Publikationsserver der Universitätsbibliothek Marburg

Titel:Polymerase mutations promoting adaptation of avian influenza virus of subtype H9N2 to mammals
Autor:Sediri, Hanna
Weitere Beteiligte: Klenk, Hans-Dieter (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0267
URN: urn:nbn:de:hebis:04-z2015-02678
DOI: https://doi.org/10.17192/z2015.0267
DDC:610 Medizin
Titel (trans.):Mutationen im Polymerasekomplex aviärer Influenzaviren des Subtyps H9N2 fördern die Adaption an Säuger
Publikationsdatum:2015-12-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Influenza-A-Viren, Influenza-A-Virus, polymerase complex, Grippe, Anpassung, Viren, Adaptation, Säugetiere, mutations, Mutationen, adaptation, Polymerasekomplex, Mutation

Summary:
Transmission of influenza viruses from aquatic birds to mammals is promoted by the adaptation of the viral proteins to the new host. This includes the PB2 subunit of the viral polymerase complex. This protein has been described as an important host range factor, able to modulate the virulence of influenza viruses. Several adaptive mutations in the PB2 subunit of various influenza-A subtypes have been described, such as D253N, Q591K, E627K, D701N, S714I and S714R. H9N2 influenza viruses are endemic in poultry in Asia and other parts of the world. Moreover these viruses have been occasionally transmitted to humans and are often involved in the generation of viruses causing zoonotic infections in humans by providing internal genes. H9N2 viruses have therefore the potential to cause a pandemic. This study was undertaken to analyse the role of the PB2 subunit in the adaptation of avian influenza virus of subtype H9N2 to mammals. In the first part of the thesis, the results demonstrated that PB2 mutations D253N, E627K, D701N, S714I and S714R increase the H9N2 polymerase activity in mammalian cells. Furthermore, mutations E627K, D701N and S714I/R also enhance viral growth in mammalian cells. Pathogenicity studies indicated that combination of mutations E627K-D701N-S714R increase the lethality of H9N2 virus in mice. The effects of the adaptive mutations have then been compared in H9N2, H1N1pdm09 and H7N7 viruses. The results have shown that the enhancement of the polymerase activity by the adaptive mutations is higher in the phylogenetically related H9N2 and H7N9 than in the non-related H7N7 and H1N1pdm09 viruses. In addition, analysis of heterologous polymerase complexes composed of H9N2, H1N1pdm09, H7N7, and H7N9 subunits provides further evidence for the concept that this enhancing effect is a specific trait of H9N2-PB2 without significant contribution of PA and PB1. From these observations, it can be concluded that the PB2 subunit of the H9N2 viruses is characterised by a particularly high adaptability to mammalian cells. In the second part of the thesis, the mechanisms by which E627K and D701N promote adaptation to a mammalian host were analysed. The results demonstrated that viruses bearing the avian signature 627E in PB2 are sensitive to RIG-I activation. This sensitivity is mediated by the destabilisation of the nucleocapsid by RIG-I, exposing thereby the double-stranded RNA required for RIG-I activation. In contrast viruses containing mutation E627K interfere with RIG-I activation, by stabilizing the association of the polymerase complex to the nucleocapsid. These observations indicate that PB2 mutation E627K modulates the inhibition of virus replication mediated by RIG-I. Furthermore, the data showed that mutation D701N promotes not only the nuclear import of newly synthesized PB2 protein, but also the nuclear import of PB2 bound to the incoming vRNPs.

Bibliographie / References

  1. Wunderlich K, Juozapaitis M, Ranadheera C, Kessler U, Martin A, Eisel J, Beutling U, Frank R, Schwemmle M (2011) Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase. Antimicrob Agents Chemother 55:696-702 References 106
  2. Rott R (1985) [Influenza virus infections in man and animal]. Berl Munch Tierarztl Wochenschr 98:340-344
  3. Sharma K, Tripathi S, Ranjan P, Kumar P, Garten R, Deyde V, Katz JM, Cox NJ, Lal RB, Sambhara S, Lal SK (2011) Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS One 6:e20215 151.
  4. Wang J, Sun Y, Xu Q, Tan Y, Pu J, Yang H, Brown EG, Liu J (2012) Mouse-adapted H9N2 influenza A virus PB2 protein M147L and E627K mutations are critical for high virulence. PLoS One 7:e40752 175.
  5. Reis AL, McCauley JW (2013) The influenza virus protein PB1-F2 interacts with IKKbeta and modulates NF-kappaB signalling. PLoS One 8:e63852 139.
  6. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5:e1000252 158.
  7. Yamada S, Hatta M, Staker BL, Watanabe S, Imai M, Shinya K, Sakai-Tagawa Y, Ito M, Ozawa M, Watanabe T, Sakabe S, Li C, Kim JH, Myler PJ, Phan I, Raymond A, Smith E, Stacy R, Nidom CA, Lank SM, Wiseman RW, Bimber BN, O'Connor DH, Neumann G, Stewart LJ, Kawaoka Y (2010) Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog 6:e1001034 193.
  8. Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P (2012) Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 8:e1002998 185.
  9. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657 167.
  10. Salomon R, Franks J, Govorkova EA, Ilyushina NA, Yen HL, Hulse-Post DJ, Humberd J, Trichet M, Rehg JE, Webby RJ, Webster RG, Hoffmann E (2006) The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med 203:689-697
  11. Robertson JS, Schubert M, Lazzarini RA (1981) Polyadenylation sites for influenza virus mRNA. J Virol 38:157-163
  12. Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761-1764
  13. Poon LL, Pritlove DC, Fodor E, Brownlee GG (1999) Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 73:3473-3476
  14. Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75:9679-9686
  15. Vreede FT, Jung TE, Brownlee GG (2004) Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78:9568-9572
  16. Xu KM, Li KS, Smith GJ, Li JW, Tai H, Zhang JX, Webster RG, Peiris JS, Chen H, Guan Y (2007) Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. J Virol 81:2635-2645
  17. Rameix-Welti MA, Tomoiu A, Dos Santos Afonso E, van der Werf S, Naffakh N (2009) Avian Influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J Virol 83:1320-1331
  18. Wisskirchen C, Ludersdorfer TH, Muller DA, Moritz E, Pavlovic J (2011) The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J Virol 85:8646-8655
  19. Paterson D, te Velthuis AJ, Vreede FT, Fodor E (2014) Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein- independent manner. J Virol 88:339-344
  20. Ward AC, Castelli LA, Lucantoni AC, White JF, Azad AA, Macreadie IG (1995) Expression and analysis of the NS2 protein of influenza A virus. Arch Virol 140:2067-2073
  21. Weber F, Haller O, Kochs G (1997) Conserved vRNA end sequences of Thogoto- orthomyxovirus suggest a new panhandle structure. Arch Virol 142:1029-1033
  22. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152-179
  23. Resa-Infante P, Gabriel G (2013) The nuclear import machinery is a determinant of influenza virus host adaptation. Bioessays 35:23-27
  24. Wong KK, Bull RA, Rockman S, Scott G, Stelzer-Braid S, Rawlinson W (2011) Correlation of polymerase replication fidelity with genetic evolution of influenza A/Fujian/411/02(H3N2) viruses. J Med Virol 83:510-516
  25. Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227:75-86
  26. Stasakova J, Ferko B, Kittel C, Sereinig S, Romanova J, Katinger H, Egorov A (2005) Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages, resulting in fast apoptosis and release of high levels of interleukins 1beta and 18. J Gen Virol 86:185-195
  27. Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z, Li TX, Liu JH, Buchy P, Sun B (2012) Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J Gen Virol 93:531-540
  28. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531-569
  29. Sanchez A, Guerrero-Juarez CF, Ramirez J, Newcomb LL (2014) Nuclear localized Influenza nucleoprotein N-terminal deletion mutant is deficient in functional vRNP formation. Virol J 11:155
  30. Wu WW, Sun YH, Pante N (2007) Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virol J 4:49
  31. Qi W, Zhou X, Shi W, Huang L, Xia W, Liu D, Li H, Chen S, Lei F, Cao L, Wu J, He F, Song W, Li Q, Liao M, Liu M (2014) Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China. Euro Surveill 19 135.
  32. Weber M, Weber F (2014) Monitoring activation of the antiviral pattern recognition receptors RIG-I and PKR by limited protease digestion and native PAGE. J Vis Exp:e51415 181.
  33. Selman M, Dankar SK, Forbes NE, Jia J-J, Brown EG (2012) Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect 1:e42 150.
  34. Schrauwen EJA, Fouchier RAM (2014) Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect 3:e9 149.
  35. Tashiro M, Ciborowski P, Klenk HD, Pulverer G, Rott R (1987) Role of Staphylococcus protease in the development of influenza pneumonia. Nature 325:536-537
  36. von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW, et al. (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418-423
  37. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122-1125
  38. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza A polymerase bound to the viral RNA promoter. Nature 132.
  39. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 137.
  40. Song W, Wang P, Mok BW, Lau SY, Huang X, Wu WL, Zheng M, Wen X, Yang S, Chen Y, Li L, Yuen KY, Chen H (2014) The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun 5:5509
  41. Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559-568
  42. Tarendeau F, Boudet J, Guilligay D, Mas PJ, Bougault CM, Boulo S, Baudin F, Ruigrok RW, Daigle N, Ellenberg J, Cusack S, Simorre JP, Hart DJ (2007) Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14:229-233
  43. Wan H, Perez DR (2007) Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81:5181-5191
  44. Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499-522
  45. Wahlgren J (2011) Influenza A viruses: an ecology review. Infect Ecol Epidemiol 1
  46. Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. Embo j 11:2407-2414
  47. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M, Jr. (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104:582-587
  48. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A 79:968-972
  49. Reid AH, Fanning TG, Hultin JV, Taubenberger JK (1999) Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A 96:1651-1656
  50. Wharton SA, Belshe RB, Skehel JJ, Hay AJ (1994) Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol 75 ( Pt 4):945-948
  51. Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517-528
  52. Wan H, Perez DR (2006) Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346:278-286
  53. Yasuda J, Nakada S, Kato A, Toyoda T, Ishihama A (1993) Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196:249-255
  54. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet, England, pp 916-917
  55. Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98:174-185
  56. Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI (2014) Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 185:53-63
  57. Weber F, Haller O (2007) Viral suppression of the interferon system. Biochimie 89:836-842
  58. Wu R, Zhang H, Yang K, Liang W, Xiong Z, Liu Z, Yang X, Shao H, Zheng X, Chen M, Xu D (2009) Multiple amino acid substitutions are involved in the adaptation of H9N2 avian influenza virus to mice. Vet Microbiol 138:85-91
  59. Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G (2009) Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity 31:25-34 References 104
  60. Siren J, Imaizumi T, Sarkar D, Pietila T, Noah DL, Lin R, Hiscott J, Krug RM, Fisher PB, Julkunen I, Matikainen S (2006) Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect 8:2013-2020
  61. Weber M, Weber F (2014) RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev 180.
  62. Weber M, Weber F (2014) Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule. Curr Opin Microbiol 20:96-102
  63. Weber M, Sediri H, Felgenhauer U, Binzen I, Bänfer S, Jacob R, Brunotte L, Garcia-Sastre A, Schmid-Burgk J, Schmidt T, Hornung V, Kochs G, Schwemmle M, Klenk H-D, Weber F (in press) Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 182.
  64. Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG (1997) Initial genetic characterization of the 1918 "Spanish" influenza virus. Science 275:1793-1796
  65. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279:393-396


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten