Publikationsserver der Universitätsbibliothek Marburg

Titel:An extracellular drug binding site of potassium channels THIK-1 and THIK-2
Autor:Zou, Xinle
Weitere Beteiligte: Daut, Jürgen (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0331
DOI: https://doi.org/10.17192/z2015.0331
URN: urn:nbn:de:hebis:04-z2015-03314
DDC: Medizin
Titel (trans.):Eine extrazelluläre Bindungsstelle am THIK-1 und THIK-2
Publikationsdatum:2015-07-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Kalium, Kalium, IBMX, Kanal, Kanal, IBMX, THIK, potassium, channel

Summary:
Background: THIK-1, THIK-2 and TREK-1 and all belong to family of two-pore-domain potassium channel (K2P channels). THIK-2 was until recently regarded as ‘silent’ potassium channels. 3-isobutyl-1-methylxanthine (IBMX) is normally used as inhibitor of phosphodiesterase, resulting in an increase of cAMP levels in the cytosol. Aims: Identification of an extracellular drug binding site on THIK-1 and THIK-2. Methods: Whole cell recording patch clamp measurements in mammalian cells was used to analyze K2P channels mentioned above. Chemicals such as IBMX, forskolin and cAMP were used intracellularly (via the pipette solution) and/or extracellularly (via the bath solution). To identify the binding site of IBMX on THIK-1 we mutated all amino acids of the helical cap one by one and screened for changes in IBMX sensitivity of the channels. To analyze the surface expression of the channel we used HA-tagged THIK-2 and thus quantified the copy number of the channels at the cell membrane using an antibody-based assay. Results: We found that IBMX can rapidly inhibit both the inward and outward currents carried by THIK-1 channels; the IC50 of this effect was about 120 μM. The application of H89 (PKA inhibitor) and forskolin (PKA activator) did not modify the effects of IBMX on the channel. Application of 100 μM intracellular cAMP almost completely inhibited TREK-1 current but not THIK-1 current, indicating that the effect of IBMX in THIK-1 is not mediated by cAMP. Finally, we found that IBMX blocks THIK-1 currents only if it is applied extracellularly. By mutating all of the helical cap amino acids, we found that the arginine to alanine mutant of THIK-1 (THIK-1R92A) had a lower sensitivity to IBMX. Mutation of the arginine at position 92 to glutamate or glutamine reduced the sensitivity to IBMX even further. R92 is localized to the linker region between cap helix 2 (C2) and the pore helix (P1). Part of the linker region is not visible in the crystal structures. R92 is at the end of the unstructured region.Compared to THIK-1, the 'silent' channel THIK-2 has an additional domain at its N-terminus (residues 6-24) which contains a putative retention signal (RRR). Removal of this additional domain (mutant THIK-2Δ6-24) or mutation of the RRR motif to AAA (THIK-2AAA mutant) gave rise to a measurable potassium current. Furthermore, the surface expression of the reporter protein CD74 containing the AAA mutated N-terminus of THIK-2 was more than threefold larger than the analogous reporter protein containing the wild type N-terminus of THIK-2 (RRR). These data indicate that the ER retention/retrieval signal RRR can prevent the THIK-2 export to the cell membrane, leading to the silence of the channel. In addition, we found that THIK-2 currents can also be blocked by application of IBMX from the extracellular side. Conclusions: IMBX can block TREK-1 channels though the PKA pathway, it also can bind to the extracellular side of THIK-1 or THIK-2, leading to a direct block of the channels. This describes a novel effect of IBXM on K2P channels. The IC50 of the direct effect of IBMX on THIK-1 channels was about 120 μM. Our results suggest that arginine 92 of THIK-1 and the C2-P1 linker region of K2P channels play an important role in the binding of IBMX, and perhaps other more potent drugs, to the channel.

Bibliographie / References

  1. Differentiation between human ClC-2 and CFTR Cl − channels with pharmacological agents. American Journal of Physiology-Cell Physiology 307, C479-C492.
  2. Xian Tao, L., D yachenko, V., Zuzarte, M., Putzke, C., Preisig-Muller, R., Isenberg, G., and Daut, J. (2006). The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovascular research 69, 86-97.
  3. Kew, J.N., and Davies, C.H. (2010). Ion channels: from structure to function. Oxford University Press.
  4. Terrenoire, C., Lauritzen, I., Lesage, F., Romey, G., and Lazdunski, M. (2001). A TREK-1-Like Potassium Channel in Atrial Cells Inhibited by -Adrenergic Stimulation and Activated by Volatile Anesthetics. Circulation Research 89, 336-342.
  5. Sanchez, D.Y., and Blatz, A.L. (1995). Block of neuronal chloride channels by tetraethylammonium ion derivatives. The Journal of general physiology 106, 1031- 1046.
  6. Kang, D., Hogan, J.O., and Kim, D. (2014). THIK -1 (K2P13.1) is a small-conductance background K(+) channel in rat trigeminal ganglion neurons. Pflugers Archiv : European journal of physiology 466, 1289-1300.
  7. Renigunta, V., Schlichthörl, G., and Daut, J. (2015). Much more than a leak: structure and function of K 2P -channels. Pflügers Archiv-European Journal of Physiology, 1 -28.
  8. Alternative translation initiation in rat brain yields K 2P 2.1 potassium channels permeable to sodium. Neuron 58, 859-870.
  9. Hübner, C.A., and Jentsch, T.J. (2002). Ion channel diseases. Human molecular genetics 11, 2435-2445.
  10. Patel, A.J., Honoré, E., Maingret, F., Lesage, F., Fink, M., Duprat, F., and Lazdunski, M. (1998). A mammalian two pore domain mechano‐gated S‐like K + channel. The EMBO journal 17, 4283-4290.
  11. Piechotta, P.L., Rapedius, M., Stansfeld, P.J., Bollepalli, M.K., Ehrlich, G., Andres- Enguix, I., Fritzenschaft, H., Decher, N., Sansom, M.S., Tucker, S.J., and Baukrowitz, T. (2011). The pore structure and gating mechanism of K 2P channels. The EMBO journal 30, 3607-3619.
  12. Michelsen, K., Yuan, H., and Schwappach, B. (2005). Hide and run. EMBO reports 6, 717-722.
  13. Karschin, C., Wischmeyer, E., Preisig-Müller, R., Rajan, S., Derst, C., Grzeschik, K.- H., Daut, J., and Karschin, A. (2001). Expression Pattern in Brain of TASK-1, TASK-3, and a Tandem Pore Domain K + Channel Subunit, TASK-5, Associated with the Central Auditory Nervous System. Molecular and Cellular Neuroscience 18, 632-648.
  14. Rinné, S., Renigunta, V., Schlichthörl, G., Zuzarte, M., Bittner, S., Meuth, S.G., Decher, N., Daut, J., and Preisig-Müller, R. (2013). A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. Pflügers Archiv-European Journal of Physiology, 1-12.
  15. Renigunta, V., Zou, X., Kling, S., Schlichthörl, G., and Daut, J. (2014). Breaking the silence: functional expression of the two -pore-domain potassium channel THIK -2.
  16. Kim, Y., Bang, H., Gnatenco, C., and Kim, D. (2001). Synergistic interaction and the role of C-terminus in the activation of TRAAK K + channels by pressure, free fatty acids and alkali. Pflügers Archiv 442, 64-72.
  17. Inhalational anesthetics activate two -pore-domain background K + channels. Nature neuroscience 2, 422-426.
  18. Jürgen Daut ohne sonstige Hilfe selbst durchgeführt und bei der Abfassung der
  19. Gonzalez, C., Baez-Nieto, D., Valencia, I., Oyarzun, I., Rojas, P., Naranjo, D., and Latorre, R. (2012). K(+) channels: function-structural overview. Comprehensive Physiology 2, 2087-2149.
  20. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacological reviews 57, 527-540.
  21. Kim, D., and Gnatenco, C. (2001). TASK-5, a new member of the tandem-pore K(+) channel family. Biochemical and biophysical research communications 284, 923-930.
  22. Bushell, T., Clarke, C., Mathie, A., and Robertson, B. (2002). Pharmacological characterization of a non‐inactivating outward current observed in mouse cerebellar Purkinje neurones. British journal of pharmacology 135, 705-712.
  23. Morales, S., Camello, P.J., Mawe, G.M., and Pozo, M.J. (2004). Cyclic AMP - mediated inhibition of gallbladder contractility: role of K + channel activation and Ca 2+ signaling. British journal of pharmacology 143, 994-1005.
  24. Campanucci, V.A., Fearon, I.M., and Nurse, C.A. (2003). A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K + conductance. The Journal of physiology 548, 731-743.
  25. Simkin, D., Cavanaugh, E.J., and Kim, D. (2008). Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiation. The Journal of physiology 586, 5651-5663.
  26. Zuzarte, M., Heusser, K., Renigunta, V., Schlichthorl, G., Rinne, S., Wischmeyer, E., Daut, J., Schwappach, B., and Preisig-Muller, R. (2009). Intracellular traffic of the K + channels TASK-1 and TASK-3: role of N-and C-terminal sorting signals and interaction with 14-3-3 proteins. The Journal of physiology 587, 929-952. Verzeichnis der akademischen Lehrer Meine akademischen Lehrer waren in Marburg: Daut und Renigunta. in Shanghai: Liao und Ge.
  27. Hille, B. (2001). Ion channels of excitable membranes. Sinauer Sunderland, MA.
  28. Zaydman, M.A., Silva, J.R., and Cui, J. (2012). Ion channel associated diseases: overview of molecular mechanisms. Chemical reviews 112, 6319-6333.
  29. Murray, A.J. (2008). Pharmacological PKA inhibition: all may not be what it seems. Science signaling 1, re4.
  30. Nichols, C., and Lopatin, A. (1997). Inward rectifier potassium channels. Annual Review of Physiology 59, 171-191.
  31. Millar, I.D., Bruce, J., and Brown, P.D. (2007). Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4.
  32. Salinas, M., Reyes, R., Lesage, F., Fosset, M., Heurteaux, C., Romey, G., and Lazdunski, M. (1999). Cloning of a New Mouse Two-P Domain Channel Subunit and a Human Homologue with a Unique Pore Structure. Journal of Biological Chemistry 274, 11751-11760.
  33. Kim, Y., Bang, H., and Kim, D. (2000). TASK-3, a new member of the tandem pore K+ channel family. Journal of Biological Chemistry 275, 9340-9347.
  34. Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Muller, R., Daut, J., Karschin, A., and Derst, C. (2000). TASK-3, a novel tandem pore domain acid-sensitive K + channel. An extracellular histiding as pH sensor. The Journal of biological chemistry 275, 16650- 16657.
  35. Lesage, F., Terrenoire, C., Romey, G., and Lazdunski, M. (2000). Human TREK2, a 2P domain mechano-sensitive K + channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. The Journal of biological chemistry 275, 28398-28405.
  36. Rajan, S., Wischmeyer, E., Karschin, C., Preisig-Muller, R., Grzeschik, K.H., Daut, J., Karschin, A., and Derst, C. (2001). THIK-1 and THIK-2, a novel subfamily of tandem pore domain K + channels. The Journal of biological chemistry 276, 7302-7311.
  37. Chatelain, F.C., Bichet, D., Feliciangeli, S., Larroque, M.-M., Braud, V.M., Douguet, D., and Lesage, F. (2013). Silencing of the Tandem Pore Domain Halothane-inhibited K + Channel 2 (THIK2) Relies on Combined Intracellular Retention and Low Intrinsic Activity at the Plasma Membrane. Journal of Biological Chemistry 288, 35081-35092.
  38. Lazarenko, R.M., Fortuna, M.G., Shi, Y., Mulkey, D.K., Takakura, A.C., Moreira, T.S., Guyenet, P.G., and Bayliss, D.A. (2010). Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current.
  39. Kang, D., Han, J., Talley, E.M., Bayliss, D.A., and Kim, D. (2004). Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. The Journal of physiology 554, 64-77.
  40. Kang, D., C hoe, C., Cavanaugh, E., and Kim, D. (2007). Properties of single two-pore domain TREK-2 channels expressed in mammalian cells. The Journal of physiology 583, 57-69.
  41. Brohawn, S.G., del Marmol, J., and MacKinnon, R. (2012). Crystal structure of the human K2P TRAAK, a lipid-and mechano-sensitive K + ion channel. Science 335, 436-441.
  42. Schutze, M.-P., Peterson, P.A., and Jackson, M.R. (1994). An N-terminal double- arginine motif maintains type II membrane proteins in the endoplasmic reticulum. The EMBO journal 13, 1696.
  43. Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G., and Barhanin, J. (1996). TWIK-1, a ubiquitous human weakly inward rectifying K + channel with a novel structure. The EMBO journal 15, 1004.
  44. Chatelain, F.C., Bichet, D., Douguet, D., Feliciangeli, S., Bendahhou, S., Reichold, M., Warth, R., Barhanin, J., and Lesage, F. (2012). TWIK1, a unique background channel with variable ion selectivity. Proceedings of the National Academy of Sciences of the United States of America 109, 5499-5504.
  45. Girard, C., Duprat, F., Terrenoire, C., Tinel, N., Fosset, M., Romey, G., Lazdunski, M., and Lesage, F. (2001). Genomic and functional characteristics of novel human pancreatic 2P domain K(+) channels. Biochemical and biophysical research communications 282, 249-256.
  46. Maingret, F., Honore, E., Lazdunski, M., and Patel, A.J. (2002). Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel. Biochemical and biophysical research communications 292, 339-346.
  47. Oliver, D., Hahn, H., Antz, C., Ruppersberg, J., and Fakler, B. (1998). Interaction of Permeant and Blocking Ions in Cloned Inward-Rectifier K + Channels. Biophysical journal 74, 2318-2326.
  48. Ozaita, A., and Vega-Saenz de Miera, E. (2002). Cloning of two transcripts, HKT4. 1a and HKT4. 1b, from the human two-pore K + channel gene KCNK4: Chromosomal localization, tissue distribution and functional e xpression. Molecular brain research 102, 18-27.
  49. Cui, Y., Holt, A.G., Lomax, C.A., and Altschuler, R.A. (2007). Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus.
  50. Holt, A.G., Asako, M., Duncan, R.K., Lomax, C.A., Juiz, J.M., and Altschuler, R.A. (2006). Deafness associated changes in expression of two -pore domain potassium channels in the rat cochlear nucleus. Hearing research 216-217, 146-153.
  51. Herbst, K.J., Coltharp, C., Amzel, L.M., and Zhang, J. (2011). Direct activation of Epac by sulfonylurea is isoform selective. Chemistry & biology 18, 243-251.
  52. Miller, A.N., and Long, S.B. (2012). Crystal Structure of the Human Two–Pore Domain Potassium Channel K 2P 1. Science 335, 432-436.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten