Publikationsserver der Universitätsbibliothek Marburg

Titel:Molecular Control of Extracellular DNA Release and Degradation in Shewanella oneidensis MR-1 Biofilms: The Role of Phages and Nucleases
Autor:Binnenkade, Lucas
Weitere Beteiligte: Thormann, Kai (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0232
URN: urn:nbn:de:hebis:04-z2015-02327
DOI: https://doi.org/10.17192/z2015.0232
DDC:000 Allgemeines, Wissenschaft
Titel (trans.):Molekulare Kontrolle der Freisetzung und des Abbaus von extrazellulärer DNA in Shewanella oneidensis MR-1 Biofilmen: Die Rolle von Phagen und Nukleasen
Publikationsdatum:2015-12-16
Lizenz:https://creativecommons.org/licenses/by-sa/4.0

Dokument

Schlagwörter:
Phage, Biofilm, extrazelluläre DNA, Nuklaese, extracellular DNA, biofilm, nuclease, Biofilm, phage

Summary:
Bakterien bilden unter natürlichen Bedingungen häufig oberflächen-assoziierte multizelluläre Gemeinschaften, welche allgemein als Biofilme bezeichnet werden. Die Bildung von Biofilmen ist ein komplexer und präzise regulierter Prozess, der es Bakterien ermöglicht, beinahe jede Art von Oberfläche zu besiedeln und dadurch physikalischen Stressfaktoren, Nährstoffmangel und Antibiotika standzuhalten. Des Weiteren kann oberflächenassoziiertes Wachstum die Virulenz von pathogenen Bakterien erhöhen und Umweltkeimen die Erschließung von Oberflächen als Nährstoff- und Energiequelle ermöglichen. Aus diesem Grund hat sich gezeigt, dass bakterielle Biofilmbildung von großer medizinischer, ökologischer und ökonomischer Relevanz ist. Ein wichtiger Bestandteil von Biofilmen ist die extrazelluläre polymere Matrix welche sich typischerweise aus Exopolysacchariden, Proteinen und extrazellulärer DNA (eDNA) zusammensetzt. Die Bedeutung der eDNA für Biofilme war lange unklar, jedoch konnte durch eine Reihe von Studien gezeigt werden, dass eDNA für die meisten Bakterienspezies, darunter Shewanella oneidensis MR-1, von essentieller Bedeutung für die strukturelle Entwicklung der Biofilme ist. Vielfach unbekannt sind jedoch Mechanismen, welche die Freisetzung von eDNA regulieren bzw. ausführen und solche, die an der Modulation und am Abbau (z.B. zur endogen induzierten Auflösung von Biofilmen oder zur Erschließung von eDNA als Nährstoffquelle) beteiligt sind. In der vorliegenden Arbeit wurde diese Mechanismen molekularbiologisch, mikroskopisch und biochemisch untersucht.

Bibliographie / References

  1. Kirkpatrick CL, Viollier PH. 2010. Cell dispersal in biofilms: an extracellular DNA masks nature's strongest glue. Mol Microbiol 77:801-804.
  2. Cornelis P, Wei Q, Andrews SC, Vinckx T. 2011. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 3:540-549.
  3. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66-74.
  4. Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M. 2010. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. PLoS One 5:e15678.
  5. Stopar D, Cerne A, Zigman M, Poljsak-Prijatelj M, Turk V. 2004. Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. Microbial Ecol 47:1-8.
  6. von Heijne G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487-494.
  7. Bertani G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293-300.
  8. Svenningsen SL, Costantino N, Court DL, Adhya S. 2005. On the role of Cro in lambda prophage induction. Proc Natl Acad Sci U S A 102:4465-4469.
  9. Zweig MA, Schork S, Koerdt A, Siewering K, Sternberg C, Thormann K, Albers SV, Molin S, van der Does C. 2013. Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ Microbiol:DOI: 10.1111/1462-2920.12291.
  10. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968-3973.
  11. Liang Y, Gao H, Guo X, Chen J, Qiu G, He Z, Zhou J, Liu X. 2012. Transcriptome analysis of pellicle formation of Shewanella oneidensis. Arch Microbiol 194:473-482.
  12. Xu S, Liu H, Fan Y, Schaller R, Jiao J, Chaplen F. 2012. Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93:871-880.
  13. Halhoul N, Colvin JR. 1975. The ultrastructure of bacterial plaque attached to the gingiva of man. Arch Oral Biol 20:115- 118.
  14. Kahn M, Concino M, Gromkova R, Goodgal S. 1979. DNA binding activity of vesicles produced by competence deficient mutants of Haemophilus. Biochem Biophys Res Commun 87:764-772.
  15. Yuan J, Chen Y, Zhou G, Chen H, Gao H. 2013. Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta 1830:5248-5257.
  16. Okumura K, Kawsar HI, Shimizu T, Ohta T, Hayashi H, Shimizu T. 2005. Identification and characterization of a cell- wall anchored DNase gene in Clostridium perfringens. FEMS Microbiol Lett 242:281-285.
  17. McLean JS, Majors PD, Reardon CL, Bilskis CL, Reed SB, Romine MF, Fredrickson JK. 2008. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. J Microbiol Methods 74:47-56.
  18. Roca AI, Cox MM. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 56:129-223.
  19. Qian SY, Buettner GR. 1999. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radical Bio Med 26:1447-1456.
  20. Dlakic M. 2000. Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci 25:272-273.
  21. Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P, Mornon JP, Bonne G, Courvalin JC, Worman HJ, Zinn- Justin S. 2002. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811-823.
  22. Haber F, Weiss JJ. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London Ser 147:332- 351.
  23. Papanikou E, Karamanou S, Economou A. 2007. Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5:839-851.
  24. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. 2008. Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162-168.
  25. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM. 1998. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5:294-303.
  26. Berge M, Moscoso M, Prudhomme M, Martin B, Claverys JP. 2002. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol Microbiol 45:411-421.
  27. Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE. 2002. Structure of the globular tail of nuclear lamin. J Biol Chem 277:17381-17384.
  28. Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova AY, Nealson KH, Osterman AL. 2006. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem 281:29872-29885.
  29. Jang S, Imlay JA. 2007. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282:929-937. References 151
  30. Gotoh H, Kasaraneni N, Devineni N, Dallo SF, Weitao T. 2010. SOS involvement in stress-inducible biofilm formation. Biofouling 26:603-611.
  31. Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. 2003. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706-718.
  32. Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127-128. References 149
  33. Driffield K, Miller K, Bostock JM, O'Neill AJ, Chopra I. 2008. Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053-1056.
  34. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. 434.
  35. Price MN, Huang KH, Alm EJ, Arkin AP. 2005. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33:880-892.
  36. Kibbe WA. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43-46.
  37. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:W347-352.
  38. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307-321.
  39. Almiron M, Link AJ, Furlong D, Kolter R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646-2654.
  40. Ogawa M, Takade A, Miyamoto H, Taniguchi H, Yoshida S. 2001. Morphological variety of intracellular microcolonies of Legionella species in Vero cells. Microbiol Immunol 45:557-562.
  41. Focareta T, Manning PA. 1991. Distinguishing between the extracellular DNases of Vibrio cholerae and development of a transformation system. Mol Microbiol 5:2547-2555.
  42. Saville RM, Dieckmann N, Spormann AM. 2010. Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms. FEMS Microbiol Lett 308:76-83.
  43. Drever J. 1997. The geochemistry of natural waters: surface and groundwater environments, 3 ed, vol. 3. Prentice Hall, Englewood Cliffs, NJ, USA.
  44. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711-745.
  45. von Heijne G. 1989. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456-458.
  46. Resch A, Fehrenbacher B, Eisele K, Schaller M, Gotz F. 2005. Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett 252:89-96.
  47. Beveridge TJ, Makin SA, Kadurugamuwa JL, Li ZS. 1997. Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291-303.
  48. Van De Vossenberg JLCM, Albers SV, Van Der Does C, Driessen AJM, Van Klompenburg W. 1998. The positive inside rule is not determined by the polarity of the Δψ. Mol Microbiol 29:1125–1126.
  49. Dittmer TA, Misteli T. 2011. The lamin protein family. Genome Biol 12:222.
  50. Kelley LA, Sternberg MJE. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363-371.
  51. Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96-104. References 141
  52. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532-1535.
  53. Theunissen S, De Smet L, Dansercoer A, Motte B, Coenye T, Van Beeumen JJ, Devreese B, Savvides SN, Vergauwen B. 2010. The 285 kDa Bap/RTX hybrid cell surface protein (SO4317) of Shewanella oneidensis MR-1 is a key mediator of biofilm formation. Res Microbiol 161:144-152.
  54. Theunissen S, Vergauwen B, De Smet L, Van Beeumen J, Van Gelder P, Savvides SN. 2009. The agglutination protein AggA from Shewanella oneidensis MR-1 is a TolC-like protein and forms active channels in vitro. Biochem Biophys Res Commun 386:380-385.
  55. Meyer TE, Tsapin AI, Vandenberghe I, de Smet L, Frishman D, Nealson KH, Cusanovich MA, van Beeumen JJ. 2004. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8:57-77.
  56. De Vriendt K, Theunissen S, Carpentier W, De Smet L, Devreese B, Van Beeumen J. 2005. Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics 5:1308-1316.
  57. De Windt W, Gao H, Kromer W, Van Damme P, Dick J, Mast J, Boon N, Zhou J, Verstraete W. 2006. AggA is required for aggregation and increased biofilm formation of a hyper-aggregating mutant of Shewanella oneidensis MR-1. Microbiology 152:721-729.
  58. Hem JD. 1989. Study and interpretation of the chemical characteristics of natural water, vol. 2254. U.S. Geological Survey, Water Supply Paper, USA.
  59. Kapust RB, Tozser J, Copeland TD, Waugh DS. 2002. The P1' specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949-955.
  60. Leitet C, Riemann L, Hagstrom A. 2006. Plasmids and prophages in Baltic Sea bacterioplankton isolates. J Mar Biol Assoc Uk 86:567-575.
  61. Green MR, J S. 2012. Molecular cloning: a laboratory manual, 4 ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  62. Nealson KH, Scott J. 2003. Ecophysiology of the genus Shewanella, vol. 6. Springer-NY, NY, USA.
  63. Flemmig J, Arnhold J. 2007. Ferrous ion-induced strand breaks in the DNA plasmid pBR322 are not mediated by hydrogen peroxide. Eur Biophys J 36:377-384.
  64. Berlutti F, Ajello M, Bosso P, Morea C, Petrucca A, Antonini G, Valenti P. 2004. Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 17:271-278.
  65. Ptashne M. 2004. A genetic switch, phage lambda revisited, vol. 3. Cold Spring Harbor Laboratory Press, NY, USA. 303.
  66. Saran M, Michel C, Stettmaier K, Bors W. 2000. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radic Res 33:567-579.
  67. Pospiech A, Neumann B. 1995. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217-218.
  68. Mans BJ, Anantharaman V, Aravind L, Koonin EV. 2004. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612-1637.
  69. Yoon MY, Lee KM, Park Y, Yoon SS. 2011. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 6:e16105. 365. van der Veen S, Abee T. 2011. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 6:e28590.
  70. Teichmann L. 2013. Die Rolle des oxidativen Stresses bei der Induktion des Lambda‐Prophagen in Biofilmen von Shewanella oneidensis MR‐1. Philipps-Universität Marburg, Germany.
  71. Imlay JA, Linn S. 1988. DNA damage and oxygen radical toxicity. Science 240:1302-1309.
  72. Halverson TW, Wilton M, Poon KK, Petri B, Lewenza S. 2015. DNA is an antimicrobial component of neutrophil extracellular traps. PLoS Pathog 11:e1004593.
  73. Logan BE, Regan JM. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512- 518.
  74. Miller JH. 1972. Experiments in molecular genetics, 3 ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Press, NY, USA.
  75. Kreienbaum M. 2012. Extracellular nucleases in Shewanella oneidensis MR-1. Philipps-Universität Marburg, Germany. 322.
  76. Barbusinski K. 2009. Fenton reaction -controversy concerning the chemistry. Ecological Chemistry and Engineering S 16:347-358.
  77. Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118-1123.
  78. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:5425-5436.
  79. Inoue H, Nojima H, Okayama H. 1990. High-efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28.
  80. Wang IN, Smith DL, Young R. 2000. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799- 825.
  81. Ptashne M, Jeffrey A, Johnson AD, Maurer R, Meyer BJ, Pabo CO, Roberts TM, Sauer RT. 1980. How the lambda repressor and cro work. Cell 19:1-11.
  82. Bardwell JC, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581-589.
  83. Driscoll ME, Romine MF, Juhn FS, Serres MH, McCue LA, Beliaev AS, Fredrickson JK, Gardner TS. 2007. Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling. Genome Inform 18:287-298. References 147
  84. Fuangthong M, Mongkolsuk S. 1997. Isolation and characterization of a multiple peroxide resistant mutant from Xanthomonas campestris pv. phaseoli. FEMS Microbiol Lett 152:189-194.
  85. Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M. 1981. Lambda repressor and cro -components of an efficient molecular switch. Nature 294:217-223.
  86. Gödeke J. 2011. Molekulare Mechanismen wä hrend der Anheftung und Biofilmbildung in Shewanella oneidensis MR-1. Philipps-Universitä t Marburg, Germany.
  87. Weitao T. 2009. Multicellularity of a unicellular organism in response to DNA replication stress. Res Microbiol 160:87-88.
  88. Yang W. 2011. Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1-93.
  89. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49 Pt 2:705-724.
  90. Jiang Y, Dong Y, Luo Q, Li N, Wu G, Gao H. 2014. Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J Bacteriol 196:445-458.
  91. Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. 2008. Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:232-241.
  92. Cox MM. 2007. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41-63.
  93. Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111:12883-12888.
  94. Parsek MR, Greenberg EP. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27-33.
  95. Mashburn-Warren LM, Whiteley M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839-846.
  96. Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ, Burne RA, Koo H, Brady LJ, Wen ZT. 2014. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 196:2355-2366.
  97. Sutherland IW. 1969. Structural studies on colanic acid, common exopolysaccharide found in Enterobacteriaceae, by partial acid hydrolysis -oligosaccharides from colanic acid. Biochemical Journal 115:935-945. References 143
  98. Thomas VC, Hancock LE. 2009. Suicide and fratricide in bacterial biofilms. Int J Artif Organs 32:537-544.
  99. Dunford BH, Dolphin D, Raymond KN, Sieker L. 1982. The biological chemistry of iron, 1 ed, vol. 89. Springer, The Netherlands.
  100. Cowan JA. 1995. The Biological Chemistry of Magnesium. Wiley-VCH, Cambridge, UK.
  101. Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443-454.
  102. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. 2008. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592-603.
  103. Heun M. 2011. Unterschiedliche Aufgaben extrazellulä rer Nukleasen in Shewanella oneidensis MR-1. Philipps-Universitä t Marburg, Germany.
  104. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. 2006. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16:401-407.
  105. Patil SA, Gorecki K, Hagerhall C, Gorton L. 2013. Cisplatin-induced elongation of Shewanella oneidensis MR-1 cells improves microbe-electrode interactions for use in microbial fuel cells. Energ Environ Sci 6:2626-2630.
  106. Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS. 2009. Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155:2223-2234.
  107. Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q. 2013. Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiology 159:633-640.
  108. Kuzminov A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751-813.
  109. Steinberger RE, Allen AR, Hansma HG, Holden PA. 2002. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa-unsaturated biofilms. Microbial Ecol 43:416-423.
  110. Gilbert P, Evans DJ, Evans E, Duguid IG, Brown MR. 1991. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J Appl Bacteriol 71:72-77.
  111. Hamilton HL, Dominguez NM, Schwartz KJ, Hackett KT, Dillard JP. 2005. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 55:1704-1721.
  112. Domka J, Lee J, Bansal T, Wood TK. 2007. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332-346.
  113. Lappann M, Claus H, van Alen T, Harmsen M, Elias J, Molin S, Vogel U. 2010. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol Microbiol 75:1355-1371.
  114. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T. 2007. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318-1328.
  115. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D. 2007. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083-2092.
  116. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785-786.
  117. Brown RN, Romine MF, Schepmoes AA, Smith RD, Lipton MS. 2010. Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS protein identification. J Proteome Res 9:4454-4463.
  118. Fenton HJH. 1894. Oxidation of tartaric acid in presence of iron. Chem Sci 65:899-910.
  119. Okshevsky M, Regina VR, Meyer RL. 2014. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol 33C:73-80.
  120. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR. 2011. Extracellular DNA in biofilms. Int J Artif Organs 34:824-831.
  121. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. 2003. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103-118.
  122. Jiang SC, Paul JH. 1994. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine-environment. Mar Ecol Prog Ser 104:163-172.
  123. Jiang SC, Paul JH. 1996. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142:27-38.
  124. Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319-1321.
  125. Hau HH, Gralnick JA. 2007. Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237-258.
  126. Dikow RB. 2011. Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae). BMC Genomics 12:237.
  127. McDowell EJ, Callegari EA, Malke H, Chaussee MS. 2012. CodY-mediated regulation of Streptococcus pyogenes exoproteins. BMC Microbiol 12:114.
  128. Muller J, Shukla S, Jost KA, Spormann AM. 2013. The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY. BMC Microbiol 13.
  129. Ishii S, Shimoyama T, Hotta Y, Watanabe K. 2008. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol 8:6.
  130. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V. 2006. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16:396-400.
  131. Melgar E, Goldthwait DA. 1968. Deoxyribonucleic acid nucleases. II. The effects of metals on the mechanism of action of deoxyribonuclease I. J Biol Chem 243:4409-4416.
  132. Aiba H, Adhya S, de Crombrugghe B. 1981. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905-11910.
  133. Rosenberger CM, Finlay BB. 2002. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J Biol Chem 277:18753-18762.
  134. Wen YT, Tsou CC, Kuo HT, Wang JS, Wu JJ, Liao PC. 2011. Differential secretomics of Streptococcus pyogenes reveals a novel peroxide regulator (PerR)-regulated extracellular virulence factor mitogen factor 3 (MF3). Mol Cell Proteomics 10:M110 007013.
  135. Paul JH. 2008. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579-589.
  136. Goodwin JF, Whitten CF. 1965. Chelation of ferrous sulphate solutions by desferrioxamine B. Nature 205:281-283.
  137. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. 2005. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171-1175.
  138. Schlacher K, Goodman MF. 2007. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nat Rev Mol Cell Biol 8:587-594.
  139. Bayles KW. 2007. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721-726.
  140. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222-226.
  141. Jiang SC, Kellogg CA, Paul JH. 1998. Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64:535-542.
  142. Rozanov DV, D'Ari R, Sineoky SP. 1998. RecA-independent pathways of lambdoid prophage induction in Escherichia coli. J Bacteriol 180:6306-6315.
  143. Qiu X, Sundin GW, Wu L, Zhou J, Tiedje JM. 2005. Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J Bacteriol 187:3556-3564.
  144. Banin E, Vasil ML, Greenberg EP. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076-11081.
  145. Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414-4426.
  146. Mey AR, Craig SA, Payne SM. 2005. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 73:5706-5719.
  147. Johnson M, Cockayne A, Williams PH, Morrissey JA. 2005. Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves fur-dependent and fur-independent mechanisms. J Bacteriol 187:8211-8215.
  148. Piao Z, Sze CC, Barysheva O, Iida K, Yoshida S. 2006. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613-1622.
  149. Banin E, Brady KM, Greenberg EP. 2006. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064-2069.
  150. Chauhan A, Madiraju MV, Fol M, Lofton H, Maloney E, Reynolds R, Rajagopalan M. 2006. Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. J Bacteriol 188:1856-1865.
  151. Imhof M, Schlotterer C. 2001. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci U S A 98:1113-1117.
  152. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358-11363.
  153. Theobald DL, Mitton-Fry RM, Wuttke DS. 2003. Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115-133.
  154. Bus JS, Gibson JE. 1984. Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37-46.
  155. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. 2006. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135.
  156. Teal TK, Lies DP, Wold BJ, Newman DK. 2006. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol 72:7324-7330.
  157. Linares JF, Gustafsson I, Baquero F, Martinez JL. 2006. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484-19489.
  158. Li CL, Hor LI, Chang ZF, Tsai LC, Yang WZ, Yuan HS. 2003. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO J 22:4014-4025.
  159. Magnuson RD. 2007. Hypothetical functions of toxin-antitoxin systems. J Bacteriol 189:6089-6092.
  160. Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M. 2007. Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797-5808.
  161. Miller VL, Mekalanos JJ. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575-2583.
  162. Trun NJ, Stader J, Lupas A, Kumamoto C, Silhavy TJ. 1988. Two cellular components, PrlA and SecB, that recognize different sequence determinants are required for efficient protein export. J Bacteriol 170:5928-5930.
  163. Rice KC, Bayles KW. 2008. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72:85-109.
  164. Garcia-Contreras R, Zhang XS, Kim Y, Wood TK. 2008. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 3:e2394.
  165. Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK. 2008. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512-5516.
  166. Tang X, Yi W, Munske GR, Adhikari DP, Zakharova NL, Bruce JE. 2007. Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes. J Proteome Res 6:724-734.
  167. Boles BR, Singh PK. 2008. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503-12508.
  168. Blokesch M, Schoolnik GK. 2008. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J Bacteriol 190:7232-7240.
  169. Mulcahy H, Charron-Mazenod L, Lewenza S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4:e1000213.
  170. Wu Y, Outten FW. 2009. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191:1248-1257.
  171. Learman DR, Yi H, Brown SD, Martin SL, Geesey GG, Stevens AM, Hochella MF, Jr. 2009. Involvement of Shewanella oneidensis MR-1 LuxS in biofilm development and sulfur metabolism. Appl Environ Microbiol 75:1301-1307.
  172. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271-282.
  173. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ. 2009. Contribution of autolysin and sortase a during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626-3638. References 145
  174. Wang X, Kim Y, Wood TK. 2009. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J 3:1164-1179.
  175. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE. 2009. A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72:1022-1036.
  176. Ghosh D, Roy K, Williamson KE, Srinivasiah S, Wommack KE, Radosevich M. 2009. Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction. Appl Environ Microbiol 75:7142-7152.
  177. Loeb LA, James EA, Waltersdorph AM, Klebanoff SJ. 1988. Mutagenesis by the autoxidation of iron with isolated DNA. Proc Natl Acad Sci U S A 85:3918-3922.
  178. Romero D, Aguilar C, Losick R, Kolter R. 2010. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230-2234.
  179. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851-855.
  180. Lassak J, Henche AL, Binnenkade L, Thormann KM. 2010. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol 76:3263-3274.
  181. Berne C, Kysela DT, Brun YV. 2010. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77:815-829.
  182. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M. 2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576-586.
  183. Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755-776.
  184. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK. 2010. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147.
  185. Saville RM, Rakshe S, Haagensen JAJ, Shukla S, Spormann AM. 2011. Energy-dependent stability of Shewanella oneidensis MR-1 biofilms. J Bacteriol 193:3257-3264.
  186. Gödeke J, Heun M, Bubendorfer S, Paul K, Thormann KM. 2011. Roles of two Shewanella oneidensis MR-1 extracellular endonucleases. Appl Environ Microbiol 77:5342-5351.
  187. Hong SH, Wang X, Wood TK. 2010. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli. Microb Biotechnol 3:344-356.
  188. Dinh T, Bernhardt TG. 2011. Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 193:4984-4987.
  189. Weiss Nielsen M, Sternberg C, Molin S, Regenberg B. 2011. Pseudomonas aeruginosa and Saccharomyces cerevisiae biofilm in flow cells. J Vis Exp.
  190. Seper A, Fengler VH, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S. 2011. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82:1015-1037.
  191. Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR. 2011. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 6:e26714.
  192. Petrova OE, Schurr JR, Schurr MJ, Sauer K. 2011. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 81:767- 783.
  193. Lou Q, Zhu T, Hu J, Ben H, Yang J, Yu F, Liu J, Wu Y, Fischer A, Francois P, Schrenzel J, Qu D. 2011. Role of the SaeRS two-component regulatory system in Staphylococcus epidermidis autolysis and biofilm formation. BMC Microbiol 11:146.
  194. Haft DH, Varghese N. 2011. GlyGly-CTERM and rhombosortase: a C-terminal protein processing signal in a many-to-one pairing with a rhomboid family intramembrane serine protease. PLoS One 6:e28886.
  195. Babauta JT, Nguyen HD, Beyenal H. 2011. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ Sci Technol 45:6654-6660.
  196. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686-701.
  197. Sahu PK, Iyer PS, Oak AM, Pardesi KR, Chopade BA. 2012. Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation. ScientificWorldJournal 2012:973436. 201.
  198. Beenken KE, Spencer H, Griffin LM, Smeltzer MS. 2012. Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions. Infect Immun 80:1634-1638.
  199. Heun M, Binnenkade L, Kreienbaum M, Thormann KM. 2012. Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Appl Environ Microbiol 78:4400-4411.
  200. Gödeke J, Binnenkade L, Thormann KM. 2012. Transcriptome analysis of early surface-associated growth of Shewanella oneidensis MR-1. PLoS One 7:e42160.
  201. Barnes AM, Ballering KS, Leibman RS, Wells CL, Dunny GM. 2012. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 3:e00193-00112.
  202. Berry J, Rajaure M, Pang T, Young R. 2012. The spanin complex is essential for lambda lysis. J Bacteriol 194:5667-5674. References 302.
  203. Ryder VJ, Chopra I, O'Neill AJ. 2012. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One 7:e47695.
  204. Zafra O, Lamprecht-Grandio M, de Figueras CG, Gonzalez-Pastor JE. 2012. Extracellular DNA release by undomesticated Bacillus subtilis is regulated by early competence. Plos One 7.
  205. Aldeek F, Schneider R, Fontaine-Aupart MP, Mustin C, Lecart S, Merlin C, Block JC. 2013. Patterned hydrophobic domains in the exopolymer matrix of Shewanella oneidensis MR-1 biofilms. Appl Environ Microbiol 79:1400-1402.
  206. Lewenza S. 2013. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol 4:21.
  207. Shields RC, Mokhtar N, Ford M, Hall MJ, Burgess JG, ElBadawey MR, Jakubovics NS. 2013. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis. PLoS One 8:e55339. 247.
  208. Fortier LC, Sekulovic O. 2013. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354-365.
  209. Lovley DR, Holmes DE, Nevin KP. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219-286.
  210. Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430-481.
  211. Chao L, Rakshe S, Leff M, Spormann AM. 2013. PdeB, a cyclic di-GMP-specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation. J Bacteriol 195:3827-3833.
  212. Seper A, Hosseinzadeh A, Gorkiewicz G, Lichtenegger S, Roier S, Leitner DR, Rohm M, Grutsch A, Reidl J, Urban CF, Schild S. 2013. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog 9:e1003614.
  213. McCord JM, Keele BB, Jr., Fridovich I. 1971. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A 68:1024-1027.
  214. de Boer HA, Comstock LJ, Vasser M. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21-25.
  215. Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR. 2014. Staphylococcus aureus Nuc2 Is a functional, surface-attached extracellular nuclease. Plos One 9.
  216. Cho C, Chande A, Gakhar L, Bakaletz LO, Jurcisek JA, Ketterer M, Shao J, Gotoh K, Foster E, Hunt J, O'Brien E, Apicella MA. 2014. Role of the nuclease of nontypeable Haemophilus influenzae in dispersal of organisms from biofilms. Infect Immun 83:950-957.
  217. Oussenko IA, Sanchez R, Bechhofer DH. 2004. Bacillus subtilis YhcR, a high-molecular-weight, nonspecific endonuclease with a unique domain structure. J Bacteriol 186:5376-5383.
  218. Webb JS, Lau M, Kjelleberg S. 2004. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066-8073.
  219. Wan XF, Verberkmoes NC, McCue LA, Stanek D, Connelly H, Hauser LJ, Wu L, Liu X, Yan T, Leaphart A, Hettich RL, Zhou J, Thompson DK. 2004. Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol 186:8385-8400.
  220. Kolling GL, Matthews KR. 1999. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843-1848.
  221. Wu SI, Lo SK, Shao CP, Tsai HW, Hor LI. 2001. Cloning and characterization of a periplasmic nuclease of Vibrio vulnificus and its role in preventing uptake of foreign DNA. Appl Environ Microbiol 67:82-88.
  222. Mongkolsuk S, Whangsuk W, Fuangthong M, Loprasert S. 2000. Mutations in oxyR resulting in peroxide resistance in Xanthomonas campestris. J Bacteriol 182:3846-3849.
  223. Gates FL. 1933. The reaction of individual bacteria to irradiation with ultraviolet light. Science 77:350. 358.
  224. Heilmann C, Hussain M, Peters G, Gotz F. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013-1024.
  225. Sanger F, Coulson AR. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441-448.
  226. Focareta T, Manning PA. 1987. Extracellular proteins of Vibrio cholerae: molecular cloning, nucleotide sequence and characterization of the deoxyribonuclease (DNase) together with its periplasmic localization in Escherichia coli K-12. Gene 53:31-40.
  227. Chang MC, Chang SY, Chen SL, Chuang SM. 1992. Cloning and expression in Escherichia coli of the gene encoding an extracellular deoxyribonuclease (DNase) from Aeromonas hydrophila. Gene 122:175-180.
  228. Jekel M, Wackernagel W. 1995. The periplasmic endonuclease I of Escherichia coli has amino-acid sequence homology to the extracellular DNases of Vibrio cholerae and Aeromonas hydrophila. Gene 154:55-59.
  229. Summer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R. 2007. Rz/Rz1 lysis gene equivalents in phages of Gram- negative hosts. J Mol Biol 373:1098-1112.
  230. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557-580.
  231. Deguillaume L, Leriche M, Chaurnerliac N. 2005. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere 60:718-724.
  232. Lattner D, Flemming HC, Mayer C. 2003. 13C-NMR study of the interaction of bacterial alginate with bivalent cations. Int J Biol Macromol 33:81-88.
  233. Macdonell MT, Colwell RR. 1985. Phylogeny of the Vibrionaceae, and Recommendation for 2 New Genera, Listonella and Shewanella. Syst Appl Microbiol 6:171-182.
  234. Welch KD, Davis TZ, Van Eden ME, Aust SD. 2002. Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med 32:577-583.
  235. Gotoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, Weitao T. 2008. Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 159:294-302.
  236. Chellappa ST, Maredia R, Phipps K, Haskins WE, Weitao T. 2013. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation. Res Microbiol 164:1019-1027. 347. van der Veen S, Abee T. 2010. Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76:1992-1995.
  237. Young I, Wang I, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol 8:120-128.
  238. Bayles KW. 2003. Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol 11:306-311.
  239. Gonzalez-Pastor JE, Hobbs EC, Losick R. 2003. Cannibalism by sporulating bacteria. Science 301:510-513.
  240. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025-1028.
  241. Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I, Narberhaus F, Thormann KM. 2009. Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol 71:836-850.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten