Publikationsserver der Universitätsbibliothek Marburg

Titel: Theoretical Modeling of Kinetic Phenomena of Atoms and Charge Carriers in Disordered Materials
Autor: Oelerich, Jan Oliver
Weitere Beteiligte: Baranovski, Sergei (Prof. Dr.)
Veröffentlicht: 2015
URN: urn:nbn:de:hebis:04-z2015-03900
DDC: Physik
Titel(trans.): Theoretische Modellierung kinetischer Phänomene von Atomen und Ladungsträgern in ungeordneten Materialien
Publikationsdatum: 2015-10-08


Ungeordnete Halbleiter, Simulation, Heteroepitaxie, Festkörper, Disordered Semiconductors, Halbleiter

This PhD thesis deals with the computer simulation of III/V semiconductor heteroepitaxy and the description of charge transport in disordered inorganic and organic semiconductors.

Diese Dissertation behandelt sich mit Computersimulationen des epitaktischen Wachstums von III/V Halbleiterheterostrukturen und dem Ladungstransport in ungeordneten organischen und anorganischen Halbleitern.

Bibliographie / References

  1. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
  2. Baranovski S (ed) 2006 Charge Transport in Disordered Solids with Applications in Electronics (Chichester: Wiley)
  3. Organic Photovoltaics: Concepts and Realization (Berlin: Springer)
  4. G.B. Stringfellow, Organometallic Vapour-Phase Epitaxy: Theory and Practice, Academic Press, San Diego, 1999.
  5. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd revised edition (Taylor & Francis, London, 1994).
  6. E. Knuth, The Art of Computer Programming, volume 1 (3rd ed.): Fundamental Algorithms (Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, 1997).
  7. E. García-Tabarés, I. García, D. Martín, I. Rey-Stolle, Influence of PH 3 exposure on silicon substrate morphology in the MOVPE growth of III–V on silicon multijunction solar cells, J. Phys. D: Appl. Phys 46 (2013) 445104. http://dx.doi. org/10.1088/0022-3727/46/44/445104.
  8. Z.W. Pan, S. Dai, D.B. Beach, N.D. Evans, D.H. Lowndes, Gallium-mediated growth of multiwall carbon nanotubes, Appl. Phys. Lett 82 (2003) 1947. 10.1063/1.1563727.
  9. B. Zhang, Y. Liu, A review of GaN-based optoelectronic devices on silicon substrate, Chin. Sci. Bull 59 (2014) 1251–1275. s11434-014-0169-x.
  10. A.A. Lyamkina, D.V. Dmitriev, Y.G. Galitsyn, V.G. Kesler, S.P. Moshchenko, A.I. Toropov, The investigation of intermediate stage of template etching with metal droplets by wetting angle analysis on (0 0 1) GaAs surface, Nanoscale Res. Lett. 6 (2010) 42.
  11. Z. Liliental-Weber, M.A. O'Keefe, J. Washburn, Inversion boundaries in GaAs grown on Si, Ultramicroscopy 30 (1989) 20–26. 0304-3991(89)90168-X.
  12. J.P. André, J. Hallais, C. Schiller, Heteroepitaxial growth of GaP on silicon, J. Cryst. Growth 31 (1975) 147–157. 90124-4.
  13. H. Kroemer, Polar-on-nonpolar epitaxy, J. Cryst. Growth 81 (1987) 193–204.
  14. B. Bourguignon, K.L. Carleton, S.R. Leone, Surface structures and growth mechanism of Ga ON Si(1 0 0) determined by LEED and Auger electron spectroscopy, Surf. Sci 204 (1988) 455–472. 6028(88)90226-9.
  15. T. Soga, T. Jimbo, M. Umeno, Epitaxial growth of a two-dimensional structure of GaP on a Si substrate by metalorganic chemical vapor deposition, Appl. Surf. Sci 82-83 (1994) 64–69.
  16. K. Yamane, T. Kobayashi, Y. Furukawa, H. Okada, H. Yonezu, A. Wakahara, Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage, J. Cryst. Growth 311 (2009) 794–797. jcrysgro.2008.09.097.
  17. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, M. Yamaguchi, Growth and properties of semi-polar GaN on a patterned silicon substrate, J. Cryst. Growth 311 (2009) 2867–2874. 2009.01.032.
  18. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, et al., GaP- nucleation on exact Si (0 0 1) substrates for III/V device integration, J. Cryst. Growth 315 (2011) 37–47.
  19. K. Werner, A. Beyer, J. O. Oelerich, S. D. Baranovskii, W. Stolz, and K. Volz Structural characteristics of gallium metal deposited on Si (001) by MOCVD J. Cryst. Growth 405, 102 (2014) References
  20. M.a. Bangar, W. Chen, N.V. Myung, A. Mulchandani, Conducting polymer 1-dimensional nanostructures for FET sensors, Thin Solid Films 519 (2010) 964–973.
  21. A. Dadgar, M. Poschenrieder, J. Bläsing, O. Contreras, F. Bertram, T. Riemann, et al., MOVPE growth of GaN on Si(1 1 1) substrates, J. Cryst. Growth 248 (2003) 556–562.
  22. H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, Thermal stability of GaN on (1 1 1) Si substrate, J. Cryst. Growth 189-190 (1998) 178–182.
  23. D.-S. Lin, T.-S. Ku, T.-J. Sheu, Thermal reactions of phosphine with Si(1 0 0): a combined photoemission and scanning-tunneling-microscopy study, Surf. Sci 424 (1999) 7–18.
  24. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, et al., Characterization of orientation-dependent etching properties of single- crystal silicon: effects of KOH concentration, Sens. Actuators, A 64 (1998) 87–93.
  25. Z.W. Pan, Z.R. Dai, C. Ma, Z.L. Wang, Molten gallium as a catalyst for the large- scale growth of highly aligned silica nanowires, J. Am. Chem. Soc. 124 (2002) 1817–1822.
  26. C.A. Tran, A. Osinski, R.F. Karlicek, I. Berishev, Growth of InGaN/GaN multiple- quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 75 (1999) 1494. 1.124733.
  27. M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, et al., First cw operation of a Ga 0.25 In 0.75 As 0.5 P 0.5 –InP laser on a silicon substrate, Appl. Phys. Lett. 53 (1988) 2389.
  28. M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey, Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method, Appl. Phys. Lett. 79 (2001) 1546.
  29. P. Knoll, Z. Rainer, Method for preparation of thin, oriented GaAs crystals, J. Appl. Phys. 37 (1966) 5006.
  30. R.L. Barns, W.C. Ellis, Whisker crystals of gallium arsenide and gallium phosphide grown by the vapor–liquid–solid mechanism, J. Appl. Phys. 36 (1965) 2296.
  31. W. Stolz, F.E.G. Guimaraes, K. Ploog, Optical and structural properties of GaAs grown on (1 0 0) Si by molecular-beam epitaxy, J. Appl. Phys. 63 (1988) 492.
  32. S. Liebich, M. Zimprich, A. Beyer, C. Lange, D.J. Franzbach, S. Chatterjee, et al., Laser operation of Ga(NAsP) lattice-matched to (0 0 1) silicon substrate, Appl. Phys. Lett. 99 (2011) 071109.
  33. A. Beyer, B. Haas, K.I. Gries, K. Werner, M. Luysberg, W. Stolz, et al., Atomic structure of (1 1 0) anti-phase boundaries in GaP on Si(0 0 1), Appl. Phys. Lett. 103 (2013) 032107.
  34. D. Zhu, D.J. Wallis, C.J. Humphreys, Prospects of III-nitride optoelectronics grown on Si, Rep. Prog. Phys 76 (2013) 106501. 0034-4885/76/10/106501.
  35. K. Reyes, P. Smereka, D. Nothern, J. Millunchick, S. Bietti, C. Somaschini, et al., Unified model of droplet epitaxy for compound semiconductor nanostruc- tures: experiments and theory, Phys. Rev. B: Condens. Matter 87 (2013) 165406.
  36. J. Grassman, M.R. Brenner, M. Gonzalez, A.M. Carlin, R.R. Unocic, R.R. Dehoff, et al., Characterization of metamorphic GaAsP/Si materials and devices for photovoltaic applications, IEEE Trans. Electron Devices 57 (2010) 3361–3369.
  37. A.A. Baski, Gallium growth and reconstruction on the Si(1 0 0) surface, J. Vac. Sci. Technol., A 8 (1990) 245.
  38. R. Lin, The decomposition of triethylgallium on Si(1 0 0), J. Vac. Sci. Technol., B 7 (1989) 725.
  39. A. Ishizaka, Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE, J. Electrochem. Soc. 133 (1986) 666–671. (
  40. Contributed Articles Article III J. O. Oelerich, F. Jansson, A. V. Nenashev, F. Gebhard, and S. D. Baranovskii Energy position of the transport path in disordered organic semiconductors J. Phys. Condens. Matter 26, 255801 (2014) References [1] Bässler H 1993 Phys. Status Solidi B 175 15 [2] Oelerich J O, Huemmer D and Baranovskii S D 2012 Phys. Rev. Lett. 108 226403
  41. A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys. 17 (1975) 10–18. http://dx.
  42. Thijssen, Computational Physics, 2nd ed. (Cambridge University Press, Cambridge, 2007).
  43. FIG. 5. Dynamics of the free carrier concentration n(t) at b r ¼ 0.1b t for both shapes of the DOS given by Eqs. (1) and (2) at e 0 ¼ r. 223713-6
  44. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford, 1999).
  45. 23 B. I. Shklovskii, E. I. Levin, H. Fritzsche, and S. D. Baranovskii, " Hopping photoconductivity in amorphous semiconductors: Dependence on temperature, electric field and frequency, " in Advances in Disordered Semiconductors, vol. 3 (World Scientific, Singapore, 1990), pp. 161–191.
  46. Wissenschaftlicher Werdegang Name: Jan Oliver Oelerich Geburtsdatum: 25.02.1987 Geburtsort: Köln 1999–2006 Besuch des Gymnasiums im Schloss, Wolfenbüttel Abitur 06/2006
  47. Semiconducting Polymers (New York: Wiley)
  48. Bässler H 1990 Transport and Relaxation of Excitations in Random Organic Solids Advances in Disordered Semiconductors (Singapore: World Scientific) 491–520 (Monte Carlo Simulation and Experiment)
  49. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten