Publikationsserver der Universitätsbibliothek Marburg

Titel:Der Smoothened-Antagonist LDE225 hemmt die Proliferation in Gemcitabin-sensitiven und -resistenten Zelllinien des duktalen Adenokarzinoms des Pankreas
Autor:Ferstl, Philip
Weitere Beteiligte: Ocker, Matthias (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0152
URN: urn:nbn:de:hebis:04-z2015-01523
DOI: https://doi.org/10.17192/z2015.0152
DDC: Medizin
Titel (trans.):The smoothened inhibitor LDE225 inhibits proliferation in gemcitabine-sensitive and -resistant cell lines of the ductal adenocarcinoma of the pancreas
Publikationsdatum:2015-03-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Chemotherapie, Bauchspeicheldrüsenkrebs, PDAC Hedgehog Smoothened Gemcitabin, Gemcitabin, pancreatic cancer Hedgehog Smoothened Gemcitabin

Zusammenfassung:
Das duktale Adenokarzinom des Pankreas (PDAC) ist eine der am schlechtesten therapierbaren Krebserkrankungen überhaupt und verfügt über eine äußerst ungünstigste Prognose. Dies liegt unter anderem an der sich rasch entwickelnden Chemoresistenz des PDAC gegen das Standard-Chemotherapeutikum Gemcitabin. In den vergangenen Jahren zeigte die Substanzklasse der Hedgehog (Hh)-Inhibitoren vielversprechende Ansätze in in vitro-Versuchen sowie im xenotransplantierten Mausmodell verschiedenster Tumorentitäten, und mehrere Wirkstoffe befinden sich seit kurzem auch in klinischer Erprobung. LDE225 ist ein niedermolekularer Smoothened (SMO)-Antagonist, der schon in einigen Veröffentlichungen zu pankreatischen Tumoren zur Anwendung kam. In der vorliegenden Arbeit untersuchten wir die Wirkung der SMO-Inhibierung mit LDE225 auf die Tumorzelllinien Capan-1 und Panc-1. Explizit wurde die Fragestellung behandelt, inwiefern Chemoresistenz einen Einfluss auf die Effektivität einer Therapie mit SMO-Inhibitoren hat. Es wurden hierfür kommerziell verfügbare, Gemcitabin-sensitiven wildtyp-Zelllinien (wt), sowie eigens gezüchtete Gemcitabin-resistente Zelllinien (GR) verwendet. Es konnte gezeigt werden, dass LDE225 in ausreichend hoher Dosis die Proliferation der verwendeten Zelllinien hemmt. Nach der Erlangung von Chemoresistenz zeigte sich eine veränderte Wirksamkeit von LDE225 im Vergleich zu wt-Zellen. SMO-Inhibition verursachte in GR-Zellen keinen sensitivierenden Effekt gegenüber Gemcitabin. Der Einsatz von LDE225 führte nicht zu vermehrter Apoptose, doch es konnte eine Erhöhung der G1-Phase des Zellzyklus beobachtet werden. Mit Hilfe von quantitativer Analyse der Genexpression konnten Modifizierungen des Hh-Signalwegs nach SMO-Antagonisierung beschrieben werden. Während sich zahlreiche Veröffentlichungen den Effekten von Hh-Inhibitoren auf das Tumorstroma oder Krebsstammzellen widmen, untersucht die vorliegende Arbeit detailliert die Behandlung von Tumorzellen mit einem niedermolekularen SMO-Antagonisten und stellt Wechselwirkungen zwischen erworbener Chemoresistenz und der Aktivität des Hh-Signalweges im PDAC dar. Ziel ist es, Einblick in ein komplexes und bisher wenig beachtetes Gebiet zu gewinnen.

Bibliographie / References

  1. Ji, H., X. Zhang, Y. Du, H. Liu, S. Li, and L. Li, 2012b, Polydatin modulates inflammation by decreasing NF-kappa B activation and oxidative stress by increasing Gli1, Ptch1, SOD1 expression and ameliorates blood-brain barrier permeability for its neuroprotective effect in pMCAO rat brain: Brain Research Bulletin, v. 87.
  2. Xu, M., L. Li, Z. Liu, Z. Jiao, P. Xu, X. Kong, H. Huang, and Y. Zhang, 2013, ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance: Cancer Letters, v. 333, p. 152-158.
  3. Lunardi, S., R. J. Muschel, and T. B. Brunner, 2014, The stromal compartments in pancreatic cancer: Are there any therapeutic targets?: Cancer Letters, v. 343, p. 147-155.
  4. Verdoodt, B., I. Charlette, B. Maillet, and M. KirschVolders, 1997, Numerical aberrations of chromosomes 1 and 17 in tumor cell lines of the exocrine pancreas as determined by fluorescence in situ hybridization: Cancer Genetics and Cytogenetics, v. 94.
  5. Morris, J. P., S. C. Wang, and M. Hebrok, 2010, KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma: Nature Reviews Cancer, v. 10.
  6. Lauth, M., A. Bergstrom, T. Shimokawa, U. Tostar, Q. Jin, V. Fendrich, C. Guerra, M. Barbacid, and R. Toftgard, 2010, DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS: Nature Structural & Molecular Biology, v. 17.
  7. Harding, and D. Ron, 2004, CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum: Genes & Development, v. 18.
  8. Wong, H., B. Alicke, K. A. West, P. Pacheco, H. La, T. Januario, R. L. Yauch, F. J. de Sauvage, and S. E. Gould, 2011, Pharmacokinetic-Pharmacodynamic Analysis of Vismodegib in Preclinical Models of Mutational and Ligand-Dependent Hedgehog Pathway Activation: Clinical Cancer Research, v. 17.
  9. Legoffic, A., E. L. Calvo, M. Barthet, J.-R. Delpero, J. C. Dagorn, and J. L. Iovanna, 2009, Identification of Genomic Alterations Associated with the Aggressiveness of Pancreatic Cancer Using an Ultra-High-Resolution CGH Array: Pancreatology, v. 9, p. 267-272.
  10. Yang, S.-H., C.-H. Hsu, J.-C. Lee, Y.-W. Tien, S.-H. Kuo, and A.-L. Cheng, 2013, Nuclear Expression of Glioma-Associated Oncogene Homo log 1 and Nuclear Factor-kappa B Is Associated with a Poor Prognosis of Pancreatic Cancer: Oncology, v. 85, p. 86-94.
  11. Thompson, M. C., C. Fuller, T. L. Hogg, J. Dalton, D. Finkelstein, C. C. Lau, M. Chintagumpala, A. Adesina, D. M. Ashley, S. J. Kellie, D. T. Michael, T. Curran, A. Gajjar, and R. J. Gilbertson, 2006, Genornics identifies medulloblastoma subgroups that are enriched for specific genetic alterations: Journal of Clinical Oncology, v. 24.
  12. Dessaud, E., A. P. McMahon, and J. Briscoe, 2008, Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network: Development, v. 135.
  13. Singh, B. N., J. Fu, R. K. Srivastava, and S. Shankar, 2011, Hedgehog Signaling Antagonist GDC- 0449 (Vismodegib) Inhibits Pancreatic Cancer Stem Cell Characteristics: Molecular Mechanisms: Plos One, v. 6.
  14. Mazumdar, T., J. DeVecchio, A. Agyeman, T. Shi, and J. A. Houghton, 2011, The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer: Oncotarget, v. 2.
  15. Quint, K., M. Tonigold, P. Di Fazio, R. Montalbano, S. Lingelbach, F. Rückert, B. Alinger, M. Ocker, and D. Neureiter, 2012, Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition: International Journal of oncology.
  16. Peinado, H. C., F. Portillo, and A. Cano, 2004, Transcriptional regulation of cadherins during development and carcinogenesis: International Journal of Developmental Biology, v. 48.
  17. Xie, J. W., M. Murone, S. M. Luoh, A. Ryan, Q. M. Gu, C. H. Zhang, J. M. Bonifas, C. W. Lam, M. Hynes, A. Goddard, A. Rosenthal, E. H. Epstein, and F. J. de Sauvage, 1998, Activating Smoothened mutations in sporadic basal-cell carcinoma: Nature, v. 391.
  18. Nelson, P. T., and J. N. Keller, 2007, RNA in brain disease: No longer just "the messenger in the middle": Journal of Neuropathology and Experimental Neurology, v. 66.
  19. Yang, Y., X. Tian, X. Xie, Y. Zhuang, W. Wu, and W. Wang, 2010, Expression and regulation of hedgehog signaling pathway in pancreatic cancer: Langenbecks Archives of Surgery, v. 395.
  20. Sipos, B., S. Moser, H. Kalthoff, V. Torok, M. Lohr, and G. Kloppel, 2003, A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform: Virchows Archiv, v. 442.
  21. Vermeulen, K., D. R. Van Bockstaele, and Z. N. Berneman, 2005, Apoptosis: mechanisms and relevance in cancer: Annals of Hematology, v. 84.
  22. Zhang, X., N. Harrington, R. C. Moraes, M.-F. Wu, S. G. Hilsenbeck, and M. T. Lewis, 2009, Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo): Breast Cancer Research and Treatment, v. 115, p. 505-521. 66 7,8502 0,8837 7,9265 0,549 66 2,2144 0,0903 2,4196 0,2226
  23. Shah, A. N., J. M. Summy, J. Zhang, S. I. Park, N. U. Parikh, and G. E. Gallick, 2007, Development and characterization of gemcitabine-resistant pancreatic tumor cells: Annals of Surgical Oncology, v. 14.
  24. Lowenfels, A. B., and P. Maisonneuve, 2006, Epidemiology and risk factors for pancreatic cancer: Best Practice & Research in Clinical Gastroenterology, v. 20, p. 197-209.
  25. Moore, M. J., D. Goldstein, J. Hamm, A. Figer, J. R. Hecht, S. Gallinger, H. J. Au, P. Murawa, D. Walde, R. A. Wolff, D. Campos, R. Lim, K. Ding, G. Clark, T. Voskoglou-Nomikos, M. Ptasynski, and W. Parulekar, 2007, Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada clinical trials group: Journal of Clinical Oncology, v. 25, p. 1960-1966.
  26. Danquah, M. K., X. A. Zhang, and R. I. Mahato, 2011, Extravasation of polymeric nanomedicines across tumor vasculature: Advanced Drug Delivery Reviews, v. 63, p. 623-639.
  27. Yuan, Z., J. A. Goetz, S. Singh, S. K. Ogden, W. J. Petty, C. C. Black, V. A. Memoli, E. Dmitrovsky, and D. J. Robbins, 2007, Frequent requirement of hedgehog signaling in non-small cell lung carcinoma: Oncogene, v. 26.
  28. Cui, D., Q. Xu, K. Wang, and X. Che, 2010, Gli1 is a potential target for alleviating multidrug resistance of gliomas: Journal of the Neurological Sciences, v. 288, p. 156-166.
  29. Nolan-Stevaux, O., J. Lau, M. L. Truitt, G. C. Chu, M. Hebrok, M. E. Fernandez-Zapico, and D. Hanahan, 2009, GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation: Genes & Development, v. 23, p. 24-36.
  30. Warshaw, and M. Hebrok, 2003, Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis: Nature, v. 425, p. 851-856.
  31. Lin, T. L., and W. Matsui, 2012, Hedgehog pathway as a drug target: Smoothened inhibitors in development: Oncotargets and Therapy, v. 5, p. 47-58.
  32. Hedgehog Pathway Inhibitor GDC-0449, N Engl J Med, p. 1173-8.
  33. Chinchilla, P., L. Xiao, M. G. Kazanietz, and N. A. Riobo, 2010, Hedgehog proteins activate pro- angiogenic responses in endothelial cells through non-canonical signaling pathways: Cell Cycle, v. 9.
  34. Duman-Scheel, M., L. Weng, S. J. Xin, and W. Du, 2002, Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E: Nature, v. 417, p. 299-304.
  35. Lauth, M., and R. Toftgard, 2011, Hedgehog Signaling and Pancreatic Tumor Development: Advances in Cancer Research, Vol 110, v. 110.
  36. Watkins, D. N., D. M. Berman, S. G. Burkholder, B. L. Wang, P. A. Beachy, and S. B. Baylin, 2003, Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer: Nature, v. 422.
  37. Katoh, Y., and M. Katoh, 2009, Hedgehog Target Genes: Mechanisms of Carcinogenesis Induced by Aberrant Hedgehog Signaling Activation: Current Molecular Medicine, v. 9.
  38. Singh, S. K., C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, R. M. Henkelman, M. D. Cusimano, and P. B. Dirks, 2004, Identification of human brain tumour initiating cells: Nature, v. 432.
  39. Simeone, 2007, Identification of pancreatic cancer stem cells: Cancer Research, v. 67.
  40. Nüsslein-Vollhard, C., and E. Wieschaus, 1980, Mutations affecting segment number and polarity in Drosophila: Nature, v. 287, p. 795-801.
  41. Dosch, J. S., M. P. di Magliano, and D. M. Simeone, 2010, Pancreatic Cancer and Hedgehog Pathway Signaling: New Insights: Pancreatology, v. 10, p. 151-157.
  42. Du, Z., R. Qin, C. Wei, M. Wang, C. Shi, R. Tian, and C. Peng, 2011, Pancreatic Cancer Cells Resistant to Chemoradiotherapy Rich in "Stem-Cell-Like" Tumor Cells: Digestive Diseases and Sciences, v. 56.
  43. Persönliche Informationen Name: Philip Ferstl Geburtsdatum: 17. März 1987
  44. Lauth, M., 2012, RAS and Hedgehog--partners in crime: Frontiers in bioscience : a journal and virtual library, v. 17, p. 2259-70.
  45. Jorgensen, J., 2001, Resected adenocarcinoma of the pancreas -616 patients: Results, outcomes, and prognostic indicators: Journal of Gastrointestinal Surgery, v. 5, p. 681- 681.
  46. Ron, D., and P. Walter, 2007, Signal integration in the endoplasmic reticulum unfolded protein response: Nature Reviews Molecular Cell Biology, v. 8.
  47. Dijkgraaf, G. J. P., B. Alicke, L. Weinmann, T. Januario, K. West, Z. Modrusan, D. Burdick, R. Goldsmith, K. Robarge, D. Sutherlin, S. J. Scales, S. E. Gould, R. L. Yauch, and F. J. de Sauvage, 2011, Small Molecule Inhibition of GDC-0449 Refractory Smoothened Mutants and Downstream Mechanisms of Drug Resistance: Cancer Research, v. 71.
  48. Li, F., M. Duman-Scheel, D. Yang, W. Du, J. Zhang, C. Zhao, L. Qin, and S. Xin, 2010, Sonic Hedgehog Signaling Induces Vascular Smooth Muscle Cell Proliferation via Induction of the G(1) Cyclin-Retinoblastoma Axis: Arteriosclerosis Thrombosis and Vascular Biology, v. 30.
  49. Romer, J. T., H. Kimura, S. Magdaleno, K. Sasai, C. Fuller, H. Baines, M. Connelly, C. F. Stewart, S. Gould, L. L. Rubin, and T. Curran, 2004, Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-) p53(-/-) mice: Cancer Cell, v. 6.
  50. Lou, H., and M. Dean, 2007, Targeted therapy for cancer stem cells: the patched pathway and ABC transporters: Oncogene, v. 26, p. 1357-1360.
  51. Vistejnova, L., J. Dvorakova, M. Hasova, T. Muthny, V. Velebny, K. Soucek, and L. Kubala, 2009, The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques: Neuroendocrinology Letters, v. 30.
  52. Quint, K., S. Stintzing, B. Alinger, C. Hauser-Kronberger, O. Dietze, S. Gahr, E. G. Hahn, M. Ocker, and D. Neureiter, 2009, The Expression Pattern of PDX-1, SHH, Patched and Gli- 1 Is Associated with Pathological and Clinical Features in Human Pancreatic Cancer: Pancreatology, v. 9, p. 116-126.
  53. Ke, N., X. Wang, X. Xu, and Y. A. Abassi, 2011, The xCELLigence system for real-time and label- free monitoring of cell viability: Methods in molecular biology (Clifton, N.J.), v. 740.
  54. Meloni, A. R., G. B. Fralish, P. Kelly, A. Salahpour, J. K. Chen, R. J. Wechsler-Reya, R. J. Lefkowitz, and M. G. Caron, 2006, Smoothened signal transduction is promoted by G protein- coupled receptor kinase 2: Molecular and Cellular Biology, v. 26.
  55. Walter, T. Nikolskaya, Y. Nikolsky, J. Hartigan, D. R. Smith, M. Hidalgo, S. D. Leach, A. P. Klein, E. M. Jaffee, M. Goggins, A. Maitra, C. Iacobuzio-Donahue, J. R. Eshleman, S. E. Kern, R. H. Hruban, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V. E. Velculescu, and K. W. Kinzler, 2008, Core signaling pathways in human pancreatic cancers revealed by global genomic analyses: Science, v. 321, p. 1801-1806.
  56. Taipale, J., J. K. Chen, M. K. Cooper, B. L. Wang, R. K. Mann, L. Milenkovic, M. P. Scott, and P. A. Beachy, 2000, Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine: Nature, v. 406.
  57. Yauch, R. L., S. E. Gould, S. J. Scales, T. Tang, H. Tian, C. P. Ahn, D. Marshall, L. Fu, T. Januario, D. Kallop, M. Nannini-Pepe, K. Kotkow, J. C. Marsters, Jr., L. L. Rubin, and F. J. de Sauvage, 2008, A paracrine requirement for hedgehog signalling in cancer: Nature, v. 455.
  58. Lai, K., M. J. Robertson, and D. V. Schaffer, 2004, The Sonic hedgehog signaling system as a bistable genetic switch: Biophysical Journal, v. 86.
  59. Clement, V., P. Sanchez, N. de Tribolet, I. Radovanovic, and A. R. I. Altaba, 2007, HEDGEHOG- GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity: Current Biology, v. 17.
  60. Lauth, M., A. Bergstrom, T. Shimokawa, and R. Toftgard, 2007, Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists: Proceedings of the National Academy of Sciences of the United States of America, v. 104, p. 8455-8460.
  61. Tian, H., C. A. Callahan, K. J. DuPree, W. C. Darbonne, C. P. Ahn, S. J. Scales, and F. J. de Sauvage, 2009, Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis: Proceedings of the National Academy of Sciences of the United States of America, v. 106.
  62. Wang, Y., Z. Zhou, C. T. Walsh, and A. P. McMahon, 2009, Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation: Proceedings of the National Academy of Sciences of the United States of America, v. 106.
  63. Xu, X.-F., C.-Y. Guo, J. Liu, W.-J. Yang, Y.-J. Xia, L. Xu, Y.-C. Yu, and X.-P. Wang, 2009, Gli1 maintains cell survival by up-regulating IGFBP6 and Bcl-2 through promoter regions in parallel manner in pancreatic cancer cells: Journal of carcinogenesis, v. 8, p. 13.
  64. Kalluri, R., and R. A. Weinberg, 2009, The basics of epithelial-mesenchymal transition: Journal of Clinical Investigation, v. 119.
  65. Maloverjan, A., M. Piirsoo, L. Kasak, L. Peil, T. Osterlund, and P. Kogerman, 2010, Dual Function of UNC-51-like Kinase 3 (Ulk3) in the Sonic Hedgehog Signaling Pathway: Journal of Biological Chemistry, v. 285.
  66. Krantz, S. B., M. A. Shields, S. Dangi-Garimella, H. G. Munshi, and D. J. Bentrem, 2012, Contribution of Epithelial-to-Mesenchymal Transition and Cancer Stem Cells to Pancreatic Cancer Progression: Journal of Surgical Research, v. 173.
  67. Ng, J. M. Y., and T. Curran, 2011, The Hedgehog's tale: developing strategies for targeting cancer: Nature Reviews Cancer, v. 11.
  68. Mills, L. D., Y. Zhang, R. J. Marler, M. Herreros-Villanueva, L. Zhang, L. L. Almada, F. Couch, C. Wetmore, M. P. di Magliano, and M. E. Fernandez-Zapico, 2013, Loss of the Transcription Factor GLI1 Identifies a Signaling Network in the Tumor Microenvironment Mediating KRAS Oncogene-induced Transformation: Journal of Biological Chemistry, v. 288, p. 11786-11794.
  69. Yoon, J. W., R. Gilbertson, S. Iannaccone, P. Iannaccone, and D. Walterhouse, 2009, Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes: International Journal of Cancer, v. 124, p. 109-119.
  70. Epstein, E. H., 2008, Basal cell carcinomas: attack of the hedgehog: Nature Reviews Cancer, v. 8.
  71. Merchant, M., F. F. Vajdos, M. Ultsch, H. R. Maun, U. Wendt, J. Cannon, W. Desmarais, R. A. Lazarus, A. M. de Vos, and F. J. de Sauvage, 2004, Suppressor of fused regulates Gli activity through a dual binding mechanism: Molecular and Cellular Biology, v. 24.
  72. Mueller, M.-T., P. C. Hermann, J. Witthauer, B. Rubio-Viqueira, S. F. Leicht, S. Huber, J. W. Ellwart, M. Mustafa, P. Bartenstein, J. G. D'Haese, M. H. Schoenberg, F. Berger, K.-W. Jauch, M. Hidalgo, and C. Heeschen, 2009, Combined Targeted Treatment to Eliminate Tumorigenic Cancer Stem Cells in Human Pancreatic Cancer: Gastroenterology, v. 137, p. 1102-1113.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten