Publikationsserver der Universitätsbibliothek Marburg

Titel:Regulatory mechanisms of the Sin Quorum Sensing System and its impact on survival of the soil-dwelling bacterium Sinorhizobium meliloti
Autor:Charoenpanich, Pornsri
Weitere Beteiligte: Becker, Anke (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0238
URN: urn:nbn:de:hebis:04-z2015-02389
DOI: https://doi.org/10.17192/z2015.0238
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Regulationsmechanismen des Sin Quorum Sensing System und sein Einfluss auf das Überleben des Bodenbakteriums Sinorhizibium meliloti
Publikationsdatum:2015-06-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Quorum Sensing, Transcription Regulation, Transkriptionelle Regulation, Quorum Sensing

Summary:
The Sin Quorum Sensing (QS) system of the soil bacterium Sinorhizobium meliloti controls genes involved in a variety of cellular processes such as exopolysaccharide (EPS) production, motility, nitrogen fixation, and transport of metals and small molecules. The system consists of SinI, an N-acylhomoserine lactone (AHL) synthase, SinR, the LuxR-type transcriptional regulator of sinI, and ExpR, the LuxR-type master transcriptional regulator. The aims of this study are to understand the mechanisms and functions of the Sin QS, as well as its importance to survival of S. meliloti. Some of the regulatory target genes of the Sin QS have been previously shown to contain a promoter sequence that binds specifically to AHL-activated ExpR. In the first part of this study, the mechanisms of the ExpR transcriptional regulatory network were explored. The results confirmed 7 previously detected ExpR-DNA binding sites and added 26 novel sites, some of which regulate genes previously unknown to be members of the ExpR regulon. ExpR regulates the expression of the target genes in an AHL dependent manner. The data indicate that the location of the ExpR-binding site with respect to the relevant transcription start determines whether ExpR/AHL activates or represses promoter activity. Furthermore, the strength of the response is dependent upon the concentration of AHLs. This suggests a type of temporal gene expression program whereby the activity of each promoter is subjected to a specific range of AHL concentration since AHL accumulation and concentration varies with the age of the culture. In the second part of this study, the regulation of the Sin QS itself was further investigated. Until recently, all LuxR-type proteins were thought to bind to AHLs as the inducer. Unexpectedly, the results confirm that, in contrast to ExpR, the activity of SinR on sinI expression is independent of AHLs. The results also indicate that RNase E, an endoribonuclease that is essential for cell viability, regulates sinI expression by specifically targeting the 5’-UTR of sinI mRNA. Overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. The results suggest that RNase E-dependent degradation of sinI mRNA from the 5’ end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin QS system to respond rapidly to changes in transcriptional control of AHL production. This is the first report of a specific regulatory interaction between QS and an essential component of cell viability in S. meliloti. The last part of this study involves the impact of the Sin QS on fitness of S. meliloti. Cultivation under standard laboratory conditions demonstrated aggressive invasions of QS-deficient expR mutants in the QS-efficient wild type population. Various mutants were tested in a series of competition assays. The results suggest that ExpR has a negative effect on bacterial fitness under standard laboratory conditions and that this effect is dependent upon EPS and flagellum production. However, when bacteria were exposed to severe stress, i.e. desiccation, survival was mostly dependent upon ExpR. In contrast, symbiotic potential was not enhanced by ExpR. Altogether, the results reveal that QS can have either positive or negative impact on fitness, depending on the context. It is, on one hand, a beneficial trait that helps bacteria to survive from severe stress but, on the other hand, tends to be eliminated under low stress and nutrient rich conditions.

Bibliographie / References

  1. Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A. 2006. Construction of a large signature- tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl. Environ. Microbiol. 72:4329 – 4337. http: //dx.doi.org/10.1128/AEM.03072-05.
  2. Sorroche, F.G., Spesia, M.B., Zorreguieta, A., and Giordano, W. (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78: 4092–4101.
  3. Bahlawane, C., McIntosh, M., Krol, E., and Becker, A. (2008) Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21: 1498–1509.
  4. Moris, M., Braeken, K., Schoeters, E., Verreth, C., Beullens, S., Vanderleyden, J., and Michiels, J. (2005) Effective sym- biosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 187: 5460–5469.
  5. He, X., Chang, W., Pierce, D.L., Seib, L.O., Wagner, J., and Fuqua, C. (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185: 809–822.
  6. Vriezen, J.A., de Bruijn, F.J., and Nüsslein, K. (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol 73: 3451–3459.
  7. Becker, A., Rüberg, S., Baumgarth, B., Bertram-Drogatz, P.A., Quester, I., and Pühler, A. (2002) Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J Mol Microbiol Biotechnol 4: 187– 190.
  8. Glenn, S.A., Gurich, N., Feeney, M.A., and González, J.E. (2007) The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.
  9. Tamura M, Moore CJ, Cohen SN. 2013. Nutrient dependence of RNase E essentiality in Escherichia coli. J. Bacteriol. 195:1133–1141. http://dx.doi .org/10.1128/JB.01558-12.
  10. Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A. 1998. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc. Natl. Acad. Sci. U. S. A. 95:11637–11642. http://dx.doi.org /10.1073/pnas.95.20.11637.
  11. Charoenpanich P, Meyer S, Becker A, McIntosh M. 2013. Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J. Bacteriol. 195:3224 –3236. http://dx.doi.org/10 .1128/JB.00234-13.
  12. Keen NT, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad- host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197. http://dx.doi.org/10.1016/0378-1119(88)90117-5.
  13. Voss B, Hölscher M, Baumgarth B, Kalbfleisch A, Kaya C, Hess WR, Becker A, Evguenieva-Hackenberg E. 2009. Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochem. Biophys. Res. Commun. 390: 331–336. http://dx.doi.org/10.1016/j.bbrc.2009.09.125.
  14. Evguenieva-Hackenberg E, Klug G. 2009. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli. Prog. Mol. Biol. Transl. Sci. 85:275–317. http://dx.doi.org/10.1016/S0079-6603(08) 00807-6.
  15. Carpousis AJ, Luisi BF, McDowall KJ. 2009. Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog. Mol. Biol. Transl. Sci. 85:91–135. http://dx.doi.org/10.1016/S0079-6603(08)00803-9.
  16. Mackie GA. 2013. RNase E: at the interface of bacterial RNA processing and decay. Nat. Rev. Microbiol. 11:45–57. http://dx.doi.org/10.1038 /nrmicro2930.
  17. Shahbabian K, Jamalli A, Zig L, Putzer H. 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J. 28:3523–3533. http://dx.doi.org/10.1038/emboj.2009.283.
  18. Lee K, Cohen SN. 2003. A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Mol. Microbiol. 48:349 –360. http://dx.doi.org/10.1046/j.1365 -2958.2003.03435.x.
  19. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. http://dx.doi.org/10.1093 /nar/29.9.e45.
  20. Zhang Y, Hong G. 2009. Post-transcriptional regulation of NifA expres- sion by Hfq and RNase E complex in Rhizobium leguminosarum bv. viciae.
  21. Jäger S, Fuhrmann Heck O, Hebermehl C, Schiltz M, Rauhut E, Klug R, G. 2001. An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res. 29:4581– 4588. http://dx.doi.org/10.1093/nar/29.22.4581.
  22. Hardwick SW, Chan VS, Broadhurst RW, Luisi BF. 2011. An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res. 39: 1449 –1459. http://dx.doi.org/10.1093/nar/gkq928.
  23. Gao M, Barnett MJ, Long SR, Teplitski M. 2010. Role of the Sinorhizo- bium meliloti global regulator Hfq in gene regulation and symbiosis. Mol. Plant Microbe Interact. 23:355–365. http://dx.doi.org/10.1094/MPMI-23 -4-0355.
  24. Dilanji, G.E., Teplitski, M., and Hagen, S.J. (2014) Entropy- driven motility of Sinorhizobium meliloti on a semi-solid surface. Proc Biol Sci 281: 20132575.
  25. Beringer JE. 1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84:188 –198. http://dx.doi.org/10.1099/00221287-84-1-188.
  26. Glaeser J, Klug G. 2005. Photo-oxidative stress in Rhodobacter spha- eroides: protective role of carotenoids and expression of selected genes. Microbiology 151:1927–1938. http://dx.doi.org/10.1099/mic.0.27789-0.
  27. Khemici V, Poljak L, Luisi BF, Carpousis AJ. 2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70:799 – 813. http://dx.doi.org/10.1111/j.1365-2958.2008.06454.x.
  28. You, Z., Fukushima, J., Tanaka, K., Kawamoto, S., and Okuda, K. (1998) Induction of entry into the stationary growth phase in Pseudomonas aeruginosa by N- acylhomoserine lactone. FEMS Microbiol Lett 164: 99–106.
  29. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy- Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmeseter J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668 – 672. http://dx.doi.org/10.1126/science.1060966.
  30. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Chris- tensen BB, Molin S, Givskov M. 2001. gfp-based N-acyl homoserine- lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67:575–585. http://dx.doi.org/10.1128/AEM.67.2 .575-585.2001.
  31. Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD. 2005. sinI-and expR-dependent quorum sensing in Sinorhi- zobium meliloti. J. Bacteriol. 187:7931–7944. http://dx.doi.org/10.1128/JB .187.23.7931-7944.2005.
  32. Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC. 2002. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol. 184:5067–5076. http://dx.doi.org/10.1128/JB.184.18.5067-5076.2002.
  33. Nogales J, Domínguez-Ferreras A, Amaya-Gómez CV, van Dillewijn P, Cuéllar V, Sanjuán J, Olivares J, Soto MJ. 2010. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics 11:157. http://dx.doi.org/10.1186/1471-2164-11-157.
  34. Evguenieva-Hackenberg E, Roppelt V, Lassek C, Klug G. 2011. Subcellular localization of RNA degrading proteins and protein complexes in pro- karyotes. RNA Biol. 8:49 –54. http://dx.doi.org/10.4161/rna.8.1.14066.
  35. Gao, M., Coggin, A., Yagnik, K., and Teplitski, M. (2012) Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS ONE 7: e42611. García-Rodríguez, F.M., and Toro, N. (2000) Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. Mol Plant Microbe Interact 13: 583–591.
  36. Rinaudi, L.V., and Giordano, W. (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304: 1–11.
  37. Erickson, D.L., Lines, J.L., Pesci, E.C., Venturi, V., and Storey, D.G. (2004) Pseudomonas aeruginosa relA con- tributes to virulence in Drosophila melanogaster. Infect Immun 72: 5638–5645.
  38. Goldblum K, Apririon D. 1981. Inactivation of the ribonucleic acid- processing enzyme ribonuclease E blocks cell division. J. Bacteriol. 146: 128 –132.
  39. RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J. Bacteriol. 178:3917–3925.
  40. Pellock, B.J., Teplitski, M., Boinay, R.P., Bauer, W.D., and Walker, G.C. (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184: 5067–5076.
  41. Marketon, M.M., Gronquist, M.R., Eberhard, A., and González, J.E. (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184: 5686– 5695.
  42. Hoang, H.H., Becker, A., and González, J.E. (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186: 5460–5472.
  43. Duan, K., and Surette, M.G. (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum- sensing systems. J Bacteriol 189: 4827–4836.
  44. Hoang, H.H., Gurich, N., and González, J.E. (2008) Regula- tion of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190: 861–871.
  45. Rinaudi, L.V., and González, J.E. (2009) The low-molecular- weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol 191: 7216–7224.
  46. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a labora- tory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  47. Teplitski, M., Eberhard, A., Gronquist, M.R., Gao, M., Robinson, J.B., and Bauer, W.D. (2003) Chemical identifi- cation of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 180: 494–497.
  48. Simon R, Priefer U, Pühler A. 1982. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram- negative bacteria. Biotechnology 1:784 –791.
  49. Carius, L., Carius, A.B., McIntosh, M., and Grammel, H. (2013) Quorum sensing influences growth and photosyn- thetic membrane production in high-cell-density cultiva- tions of Rhodospirillum rubrum. BMC Microbiol 13: 189. Charoenpanich, P., Meyer, S., Becker, A., and McIntosh, M. (2013) Temporal expression program of quorum sensing- based transcription regulation in Sinorhizobium meliloti.
  50. Beringer, J.E. (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188–198.
  51. Pérez, J., Jiménez-Zurdo, J.I., Martínez-Abarca, F., Millán, V., Shimkets, L.J., and Muñoz-Dorado, J. (2014) Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation. Environ Microbiol 16: 2341–2350.
  52. Buendia, A.M., Enenkel, B., Köplin, R., Niehaus, K., Arnold, W., and Pühler, A. (1991) The Rhizobium meliloti exoZl exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. Mol Microbiol 5: 1519–1530.
  53. McIntosh M, Meyer S, Becker A. 2009. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol. Microbiol. 74:1238 –1256. http: //dx.doi.org/10.1111/j.1365-2958.2009.06930.x.
  54. Schuster, M., Sexton, D.J., Diggle, S.P., and Greenberg, E.P. (2013) Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67: 43–63.
  55. Waters, C.M., and Bassler, B.L. (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319–346.
  56. Schuster, M., and Greenberg, E.P. (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8: 287.
  57. Foster, K.R., Shaulsky, G., Strassmann, J.E., Queller, D.C., and Thompson, C.R. (2004) Pleiotropy as a mechanism to stabilize cooperation. Nature 431: 693–696.
  58. Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik- Habrink M, Hammer E, Völker U, Stülke J. 2009. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol. Cell. Proteomics 8:1350 –1360. http: //dx.doi.org/10.1074/mcp.M800546-MCP200.
  59. Barrick, J.E., and Lenski, R.E. (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14: 827– 839.
  60. Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., and Walker, G.C. (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5: 619–633.
  61. Masterson RV, Prakash RK, Atherly AG. 1985. Conservation of symbi- otic nitrogen fixation gene sequences in Rhizobium japonicum and Brady- rhizobium japonicum. J. Bacteriol. 163:21–26.
  62. Gurich, N., and González, J.E. (2009) Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis. J Bacteriol 191: 4372–4382.
  63. Olivares, J., Casadesús, J., and Bedmar, E.J. (1980) Method for testing degree of infectivity of Rhizobium meliloti strains. Appl Environ Microbiol 39: 967–970.
  64. Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J. 2011. RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equiv- alent of RNase E from Escherichia coli. J. Bacteriol. 193:5431–5441. http: //dx.doi.org/10.1128/JB.05500-11.
  65. Nogales, J., Bernabéu-Roda, L., Cuéllar, V., and Soto, M.J. (2012) ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol 194: 2027– 2035.
  66. Goo, E., Majerczyk, C.D., An, J.H., Chandler, J.R., Seo, Y.S., Ham, H., et al. (2012) Bacterial quorum sensing, cooperativity, and anticipation of stationary-phase stress. Proc Natl Acad Sci USA 109: 19775–19780.
  67. Dandekar, A.A., Chugani, S., and Greenberg, E.P. (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338: 264–266.
  68. Ng, W.L., and Bassler, B.L. (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43: 197–222.
  69. van Delden, C., Comte, R., and Bally, A.M. (2001) Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J Bacteriol 183: 5376–5384.
  70. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Jr, Rinehart KL, Farrand SK. 1997. Detecting and characterizing N-acyl-homoserine lactone signal References An, J.H., Goo, E., Kim, H., Seo, Y.S., and Hwang, I. (2014) Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc Natl Acad Sci USA 111: 14912–14917.
  71. Reuber, T.L., and Walker, G.C. (1993) Biosynthesis of succinoglycan, a symbiotically important exopoly- saccharide of Rhizobium meliloti. Cell 74: 269–280.
  72. Parsek, M.R., and Greenberg, E.P. (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27–33.
  73. Janczarek, M. (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12: 7898–7933.
  74. Schafhauser, J., Lepine, F., McKay, G., Ahlgren, H.G., Khakimova, M., and Nguyen, D. (2014) The stringent response modulates 4-hydroxy-2-alkylquinoline bio- synthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J Bacteriol 196: 1641–1650.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten