 286, 21643-21656.
  63. Anders, C., Niewoehner, O., Duerst, A. and Jinek, M. (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513, 569-573.
  64. Rouillon, C., Zhou, M., Zhang, J., Politis, A., Beilsten-Edmands, V., Cannone, G., Graham, S., Robinson, C.V., Spagnolo, L. and White, M.F. (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Molecular cell, 52, 124-134. 33. van der Oost, J., Westra, E.R., Jackson, R.N. and Wiedenheft, B. (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology. 34. Plagens, A., Tripp, V., Daume, M., Sharma, K., Klingl, A., Hrle, A., Conti, E., Urlaub, H. and Randau, L. (2014) In vitro assembly and activity of an archaeal CRISPR-Cas type IA Cascade interference complex. Nucleic acids research, 42, 5125-5138.
  65. Tsui, T.K.M. and Li, H. (2015) Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Annual Review of Biophysics, 44. 66. Zhao, H., Sheng, G., Wang, J., Wang, M., Bunkoczi, G., Gong, W., Wei, Z. and Wang, Y. (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature, 515, 147-150.
  66. Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K. and Lin, S. (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997. 47. Jiang, F. and Doudna, J.A. (2015) The structural biology of CRISPR-Cas systems. Current opinion in structural biology, 30, 100-111. 48. Seed, K.D., Lazinski, D.W., Calderwood, S.B. and Camilli, A. (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 494, 489-491. 49. Staals, R.H. and Brouns, S.J. (2013), CRISPR-Cas Systems. Springer, pp. 145-169.
  67. Wiedenheft, B., Lander, G.C., Zhou, K., Jore, M.M., Brouns, S.J., van der Oost, J., Doudna, J.A. and Nogales, E. (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 477, 486-489.
  68. Makarova, K.S., Wolf, Y.I. and Koonin, E.V. (2013) The basic building blocks and evolution of CRISPR-Cas systems. Biochem Soc Trans, 41, 1392-1400.
  69. Lintner, N.G., Frankel, K.A., Tsutakawa, S.E., Alsbury, D.L., Copié, V., Young, M.J., Tainer, J.A. and Lawrence, C.M. (2011) The structure of the CRISPR- associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. Journal of molecular biology, 405, 939-955.
  70. Yamaguchi, Y., Park, J.-H. and Inouye, M. (2011) Toxin-antitoxin systems in bacteria and archaea. Annual review of genetics, 45, 61-79.
  71. Makarova, K.S., Aravind, L., Wolf, Y.I. and Koonin, E.V. (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct, 6, 38. 36. Nuñez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W. and Doudna, J.A. (2014) Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nature structural & molecular biology. 37. Richter, C., Dy, R.L., McKenzie, R.E., Watson, B.N., Taylor, C., Chang, J.T., McNeil, M.B., Staals, R.H. and Fineran, P.C. (2014) Priming in the Type IF CRISPR-Cas system triggers strand-independent spacer acquisition, bi- directionally from the primed protospacer. Nucleic acids research, 42, 8516- 8526.
  72. Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F. and Hofacker, I.L. (2011) ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6, 26. 86. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10, 845-858.
  73. Zhang, Y. (2008) I-TASSER server for protein 3D structure prediction. BMC bioinformatics, 9, 40.
  74. Maier, L.-K., Stachler, A.-E., Saunders, S.J., Backofen, R. and Marchfelder, A. (2015) An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) RNA and without the Cas6 Protein. Journal of Biological Chemistry, 290, 4192-4201.
  75. Moser, D.P. and Nealson, K.H. (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Applied and environmental microbiology, 62, 2100-2105.
  76. Viswanathan, P., Murphy, K., Julien, B., Garza, A.G. and Kroos, L. (2007) Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. Journal of bacteriology, 189, 3738-3750.
  77. Miller, V.L. and Mekalanos, J.J. (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. Journal of bacteriology, 170, 2575-2583.
  78. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169, 5429-5433.
  79. Zegans, M.E., Wagner, J.C., Cady, K.C., Murphy, D.M., Hammond, J.H. and O′Toole, G.A. (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. Journal of bacteriology, 191, 210-219.
  80. Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., Terns, R.M. and Terns, M.P. (2009) RNA-guided RNA cleavage by a CRISPR RNA- Cas protein complex. Cell, 139, 945-956.
  81. Medina-Aparicio, L., Rebollar-Flores, J., Gallego-Hernandez, A., Vazquez, A., Olvera, L., Gutierrez-Rios, R., Calva, E. and Hernandez-Lucas, I. (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. Journal of bacteriology, 193, 2396-2407.
  82. Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J., Boekema, E.J. and Dickman, M.J. (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proceedings of the National Academy of Sciences, 108, 10092-10097. 44. Staals, R.H., Zhu, Y., Taylor, D.W., Kornfeld, J.E., Sharma, K., Barendregt, A., Koehorst, J.J., Vlot, M., Neupane, N. and Varossieau, K. (2014) RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular cell, 56, 518-530.
  83. Haurwitz, R.E., Sternberg, S.H. and Doudna, J.A. (2012) Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. The EMBO journal, 31, 2824-2832.
  84. Zhang, J., Rouillon, C., Kerou, M., Reeks, J., Brugger, K., Graham, S., Reimann, J., Cannone, G., Liu, H. and Albers, S.-V. (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Molecular cell, 45, 303-313.
  85. Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 95, 6578- 6583.
  86. Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9– crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109, E2579-E2586.
  87. Garside, E.L., Schellenberg, M.J., Gesner, E.M., Bonanno, J.B., Sauder, J.M., Burley, S.K., Almo, S.C., Mehta, G. and MacMillan, A.M. (2012) Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. Rna, 18, 2020-2028.
  88. Gunderson, F.F. and Cianciotto, N.P. (2013) The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. MBio, 4, e00074-00013.
  89. Chylinski, K., Le Rhun, A. and Charpentier, E. (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA biology, 10, 726-737.
  90. Hale, C.R., Cocozaki, A., Li, H., Terns, R.M. and Terns, M.P. (2014) Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes & development, 28, 2432-2443.
  91. Mulepati, S., Héroux, A. and Bailey, S. (2014) Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science, 345, 1479-1484.
  92. Patterson, A.G., Chang, J.T., Taylor, C. and Fineran, P.C. (2015) Regulation of the Type IF CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic acids research, gkv517.
  93. Semenova, E., Kuznedelov, K., Datsenko, K.A., Boudry, P.M., Savitskaya, E.E., Medvedeva, S., Beloglazova, N., Logacheva, M., Yakunin, A.F. and Severinov, K. (2015) The Cas6e ribonuclease is not required for interference and adaptation by the E. coli type IE CRISPR-Cas system. Nucleic acids research, gkv546.
  94. Thormann, K.M., Saville, R.M., Shukla, S. and Spormann, A.M. (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. Journal of bacteriology, 187, 1014-1021.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten