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Summary 
 

 

While we move through our environment, we constantly have to deal with new sensory 

input. Especially the visual system has to deal with an ever-changing input signal, since we 

continuously move our eyes. For example, we change our direction of gaze about three 

times every second to a new area within our visual field with a fast, ballistic eye movement 

called a saccade. As a consequence, the entire projection of the surrounding world on our 

retina moves. Yet, we do not perceive this shift consciously. Instead, we have the impression 

of a stable world around us, in which objects have a well-defined location. 

In my thesis I aimed to investigate the underlying neural mechanisms of the visual 

perceptual stability of our environment. One hypothesis is that there is a coordinate 

transformation of the retinocentric input signal to a craniocentric (egocentric) and 

eventually even to a world centered (allocentric) frame of reference. Such a transformation 

into a craniocentric reference frame requires information about both the location of a 

stimulus on the retina and the current eye position within the head. The physicist Hermann 

von Helmholtz was one of the first who suggested that such an eye-position signal is 

available in the brain as an internal copy of the motor plan, which is sent to the eye muscles. 

This so-called efference copy allows the brain to classify actions as self-generated and 

differentiate them from being externally triggered. If we are the creator of an action, we are 

able to predict its outcome and can take this prediction into consideration for the further 

processing. For example, if the projection of the environment moves across the retina due to 

an eye movement, the shift is registered as self-induced and the brain maintains a stable 

percept of the world. However, if one gently pushes the eye from the side with a finger, we 

perceive a moving environment. Along the same lines, it is necessary to correctly attribute 

the movement of the visual field to our own self-motion, e.g. to perform eye movements 

accounting for the additional influences of our movements. The first study of my thesis 

shows that the perceived location of a stimulus might indeed be a combination of two 

independent neuronal signals, i.e. the position of the stimulus on the retina and information 

about the current eye-position or eye-movement, respectively. In this experiment, the 

mislocalization of briefly presented stimuli, which is characteristic for each type of eye-

movement, leads to a perceptual localization of stimuli within the area of the blind spot on 

the retina. Yet, this is the region where the optic nerve leaves the eye, meaning that there 
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are no photoreceptors available to convert light into neuronal signals. Physically, subjects 

should be blind for stimuli presented in this part of the visual field. In fact, a combination of 

the actual stimulus position with the specific, error-inducing eye-movement information is 

able to explain the experimentally measured behavior. 

The second study in my thesis investigates the underlying neural mechanism of the 

mislocalization of briefly presented stimuli during eye-movements. Many previous studies 

using animal models (the rhesus monkey) revealed internal representations of eye-position 

signals in various brain regions and therefore confirmed the hypothesis of an efference copy 

signal within the brain. Although these eye-position signals basically reflect the actual eye-

position with good accuracy, there are also some spatial and temporal inaccuracies. These 

erroneous representations have been previously suggested as the source of perceptual 

mislocalization during saccades. The second study of my thesis extends this hypothesis to 

the mislocalization during smooth pursuit eye-movements. We usually perform such an eye 

movement when we want to continuously track a moving object with our eyes. I showed 

that the activity of neurons in the ventral intraparietal area of the rhesus monkey 

adequately represents the actual eye-position during smooth pursuit. However, there was a 

constant lead of the internal eye-position signal as compared to the real eye-position in 

direction of the ongoing eye-movement. In combination with a distortion of the visual map 

due to an uneven allocation of attention in direction of the future stimulus position, this 

results in a mislocalization pattern during smooth pursuit, which almost exactly resembles 

those typically measured in psychophysical experiments. Hence, on the one hand the 

efference copy of the eye-position signal provides the required signal to perform a 

coordinate transformation in order to preserve a stable perception of our environment. On 

the other hand small inaccuracies within this signal seem to cause perceptual errors when 

the visual system is experimentally pushed to its limits. 

The efference copy also plays a role in dysfunctions of the brain in neurological or psychiatric 

diseases. For example, many symptoms of schizophrenia patients could be explained by an 

impaired efference copy mechanism and a resulting misattribution of agency to self- and 

externally-produced actions. Following this hypothesis, the typically observed auditory 

hallucinations in these patients might be the result of an erroneously assigned agency of 

their own thoughts. To make a detailed analysis of this potentially impaired efference copy 

mechanism possible, the third study of my thesis investigated eye movements of 
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schizophrenia patients and tried to step outside the limited capabilities of laboratory setups 

into the real world. This study showed that results of previous laboratory studies only partly 

resemble those obtained in the real world. For example, schizophrenia patients, when 

compared to healthy controls, usually show a more inaccurate smooth pursuit eye-

movement in the laboratory. Yet, in the real world when they track a stationary object with 

their eyes while they are moving towards it, there are no differences between patients and 

healthy controls, although both types of eye-movements are closely related. This might be 

due to the fact that patients were able to use additional sources of information in the real 

world, e.g. self-motion information, to compensate for some of their deficits under certain 

conditions. 

Similarly, the fourth study of my thesis showed that typical impairments of eye-movements 

during healthy aging can be equalized by other sources of information available under 

natural conditions. At the same time, this work underlined the need of eye-movement 

measurements in the real world as a complement to laboratory studies to accurately 

describe the visual system, all mechanisms of perception and their interactions under 

natural circumstances. For example, experiments in the laboratory usually analyze 

particularly selected eye-movement parameters within a specific range, such as saccades of 

a certain amplitude. However, this does not reflect everyday life in which parameters like 

that are typically continuous and not normally distributed. Furthermore, motion-selective 

areas in the brain might play a much bigger role in natural environments, since we generally 

move our head and/or ourselves. To correctly analyze the contribution to and influences on 

eye-movements, one has to perform eye-movement studies under conditions as realistic as 

possible. 

The fifth study of my thesis aimed to investigate a possible application of eye-movement 

studies in the diagnosis of neuronal diseases. We showed that basic eye-movement 

parameters like saccade peak-velocity can be used to differentiate patients with Parkinson’s 

disease from patients with an atypical form of Parkinsonism, progressive supranuclear palsy. 

This differentiation is of particular importance since both diseases share a similar onset but 

have a considerably different progression and outcome, requiring different types of 

therapies. An early differential diagnosis, preferably in a subclinical stage, is needed to 

ensure the optimal treatment of the patients in order to ease the symptoms and eventually 

even improve the prognosis. The study showed that mobile eye-trackers are particularly 
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well-suited to investigate eye movements in the daily clinical routine, due to their promising 

results in differential diagnosis and their easy, fast and reliable handling. 

In conclusion, my thesis underlines the importance of an interaction of all the different 

neuroscientific methods such as psychophysics, eye-movement measurements in the real 

world, electrophysiology and the investigation of neuropsychiatric patients to get a 

complete picture of how the brain works. The results of my thesis contribute to extent the 

current knowledge about the processing of information and the perception of our 

environment in the brain, point towards fields of application of eye-movement 

measurements and can be used as groundwork for future research.
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Zusammenfassung 
 

 

Während wir uns durch unsere Umwelt bewegen, sind wir ständig neuen Sinneseindrücken 

ausgesetzt. Insbesondere das visuelle System erhält fortwährend neue Informationen zur 

Verarbeitung, da wir unsere Augen nahezu ständig bewegen. Beispielsweise richten wir etwa 

dreimal pro Sekunde unseren Blick mit einer schnellen Augenbewegung, einer sogenannten 

Sakkade, auf einen neuen Bereich in unserem visuellen Feld. Dabei verschiebt sich das 

gesamte Abbild unserer Umwelt auf der Netzhaut (Retina) der Augen. Dennoch nehmen wir 

diese Verschiebung nicht bewusst wahr. Stattdessen haben wir den Eindruck einer stabilen 

Welt um uns herum, in der Objekte einen festen Platz haben.  

Meine Dissertation beschäftigt sich zunächst mit der Frage, welche Mechanismen dem 

Gehirn diese perzeptuelle Stabilität unserer Umwelt ermöglichen. Eine weit verbreitete 

These ist, dass dazu eine Koordinatentransformation des retinalen Abbildes in ein 

kopfzentriertes (egozentrisches) oder letztendlich sogar weltzentriertes (allozentrisches) 

Referenzsystem stattfindet. Für die Umwandlung von retinalen Koordinaten in 

kopfzentrierte Koordinaten benötigt man neben der Position eines Stimulus auf der 

Netzhaut auch Informationen über die gegenwärtige Position der Augen im Kopf. Der 

Physiker Hermann von Helmholtz war einer der Ersten, der bereits im 19. Jahrhundert 

vorschlug, dass dieses Augenpositionssignal als interne Kopie des Bewegungsbefehls an die 

Augenmuskeln anderen Arealen im Gehirn zur Verfügung gestellt wird. Dieses Efferenzkopie 

genannte Signal gibt dabei dem Gehirn die Möglichkeit, eine Handlung als selbstgeneriert zu 

klassifizieren und von einer extern generierten Bewegung zu unterscheiden. Sind wir selbst 

der Urheber einer Handlung, können wir deren Folgen vorhersagen und dies bei der 

weiteren Verarbeitung entsprechend berücksichtigen. Verschiebt sich also beispielsweise 

das Abbild unserer Umwelt auf der Retina in Folge einer Augenbewegung, registriert das 

Gehirn dies als selbstinduziert und erhält die Wahrnehmung der Außenwelt stabil. Drückt 

man jedoch sanft von außen gegen seinen Augapfel, kann man beobachten, wie sich die 

Umgebung scheinbar bewegt. In gleicher Weise ist es wichtig für uns, die Bewegung des 

visuellen Feldes unserer Bewegung durch die Umwelt korrekt zuzuordnen, um 

beispielsweise Augenbewegungen so auszuführen, dass sie die zusätzlichen Einflüsse unserer 

Eigenbewegung berücksichtigen. Die erste Studie meiner Arbeit zeigt, dass der 

wahrgenommene Ort von Reizen im Gehirn, tatsächlich wie angenommen, durch die 
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Kombination zweier unabhängiger Signale gebildet werden könnte, nämlich der Position des 

Abbildes eines Reizes auf der Retina und der Information über die gegenwärtige 

Augenposition resp. -bewegung. Dabei sorgte die für jede Augenbewegung typische 

Fehllokalisation von kurz eingeblendeten Reizen dafür, dass Versuchspersonen Stimuli in den 

sogenannten Blinden Fleck verorteten. Dies ist der Bereich der Netzhaut, an dem der 

Sehnerv das Auge verlässt, weshalb dort keine Photorezeptoren zur Umwandlung von Licht 

in neuronale Signale zur Verfügung stehen. Physikalisch können die Versuchspersonen also 

dort keine Reize wahrnehmen. Eine Kombination der tatsächlichen Reizposition mit der 

spezifischen, fehlerinduzierenden Augenbewegungsinformation erklärt das gezeigte 

Verhalten jedoch sehr gut. 

Die zweite Studie meiner Dissertation untersucht die neuronale Ursache der 

Fehlwahrnehmung von kurz eingeblendeten Reizen während Augenbewegungen. Viele 

Studien am Tiermodel (Rhesusaffe) konnten bereits zuvor interne Repräsentationen von 

Augenpositionssignalen in unterschiedlichen Hirnarealen nachweisen und untermauerten 

damit die Hypothese der Existenz einer Efferenzkopie im Gehirn. Gleichwohl fand man 

heraus, dass dieses interne Signal zwar grundsätzlich die tatsächliche Augenposition sehr gut 

widerspiegelt, es jedoch räumliche und zeitliche Ungenauigkeiten aufweist. Diese 

fehlerhafte Repräsentation wurde als mögliche Ursache für die Fehlwahrnehmung während 

Sakkaden vorgeschlagen und in meiner zweiten Studie auf die Fehlwahrnehmung während 

glatter Augenfolgebewegungen ausgeweitet. Eine solche Augenbewegung führt man aus, 

wenn man ein sich bewegendes Objekt dauerhaft mit seinen Augen verfolgt. Ich konnte 

zeigen, dass die neuronale Aktivität im ventralen intraparietalen Areal des Rhesusaffen die 

Augenposition während glatter Augenfolgebewegung angemessen abbildet, die interne 

Repräsentation jedoch der tatsächlichen Augenposition vorauseilt. In Kombination mit einer 

Verzerrung der visuellen Abbildung durch eine ungleichmäßige Verteilung der 

Aufmerksamkeit in Richtung der zukünftigen Stimulusposition ergibt sich ein 

Fehllokalisationsmuster, welches dem psychophysikalisch gemessenen Muster nahezu exakt 

entspricht. Die Efferenzkopie der Augenbewegungsinformation dient somit einerseits als 

notwendiges Signal zur Koordinatentransformation im Gehirn und damit zum Erhalt der 

wahrgenommenen Stabilität unserer Umwelt. Auf der anderen Seite scheinen jedoch 

Ungenauigkeiten in diesem Signal Wahrnehmungsfehler zu verursachen, sobald wir das 

visuelle System im Experiment an seine Grenzen bringen. 
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Die Efferenzkopie spielt auch bei Fehlfunktionen im Gehirn bei neurologischen oder 

psychiatrischen Krankheiten eine Rolle. So lassen sich beispielweise viele Symptome von 

Schizophreniepatienten auf einen beeinträchtigten Efferenzkopie-Mechanismus und damit 

einer fehlerhaften Zuordnung von Eigen- und Fremdhandlungen zurückführen. Die 

typischerweise auftretenden auditorischen Halluzinationen könnten beispielsweise lediglich 

das Resultat einer falschen Zuordnung von eigenen Gedanken sein. Um eine gezieltere 

Untersuchung der möglicherweise fehlerhaften Efferenzkopie zu ermöglichen, erforschte die 

dritte Studie in meiner Dissertation die Augenbewegungen von Schizophreniepatienten und 

versucht dabei den Schritt aus den limitierten Möglichkeiten im Labor in die reale Welt zu 

machen. Dabei zeigte sich, dass die Ergebnisse aus früheren Studien im Labor nur teilweise 

auf natürliche Umgebungen übertragen werden können. Unter anderem zeigen 

Schizophreniepatienten im Labor eine ungenauere glatte Augenfolgebewegung als gesunde 

Kontrollprobanden. Wenn sie jedoch in der realen Welt ein stationäres Ziel mit den Augen 

verfolgen, auf das sie sich zubewegen, zeigen sich keinerlei Unterschiede mehr zwischen 

Patienten und Kontrollprobanden, obwohl beide Arten von Augenbewegungen sehr eng 

miteinander verwandt sind. Wir schlussfolgerten daraus, dass Patienten zusätzliche 

Informationsquellen, beispielsweise über ihre Eigenbewegung, nutzen können, um unter 

gewissen Voraussetzungen einige ihrer Defizite auszugleichen. 

In ähnlicher Weise zeigte die vierte Studie meiner Dissertation, dass auch typische 

Beeinträchtigungen von Augenbewegungen im Alter unter natürlichen Bedingungen mit 

Informationen aus anderen Quellen teilweise kompensiert werden können. Gleichzeitig 

verdeutlichte diese Studie die Wichtigkeit von Untersuchungen in der realen Welt als 

Ergänzung zu Messungen im Labor, um das visuelle System und alle Mechanismen der 

Wahrnehmung in ihrem natürlichen Zusammenspiel abzubilden. So werden im Labor häufig 

lediglich speziell ausgewählte Augenbewegungsparameter wie Sakkaden mit einer gewissen 

Amplitude untersucht. Dies spiegelt jedoch nicht das Verhalten im alltäglichen Leben wider, 

in dem solche Größen üblicherweise kontinuierlich und nicht normalverteilt sind. Des 

Weiteren kommt in natürlichen Umgebungen den Bereichen im Gehirn, die 

Bewegungsinformationen verarbeiten, eine besondere Rolle zu, da wir meist unseren Kopf 

oder uns selbst bewegen. Um die damit verbundenen Beiträge und Einflüsse auf 

Augenbewegungen korrekt zu untersuchen, ist die Analyse von Augenbewegungen unter 

möglichst realen Voraussetzungen nötig. 
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Die fünfte Studie in meiner Dissertation untersucht einen möglichen praktischen 

Anwendungsbereich von Augenbewegungsmessungen zur Diagnose von neuronalen 

Erkrankungen. Dabei konnte gezeigt werden, dass grundlegende Parameter wie die 

Spitzengeschwindigkeit einer Sakkade genügen, um Patienten mit Parkinson und einer 

atypischen Form der Parkinsonkrankheit, der progressiven supranukleären Blickparese, von 

einander zu unterscheiden. Dies ist von besonderer Bedeutung, da beide Krankheiten einen 

sehr ähnlichen Beginn, jedoch im Folgenden einen sehr unterschiedlichen Verlauf und 

Ausgang haben, wodurch unterschiedliche Therapien notwendig sind. Eine frühzeitige 

Differentialdiagnose, möglichst bereits im subklinischen Stadium, ist unumgänglich, um die 

optimale Behandlung der Patienten zu gewährleisten, damit auftretende Symptome 

gelindert werden können oder möglicherweise sogar die Prognose verbessert werden kann. 

Dabei erwiesen sich mobile Augenbewegungsmessgeräte aufgrund ihrer vielversprechenden 

Ergebnisse bei der Differentialdiagnose und der einfachen, schnellen und zuverlässigen 

Handhabung als besonders geeignet für den klinischen Alltag. 

Insgesamt unterstreicht meine Dissertation die Wichtigkeit des Zusammenwirkens der 

unterschiedlichen neurowissenschaftlichen Methoden wie Psychophysik, 

Augenbewegungsmessungen in natürlichen Umgebungen, Elektrophysiologie und die 

Untersuchung von neuropsychiatrischen Patientengruppen, um ein vollständiges Bild davon 

zu erhalten, wie das Gehirn funktioniert. Die Ergebnisse meiner Arbeit tragen dazu bei, das 

bisherige Wissen über die Informationsverarbeitung und Wahrnehmung im Gehirn zu 

erweitern, zeigen Anwendungsgebiete von Augenbewegungsmessungen auf und können als 

Grundlage für zukünftige Forschungen genutzt werden. 
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1. Introduction 

 

Our brain is continuously exposed to external sensory stimuli and has to handle and process 

them in order to interact with our environment. The main sensory input of primates is the 

visual sense (Palmer, 1999) which uses the eyes and the retina, including photosensitive cells 

called cones and rods, to analyze information contained in visible light.  

One functional property of the eyes that stands out among the other sensory organs is the 

ability to move. We constantly make eye movements to analyze certain aspects of our visual 

field with the part of the retina with the highest possible resolution, the fovea. About three 

times per second (Rayner, 1998; Land, 1999), that is more often than our heart beats, we 

change our gaze with a fast, ballistic eye movement called saccade (Carpenter, 1988). 

Moreover, we are able to keep moving objects within the fovea using smooth tracking eye-

movements. For this, it is not important if the objects move themselves or if their projection 

moves across the retina due to our self-motion. Despite the numerous eye movements we 

perform every second, we perceive the world around us as stable. Furthermore, our 

perception of the world is complete, although there is an area on our retina without any 

photoreceptors, called the blind spot. The underlying neuronal and behavioral mechanisms 

of these and many other remarkable perceptual effects are a topic of research for a long 

time during which the visual system has been proven to serve as a window to the brain 

(Gompel, 2007). Additionally, the fact that our visual system shares a lot of commonalities 

with non human primates (Fuchs, 1967; Bremmer et al., 2001; Orban et al., 2004; Solomon & 

Rosa, 2014) offers a great opportunity to perform electrophysiological recordings in the 

animal model to complement behavioral experiments in humans and gain insight to the 

function of certain brain regions at the cellular level. Since some aspects and neuronal 

correlates of eye-movements are already well explained, we are able to transfer this 

knowledge to new applications to gain new insights to previously unknown mechanisms and 

even investigate neurological and psychological diseases and their underlying neuronal 

dysfunctions. Yet, there are still many open questions, especially when one tries to step 

outside of the laboratory to study eye-movements and the visual system without restrictions 

in natural environments. 

In this thesis I aimed to investigate the mechanisms underlying the stable and complete 

perception of our environment using psychophysical and electrophysiological methods. 
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Moreover, I tried to gain new insights and verify the transferability of knowledge to new 

fields of eye tracking and clinical research in the real world. The sections below will give a 

short introduction to the general function of the visual system. A more specific introduction 

to the different topics of this thesis can be found in the respective sections. 

 

1.1. The Retina 

 

In the retina two types of photoreceptors, rods and cones, absorb visible light. There are 

three different types of cones: S-, M-, & L-Cones each absorbing light within a specific range 

of wavelengths. According to the absorption maxima, cones typically are named blue, green 

and red, respectively. Rods and cones are differently distributed across the retina (Figure 1). 

The area with the highest density of cones is called the fovea and marks the spot with the 

highest visual acuity.   

 

 

 

Figure 1: Distribution of Rods and Cones in the retina as a function of distance from the 

fovea, marked by the position with the highest density of cones. The blind spot / optic disc is 

characterized by the absence of any photoreceptors. Modified from Webvision 

(http://webvision.med.utah.edu/) after (Osterberg, 1935). 
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The area with no photoreceptors is called the blind spot or optic disc. It is located about 15° 

nasal of the fovea and about 2° below the horizontal meridian in every human and has a 

highly variable size between 8.0° – 13.7° in vertical direction and 6.1° – 9.6° in horizontal 

direction, depending on the subject (Armaly, 1969). In this area no visual input can be 

registered. Yet, humans have a complete representation of the outside world. During 

binocular vision the visual information registered from one eye compensates for the “Null 

information” in the region of the blind spot of the other eye. But even during monocular 

vision we have a complete perception of our environment. This is accomplished by a 

mechanism called “Filling-In” (Budge, 1862), which integrates visual information from the 

surrounding of the blind spot to supplement perception. At the point of the blind spot the 

optical nerve leaves the eye and the further processing of visual information is split into two 

distinct pathways, the magnocellular- (M) and the parvocellular-pathway (P), which 

eventually reach the primary visual cortex (Sawatari & Callaway, 1996). Here, the blind spot 

is represented topographically correct and fits seamlessly with the visual representation of 

our environment (Fiorani et al., 1992).  

 

1.2. Visual pathways and motion selective areas 

 

The M-pathway mainly processes higher temporal and lower spatial frequencies, luminance 

contrasts and carries orientation- and direction-selective information. Therefore, it provides 

the information to analyze moving stimuli, including the location within visual space, 

detection of visual change and plays a crucial role in controlling eye movements (Bullier, 

2001; Lamme & Roelfsema, 2000; Nowak et al., 1997; Vidyasagar, 1999). The P-pathway, on 

the other hand, processes higher spatial frequencies and encodes information about shape, 

size or color (Merigan & Maunsell, 1993). On their way to the primary visual cortex the two 

separate pathways from each eye cross at the optic chiasm in a way that information in the 

left visual field is processed in the right primary visual cortex and vice versa (Figure 2). Thus, 

each hemisphere processes its contralateral hemifield. 
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Figure 2: Schematic overview of the hemispheric processing of visual information from the 

retina to the primary visual cortex through the optic chiasm and the lateral geniculate 

nucleus (LGN). Modified from Hannula et al. 2005. 

 

 

The lateral geniculate nucleus (LGN) represents the next processing stage before the visual 

information eventually reaches the primary visual cortex (V1). From this point on the 

separation of the M- and P-pathway becomes less strict and the processing of visual 

information can be categorized to the dorsal- and ventral stream (Goodale & Milner, 1992). 

The ventral stream (also called ‘what pathway’) receives input from M- and P-pathways and 

encodes object features like size, color or borders. The dorsal stream mainly receives 

magnocellular input (Ferrera et al., 1994) and represents spatial- and motion information, 

for which it is also called the ‘where pathway’. The areas along both pathways are not 

separated and share many connections between them (Felleman & Essen, 1991). Figure 3 

gives a schematic overview of some key areas, which are mainly involved in the processing 

of visual motion information and are therefore of specific relevance for this thesis. 
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Figure 3: A: Schematic overview of areas of the cortex of the macaque monkey involved in 

the processing of visual motion information and their connections among each other. B: 

Anatomical locations of the areas in the macaque brain. V1: primary visual cortex, V2: 

secondary visual cortex, V3: tertiary visual cortex, MT: middle temporal area, MST: medial 

superior temporal area, VIP: ventral intraparietal area, FST: fundal area of the superior 

temporal sulcus, 7a: Brodmann area 7a, STP: superior temporal polysensory area. After 

Britten (2008). 

 

 

Along the dorsal stream the middle temporal area (MT) marks the first important part of the 

visual motion system with its neurons encoding motion direction and speed (Maunsell & 

Essen, 1983; Newsome & Pare, 1988). Further along the dorsal stream the medial superior 

temporal area (MST) gets more involved in the global aspects of visual motion integrating 

optic flow information, which is present when one moves trough the environment (Gibson, 

1950; Figure 4), with vestibular- and extraretinal eye-position signals (Duffy & Wurtz, 1991; 

Bremmer et al., 1999; 2010).   

 

 

 

A B 
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Figure 4: Illustration of an optic flow field projected on the retina generated by self-motion 

trough a natural environment. Red arrows indicate the local motion direction with the length 

correlating to the speed. The part of the image with no local motion, here the center, is called 

the focus of expansion (FoE) and corresponds under certain conditions to the direction of self-

motion. 

 

Finally the multimodal ventral intraparietal area (VIP) is a key area for the processing of self-

motion by decoding global motion and heading information (Bremmer, 2005; Chen et al., 

2011) as well as coordinating smooth eye and head movements within near-extrapersonal 

space (Schlack et al., 2003; Bremmer et al., 2013). Most neurons in area VIP are tuned for 

one or even multiple types of optic flow stimuli, e.g. radial flow, frontoparallel flow, or 

rotating stimuli (Bremmer et al., 2002a). In this area visual, vestibular, tactile and auditory 

information is combined (Avillac et al., 2005, 2007; Bremmer et al., 2002a, 2002b; Chen et 

al., 2011; Duhamel et al., 1998; Schlack et al., 2002). It contains neurons encoding spatial 

information in eye-centered, head-centered and intermediate reference frames (Schlack et 

al., 2005). This functional property most likely plays a crucial role in the coordinate 

transformation of the retinocentric visual input to a head-centered frame of reference, 

allowing a more stable perception of the environment. The versatility of area VIP got 
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extended further by a study of Cooke and colleagues (2003), which showed that electrical 

microstimulation in this area elicited typical avoidance or defense reactions, which could 

also be triggered by tactile stimulation of the monkeys’ cheek with air blows. 

Areas even higher in the processing hierarchy like Brodmann area 7a or the superior 

temporal polysensory area (STP) encode more and more complex and specific aspects of 

motion information (Britten, 2008). For example, area STP eventually combines information 

from the dorsal and ventral stream to encode three-dimensional surface structures and 

structure-from-motion (Anderson & Siegel, 2005). 

 

1.3. Efference copy 

 

In order to correctly attribute the agency of an action, e.g. to determine if motion in the 

visual field is caused by an external motion or due to self-motion, the brain requires 

additional, non-retinal information. If a movement of the visual field is self-produced by an 

eye-movement, the brain could use predictive mechanisms in order to anticipate the 

accompanying effects (Blakemore et al., 2000). Such a system would be able to perceptually 

compensate the movement of the image on the retina during an eye movement and thus 

generate a stable perception of our environment. Von Helmholtz (1866) was the first to 

propose an internal copy of an outgoing motor command controlling the eye muscles in 

order to correctly localize an object relative to the head. This internal representation of an 

extraretinal signal about an ongoing eye-movement has been termed “efference copy” (von 

Holst & Mittelstaedt, 1950) or “corollary discharge” (Sperry, 1950). Indeed, such an 

efference copy signal can be found in many areas in the primate brain in which neurons 

modulate their firing rate according to changes of the current gaze direction (parietal cortex: 

Andersen & Mountcastle, 1983; Bremmer et al. 1997b, 1999; Morris et al. 2012, 2013; 

striate cortex: Trotter and Celebrini, 1999; extrastriate cortex: Galletti & Battaglini, 1989; 

Bremmer et al. 1997a; premotor cortex: Boussaoud et al., 1998). Recent studies in dorsal 

visual areas of the macaque monkey have proven the feasibility to decode actual eye 

positions (Bremmer et al., 1998, Boussaoud & Bremmer, 1999; Morris et al., 2012, 2013) 

solely from recorded neuronal discharges. This relationship has been termed “gain fields” or 

“eye-position fields”. These gain fields are thought to be crucial for a stable perception of 

our environment by providing the information required to transform the retinocentric visual
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input into a non-retinocentric frame of reference (Snyder et al., 1998; Salinas & Abbott, 

2003), e.g. cranio-centric, by combining information about the location of a stimulus on the 

retina with information about the current eye position (Zipser & Andersen, 1988; Bremmer 

et al., 1998). 

 

1.4. Eye movements 

 

Eye movements can be separated into two different classes, reflexive and foveating. In the 

first class, the vestibulo-ocular reflex (VOR) and the optokinetic nystagmus (OKN) serve to 

stabilize the image of the outside-world on the retina during head movements or self-

motion (Ilg, 1997). During natural behavior, both types of eye-movements complement each 

other in order to ensure optimal performance. Thereby, VOR primarily controls 

compensatory eye-movements to fast head rotations with extremely short latencies of 

about 10 ms (Aw et al., 1996), whereas OKN counterbalances an external large-scale motion 

of the visual field to stabilize gaze (Lappe & Hoffmann, 2000).  

In my thesis foveating eye movements are of particular interest, among them saccades 

fixational and smooth pursuit eye-movements. Saccades are fast, ballistic, goal directed eye-

movements to change the gaze to different parts of the visual field. They can be controlled 

voluntarily and reach amplitudes of up to 80° (Carpenter, 1988). Saccades to visual targets 

are usually elicited within a certain reaction time (latency) with a mean of about 200ms and 

a speed of up to 900°/s (Kandel, Schwartz & Jessell, 2000). These saccade dynamics are 

rather standardized, i.e. there is a fixed relationship between saccade amplitude and 

duration or amplitude and velocity called the main sequence, which follows a power function 

and can be linearly approximated for saccades of up to 15° (Bahill et al., 1975). Additionally, 

there are multiple perceptual phenomena accompanying saccades. Saccadic suppression is 

thought to maintain perceptual stability throughout the fast changing retinal motion during 

saccades by a selective reduction of detection sensitivity of transient stimuli (Diamond et al., 

2000). A neural basis of this perceptual phenomenon has been identified in the animal 

model in motion sensitive areas of the dorsal pathway (Bremmer et al., 2009). Furthermore, 

visual stimuli briefly presented around the time of a saccade are spatially mislocalized 

(Honda, 1991; Dassonville et al., 1992). A neuronal basis for this perceptual error has been 

proposed only recently. Morris and colleagues suggested that this spatial mislocalization is 
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based on rapidly updated but imperfect eye-position signals in the dorsal visual system 

(Morris et al., 2012).  

Fixational eye-movements serve to keep a stationary object on the fovea when the observer 

does not move. Typically, they are a mixture of micro-saccades, tremor and drift with a 

general activity of the eye muscles (Martinez-Conde et al., 2004), and hence are classified as 

eye movements. In 1935, Buswell was one of the first who investigated fixational patterns of 

participants viewing different pictures and found great differences depending on the 

stimulus presented as well as the given task, which was later confirmed by an influential 

study of Yarbus (1967), suggesting that eye movements are influenced by cognitive 

processes. In general, fixation timing and duration is highly modulated by the information 

aimed to acquire (Ballard et al., 1992) and the experimental setting (e.g. mean fixation 

duration when viewing an urban environment of 375ms vs. 440 ms when viewing a forest; 

Pelz & Rothkopf, 2007). 

When viewing still scenes, we usually perform an alternation of saccades and fixations 

(Yarbus, 1967), but if the observer starts moving trough his/her environment another type of 

eye movement is necessary to keep a stationary object on the fovea. The resulting smooth 

tracking eye-movements try to compensate the motion of the whole visual field in order to 

stabilize the image of the stationary object on the fovea. This third type of eye movement 

has not been extensively studied so far, for which this thesis aims to fill the gap. 

Finally, smooth pursuit eye-movements (SPEM) of a moving object are thought to be related 

to smooth tracking eye-movements as they serve the same purpose: keep an object stable 

on the fovea. Different from tracking of a stationary target during self-motion, here the 

observer is stationary and the object of interest moves. Similar to saccades, targets briefly 

flashed during smooth pursuit are mislocalized, but this time almost exclusively in direction 

of the pursuit target and within the visual hemifield ahead of pursuit (Mateeff et al., 1981; 

van Beers et al. 2001; Bremmer und Königs, 2010). SPEM heavily relies on the presence of a 

moving visual target (Robinson, 1965), using the visual motion information on the retina 

together with extraretinal information about the current eye movement and eye position to 

closely match the velocity of the eye to the target velocity to provide the most stable image 

of the target on the retina (Ilg, 1997; Thier & Ilg, 2005). To evaluate the quality of SPEM, 

researchers typically use the gain, which is calculated by dividing eye velocity by target 

velocity leading to a value of 1.0 for optimal following of the target. A dysfunction within the
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smooth pursuit system resulting in a decreased gain is a well-studied manifestation of 

certain brain dysfunctions accompanying not only brain diseases (e.g. Holzman et al., 1974; 

Holzman, 2000) but also healthy aging (Ross et al., 1999). 

 

1.4.1. Eye movements – A window to the brain 

 

For more than 100 years, eye movements and their dysfunctions where utilized by 

researchers to investigate general brain functions (e.g. Helmholtz, 1866; Dodge, 1903; 

Yarbus, 1967) and specific impairments in diseases like schizophrenia or Parkinson’s disease 

(e.g. Diefendorf & Dodge, 1908; DeJong & Jones, 1971; Leigh & Zee, 2006). The noninvasive, 

reliable, rapid and simple measurement of eye movements offers the unique opportunity to 

gain deeper insights to the underlying mechanisms of brain functions, since some basic 

aspects are already well studied and neuronal correlates of certain eye-movement features 

have been identified previously (Ilg, 1997; Leigh & Kennard, 2004; Krauzlis, 2004). A lot of 

this knowledge originates from work on the animal model, non-human primates (NHP). Due 

to its considerable similarity to humans in regards of the visual system it is possible to 

extrapolate results of single cell recordings, which could hardly be obtained otherwise, from 

monkeys to men (Fuchs, 1967; Felleman & van Essen, 1991; Bremmer et al., 2001; Orban et 

al., 2004; Solomon & Rosa, 2014). This analogy allows to reliably identify neuronal correlates 

of specific aspects of vision, from the neuronal basis of eye movements (Krauzlis, 2004; Thier 

& Ilg, 2005) to more cognitive processes like attention (Treue, 2001). With this knowledge it 

is possible to trace specific areas in the brain using eye movement deviations or 

abnormalities, which can be observed in many different brain diseases (Leigh & Zee, 2006) or 

elicited artificially in psychophysical experiments of healthy participants by pushing the 

visual system to its limit (Fechner, 1860; Gescheider, 2013). As a result, the sole 

measurement of eye movements is capable of identifying possible sources of 

neuropsychological or neurological diseases as well as extending the knowledge of specific 

aspects of vision in the healthy brain. In the long-run, eye movements might even provide 

objective parameters to support the diagnosis of specific brain diseases in the clinical 

routine. 

Furthermore, not only brain diseases, but also the changes in the brain and its functions 

throughout healthy aging can be investigated by studying eye movements. These
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measurements can help gaining insights into the underlying neuronal mechanisms of 

senescence, since eye movements (Morgan, 1993; Moschner & Baloh, 1994) as well as 

perception (e.g. self-motion perception: Billino et al., 2008; Lich & Bremmer, 2014) are 

altered as we are getting older. Additionally many brain disorders often manifest themselves 

in particular periods of life, e.g. Alzheimer’s and Parkinson’s disease in the elderly (Corder et 

al., 1993; Hoehn & Yahr, 1998). To identify the specific alterations caused by these disorders, 

it is necessary to fully understand common changes caused by healthy aging.   

In the last decades, most eye-movements studies have been performed in the laboratory 

with artificial visual stimuli, since they can be easily controlled. However, with the growing 

availability of mobile eye-trackers in the recent years, scientists began to step outside the 

laboratory and overcome its limitations to examine eye movements in the real world and 

check to what extent common findings in the laboratory can be transferred to activities of 

daily living. 

 

1.4.2. Eye movements in the real world 

 

Recent studies on eye movements comparing results from the laboratory with those from  

real-world scenarios found significant differences (‘t Hart et al., 2009; Foulsham et al., 2011; 

Tatler et al., 2011). Moreover, eye movements in the real world are generally more variable 

depending on the environment (Einhäuser et al., 2007; Pelz & Rothkopf, 2007; ‘t Hart and 

Einhäuser, 2012) or the task (Land et al., 1999; Hayhoe, 2000). Without a specific task eye 

movements are mainly performed along the four cardinal directions (up, down, left, right) 

(Einhäuser et al., 2007). These findings raised substantial doubt concerning a general 

transferability of results from eye-movement measurements in the laboratory to the real 

world. Simultaneously they underline the need to understand oculomotor behavior in 

natural environments. Results from such studies will provide insight into the systems that 

govern specific eye movements and the neural mechanisms controlling them. 

In contrast to the restrained conditions in the laboratory, eye movements in more natural 

settings are typically accompanied by head movements (Land 1992; Einhäuser et al., 2009). 

In this joint occurrence eye movements often compensate for head movements to stabilize 

gaze or aid head movements in performing huge gaze shifts (Guitton, 1992; Goossens & Van 

Opstal, 1997). Furthermore, participants in laboratory setups are usually artificially deprived 
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of additional sensory input other then the isolated aspect under investigation, whereas 

information processing of the visual system in the real world has to cope with additional 

sensory stimulations like visual, vestibular, auditory and tactile information. These diverse 

input resources not only challenge the brain, but also give the opportunity to compensate 

specific deficits in the one domain with information provided by other sources. Another 

huge difference between eye movements in the laboratory and the real world is that in 

everyday life eye movements are often accompanied by a person’s self-motion. While 

moving, the eye-movement control system encounters different demands than during still 

sitting. For example, a fixational eye-movement of a stationary target in the laboratory turns 

into a smooth tracking eye-movement during self-motion (Niemann et al., 1999). Likewise, 

during free real-world movements plain smooth pursuit eye-movements are accompanied 

by head movements and have to integrate self-motion information in order to perform 

optimally. However, due to the self-motion the visual system has access to additional 

sensory information, e.g. optic flow (Gibson, 1950; see figure 4).  

All those differences of eye-movements in everyday life compared to the restricted but well 

controlled laboratory measurements suggest a substantially bigger involvement of cortical 

areas in the parietal cortex, which primarily processes self-motion information (Bremmer et 

al., 2000), during natural behavior. In this context, the multimodal area VIP, for which a 

functional equivalent has been identified in humans (Bremmer et al., 2001), might be of 

particular importance as a central source and constructor of multiple signals regarding eye 

movements and self-motion. 
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2.2. Motivation and scopes of the studies 

 

In this thesis I conducted five studies using psychophysical, neurophysiological and 

neuropsychological techniques with the aim to investigate how the brain creates a stable, 

continuous and complete perception of our environment and how commonly known aspects 

of vision and specifically eye movements transfer from constrained laboratory setups to the 

real world. Eye movements challenge the visual system and a stable perception of our 

environment (Bremmer & Krekelberg, 2003) not only by a constantly changing input signal, 

but also through additional distortions of the field of view via head movements and self-

motion.  

The first study utilized psychophysics to investigate the phenomenon of a continuous and 

complete perception of our environment throughout different kinds of eye movements 

despite the presence of the blind spot, the area on the retina with no visual input. This study 

tried to provoke a perceptual mislocalization associated with eye movements into a region 

we are physically blind for. More specifically, I aimed to determine if, how and at what 

processing stage retinal information is combined with extraretinal information to perform a 

coordinate transformation of visual signals into a non-retinotopic frame of reference. 

In the second study I performed a computational analysis of behavioral and neuronal data 

recorded in two NHPs to examine the efference copy mechanism of eye-position signals in 

the NHP model. This mechanism of an internal representation of current eye-position is 

thought to be an essential component for generating the stable perception of our 

environment. It is suggested (Zipser & Andersen, 1988; Bremmer et al., 1998) that these 

signals are neutrally combined with information about the retinal location of a stimulus to 

perform a coordinate transformation from the retinocentric input signal of the eyes to a 

head-centered frame of reference. Furthermore, inaccuracies in this internal eye-position 

signal might explain behaviorally measured mislocalizations of briefly presented stimuli 

during various types of eye movements.  

The other three studies focused on eye movements in the real world and investigated the 

validity and transferability of results from laboratory measurements previously reported in 

the literature to more natural settings and behaviors. The third study analyzed the 

abnormalities of basic eye-movement parameters in schizophrenia patients in a natural 

environment and determined to what extent task demands influence the performance of 
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the participants and whether patients are able to overcome some impairments, which were 

reported in the laboratory, using the rich information provided in the real world. Along the 

same lines, the fourth study examined the alterations of eye-movement parameters during 

healthy aging and possible influences of the various sensory input sources in real-world 

situations, which might allow for compensatory mechanisms concerning certain deficits 

found in the laboratory. The fifth and last study focused on mobile eye-tracking as a 

technique in the daily clinical routine at the example of patients with typical and atypical 

Parkinson’s disease. Here, I examined the usability and efficiency of eye-tracking as a 

potential tool for providing objective parameters for medical diagnosis to the physician. 
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Monocular visual localization during eye movements 

  

Abstract 

 

Eye movements induce visual spatial mislocalization. The neural basis of this perceptual 

phenomenon is as yet unknown: physiological, behavioral and theoretical studies have 

suggested various neural mechanisms, from displacement of visual receptive fields during 

eye movements to erroneously decoded eye position. Here we utilized the mislocalization of 

briefly presented stimuli during different types of monocular eye movements (i.e. fixation, 

saccades and smooth pursuit eye-movements) to induce a perceptual localization shift 

around and into the blind spot, a region of the retina that is physiologically blind due to the 

absence of photoreceptors. Our study confirmed previous findings on binocular 

mislocalization for monocular vision and showed that mislocalization induced by different 

types of eye movements is capable to shift the perceived location of targets to a position a 

subject should be blind for. The area for which each subject perceived the least amount of 

targets, forming a perceptual blind spot, shifted for each form of eye movement in a 

functionally characteristic manner. The distinctive shapes of the perceptual blind spots for 

each subject were basically preserved during eye movements as compared to fixation. Our 

findings imply a linear combination of two independent neural signals as the neural basis of 

localization: a visual map and an eye-position signal. Both signals might be combined at a 

rather late processing stage, in which visual space is already fully represented. This 

hypothesis predicts, at a neuronal level, visual receptive fields at identical retinal locations 

across eye movements and agrees well with previous studies suggesting the source of 

perceptual mislocalization during eye movements by an erroneous internal representation 

of eye-position. 
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Results & Discussion 

 

The retinal architecture requires primates to move their eyes more often than their heart 

beats to acquire a high resolution image of the outside world. However, eye movements 

challenge visual perception (Bremmer & Krekelberg, 2003). They fall into different classes, 

foveating and reflexive. Among the first, saccades, i.e. high-speed ballistic movements, are 

the most frequent ones. A number of saccade-induced perceptual phenomena have been 

described over the last years, ranging from selective suppression of vision (Bremmer et al., 

2009; Burr et al., 1994) to modulation of temporal (Knöll et al., 2013), numerical (Binda et 

al., 2012) and spatial perception (Honda, 1991; Ross et al., 2001). A second type of eye 

movement, suited to keep a moving visual object of interest within the fovea, is smooth 

pursuit (SPEMs). Just as for saccades and different from introspection, visual perception 

during SPEMs is not veridical. Modulatory effects range from enhanced chromatic sensitivity 

(Schütz et al., 2008) to shifts in spatial perception (Mateef et al., 1981; van Beers et al., 2001; 

Königs & Bremmer, 2010). The neural bases of most of these perceptual effects are barely 

understood. Concerning spatial mislocalization, various hypotheses have been put forward: 

from shifting visual receptive fields (Duhamel et al., 1992; Ross et al., 2001) to erroneously 

decoded eye positions signals (Morris et al., 2012; Dowiasch et al., in preparation (Remark: 

study two in this thesis)). Here we investigated the monocular localization performance of 

briefly flashed stimuli during three types of eye movements (i.e. fixation, saccades, SPEM) in 

16 human participants. We presented the localization targets close to the blind spot, an area 

of the retina with no photoreceptors, to induce perceptual mislocalization into a region that 

is physically blind. Thereby we wanted to investigate if and if so how and at what processing 

stage retinal signals about the visual position of a stimulus on the retina and extraretinal 

signals representing the current eye-position and the ongoing eye-movement are combined 

to the perceived location of a target. 

The first result of our study is the finding of a mislocalization of briefly flashed stimuli for 

monocular vision as previously described for binocular vision. In our study we could show a 

perceptual undershoot of localization targets during steady fixation with a mean of 1.62° ± 

2.20°, significantly different from zero (t(df=15)=-2.95, p=0.01, t-test), which is in the same 

range as reported for binocular vision (Hill, 1972; Morgan, 1978; Kaminiarz et al., 2007). 

Saccades showed a bi-phasic error pattern of visual localization around the time of a saccade 
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(Figure 1). This finding, as well as the magnitude and time course of the perceived shift and 

compression (Lappe et al., 2000), is well in line with results from studies employing binocular 

eye movements performed in complete darkness without visual references (Honda, 1991). 

We found an average peak mislocalization of up to 1.55° in direction of the saccade 30 ms 

before the saccade was initiated and a mean peak localization error of up to 1.27° in the 

direction opposite to the saccade 50ms after the eyes began to move. 

 

Figure 1: Normalized localization error around the time of a saccade 

The localization error as a function of flash time relative to saccade onset of five flash 

locations (i.e. in the center, at the borders and beyond the blind spot on each side) averaged 

across all subjects and normalized such that the median mislocalization of each flashed 

position is aligned to zero. Positive localization errors indicate a mislocalization in direction of 

the saccade, negative values represent a shift in direction opposite to the saccade 

respectively. All five locations and the mean across all locations showed a clear bi-phasic 

error pattern of localization around the time of a saccade as reported previously for binocular 

vision. 

 

During smooth pursuit eye-movements subjects mislocalized targets on average by 1.36° ± 

1.12° in direction of the eye movement as compared to fixation, which was significantly 

different from zero (t(df=10)=4.05, p = 0.002, t-test). This mislocalization is in line with 

previous studies using binocular vision (Mateeff et al., 1981; van Beers et al. 2001; Königs & 

Bremmer, 2010). Depending on the particular magnitude of the mislocalization during the 

related eye movement, these effects lead to a perception of targets within the area of the 

physiological blind spot, a position the subjects are blind for due to the retinal architecture 

(Figure 2).  
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Figure 2: Perception of flashed targets in the area of the blind spot due to mislocalization 

during eye movements. Each dot represents data from one trial. In A, the x and the y position 

of each dot indicate the real (x) and the perceived (y) horizontal eccentricity of the target. In 

B, the x-position indicates when relative to saccade onset a stimulus was presented. The y-

position indicates the perceived horizontal position. Solid lines depict linear regression (A) or 

moving averages (window size = 75 ms, σ= 30 ms) (B) of localization performance 

A: Perceived flash position as a function of actual flash position during smooth pursuit eye-

movements of a representative subject. The mean mislocalization of this subject was 3.40° 

resulting in a considerable amount of perceived stimuli shifted into the region of the blind 

spot (gray area). 

B: Perceived flash location as a function of flash time relative to saccade onset of one 

representative subject. Dashed-dotted lines represent the actual location of the five 

localization targets. The perception of stimuli presented nasal of the blind spot (green and 

magenta curve) was shifted into the region of the blind spot (gray area) due to a 

mislocalization in direction of the saccade prior to saccade initiation. 

A 

B 
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This leads to the conclusion, that there is no special representation of the blind spot in the 

brain to register those locations as impossible and therefore dismiss them. Furthermore, it 

suggests that information about the location of a stimulus, which initially is correctly 

encoded, becomes distorted by a transformation of coordinates at an area where the visual 

space is already completely represented. Importantly, in the saccade paradigm even the 

location in the center of the blind spot, where stimuli could not be sensed before the eye 

started to move showed a significant localization error. Just as for the other four stimulus 

locations it showed the typical mislocalization pattern but this time beginning from the start 

of the saccade until 70ms after the eye started moving (all p<0.05, t-test). This shows that 

mislocalization occurs even for stimuli that had no visual representation before the eye 

movement was initiated. This mislocalization of briefly flashed stimuli during different types 

of eye movements could be due to a temporal misalignment between the retinal and 

extraretinal signals (Brenner et al., 2001), or a combination of the retinal target location and 

an erroneous internal representation of eye-position. This latter hypothesis was suggested 

by Morris and colleagues (2012) who showed that internal eye-position signals in four 

parietal areas of the rhesus macaque (i.e. MT, MST, LIP, VIP) are predictively computed and 

updated across saccadic eye-movements. Accordingly, such an eye-position signal would be 

readily available for a transformation of visual signals from a retinocentric to a craniocentric 

frame of reference. Yet, these internal eye-position signals showed comparably slow 

dynamics around the time of a saccade introducing an error, such that the internal eye-

position signal already shifted 100 ms before a saccade was initiated and caught up with the 

actual eye-position only about 150 ms after the eye had reached its landing position. This 

time-course results in an erroneous internal representation of eye-position around the time 

of a saccade. A recent study by Dowiasch et al.(in preparation (Remark: study two in this 

thesis)) found a related mechanism of an erroneous internal eye-position signal which would 

allow perceptual mislocalization during optokinetic nystagmus (OKN) and a critical part of 

the mislocalization during SPEM. This theory is in line with the results of our current study 

suggesting that localization of a briefly flashed target is performed by combining the retinal 

location of the stimulus with a possibly inaccurate extraretinal eye-position signal. This 

combination eventually results in a misperception of the target location even into the blind 

spot region where localization is impossible. 
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During steady state eye-movements (i.e. fixation and smooth pursuit), the continuous 

presentation of targets around the area of the blind spot allowed us to compare the 

positions of the physiological optic disc to the area where each subject perceived the least 

amount of localization targets with regard to the frequency distribution of perceived target 

location. By employing the same algorithm used to compute the physiological blind spot (see 

methods) we were able to determine the dimensions of the region we name the perceptual 

blind spot. The size of the perceptual blind spot was smaller than the physiological blind spot 

for all subjects and eye movements by a mean of 1.17° ± 0.87° (t(df=18)=-5.86, p = 1.49 *10
-

5
, t-test). A comparison of the centers of both blind spots showed a linear shift of the 

position of the perceptual blind spot compared to the position of the physiological blind spot 

in the exact amount of the mislocalization during each eye movement for every subject 

(Figure 3A). This effect occurred during both fixation and smooth pursuit eye-movements 

and only depended on the mislocalization induced by the particular eye movement. Despite 

the fact, that the perceptual blind spot was on average 0.76° ± 0.68° (t(df=10)=3.71, p = 

0.004, t-test) bigger during pursuit than during fixation, the general shape of the perceptual 

blind spot did not differ much within each subject besides a shift of the local minimum. To 

evaluate this we computed the cross-correlation of the shape of the perceptual blind spot 

during fixation and during SPEM for each subject. Thus we obtained the shift magnitude 

representing the best overlap between the two perceptual blind spots during the different 

types of eye movements at the maximum of the cross-correlation (Figure 3B). This shift 

showed a significant correlation with the mean mislocalization of each subject (r= 0.82, p = 

0.002; Pearson's linear correlation). Furthermore, our results showed rather large 

interindividual variability of the perceptual mislocalization during each eye movement. Yet, 

the position of the center and the general shape of the entire perceptual blind spot always 

shifted along with the individual mislocalization of each eye movement and participant. This 

is strong evidence for a shift of the entire representation of perceptual space along with the 

observed mislocalization pattern. Our results suggest that this might be caused by a linear 

combination of retinal location information and an extraretinal eye-position signal. This 

neural computation has to take place in an area in which information about the entire visual 

space is available. 
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Figure 3: Relationship of the physiological and the perceptual blind spot and the 

corresponding mislocalization during steady fixation and SPEM 

A: There is a strong linear relationship between the mean mislocalization and the shift of the 

position of the perceptual blind spot compared to the position of the physiological blind spot 

for each subject and eye movement. Negative values represent an underestimation of the 

target location or a mislocalization opposite to the pursuit direction, respectively. 

B: Size of the shift of the perceptual blind spot during pursuit and fixation which maximized 

their cross-correlation as a function of mislocalization during pursuit as compared to 

mislocalization during fixation. Positive values represent a mislocalization in direction of 

pursuit. 

 

Taken together our results suggest that the localization of briefly flashed stimuli results from 

a rather late linear combination of two independent neural signals, i.e., information about 

the retinal location of a stimulus and information about the current eye-position and the 

ongoing eye movement. Recent studies have shown, that an error in the internal eye-

A 

B 
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position signal is capable to explain the well known mislocalization patterns during saccades 

(Morris et al., 2012) as well as smooth pursuit and optokinetic nystagmus (Dowiasch et al., in 

preparation (Remark: study two in this thesis)). The hypothesis of a linear combination of 

two independent signals predicts at a neuronal level visual receptive fields (RF) at identical 

retinal locations during different types of eye movements. Experimental evidence comes 

from a recent neurophysiological study on RF properties in macaque area MT, showing that 

the location of the receptive fields were not affected by slow eye-movements (Hartmann et 

al., 2011). 

 

Experimental Procedures 

 

We investigated the monocular localization performance for briefly visual stimuli flashed 

during steady fixation, saccades and smooth pursuit. Sixteen human subjects participated in 

the experiment, each performing eye movements with the left eye while the right eye was 

blindfolded by an eyepatch. All participants were measured during steady fixation. Eight 

subjects performed horizontal smooth pursuit, three of them in both directions (from left to 

right and vice versa) and eight subjects performed saccades. All participants had normal or 

corrected to normal vision and gave their written consent prior to the experiment. All 

measurements where performed in a dark and soundproofed room. Stimuli were projected 

by a video-projector running at 100Hz on a tangent screen (width: 1.60m, height: 1.20m, 

corresponding to 70°x50° of visual angle), 114 cm in front of the subjects. Head movements 

where restricted by a chin rest. Eye movements where recorded with an Eyelink II (SR-

Research) at 500Hz. Stimuli were presented with Neurostim (open source environment based 

on visual c++ and open GL). Subjects responded with a keyboard in front of them. 

Paradigm 

 

The experiment consisted of a fixation- and a pursuit-task or a fixation- and a saccade-task 

respectively, presented in separate sessions, as illustrated and described in Figure 4. 
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C: In the normal pursuit-task a dot was presented 12° right of straight ahead and started 

moving leftwards with a speed of 15°/s 500 ms after appearance. On a randomly chosen 

point in time between 1100-1500 ms after trial start the localization target was flashed for 

10 ms at a random position between 7°-22° left of straight ahead (in the visual hemifield 

ahead of the pursuit target) and 2° beneath the horizontal meridian. The pursuit target 

disappeared 1500 ms after onset and a ruler stimulus became visible to allow subjects to 

report the perceived location of the flash. Three subjects additionally performed pursuit from 

left to right with the target starting 12° left of straight ahead. All other parameters were 

equal resulting in a presentation of the localization target in the visual hemifield the eye 

moves away from. 

 

 

In general: A white dot (luminance: 22.1 cd/m², diameter: 0.5°), on a black background 

(luminance: < 0.1 cd/m²) was used for all paradigms as fixation and localization target. 

During steady fixation and pursuit, the localization target was flashed in a continuous area 

A 

B 

C 

Figure 4: Schematic overview of the 

experimental paradigms for fixation (A), 

saccades (B) & smooth pursuit (C) 

A: A fixation target was presented at the center 

of the screen for 1500 ms. Between 1100 – 1500 

ms a localization target appeared for 10 ms at a 

random position between 7° - 22° left of straight 

ahead and 2° beneath the horizontal meridian. 

After the initial fixation target disappeared, 

subjects reported the perceived location of the 

flashed target with a ruler stimulus, followed by 

presentation of a gaussian luminance 

distribution for 1000 ms to prevent dark-

adaptation. 

B: After an initial fixation at 7.5° right of straight 

ahead for 500 – 600 ms, the target disappeared 

and a second target was presented at 7.5° left of 

straight ahead, being visible for 950 ms. The 

timing and position of the localization target 

was adjusted for each participant depending on 

his/her mean saccade latency and the location 

and size of his/her blind spot. Across trials, the 

target to be localized occurred from around 200 

ms before until 300 ms after a saccade was 

initiated at one of five predefined locations 

clearly outside, at the boarders or directly in the 

center of the blind spot. After the saccade target 

went off, the ruler stimulus appeared followed 

by a gaussian luminance distribution to prevent 

dark-adaptation. 
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adjusted to match the blind spot of each subject with a temporal jitter of 200 ms to prevent 

pursuit anticipation. In the saccade paradigm, the presentation time of the localization 

target was adjusted to the mean saccade latency of each subject to roughly cover stimulus 

presentation times in a range from 200 ms before until 300 ms after saccade initiation. Like 

in the other two paradigms, the position of the localization target was aligned to the 

dimensions of the blind spot measured for each participant during fixation in a way that one 

target was presented in the center, two targets at the computed nasal and temporal border 

and two targets well outside the blind spot, one each on the nasal and temporal side. In all 

paradigms a ruler stimulus was presented at the end of a trial to allow subjects to report the 

perceived localization of the target (see e.g. Kaminiarz et al., 2007). Briefly, the ruler 

consisted of vertical white lines with a distance of 0.5° on a grey background and a number 

alternating above and beneath each line randomly assigned for each trial. Subjects were 

asked to choose the line which corresponded best to the perceived position of the 

localization target and enter the associated number to the keyboard. If they had not 

perceived the flashed dot, subjects were told to enter “00”. After that an anti-adaptation 

screen with a gaussian luminance distribution appeared for 1000 ms to prevent complete 

dark adaptation. 

Data Analysis 

 

Data analysis was performed with Matlab2010b (The MathWorks Inc., Natick, USA). First, the 

results from the fixation paradigm were used to compute the dimensions of the 

physiological blind spot of each participant. After dismissing every trial in which a subject 

performed a saccade within 300 ms of the flash presentation, each trial was assigned to “1” 

if the localization target was seen or “0” if not. These trials were plotted as a function of the 

actual stimulus position and fitted by a moving average (σ = 1°, window-size 2.5°) using a 

step size of 0.2°. The locations for which the discrimination rate dropped to 50% were 

defined as the borders of the physiological blind spot. Assuming that the blind spot is 

symmetrical (Armaly, 1969), the center of the blind spot was determined midway between 

both borders. During steady fixation and pursuit we analyzed the perceived flash-position as 

a function of the actual flash-position taking into account the computed position of the blind 

spot for each subject. This allowed us to compute the amount of perceived stimuli within the 

area of the blind spot and the mean mislocalization during each eye movement. In the 
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saccade paradigm, the perceived location of the flash was analyzed as a function of time 

aligned to saccade onset to obtain the typical bi-phasic pattern of localization around the 

time of a saccade for each subject. By incorporating the area of the blind spot, one could 

identify stimuli perceived within the blind spot due to the mislocalization induced before the 

eye started moving.  

Furthermore, during steady fixation and pursuit, we computed the size of the area in which 

the least amount of stimuli were perceived, which we call the perceptual blind spot. The 

borders were calculated by using the same algorithm as for the physiological blind spot to 

compute the moving average of the frequency distribution of the perceived target location. 

As the only difference, the borders of the perceptual blind spot were considered at the 

location where the relative frequency of the perceived target location was exactly half 

between its minimum and maximum. This analysis allowed us the compare the size and the 

position of the area in which stimuli could not be physically recognized (physiological blind 

spot) with the area in which each subject actually perceived the least amount of stimuli 

during a particular eye movement (perceptual blind spot), to investigate the impact of the 

respective eye movement on the perceptual representation of the visual field in general. 
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Neural basis of spatial mislocalization during smooth 

eye-movements  

 

Abstract 

The dependence of neuronal discharge on the position of the eyes in the orbit is a functional 

characteristic of many visual cortical areas of the macaque. It has been suggested that these 

eye-position signals provide relevant information for a coordinate transformation of visual 

signals into a non-eye-centered frame of reference. This transformation could be an integral 

part for achieving visual perceptual stability across eye movements. Previous studies 

demonstrated close to veridical eye-position decoding during stable fixation as well as 

characteristic erroneous decoding across saccadic eye-movements. Here we aimed to 

decode eye-position during smooth-pursuit. We recorded neural activity in macaque area 

VIP during steady fixation, saccades and smooth-pursuit and investigated the temporal and 

spatial accuracy of eye-position as decoded from the neuronal discharges. Confirming 

previous results, during steady fixation the activity of the majority of neurons depended 

linearly on horizontal and vertical eye-position. The application of a previously introduced 

computational approach (isofrequency-decoding) allowed eye-position decoding with 

considerable accuracy. We applied the same decoder on the activity of the same neurons 

during smooth-pursuit. On average, the decoded signal was ahead of the current eye 

position. A model combining this constant lead of the decoded eye-position with a 

previously described attentional bias ahead of the pursuit target describes the asymmetric 

mislocalization pattern for briefly flashed stimuli during smooth-pursuit eye-movements as 

found in human behavioral studies.  
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Introduction 

 

When an object of interest moves through our visual field we can track it with an eye 

movement in order to stabilize the object’s image on the retina. The control of such smooth 

pursuit eye movements (SPEMs) relies on visual motion information (‘retinal slip’) (Ilg, 1997) 

as well as on efference-copy signals (Von Holst & Mittelstaedt, 1950; Thier & Ilg, 2005). 

These so-called extraretinal signals are ubiquitous in the visual cortical and sensorimotor 

system of the macaque. An influence of the position of the eyes in the orbit has been found 

in striate (Trotter and Celebrini, 1999), extrastriate (Galletti & Battaglini, 1989; Bremmer et 

al. 1997a; Bremmer, 2000), parietal (Andersen & Mountcastle, 1983; Bremmer et al., 1997b, 

1999; Morris et al., 2012, 2013) and even premotor cortex (Boussaoud et al., 1998). The 

relationship between neural activity and eye position has been termed ‘gain field’ or ‘eye-

position field’. It has been suggested that gain fields are of critical importance for a stable 

perception of our environment by allowing for a coordinate transformation of visual signals 

from eye-centered to non-eye-centered spatial representations (Zipser & Andersen, 1988; 

Bremmer et al., 1998; Snyder et al., 1998; Boussaoud & Bremmer, 1999; Salinas & Abbott, 

2003; Blohm et al., 2009; Blohm, 2012).  

Eye-position decoding typically has been applied to the stationary case, i.e. the fixating eye. 

It was only recently that decoding has been introduced to the dynamic case (Morris et al., 

2012, 2013; Xu et al., 2012). By applying population decoding approaches on data from 

saccades, Morris and colleagues (2013) could show that eye-position signals in four 

extrastriate and parietal areas of the macaque visual cortical system are precise on short 

time scales. Yet, eye-position decoding was not veridical in the temporal vicinity of saccades. 

Instead, the decoded eye-position was leading the real eye-position briefly before the onset 

of a saccade, but lagging at the end (Morris et al., 2012). This bi-phasic error pattern 

resembled the results from human psychophysical studies on the localization of perisaccadic 

visual stimuli. The authors therefore suggested that the erroneous eye-position signal could 

be the neural basis of the observed behavioral phenomenon.  

Psychophysical experiments in humans have shown a systematic localization error also for 

stimuli flashed during smooth eye-movements: pursuit onset (Blanke et al., 2010), steady-

state pursuit (Mateef et al., 1981; van Beers et al., 2001; Königs & Bremmer, 2010), 
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anticipatory pursuit (Blohm, et al., 2003) and optokinetic nystagm, OKN (Kaminiarz et al., 

2007). During OKN, stimulus locations across the whole visual field are perceptually shifted 

in the direction of its slow phase. During pursuit, however, spatial localization is asymmetric. 

Mislocalization is observed only in the visual hemifield ahead of the pursuit target. The 

neural bases of these perceptual phenomena are as yet unclear. Given the above described 

results on decoding of eye-position across saccades, we hypothesized that continuous eye-

position decoding across smooth-pursuit eye-movements is possible but likely not veridical. 

We re-analyzed neural activity from macaque area VIP which had previously been recorded 

while monkeys performed smooth pursuit eye-movements in otherwise darkness (Schlack et 

al., 2003). By employing a computational approach (isofrequency decoding: Boussaoud & 

Bremmer, 1999) we found that decoded eye-position was not veridical but rather ahead of 

the actual eye position. While spatial attention during OKN is equally distributed across 

space, smooth pursuit induces an attention-field which is centered ahead of the pursuit 

target (Khan et al., 2010). Attention is known to induce a shift of visual receptive fields 

towards its center (Ben Hamed et al., 2002; Womelsdorf et al., 2006), leading to a perceptual 

expansion of space away from its center (Wardak et al., 2011). We hypothesize that a model, 

combining two independent signal sources, i.e. an erroneous eye-position signal and a 

spatial signal derived from a visual map distorted by attention, can explain the error pattern 

of localization of brief visual stimuli during smooth eye movements. 
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Methods 

 

The current study is an extended computational analysis of neural and behavioral data 

reported before (Schlack et al., 2003). Accordingly, the procedures described here focus on 

the analytical treatment of the data and provide only the most relevant specifics of the 

behavioral and electrophysiological procedures. Full details of experimental methods are 

provided in our previous report (Schlack et al., 2003).  

 

Animal preparation 

Experimental and surgical preparation followed standard procedures. In brief, two monkeys 

were prepared for recordings under general anesthesia and under sterile surgical conditions. 

Each animal was implanted with a device for holding the head. Based on structural MRI 

scans a recording chamber for microelectrode penetrations through the intact dura was 

placed in a frontal plane at an angle of 45° with respect to the vertical for recordings in area 

VIP. Additionally, scleral search coils were implanted to monitor eye position (Judge et al., 

1980). During the experiment, the animal sat in a primate chair with the head restrained, 

facing a translucent screen and performing oculomotor tasks for liquid reward. All 

procedures were in accordance with published guidelines on the use of animals in research 

(European Council Directive 86/609/EEC) and were approved by the regional ethics 

committee. 

 

Behavioral paradigm 

Oculomotor targets (red LEDs, diameter: 0.8°, luminance: 0.4 cd/m²) were back-projected 

onto a translucent screen (size: 90°x90°) 48 cm in front of the monkey. All experiments were 

performed in darkness (luminance < 0.01 cd/m²). To prevent dark adaptation, lights were 

briefly switched on prior to a new set of trials.  

In the saccade paradigm a central fixation target was presented for 1000ms, followed by a 

10° step, pseudo-randomly chosen into one of four directions (left, right, up, and down). The 

animals’ task was to perform a saccade to the target location within 500ms and keep fixation 

until the end of the trial (2.5 s). Smooth pursuit eye movements were induced by a 

Rashbass-‘step-ramp-paradigm’ (Rashbass, 1961). Here, the target moved in pseudo-

randomized order at 10°/s into one of four directions (left, right, up, and down). After initial 
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presentation of a central fixation target (800ms) the target was shifted by 10° in the 

direction opposite to the following smooth pursuit direction and started to move 

instantaneously for 1500ms. Accordingly, each trial had a total duration of 2.3 seconds.  

Binocular eye movements were continuously recorded at 200 Hz in the pursuit task and at 

500 Hz in the saccade task. Spikes were detected on-line and spike-times were stored for 

offline analysis with 1ms resolution.   

 

Data analysis 

Eye-movement data and neuronal activity were analyzed with MATLAB 2012a (The 

MathWorks Inc., Natick, USA). Saccade onset was determined by a velocity criterion with a 

threshold of 80°/s in a time window of 0 – 400ms after target displacement. Spike times 

were converted to a spike density function using a Gaussian smoothing window of 90ms 

width (σ = 30ms). Eye-movement and neural data were aligned to saccade onset. 

 

Isofrequency decoding 

Neural activity as obtained during steady fixation in the saccade paradigm was used to 

determine a cell’s eye-position field. Many previous studies have shown the eye-position 

effect to be linear along horizontal and vertical eye-position, also in area VIP (Bremmer et 

al., 1999). Accordingly, we fitted two-dimensional linear regression functions to the neuronal 

discharges (Figure 1). A regression plane represents the tuning of a cell for eye position: the 

gradient represents the direction of the steepest increase of activity with eye-position, the 

intercept determines the average discharge of the neuron. Regression planes were fitted to 

the average neural discharges obtained long before (pre-saccadic: -700ms to -200ms) and 

long after saccade onset (post-saccadic: +300ms to +900ms). During these epochs, the eyes 

were constantly positioned either at the screen center (pre-saccadic. [x, y] = [0°,0°]) or at 

one of the four eccentric fixation locations (post-saccadic. [x, y] = [+/-10°, 0°], [0°, +/-10°]). 

By choosing these analysis windows we excluded interference of eye-position dependent 

neuronal discharges with saccade planning and/or execution. For each cell the values of the 

regression plane as determined from the saccade paradigm were applied to neural activity 

recorded in the pursuit paradigm. This allowed us to decode eye-position continuously 

across the SPEM by employing an isofrequency decoding regime (Boussaoud & Bremmer, 

1999). This population decoder is based on the planar tuning of the eye-position signals. For 
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a given eye position a neuron fires at a specific frequency. Yet, due to the planar tuning, this 

discharge occurs not only for one single eye position, but for a whole range of eye positions. 

In a mathematical sense, the discharge occurs for an infinite number of eye positions, all 

located along a straight line perpendicular to the gradient of the regression plane, the so-

called ‘isofrequency line’. Accordingly, discharges from a single neuron are not sufficient to 

decode eye position unequivocally. Considering discharges from a second neuron, however, 

theoretically would be sufficient, given that second neuron would have a different tuning for 

eye position. In such case, also for this second neuron an isofrequency line on its regression 

plane could be found. This line, however, would be differently oriented in the 2-D eye-

position space. The only point located simultaneously on both isofrequency lines is the point 

of intersection (PI) of these lines, which represents the current eye position. 

 

Figure 1: Eye-position tuning of 

one representative example 

neuron during the saccade 

paradigm 

The color-coded plane 

represents the two-dimensional 

linear regression of the 

neuronal activity as a function 

of five different eye-positions 

averaged over a pre- and 

postsaccadic time epoch from -

700 ms to -200 ms and 300 ms 

to 900 ms around saccade 

onset (black dots).The black 

vertical lines show the standard 

deviation of the mean at each 

data point. The regression 

equation and its goodness of fit 

parameters are given above the 

figure. 

 

This scenario reflects the ideal case of a perfect linear fit of a 2-D regression plane to the 

neuronal discharges and constant discharges over time. Due to temporal fluctuations of the 

neural signal and due to imperfect 2-D linear fits, the PI obtained from two single neurons is 

typically only a coarse measure of the current eye position. Hence, the isofrequency regime 

considers the PIs obtained from a whole population of neurons: for n neurons, these are 
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(n*(n+1)/2) PIs. The decoded eye-position is computed as the median of the distribution of 

all PIs. 

 

Attention and localization during smooth pursuit 

Smooth pursuit induces an attentional field which is broadly ahead of pursuit (Kahn et al., 

2010). Attention induces (or is based on) a shift of visual receptive fields towards the 

attended location (Ben Hamed et al., 2002; Womelsdorf et al., 2006). This shift of visual RFs 

in turn leads to a perceptual expansion of visual space (Wardak et al., 2011). We modelled 

such an expansion based on the structure of the attentional field during smooth pursuit as 

given by Khan et al. (2010), i.e. their equation for saccade reaction times, given in the legend 

of their Figure 8. Boundary conditions of our model of perceptual expansion of space due to 

attention resulted from behavioral data in humans showing (i) almost no mislocalization 

during SPEM in the visual hemifield behind the pursuit target and (ii) smaller localization 

error in the directions perpendicular to the pursuit direction (van Beers et al., 2001; Königs & 

Bremmer, 2010). In our model, overall localization error then results from superimposing 

two signals: (i) decoded eye position and (ii) a visual map, distorted by attention.  

 

Statistical analysis 

To statistically evaluate the relative error of the decoded eye-position signal compared to 

the actual eye-position we performed a bootstrap analysis (Efron, 1979) of the mean relative 

error within each particular time window with 100.000 iterations. This analysis provided 

confidence intervals, which were used to asses significance levels. 

 

Results 

 

This study is based on recordings from 180 neurons in area VIP of two macaque monkeys. 

The discharges related to smooth pursuit eye-movements haven been described in detail 

before (Schlack et al., 2003). Here, we focused on the decoding of eye-position signals from 

these neuronal discharges. In addition to smooth pursuit eye movements, monkeys 

performed in separate sets of trials visually guided saccades. Discharges during continuous, 

steady fixation long before or long after a saccade were used to determine a neuron’s eye-

position field. An example for such an eye-position dependent modulation of spontaneous 
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activity during active fixation is shown in Figure 1. For this neuron strongest activity was 

observed for fixation up and to the right (redish colors), while lowest discharges were 

observed for fixation left and down. The 2-D regression plane could be fitted significantly to 

the cell’s discharges. This result confirms data from previous studies (Bremmer et al., 1999; 

Morris et al., 2012). During steady fixation, a given eye position results in a certain neuronal 

discharge. This discharge, however, does not occur only for a single eye position. Instead, it 

occurs, in a mathematical sense, for an infinite number of eye positions, all located along a 

straight line. For the example neuron in Figure 1, such lines are represented by identical 

color values on the 2-D regression plane. As shown previously (Boussaoud & Bremmer, 

1999), real eye-position should be given by the median of the pairwise points of intersection 

(PIs) of a population of cells. Indeed, based on the discharges of the whole population of VIP 

neurons, decoded eye-positions during steady fixation were close to the real eye-positions 

(Figure 2). For the five positions tested, average absolute error of eye position decoding was 

only 1.83 degrees.  

 

 

Figure 2: Accuracy of 

the eye-position signal 

in area VIP during 

steady fixation 

Actually measured eye-

position (blue dots) 

compared to median 

decoded eye-position 

(green dots) for each 

position during steady 

fixation in the saccade 

paradigm. Error bars 

represent the 

corresponding standard 

deviations. Absolute 

error of the decoded 

eye-position is given 

next to each location.  

The decoded eye-positions show a good match for all five actual eye-positions (mean 

absolute error = 1.83°). This indicates an accurate internal eye-position signal in area VIP. 
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Continuous decoding of eye position 

In a second step we analyzed the accuracy of the decoded eye position outside steady 

fixation, i.e., across the saccades. Confirming previous results (Morris et al., 2012, 2013), our 

analysis revealed a bi-phasic perisaccadic error pattern (Figure 3). A subtle increase of error 

in direction of the upcoming saccade was followed by a large error in direction opposite to 

the saccade. During steady fixation prior to the saccade, i.e. in a time window from t = 

400ms to t = 200ms before saccade onset, the mean error was ε = -0.06°, which was not 

significantly different from zero (95% confidence Interval = [-0.33 0.22], bootstrapped with 

100000 iterations; Figure 3, left inset). An analogue result was obtained for steady fixation 

well after the saccade, i.e. from t = 300ms to 500ms after the onset of the saccade. Here, the 

mean error ε = 0.02° again was not significantly different from zero (95% confidence Interval 

= [-0.25 0.29], bootstrapped with 100000 iterations; Figure 3, right inset). 

 

 
Figure 3: Relative error of the decoded eye position as a function of time in the saccade 

paradigm 

A: The mean relative error of the decoded eye-position around zero degree pre- and post-

saccadicly indicates an accurate representation of eye position during steady fixation. The 

mean relative error increased after initiation of the saccade in direction opposite to it, 

represented by a negative relative error. Bootstrapped distribution of the mean relative error 

and the corresponding 95% confidence interval during steady fixation prior, i.e. from t = -

400ms to t = -200ms (left gray area) and after, i.e. from t = 300ms to t = 500ms (right gray 

area) the saccade. The relative error in both time windows did not differ significantly from 

zero. 
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In a third step of our analysis, we aimed to decode eye-position during smooth pursuit. Eye-

movements had been recorded in a classical Rashbass-paradigm (Rashbass, 1961). After 

initial fixation, the target stepped in pseudo-randomized order into one of four directions 

(right, up, left, or down) and instantaneously started to move in the opposite direction. 

Critically, for decoding, we applied the regression plane values as obtained from the saccade 

paradigm to the neuronal discharges recorded during smooth pursuit. In other words: the 

neural samples, from which the fit parameters were obtained, were different from the 

samples, to which the decoding algorithm was applied.  

Well before pursuit onset, i.e. in a temporal window from t =400ms to t=200ms before onset 

of the initial catch-up saccade, the mean relative error of the decoded eye-position was 

minimal (ε = -0.05°) and not significantly different from zero (95% confidence Interval = [-

0.31 0.20], bootstrapped with 100000 iterations; Figure 4, left inset). After a minimal 

negative blip, it increased markedly in direction of the upcoming pursuit around the time of 

the catch-up saccade (Figure 4). Since the initial saccade was in opposite direction to the 

pursuit, this effect equals the pattern observed in the saccade paradigm. After the catch-up 

saccade and its related decoding error, the relative error decreased to an almost constant 

level. During steady state pursuit, i.e., in the time window from t=300 to t=1000 ms after 

saccade onset, the mean error was 1.37°. A positive value indicates a lead of the decoded 

eye-position in direction of the pursuit as compared to the actual eye-position. This lead of 

decoded eye-position was statistically significant (99.9% confidence Interval = [1.03 1.69], 

bootstrapped with 100000 iterations; Figure 4, right inset).   
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Figure 4: Relative error of the decoded eye position as a function of time in the pursuit 

paradigm 

As for the saccade paradigm, the relative error of the decoded eye-position was largest 

around the time of the saccade due to a shift of the decoded eye-position in the direction 

opposite to the saccade, i.e. the direction of the upcoming pursuit. During steady state 

pursuit (between 300 – 1000 ms) the decoded eye-position showed a lead ahead of the 

actual eye-position indicated by the positive mean relative error of 1.4°. Bootstrapped 

distribution of the mean relative error and the 95% corresponding confidence interval during 

steady fixation prior to the saccade, i.e. from t = -400ms to t = -200ms (left gray area) and 

during steady state pursuit, i.e. from t = 300ms to t = 1000ms (right gray area) after saccade 

onset. The mean relative error in the time window before the saccade did not differ 

significantly from zero, whereas the mean relative error during steady state pursuit was 

significantly greater than zero (99.9% confidence Interval = [1.03 1.69], bootstrapped with 

100000 iterations). 

 

 

Decoded eye-position and attention 

Given that a functional equivalent of macaque area VIP has been identified in human 

parietal cortex (Bremmer et al., 2001), erroneous eye position signals most likely also exist in 

the human visual cortical system. Accordingly, if spatial localization would rely among other 

signals on an estimate of eye position, a constant lead of decoded eye position would 

suggest a shift of perceived spatial locations in the direction of pursuit across the whole 
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visual field. Such a constant perceptual shift has been described for the slow phases of 

optokinetic look nystagmus (Kaminiarz et al., 2007). During pursuit, however, mislocalization 

is only found in the visual hemifield ahead of the fovea. In order to explain this asymmetry in 

spatial localization during SPEM, we suggest an additional mechanism to act in concert with 

the erroneous eye position signal: attention. Attention has been shown to lead to a 

perceptual distortion of space, i.e. an expansion of perceived locations away from the focus 

of attention (Wardak et al., 2011). Khan and colleagues (2010) have mapped the attentional 

field during pursuit and found attention centered broadly ahead of pursuit. We hence 

modeled the effect of attention on spatial localization by transforming the attentional map 

as given by Khan et al. (2010) into a (mis-)localization map:  

 

(1) Lattention = -65 * ( -0.0848 + 0.065/(1 + exp(0.328 * (x - 4.24))) + 0.05 * exp(-((x - 4.734)
2
 

+ (y -0.081)
2
)/5.8032)) 

 

In this equation (1), scaling factors were adjusted to meet the boundary condition of 

localization, i.e. only a marginal error in the hemifield behind the fovea. According to our 

hypothesis, localization during smooth pursuit should be given by a superposition of the 

erroneous eye position signal and the spatial map, which is distorted by attention:  

(2) L = Leye.pos. + Lattention 

 

The resulting 2-D error pattern for localizing stimuli during smooth pursuit is shown in Figure 

5. Horizontal localization error starts to build up at the vertical meridian. Vertical localization 

error is directed away from the focus of attention. This error pattern is almost identical to 

behaviorally data observed in humans (van Beers et al., 2001; Königs & Bremmer, 2010).  
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Figure 5: Modeled mislocalization during SPEM  

A: The attention map found by Kahn et al. (2010) was transferred to represent spatial 

perception during smooth pursuit. As shown before, focused attention induces perceptual 

shifts away from the focus. In order to meet boundary conditions, the first two constant 

scaling factors of the 2D sigmoid and superimposed Gaussian fit function found by Kahn et al. 

(2010) were adjusted:  

z = -65 * ( -0.0848 + 0.065/(1 + exp(0.328 * (x - 4.24))) + 0.05 * exp(-((x - 4.734)
2
 + (y -

0.081)
2
)/5.803

2
)). The arrow illustrates the direction of pursuit with the head marking the 

location of the pursuit target. 

B: Cumulative mislocalization from the combination of attentional effects and a constant 

lead of the decoded eye-position signal of about 1.4° as found in our study. Both sources of 

mislocalization add up in the visual hemi-field ahead of the pursuit target and almost 

neutralize each other in the hemi-field behind the eye. The resulting figure closely resembles 

the behaviorally measured asymmetric mislocalization pattern typically observed during 

smooth pursuit eye-movements (van Beers et al., 2001; Bremmer & Königs, 2010). 

 

Discussion 

 

Efference copy vs. proprioception 

Over the last three decades, numerous studies have shown that neurons in many visual 

cortical areas of the macaque carry an eye-position signal (e.g. Andersen and Mountcastle, 

1983; Galletti & Battaglini, 1989; Bremmer et al., 1997a, b; Trotter and Celebrini, 1999; 

Bremmer, 2000), among them also area VIP (Duhamel et al., 1997; Bremmer et al., 1999; 

Morris et al., 2012, 2013). A number of different approaches have shown that the functional 

characteristics of these modulatory influences of eye position on neuronal discharge are 

suited to decode eye position from the activity of a population of neurons within each of 

A B 
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these areas: a back-propagation network (Andersen & Mountcastle, 1983), splitting a 

population into tow sub-populations with opposite tuning properties (Bremmer et al., 1998), 

an isofrequency decoding (Boussaoud & Bremmer, 1999), as well as a maximum likelihood 

approach (Morris et al., 2012, 2013).  

Eye-position signals have also been documented for neurons in primary somatosensory 

cortex (Wang et al., 2007; Xu et al., 2011). Based on this finding, it was suggested that eye 

position signals result from proprioception rather than from an efference copy or from 

corollary discharge. In line with this hypothesis, it was shown that the strength of visual 

responses of a number of neurons from area LIP visually stimulated briefly after the end of a 

saccade was more compatible with pre-saccadic rather than post-saccadic eye positions (Xu 

et al., 2012). These findings are in contrast to results from two other recent studies (Morris 

et al., 2012, 2013). Here, Morris and colleagues tested the time course of the pure eye-

position signals without any further visual stimulation in four different cortical areas of the 

macaque dorsal visual pathway: areas MT, MST, LIP, and VIP. The authors unequivocally 

showed that eye position as decoded from population activity within each of these areas 

started to change prior to saccade onset. Such a predictive change cannot be based on 

proprioception but rather would be indicative of an efference copy or corollary discharge 

signal. Our findings on decoded eye position leading the actual eye position during smooth 

pursuit are in agreement with the results from Morris and colleagues on saccades.  

 

 

Continuous decoding of eye position 

The result on the accuracy of decoded eye-position during steady fixation in our study was in 

line with those of previous studies on dorsal visual areas (Boussaoud & Bremmer, 1999; 

Morris et al. 2013). To decode the eye position during smooth-pursuit eye movements, we 

used the 2-D linear tuning of each cell as computed from the saccade paradigm and applied 

it to the neuronal discharges as recorded during SPEM. The error of the decoded eye-

position during the initial fixation and the saccade to the pursuit target was in the same 

range and direction as in the saccade paradigm.  

In line with previous studies, our data show that eye-position signals in area VIP are accurate 

and sufficiently fast to represent the actual eye-position not only during steady fixation, but 

also during ongoing eye-movements. Hence, they provide viable information for a 

coordinate transformation of visual signals from an eye-centered to a head-centered frame 
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of reference at the population level. Such a transformation is thought to be necessary not 

only for a stable perception of our environment (Zipser & Andersen, 1988; Salinas & Abbott, 

2003; Bremmer, 2005), but also for the computation of pursuit motor commands in the 

correct reference frame (Blohm and Lefèvre, 2010; Murdison et al., 2014). It remains to be 

determined, if explicit head-centered representations at the single cell level, which have 

been shown for area VIP during steady fixation (Duhamel et al., 1997; Avillac et al., 2005; 

Schlack et al., 2005), can also be found across eye movements.  

During steady state pursuit, the relative error of the decoded eye-position was positive. Such 

a positive error indicates that the internal representation of eye-position was slightly ahead 

of the actual eye-position. The finding of a lead of the decoded eye-position in relation to 

the actual eye-position could explain, at least in part, the behaviorally observed 

mislocalization of briefly flashed stimuli during SPEM (Mateeff et al., 1981; van Beers et al. 

2001; Königs & Bremmer, 2010) or related smooth eye movements like the slow phase of 

optokinetic nystagmus (Kaminiarz et al., 2007): if the erroneously decoded eye position 

would be combined with information about the location of a visual stimulus on the retina, it 

could induce the above mentioned mislocalization. Similarly, a possible neural substrate of 

the mislocalization during saccades had been identified (Morris et al., 2012).  

Indeed, the mean relative error of about 1.4° in our current study greatly matches the mean 

localization error reported during the slow-phase of look-nystagmus (Kaminiarz et al., 2007; 

Tozzi et al., 2007). In these experiments, visual stimuli were presented during ongoing OKN. 

When stimulus presentation fell in a slow phase of the OKN, stimuli were mislocalized in the 

direction of the eye movements. Stimuli, which were presented shortly before, during or 

after a fast-phase of the OKN were mislocalized according to a saccade-like error pattern. 

These results were very different from results during stare-nystagmus or during Optokinetic 

Afternystagmus (OKAN), which can be induced by prolonged optokinetic stimulation. In such 

case, mislocalization during the slow phase was not in the direction of the eye movements, 

but directed away from the fovea, resulting in a perceptual expansion of space (Kaminiarz et 

al., 2008). Interestingly, only SPEM and look-nystagmus are associated with very similar 

cortical activation patterns in motion sensitive and eye-movement areas (Konen et al., 

2005), which is not the case for stare-nystagmus and OKAN. These results suggest that visual 

localization during eye movements, which are under cortical control, relies (at least in part) 

on decoded eye-position signals.  
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Decoded eye-position and attention 

Different from look-nystagmus, however, mislocalization during smooth pursuit is 

asymmetric with respect to an eye-centered visual field: it is found almost exclusively in the 

visual hemi-field ahead of the pursuit target (or the fovea) (van Beers et al., 2001; Königs & 

Bremmer, 2010). There it increases from about 2° for stimuli close to the fovea to a 

maximum value of up to 5° for stimuli presented further away from the fovea. This suggests 

an additional signal contributing to the mislocalization during SPEM in addition to the 

erroneously decoded eye position.  

Visual receptive fields have been shown to shift towards the location where attention is 

allocated (Ben Hamed et al., 2001; Womelsdorf et al., 2006). If the spotlight of attention 

coincides with the fovea, the receptive fields shift towards the fovea. According to a labeled 

line coding, this centripetal shift must result in a centrifugal shift of perceptual localization 

with respect to the fovea. Such a centrifugal shift away from the focus of attention has 

recently been demonstrated in behavioral experiments in humans (Wardak et al., 2011). 

During smooth pursuit, however, attention is not where the fovea is. Instead, a study of 

Khan et al. (2010) found that attention during SPEM is allocated broadly ahead of the pursuit 

target. By mapping response latencies to visual stimuli presented around the pursuit target, 

a peak of attention was found at about 4° ahead of the pursuit target. Accordingly, this 

spatial attention most likely induces a distortion of perceptual space with perceived 

locations directed away from the center (or focus) of attention. Figure 5A shows the function 

of the attentional field during SPEM found by Khan et al. (2010) converted to represent 

mislocalization under the assumption that the location with the highest attention shows the 

least mislocalization. This attentional landscape can be considered a potential field implying 

a centrifugal force always directed away from its center. We suggest that this distorted 

representation of perceptual space is superimposed onto the erroneously decoded eye-

position signal. The combination of a spatial map, distorted by attention, and a constant lead 

of the decoded eye-position would add up to a joint localization map.  

In this map, the effects of attention and decoded eye-position add to each other in the visual 

hemifield ahead of the focus of attention, but antagonize each other in the hemi-field 

behind the fovea (Figure 5B). The resulting error map very closely resembles the asymmetric 

localization error during smooth pursuit as found in behavioral experiments in humans (van 

Beers et al., 2001; Königs & Bremmer, 2010).  
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Without an attentional contribution only the constant lead of the decoded eye-position 

would induce a uniform mislocalization pattern across the visual field. Indeed, such an error 

pattern has been shown for the slow phase of look-OKN (Kaminiarz et al., 2007). Accordingly, 

our data suggest that it should be possible to decode eye-position from neural activity in 

macaque area VIP (and most likely further visual cortical areas) during the slow phases of 

look-nystagmus. Most likely, this decoded signal would not be veridical but rather show a 

lead with respect to real eye-position. 
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3. General discussion and outlook 

 

In this thesis I used psychophysical, electrophysiological and neuropsychological methods to 

investigate the effect of a stable and complete perceptual representation of our world 

despite the various challenges the visual system has to cope with caused by eye-movements 

and self-motion. In addition, I was interested in the transferability of well established results 

of eye-movement studies from laboratory measurements to the real world. My work aimed 

to utilize eye-tracking to shed light onto the underlying neuronal mechanisms ensuring 

perceptual stability and, more specifically, causing eye-movement dysfunctions in 

neurological or psychological patient groups and even during healthy aging. 

 

3.1. Perceptual stability and visual mislocalization 

 

One possibility of the visual system to achieve perceptual stability is to encode visual input in 

a world-centered frame of reference. For this purpose in a first step the originally 

retinocentric input has to be transformed into a craniocenric frame of reference (Zipser & 

Andersen, 1988; Snyder et al., 1998; Salinas & Abbott, 2003). This transformation of 

coordinates could be realized by a combination of information on the retinal location of a 

stimulus and information about an ongoing eye-movement and/or the current eye position, 

respectively (Hazelhoff & Wiersma, 1924; Bremmer et al., 1998; Boussaoud & Bremmer, 

1999). These latter, so called efference copy (von Holst & Mittelstaedt, 1950) or corollary 

discharge signals (Sperry, 1950) are thought to represent an internal copy of the motor plan 

associated to each movement to help with the attribution of agency and even predict the 

outcome of certain actions (Blakemore et al., 2000). These signals represent the perfect 

candidate to inform the visual system about an upcoming shift of the visual field due to an 

eye movement and simultaneously provide the necessary information to properly account 

for them.  

The first study of my thesis investigated the mechanism of a combination of the retinal 

stimulus location and an internal eye-position signal during different kinds of eye-

movements as a source to generate perceptual localization of stimuli in the world. Here 

stimuli were monocularly presented close to blind spot, an area where no photo receptors 

are available to physically detect the stimuli. Yet, subjects localized stimuli within that area 
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they should be blind for. The amount of localizations and the side of the blind spot in which 

perceptual localization was shifted into was directly related to the mislocalization of the 

corresponding eye movement for each subject. Furthermore, the area with the least 

perceived localizations, which is related to the physiological blind spot but applied for 

perceived positions, shifted along with the specific mislocalization induced by each eye 

movement and subject while preserving its general shape. This suggests that the entire 

visual map signal of actual retinal target locations, including the blind spot, is combined 

linearly with an independent signal carrying information about the ongoing eye movement 

to form a perceptual map of target locations. As this combination induces a perceptual shift 

of stimulus positions into regions the subjects should be blind for, a probable candidate for 

this signal is the efference copy of eye-position. The hypothesis of an initially correct spatial 

representation, which later gets combined with an eye-position signal, is in line with a 

neurophysiological study showing that the location of visual receptive fields in area MT of 

the macaque are, at least at that processing stage, not modulated by slow eye-movements 

(Hartmann et al., 2011). Altogether, this predicts the neuronal basis of localization in a 

rather high area of the dorsal stream. A possible candidate for this area should map a 

complete representation of the visual environment and has to have an internal 

representation of eye-position readily available. Area VIP for which a functional equivalent 

has been identified in humans (Bremmer et al., 2001) is a possible candidate of such an area. 

Recent studies have shown that area VIP holds neurons that encode information in different 

frames of reference from eye-centered, over intermediate to head-centered (Schlack et al., 

2005), suggesting that there are coordinate transformations happening in that area. This 

latter suggestion is based on the finding that response latencies of visual cells were shorter 

for those cells encoding visual information in eye-centered coordinates than in this cells 

encoding visual information in head-centered coordinates. Cells encoding in an intermediate 

reference frame had medium latencies.  

Additionally area VIP is a polymodal area in which information from various senses, i.e. 

vision, sense of balance, somatosensation and audition converge (Avillac et al., 2005, 2007; 

Bremmer et al., 2002a, 2002b; Chen et al., 2011; Duhamel et al., 1998; Schlack et al., 2002). 

Hence, with this rich source of multimodal information even higher order coordinate 

transformations to a body- or even world-centered frame of reference might be possible 



3.1. Perceptual stability and visual mislocalization  

 - 106 - 

within this area, which would eventually provide a mechanism to facilitate perceptual 

stability. 

In the second study of my thesis I aimed to find the neuronal correlate of the perceptual 

mislocalization during eye movements utilized in study one. A recent study of Morris and 

colleagues (2012) suggested an erroneous internal eye-position signal as the source of the 

perceptual mislocalization of briefly flashed stimuli during saccadic eye-movements. Here I 

tested if this hypothesis can be extended to smooth eye-movements and if internal eye-

position signals in the brain are sufficient to accurately represent the actual eye-position 

over the course of a smooth pursuit eye-movement. Indeed, there are many areas in the 

primate brain in which neurons modulate their firing rate with changes of the current gaze 

direction, i.e. in striate (Trotter and Celebrini, 1999), extrastriate (Galletti & Battaglini, 1989; 

Bremmer et al. 1997a; Bremmer, 2000), parietal (Andersen & Mountcastle, 1983; Bremmer 

et al., 1997b, 1999; Morris et al., 2012, 2013) and even premotor cortex (Boussaoud et al., 

1998). This relationship between the neuronal discharges and the current eye position 

forming an “eye-position field” is thought to reflect an efference copy signal. Recent studies 

showed that these eye-position signals in four parietal areas (i.e. area MT, MST, LIP, VIP) are 

highly accurate and sufficiently fast to be reliably used for a transformation of reference 

frames during steady fixation and saccade eye-movements (Morris et al., 2012, 2013). The 

second study in this thesis confirmed the results of Morris and colleagues and showed that 

area VIP also provides an efference copy signal of eye-position of considerable accuracy 

during smooth pursuit eye-movements. At the same time, the temporal and spatial 

mismatches between the decoded eye-position and the actual eye-position offer a potential 

explanation for the psychophysically observed mislocalization effects of briefly flashed 

stimuli during different kinds of eye movements. Indeed, an erroneous internal eye-position 

signal with comparably slow dynamics, which predictively shifted already prior (<100 ms) to 

a saccade but caught up to the actual eye-position only shortly (~200 ms) after the eye had 

moved, was identified as a potential neuronal correlate of perisaccadic mislocalization of 

briefly presented stimuli (Morris et al., 2012). Likewise, study two in this thesis showed an 

inaccuracy of the efference copy signal, i.e. a constant lead of the decoded eye-position of 

about 1.4° as compared to the actual eye-position during steady state pursuit. This lead 

offers an explanation for the observed mislocalization during the slow phase of look-OKN, 

which has a similar magnitude (Kaminiarz et al., 2007) and has been identified to share a lot 
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of common features with SPEM due to activation in similar motion sensitive and eye-

movement areas in the brain (Konen et al., 2005). Furthermore, the combination of a 

constant lead of the decoded eye-position with a biased allocation of attention in front of 

the pursuit target as demonstrated by Kahn and colleagues (2010) can be transformed into a 

spatial (mis-)localization map. Remarkably, the resulting 2-D error pattern nicely fits the 

behaviorally measured asymmetric mislocalization pattern during smooth pursuit eye-

movements (Figure 5). 

 

 

Figure 5: Comparison of psychophysically measured mislocalization during rightward smooth 

pursuit (A) and modeled mislocalization caused by a constant lead of decoded eye-position 

and an attentional distortion of the perceptual space (B). Both figures show the same 

asymmetric pattern with a considerable mislocalization in direction of the ongoing pursuit, 

but almost no mislocalization in the visual hemi-field behind the eye. A: after van Beers et al., 

(2001). 

 

 

Taken together, the first two studies of this thesis support the hypothesis that the motion 

selective areas in the parietal cortex and specifically area VIP offers the relevant neural 

signals to perform a coordinate transformation of visual signals from the permanently 

varying retinal input to a non-retinal reference frame enabling a consistent and stable 

perception of our environment. Furthermore, perceptual mislocalization occurring when the 

visual system is psychophysically pushed to its limits might represent a potential drawback 

of the cognitive mechanism ensuring perceptual stability, which possibly results from a 
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trade-off between a spatially accurate efference copy signal and the dynamic and predictive 

capabilities of the visual system. 

Another mechanism suggested to be related to perceptual stability is predictive remapping. 

It was described first for neurons in area LIP (Duhamel et al., 1992) and since then was 

replicated in other visual and visuo-motor areas like the frontal eye-fields (Umeno & 

Goldberg, 1997; Nakamura & Colby, 2002). Neurons typically are characterized by their 

receptive field (RF), an area in which stimulation modulates the neuron’s activity. During 

predictive remapping a neuron changes its discharge prior to the initiation of a saccade, as if 

it already responds to stimuli at its future receptive field, after the eye would have moved. 

Thus, this mechanism anticipates upcoming changes of the spatial representation associated 

with an eye movement and is able to account for them, thereby maintaining perceptual 

stability within an eye-centered frame of reference. Yet, until now the mechanism of 

predictive remapping has been shown only to achieve trans-saccadic stability, whereas 

verification of an influence to perceptual stability in general is still missing. 

The specific contribution from the representation of spatial information in non-retinotopic 

reference frames, as well as predictive remapping of retinocentric information to perceptual 

stability across eye movements and self-motion is still under investigation. This thesis aimed 

to complement the current knowledge and provided a potential context and source to 

perceptual mislocalization effects during eye movements. 

 

3.2. Differences, challenges and advantages of eye-movement studies in the 

real world 

 

When stepping outside the controlled environment of the laboratory, the visual system and 

perceptual stability gets particularly challenged not only by various eye movements, but also 

by head-, body- and self-motion (Bremmer & Krekelberg, 2003). Primates have evolved to 

deal with these challenges appropriately. Yet, it is not self-evident, that results from 

laboratory studies can be transferred to the real world without further verification. On the 

other hand, eye-movement studies in the real world offer the possibility to explore the visual 

system in total and to examine different groups of patients due to the mobility and simplicity 

of modern mobile eye trackers, which otherwise would not be feasible.  
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Study one and two of my thesis showed, that the availability of an efference copy signal of 

eye-position in the brain is essential for the visual system to perform optimally and to 

achieve perceptual stability including characteristic perceptual localization errors. Patients 

with schizophrenia are thought to have a misattribution of agency of their own thoughts and 

actions (Frith, 1992), which is thought to be due to a dysfunctional efference copy 

mechanism (Feinberg, 1978, Kircher & Leube, 2003; Leube et al., 2010). Therefore, 

schizophrenia patients offer a great possibility to investigate the consequences of an 

impaired efference copy mechanism to eye movements and perception. There is already 

some evidence from psychophysical studies of an overall failure in using extraretinal motion 

information derived from an efference copy signal in schizophrenia patients (Spering et al., 

2013). As suggested by the importance of the efference copy signal to visual perception in 

the first two studies in this thesis, a visual localization task would be a particularly interesting 

study to perform in the future with schizophrenia patients, which to the best of my 

knowledge has not been done so far. Besides that, a study of Lindner and colleagues (2005) 

found that self-induced information, i.e. retinal image motion resulting from smooth pursuit 

eye-movements, during a motion-perception task is misattributed to the background motion 

in schizophrenia patients suffering from delusions of influence. Similarly, visual motion 

information from the environment during self-motion could be misattributed in these 

patients. Such misattribution of sensory consequences challenges the stable perception of 

the world. Hence, the third study in this thesis investigated the eye-movement behavior of 

schizophrenia patients and healthy controls in a real world environment, to verify the 

numerous eye-movement abnormalities of schizophrenia patients found in the laboratory 

and to explore their perception in a more natural setting. Diefendorf & Dodge (1908) were 

the first, who quantitatively analyzed the eye-movements of schizophrenia patients and who 

found an impairment of smooth pursuit eye-movements with a decreased gain, which has 

been frequently reproduced ever since (Holzman et al., 1974; O’Driscoll & Callahan, 2008). 

Smooth pursuit relies on visual motion information on the retina (‘retinal slip’) (Ilg, 1997) as 

well as an efference copy signal consisting of extraretinal information about the ongoing eye 

movement and eye position (Thier & Ilg, 2005). A failure in integrating these extra retinal 

signals, could account for the dysfunction of smooth pursuit eye-movements in 

schizophrenia patients. Yet, during everyday life humans usually don’t perform pure SPEM of 

a well isolated target, but rather actively track certain aspects within a moving visual field or 
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passively view the motion of the entire visual field (Niemann et al., 1999). This active 

tracking resembles smooth pursuit eye-movements by serving the same purpose, i.e. 

stabilizing an object on the fovea which moves through the visual field, with the exception 

that the later is performed with no additional self-motion. In the third study of this thesis I 

showed that specific eye-movement dysfunctions in schizophrenia occurred in laboratory 

measurements and the real world, while others seemed to disappear in a more natural 

context. The visual tracking of a fixed object on the ground during self-motion, although 

closely related to smooth pursuit, did not show a reduced gain typically observed in 

schizophrenia patients. We hypothesized, that this difference was due to the environment 

offering patients a variety of compensatory mechanisms (e.g. head movements, information 

about optic flow, other objects as visual landmarks, etc.) to equalize their specific deficits 

like an impaired efference copy signal or a misattribution of sources of information to 

eventually overcome at least some of their visual impairments. The relevance of a variety of 

different sensory cues to the visual system of schizophrenia patients in order to perform well 

was shown by Holzman (2000). When additional non-velocity cues (e.g. position changes or 

contrast diminution) were artificially removed from a stimulus the performance to 

discriminate certain stimulus velocities got significantly worse in schizophrenia patients. Yet, 

such cues are almost always available in the real world and can be used to perhaps support 

or even substitute certain aspects of vision in order to preserve visual perception as 

effectively as possible. On the other hand, it seems that certain aspects of vision and eye 

movements are generally affected in schizophrenia patients, e.g. they perform less 

exploratory eye-movements, which was also shown in the laboratory (Kojima et al., 2001; 

Egaña et al., 2013). At the same time, other abnormalities might get compensated by 

alternative mechanisms under certain behavioral or environmental conditions, to keep visual 

perception generally intact. Taken together, a large number of open questions remain that 

underline the need to perform research in the real-world and complement laboratory 

studies, to better understand the neural basis of visual perception and the control of eye-

movements in the healthy and diseased brain. 

This conclusion is in line with the results of the forth study of this thesis showing that eye-

movement abnormalities previously described in the laboratory, not only in certain brain 

diseases but also during healthy aging, can not be transferred one-to-one to the real world. 

In this study I could show that oculomotor performance as measured by basic eye-
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movement parameters like saccade amplitude and peak-velocity significantly decreases with 

increasing age, typically starting already around the age of 25 (Morgan, 1993; Munoz et al., 

1998). While this study confirmed some of the previous results from laboratory 

measurements (Sharpe & Zackon, 1987; Irving et al., 2006) or even clarified inconclusive 

results on saccade peak-velocity (Henriksson et al., 1980; Munoz et al., 1998), other findings 

in our study comparing the natural tracking of an object during self-motion with smooth 

pursuit eye-movements as measured in the laboratory (Moschner & Baloh, 1994; Ross et al., 

1999) did not show the general deterioration of tracking gain associated with senescence. 

The forth study revealed an additional difference between measurements in the real world 

and in the laboratory. While the latter usually examines discrete domains of eye-movement 

characteristics, e.g. saccades of a certain amplitude (e.g. Munoz et al., 1998 investigated 

only saccade with an amplitude of 20°) or smooth pursuit with a particular velocity (e.g. just 

one velocity of 16.7°/s in Ross et al., 1999), eye-movement parameters in the real world are 

usually continuous and non-normally distributed (Land et al., 1999, Pelz & Rothkopf 2007). 

Especially saccades with small amplitudes of less than 5° are usually omitted in laboratory 

experiments, although those represent the majority in everyday vision as shown by Land and 

colleagues (1999) and study three and four in this thesis. As a consequence, some results 

collected under laboratory conditions could be biased and thus might miss or misestimate 

some effects of oculomotor functioning. Indeed, in study three saccade peak-velocities in 

schizophrenia patients only showed significant differences compared to healthy controls for 

saccade amplitudes of less than three degree. When analyzing the entire range of 

amplitudes no effect was noticeable. Then again, in study four of this thesis the saccade 

peak-velocity was significantly lower for the elderly for all separately analyzed amplitude 

ranges as well as for the total range. This finding emphasizes the need to carefully choose 

the parameters of an experiment, which is meant to investigate normal vision. 

Overall, the examination of eye-movements in the real world during self-motion introduces 

a much higher relevance of the parietal areas of the brain in contrast to laboratory 

measurements. This allows investigating their actual impact on and interaction with eye-

movements during navigation trough space in its full context. Especially the motion sensitive 

areas MST and VIP are crucial for the evaluation of self-motion information like the direction 

of heading and the integration of optic flow information. Despite several eye-movement 

impairments in the elderly as shown by study four, heading detection via expanding artificial 
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radial flow fields relative to a reference has been shown to be unaffected by age (Billino et 

al., 2008). On the other hand, a recent study using a virtual-reality setup with 3-D clouds of 

dots showed a decreased absolute heading performance of older participants (Lich & 

Bremmer, 2014). The authors explained these results with an anatomically suggested age 

dependent loss of neurons of 1-2% per decade (Jäncke, 2004; Raz et al., 2005) and verified 

their hypothesis by introducing such a cell loss into a neuronal network previously used to 

describe the behavior of areas MT and MST for heading detection (Lappe & Rauschecker, 

1993; Lappe et al., 1996). This explanation of a neuronal cell loss could also be applied to the 

impaired eye-movement parameters in the elderly found in study four. Indeed, a study of 

Lee et al. (1988) found that inactivation of a subpopulation of neurons in the superior 

colliculus, significantly decreased saccade velocity and suggested that eye-movement 

parameters like direction, amplitude and velocity are based on the response of the entire 

population of neurons. In contrast to the theory that information is extracted only from the 

most active cells of a population, this population-averaging hypothesis is in agreement with 

the results of the second study in this thesis, showing that the population of VIP neurons 

contains an almost accurate eye-position signal, which deteriorates with a decreasing 

number of neurons contributing to the decoding (Figure 6). A similar relation has been 

shown for population coding of other parietal areas (Bremmer et al., 1998; Morris et al., 

2013) as well as premotor areas (Boussaoud & Bremmer, 1999) and visual cortex (Vogels 

1990). 

Although the studies of Billino et al. (2008) and Lich & Bremmer (2014) suggested, that 

parietal areas are affected by aging, the results of study four in this thesis imply that self-

motion information is adequately integrated with eye movements in the elderly. This 

integration is crucial for the execution of compensatory eye-movements to counterbalance 

the motion of the target in the visual field due to the self-motion in order to ensure the 

visual tracking of an object during self-motion with a high gain as shown in the elderly in 

study four. Likewise and in contrast to efference copy signals of ongoing eye-movements, 

self-motion information seems to be unimpaired and readily available in schizophrenia 

patients, as shown by their normal tracking performance of a fixed object during self-motion 

in study three of this thesis. 
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Figure 6: Mean error of the predicted eye-position as compared to the real eye-position 

during smooth pursuit as a function of population size of neurons in area VIP. 

Mean errors (blue dots) and standard deviations (blue lines) were computed by randomly 

selecting 100000 subsets of neurons from each given sample size (n = 10, 15, 20, 25, 30, 40, 

…). This led to a monotonically decreasing error with an increasing number of neurons, which 

could be fitted by an inverse square root function. This functional approach suggests a highly 

accurate and reliable representation of eye-position information in the whole population of 

neurons in area VIP, e.g. roughly 4000 neurons are needed for an internal eye-position 

representation during SPEM with a mean deviation of less than 1°. 

 

 

Especially the multimodal area VIP might play an exceptional role during real-world 

behavior, which could have been underestimated in previous laboratory studies. This thesis 

in addition to previous neurophysiological work (Avillac et al., 2005, 2007; Bremmer et al., 

2002a, 2002b; Chen et al., 2011; Duhamel et al., 1998; Schlack et al., 2002) identified this 

area as a vital hub for combining information from different sensory modalities. Thus the 

broad spectrum of signals available in this area might offer a variety of possible ways to 

compensate for dysfunctions of a few other information sources and provides crucial data 
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for the execution of coordinate transformations of sensory signals, eventually supporting a 

stable perception of our world. 

The investigation of effects of healthy aging on basic eye-movement parameters is getting 

more and more important in our senescent society in order to identify the underlying 

changes in the brain during the process of aging. Since the probability of an onset of many 

diseases increases as we are getting older, it is particular important to identify the common 

influences of healthy aging on eye movements and the brain in general in order to not falsely 

attribute them to a possible disease. If we are able to clearly identify eye-movement 

abnormalities associated with healthy aging, we can precisely associate additional eye-

movement characteristics to certain diseases. This approach would allow us to reliably use 

eye movements und their deviations to examine brain diseases in order to gain deeper 

insights into the mechanisms and the underlying causes of brain disorders (cf. 1.4.1) and 

eventually identify objective and quantifiable parameters to support the diagnosis. As a first 

step, study five of this thesis investigated eye movements and their potential use for the 

diagnosis and differentiation of patients with idiopathic Parkinson’s disease (IPD) and a 

related atypical form of Parkinson’s disease called progressive supranuclear palsy (PSP). 

These diseases have similar onsets challenging an early differential diagnosis. Unfortunately, 

both diseases show a rather different progress and prognosis, requiring different types of 

treatments (Burn & Lees, 2002). Therefore it is vital to differentiate these two diseases from 

each other as early as possible, to ensure an optimal therapy. We utilized the advantages of 

a mobile eye-tracker like transportability and the simplicity of setup to bring the laboratory 

to the patient, which is of particular importance in these patient groups due to their often 

impaired physical constitution. We could show that basic eye-movement parameters like 

saccade velocity and amplitude in a simple sequence of gaze shifts were able to reliably 

differentiate PSP patients from PD patients and healthy controls with specificities and 

sensitivities of up to 100% for certain parameters like saccade peak-velocity in the vertical 

direction. Likewise other studies of eye-movements in schizophrenia have shown the 

capability to differentiate patients from healthy controls with a sensitivity of 89.0% and a 

specificity of 86.7% using exploratory eye-movements of an artificial figure (Kojima et al., 

2001). 

Just as study three and four in this thesis, the last study revealed some aspects of the eye-

movement system to be specifically affected, i.e. the saccadic system, while others proved to 
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work relatively normal or were only mildly affected in the patient group, e.g overall 

exploratory gaze behavior. Although the results of the saccade parameters in study five are 

conclusive, this study shows that it is not always necessary or sometimes even 

deconstructive to investigate unrestricted natural eye-movement behavior. In this study the 

most obvious differences between PSP patients and PD patients could be found in a 

standardized fixation protocol in which predefined targets were projected on a wall and 

subsequently fixated without any other head- or body movement. Such a paradigm closely 

resembles a typical measurement in the laboratory and deliberately renounces other 

mechanisms, which might influence or even compensate the eye-movement dysfunction 

under consideration. Yet, mobile eye-trackers provide the most convenient way to measure 

the eye movements of patients directly in the clinic as a complement to common screenings 

within a whole battery of tests or even at the bedside of completely immobile patients (Stoll 

et al., 2013). Overall, the capabilities and versatility of eye-movements and especially the 

application of mobile eye-trackers as an objective and efficient tool supporting the 

(differential-)diagnosis and observation of specific diseases are largely unused in the daily 

clinical routine. Future studies have to prove the usability of eye tracking in detecting even 

subclinical oculomotor dysfunctions reliably in a wide range of neurological and psychiatric 

diseases and should be able to attribute them to a specific disease with certainty in order to 

outperform currently used techniques.  

Taken together, study three to five nicely show the various advantages but at the same time 

challenges of eye-movement studies in the real world and emphasize the importance of a 

correct interaction of all methodological variables like the used paradigm and the eye-

movement parameter under investigation. One the one hand, real life eye-movement 

studies are capable to reveal a deeper insight and provide a more complete understanding 

of the visual system (preserved tracking gain in schizophrenia patients and the elderly in 

study three and four). Finally, commonly known laboratory results sometimes basically 

resemble those measured in the real world (saccade dynamics during aging and in PSP 

patients in study four and five). Then again, the controlled conditions in laboratory tasks 

appear to be better suited to detect eye-movement impairments reliably (diagnostic 

capability of saccade parameters for PSP patients in study five). Unfortunately, there is not a 

single best method to investigate eye movements. It is inevitable to consider all techniques 
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used to examine eye movements and their capabilities to choose the right method in order 

to study a research question optimally. 

 

 

In conclusion, my thesis emphasizes the importance of a combination of psychophysical 

studies in the laboratory for the general examination of a well defined aspect of the eye-

movement system or perception and neurophysiological studies in the animal model to 

identify their underlying neuronal mechanisms. Furthermore, real-world studies on healthy 

humans are needed to transfer findings onto the human framework as well as 

neuropsychological studies to find clinical applications and eventually improve the diagnosis, 

treatment or outcome of brain diseases. Only this comprehensive combination allows us to 

obtain a more complete picture and understand perception within a broader perspective. 

This holistic approach became feasible in recent years by the constant progression of 

techniques (e.g. mobile eye-tracking, single cell recordings in the head-free monkey (e.g. 

Keith et al., 2009; Sajad et al., 2014) or the freely moving mouse (e.g. Lin et al., 2006; Kralj et 

al., 2012)) and inspires completely new interdisciplinary research allowing to better 

understand how the brain works. 
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