Publikationsserver der Universitätsbibliothek Marburg

Titel:Dual Role of Pituitary adenylate cyclase activating polypeptide (PACAP) in Melanoma: Autocrine and Paracrine Mechanisms on Tumor and Immune cells
Autor:Choi, Su Kyung
Weitere Beteiligte: Hertl, Michael (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0135
DOI: https://doi.org/10.17192/z2015.0135
URN: urn:nbn:de:hebis:04-z2015-01355
DDC: Allgemeines, Wissenschaft
Titel (trans.):Zweifache Rolle von PACAP beim Melanom: Autokrine und parakrine Wirkmechanismmen auf Tumor- und Immunzellen
Publikationsdatum:2015-09-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
PACAP, PACAP, Melanom, PACAP, Melanoma, Melanom

Summary:
This thesis is based on investigation of PACAP and PAC1R expression and functional roles of PACAP in human melanoma as well as immune cells. In the first part, the study demonstrates for the first time the expression of PACAP in primary and metastatic melanoma tissues. PACAP is distributed in two distinct subtypes, PACAP 27 and PACAP 38. PACAP 38 expression seems to be more prevalent in primary melanomas but metastatic melanomas profoundly produce PACAP 27. Another very interesting result is the predominant expression of high affinity PACAP receptor, PAC1R, in metastatic melanoma but not in primary melanoma. Co-expression of PACAP 27 and PAC1R can be also detected in metastatic melanoma cell lines. This finding let us consider that PACAP may regulate melanoma cells in an autocrine manner. PACAP function has been investigated on cell survival, cell growth, and cytokine production. Two melanoma lines were selected, SK-Mel 37 and NW-Mel 450, which express similar tumor-antigens, such as NY-ESO/LAGE-1, and MAGE 3, and have different morphological features and size. PACAP supplement achieved a positive regulation on survival or cell growth in SK-Mel 37, which is clearly susceptible to serum-starvation for reduced survival, in contrast to NW-Mel 450. Gene or protein expressions related to cell survival (BCL-2) and proliferation (Ki67) were induced by PACAP. Moreover, PACAP positively modulated protein expression of cell differentiation (i.e. MITF) and of chemokine receptor (i.e. CCR7) in melanomas. These factors are considered as important checkpoints for malignancy of melanoma. In addition, the spontaneous cytokine production of both melanoma lines is different. SK-Mel 37 releases IL-10, an immunosuppressive cytokine, while NW-Mel 450 produces IL-6, a cytokine associated with tumor growth and angiogenesis. Our results show that PACAP up-regulates IL-6 release in NW-Mel 450 but may not change IL-10 production in SK-Mel 37. These observations clarify, that PACAP induced pro-tumor features by different mechanisms. In the second part of the thesis PACAP-treated immune cells were investigated showing noticeable differences from untreated cells in the aspect of suppressive regulation. Two separated T cell subsets, CD4+CD25+CD127low/- T cells (regulatory T cells, Treg) and CD4+CD25- T cells (effector or responder T cells, Teff or Tresp) were studied. Both T cell subsets following PACAP supplement showed not only elevated gene transcripts of hallmarks for Treg, FoxP3 and CTLA-4, and of anti-inflammatory cytokines, IL-10 and TGF-β, but also significantly increased chemokine receptors, CCR4 and CCR7, being responsible for migration into dedicated tissue sites. Interestingly, a stronger effectiveness of PACAP on RNA level is observable in Treg cells compared to Teff/Tresp cells. This activity of PACAP may be predominantly mediated by the type II receptor, VPAC1R, which is present on CD4+ T cells. Our study, however, shows for the first time the expression of type I receptor, PAC1R, on T cells following activation with α-CD3/CD28 and particularly PACAP supplement. This finding let us consider, that perpetually provided PACAP by tumor cells may induce PAC1R expression on T cells. In addition in Treg functional assay a stronger suppression of cell growth of Teff/Tresp cells was observed, when co-culturing in the presence of PACAP. Taken together, for the first time our results show the expression of PACAP and high affinity PACAP receptor, PAC1R, in melanoma and the ability of PACAP to influence not only the cellular activation in cell growth and cytokine production of melanoma but also to enhance the characteristic features of Treg. Therefore, reducing the PACAP effect in melanoma may become valuable to influence the course of the disease. Further investigation of the cellular mechanism triggered by PACAP in melanoma and the PACAP-mediated suppressive regulation of Treg through PAC1R will be required.

Bibliographie / References

  1. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L. (1998). High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol., 9(2):159-65.
  2. Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordón-Cardó C, Lowe SW. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature, 409(6817):207-11.
  3. Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M, Weilbaecher KN, Schlegel W, Valent P, Wrba F, Pehamberger H, Fisher D,Jansen B. (2002). The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res., 62(7):2098-103.
  4. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S,Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 64(19):7099-109.
  5. Pearl RA, Pacifico MD, Richman PI, Stott DJ, Wilson GD, Grobbelaar AO. (2007) Ki-67 expression in melanoma. A potential method of risk assessment for the patient with a positive sentinel node. J Exp Clin Cancer Res., 26(1):109-15.
  6. Nakamura K, Nakamachi T, Endo K, Ito K, Machida T, Oka T, Hori M, Ishizaka K, Shioda S. (2013). Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors. Andrologia. doi: 10.1111/and.12102.
  7. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 2010; 116: 2224–33.
  8. Prasad ML, Patel SG, Shah JP, Hoshaw-Woodard S, Busam KJ. (2011). Prognostic significance of regulators of cell cycle and apoptosis, p16(INK4a), p53, and bcl-2 in primary mucosal melanomas of the head and neck. Head Neck Pathol., 6(2):184-90.
  9. Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M. (1992). Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections.
  10. Okazaki K, Kimura C, Kosaka T, Watanabe T, Ohkubo S, Ogi K, Kitada C, Onda H, Fujino M. (1992). Expression of human pituitary adenylate cyclase activating polypeptide (PACAP) cDNA in CHO cells and characterization of the products.
  11. Uddman R, Luts A, Absood A, Arimura A, Ekelund M, Desai H, Hakanson R, Hambreaus G, Sundler F, (1991). PACAP, a VIP- like peptide, in neurons of the esophagus. Regul Pept 36:415–422 490.
  12. Ramsay JA, From L, Kahn HJ. (1995). Bcl-2 protein expression in melanocytic neoplasms of the skin. Mod Pathol., 8:150–154.
  13. Nizar S, Meyer B, Galustian C, Kumar D, Dalgleish A. (2010). T regulatory cells, the evolution of targeted immunotherapy. Biochim Biophys Acta., 1806(1):7-17.
  14. Wang G, Qi C, Fan GH, Zhou HY, Chen SD. (2005). PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett., 579(18):4005-11.
  15. Wang X, Wei H, Zhao T, Zhu X, Yang X, Chen D, Zhou H. (2013). Evidence for pituitary adenylate cyclase-activating peptides as a direct immunoregulator in teleost head kidney. Fish Shellfish Immunol., 34(1):265-72.
  16. Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R. (2006). Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci., 31(2):193- 209.
  17. Muller JM, Philippe M, Chevrier L, Héraud C, Alleaume C, Chadéneau C. (2006). The VIP-receptor system in neuroblastoma cells. Regul Pept., 137(1-2):34-41.
  18. Expression and distribution of pituitary adenylate cyclase-activating peptide in human prostate and prostate cancer tissues.
  19. Tanaka J, Koshimura K, Murakami Y, Sohmiya M, Yanaihara N, Kato Y. (1997). Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regul Pept., 72(1):1-8.
  20. Mann DJ, Higgins T, Jones NC, Rozengurt E. (1997). Differential control of cyclins D1 and D3 and the cdk inhibitor p27Kip1 by diverse signalling pathways in Swiss 3T3 cells. Oncogene 14:1759–1766.
  21. Wang XB, Zheng CY, Giscombe R, Lefvert AK. (2001). Regulation of surface and intracellular expression of CTLA-4 on human peripheral T cells. Scand J Immunol., 54(5):453-8.
  22. Modulation of microphthalmia-associated transcription factor gene expression alters skinpigmentation. J Invest Dermatol., 119(6):1330-40.
  23. Tan YV, Abad C, Lopez R, Dong H, Liu S, Lee A, Gomariz RP, Leceta J, Waschek JA. (2009). Pituitary adenylyl cyclase- activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A., 106(6):2012-7.
  24. Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. (2001). Mutations in the INK4a/ARF melanoma susceptibility locus functionally impair p14ARF. J Biol Chem., 276(44):41424-34.
  25. de Toledo SM, Azzam EI, Gasmann MK, Mitchel RE. (1995). Use of semiquantitative reverse transcription-polymerase chain reaction to study gene expression in normal human skin fibroblasts following low dose-rate irradiation. Int J Radiat Biol., 67(2):135-43.
  26. Yagi H, Nomura T, Nakamura K, (2005). Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol., 16: 1643–56.
  27. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst., 95(24):1878-90.
  28. Yagi H, Seo N, Ohshima A, Itoh T, Itoh N, Horibe T, Yoshinari Y, Takigawa M, Hashizume H. (2006). Chemokine receptor expression in cutaneous T cell and NK/T-cell lymphomas: immunohistochemical staining and in vitro chemotactic assay. Am J Surg Pathol., 30(9):1111-9.
  29. Kohno T, Yamada Y, Akamatsu N, Kamihira S, Imaizumi Y, Tomonaga M, Matsuyama T. (2005). Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci., 96(8):527-33.
  30. van Maren WW, Jacobs JF, de Vries IJ, Nierkens S, Adema GJ. (2008). Toll-like receptor signalling on Tregs: to suppress or not to suppress? Immunology, 124(4):445-52.
  31. Obara Y, Horgan AM, Stork PJ. (2007). The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. J Neurochem., 101: 470-82.
  32. McCulloch DA, Lutz EM, Johnson MS, MacKenzie CJ, Mitchell R. (2000). Differential activation of phospholipase D by VPAC and PAC1 receptors. Ann N Y Acad Sci., 921:175-85.
  33. Mori T, Kim J, Yamano T, Takeuchi H, Huang S, Umetani N, Koyanagi K, Hoon DS. (2005). Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res., 65(5):1800-7.
  34. Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. (2011), Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology, 94:89-100.
  35. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, Hieshima K, Tatsumi Y, Matsushima K, Hasegawa H, Kanamaru A, Kamihira S, Yamada Y. (2002). Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood., 99(5):1505-11.
  36. Lieu SN, Oh DS, Pisegna JR, Germano PM. (2006). Neuroendocrine tumors express PAC1 receptors. Ann N Y Acad Sci., 1070:399-404.
  37. Matsumoto H, Koyama C, Sawada T, Koike K, Hirota K, Miyake A, Arimura A, Inoue K. (1993). Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3',5'-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology, 133(5):2150-5.
  38. Sancho M, Vieira JM, Casalou C, Mesquita M, Pereira T, Cavaco BM, Dias S, Leite V. (2006). Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol., 191(1):229-38.
  39. Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, Li G, Herlyn M. (2005). The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci., 10:2986-3001.
  40. Miracco C, Mourmouras V, Biagioli M, Rubegni P, Mannucci S, Monciatti I, Cosci E, Tosi P, Luzi P. (2007). Utility of tumour-infi ltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous. melanoma. Oncol Rep., 18: 1115–22.
  41. Pilon-Thomas S, Mackay A, Vohra N, Mulé JJ. (2010). Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J Immunol., 184(7):3442-9.
  42. Lara-Marquez M, O'Dorisio M, O'Dorisio T, Shah M, Karacay B. (2001). Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells. J Immunol., 166(4):2522-30.
  43. Pankhaniya R, Jabrane-Ferrat N, Gaufo GO, Sreedharan SP, Dazin P, Kaye J, Goetzl EJ. (1998). Vasoactive intestinal peptide enhancement of antigen-induced differentiation of a cultured line of mouse thymocytes. FASEB J., 12(1):119-27.
  44. Evaluation of tumour-infiltrating CD4+CD25+FOXP3+ regulatory T cells in human cutaneous benign and atypical naevi, melanomas and melanoma metastases. Br J Dermatol., 157: 531–39.
  45. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol., 29(10):1239- 46.
  46. Langer I. (2012). Conformational switches in the VPAC(1) receptor. Br J Pharmacol., 166(1):79-84.
  47. Neuroendocrine differentiation of the LNCaP prostate cancer cell line maintains the expression and function of VIP and PACAP receptors. Cell Signal., 13(12):887-94.
  48. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res., 60(11):3105-12.
  49. Svoboda M, Tastenoy M, Van Rampelbergh J, Goossens JF, De Neef P, Waelbroeck M, Robberecht P. (1994). Molecular cloning and functional characterization of a human VIP receptor from SUP-T1 lymphoblasts. Biochem Biophys Res Commun., 205(3):1617-24.
  50. Svoboda M, Tastenoy M, Ciccarelli E, Stiévenart M, Christophe J. (1993). Cloning of a splice variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor. Biochem Biophys Res Commun., 195(2):881-8.
  51. Nandha KA, Benito-Orfila MA, Smith DM, Ghatei MA, Bloom SL. (1991). Action of pituitary adenylate cyclase-activating polypeptide and vasoactiveintestinalpolypeptideontheratvascularsystem:effectson blood pressure and receptor binding. J Endocrinol 129:69–73.
  52. Yamaguchi H, Kuboki Y, Hatori T, Yamamoto M, Shiratori K, Kawamura S, Kobayashi M, Shimizu M, Ban S, Koyama I, Higashi M, Shin N, Ishida K, Morikawa T, Motoi F, Unno M, Kanno A, Satoh K, Shimosegawa T, Orikasa H, Watanabe T, Nishimura K, Harada Y,Furukawa T. (2011). Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas. Am J Surg Pathol., 35(12):1812-7.
  53. Furukawa O, Okabe S. (1997). Effects of growth factors on acid-induced damage to rat gastric epithelial cells. J Clin Gastroenterol., 25(1):S79-83.
  54. Moretti S, Chiarugi A, Semplici F, Salvi A, De Giorgi V, Fabbri P, Mazzoli S. (2001). Serum imbalance of cytokines in melanoma patients. Melanoma Res., 11(4):395-9.
  55. Sokolowska P, Nowak JZ. (2008) Effects of PACAP and VIP on cAMP-generating system and proliferation of C6 glioma cells. J Mol Neurosci., 36(1-3):286-91.
  56. Lázár-Molnár E, Hegyesi H, Tóth S, Falus A. (2000). Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine, 12(6):547-54.
  57. Vertongen P, Camby I, Darro F, Kiss R, Robberecht P. (1996)a. VIP and pituitary adenylate cyclase activating polypeptide (PACAP) have an antiproliferative effect on the T98G human glioblastoma cell line through interaction with VIP2 receptor. Neuropeptides, 30(5):491-6.
  58. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA,Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell, 109(6):707-18.
  59. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA,Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE. (2002). Bcl2 regulation by the melanocytes master regulator Mitf modulates lineage survival and melanoma cell viability. Cell, 109(6):707-18.
  60. Geneva: World Health Organization. (2006). Cancer Control: Knowledge into Action: WHO Guide for Effective Programmes: Module 1: Planning.
  61. Stein ME, Bernstein Z, Tsalic M, Drumea K, Steiner M, Sklar Z, Haim N. (2002). Chemoimmunohormonal therapy with carmustine, dacarbazine, cisplatin, tamoxifen, and interferon for metastatic melanoma: a prospective phase II study. Am J Clin Oncol., 25(5):460-3.
  62. Sreedharan SP, Patel DR, Huang JX, Goetzl EJ. (1993). Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun., 193(2):546-53.
  63. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M. (2003). Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Research, 63(4):756–759.
  64. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. (2008). CTLA-4 control over FoxP3+ regulatory T cell function. Science, 322(5899):271-5.
  65. Petro A, Schwartz J, Johnson T. (2004). Current melanoma staging. Clin Dermatol., 22(3):223-7.
  66. Serrone L, Zeuli M, Sega FM, Cognetti F. (2000). Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res., 19(1):21-34.
  67. Lelièvre V, Meunier AC, Caigneaux E, Falcon J, Muller JM. (1998). Differential expression and function of PACAP and VIP receptors in four human colonic adenocarcinoma cell lines. Cell Signal., 10(1):13-26.
  68. Rouillé Y, Martin S, Steiner DF. (1995). Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem., 270(44):26488-96.
  69. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365(6442):170-5.
  70. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. (2001). Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst., 93(21):1638-43.
  71. Ladanyi A, Mohos A, Somlai B, Liszkay G, Gilde K, Fejos Z, Gaudi I, Tímár J. (2010). FOXP3(+) cell density in primary tumor has no prognostic impact in patients with cutaneous malignant melanoma. Pathol Oncol Res., 16: 303–09.
  72. Pozo D, Delgado M, Martinez C, Gomariz RP, Guerrero JM, Calvo JR. (1997). Functional characterization and mRNA expression of pituitary adenylate cyclase activating polypeptide (PACAP) type I receptors in rat peritoneal macrophages.
  73. Said SI, Dickman K, Dey RD, Bandyopadhyay A, De Stefanis P, Raza S, Pakbaz H, Berisha HI. (1998). Glutamate toxicity in the lung and neuronal cells: prevention or attenuation by VIP and PACAP. Ann N Y Acad Sci., 865:226-37.
  74. Lázár-Molnár E, Hegyesi H, Pállinger E, Kovács P, Tóth S, Fitzsimons C, Cricco G, Martin G, Bergoc R, Darvas Z, Rivera ES, Falus A. (2002). Inhibition of human primary melanoma cell proliferation by histamine is enhanced by interleukin-6. Eur J Clin Invest., 32(10):743-9.
  75. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature., 436(7047):117-22.
  76. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun., 170(2):643-8.
  77. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. (1989). Isolation of a novel 38 residue- hypothalamic polypeptide which stimulates adenylate cyclase inpituitary cells. Biochem Biophys Res Commun., 164(1):567-74.
  78. Vivi Ann Flørenes, Ragnar S. Faye, Gunhild M. Maelandsmo, Jahn M. Nesland, Ruth Holm (2000). Levels of cyclin D1 and D3 in malignant melanoma: deregulated Cyclin D3 expression is associated with poor clinical outcome in superficial melanoma. Clinical Cancer Res. 6: 3614-3620.
  79. Lineage-specific signaling in melanocytes. C-kit stimulation recruits p300/CBP to microphthalmia. J. Bio. Chem. 273, 17983- 17986.
  80. Gagliardi MC, De Magistris MT. (2003). Maturation of human dendritic cells induced by the adjuvant cholera toxin: role of cAMP on chemokine receptor expression. Vaccine, 21(9-10):856-61.
  81. Lin JY, Fisher DE. (2007). Melanocyte biology and skin pigmentation. Nature., 445(7130):843-50.
  82. Storkus WJ, Zarour HM. (2000). Melanoma antigens recognised by CD8+ and CD4+ T cells. Forum (Genova), 10(3):256-70.
  83. Quirbt I, Verma S, Petrella T, Bak K, Charette M; Members of the Melanoma Disease Site Group of Cancer Care Ontario's
  84. Salti GI, Manougian T, Farolan M, Shilkaitis A, Majumdar D, Das Gupta TK. (2000). Micropthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res., 60(18):5012-6.
  85. Fouchier F, Forget P, Pic P, Marvaldi J, Pichon J. (1992). Modifications of the binding properties of the human VIP receptor of IGR39 cells by sulfhydryl reagents. Eur J Cell Biol., 59(2):382-8.
  86. Morrow JA, Lutz EM, West KM, Fink G, Harmar AJ. (1993). Molecular cloning and expression of a cDNA encoding a receptor for pituitary adenylate cyclase activating polypeptide (PACAP). FEBS Lett., 329(1-2):99-105.
  87. Ogi K, Miyamoto Y, Masuda Y, Habata Y, Hosoya M, Ohtaki T, Masuo Y, Onda H, Fujino M. (1993). Molecular cloning and functional expression of a cDNA encoding a human pituitary adenylate cyclase activating polypeptide receptor. Biochem Biophys Res Commun., 196(3):1511-21.
  88. Kuniyasu Y, Takahashi T, Itoh M, Shimizu J, Toda G, Sakaguchi S. (2000). Naturally anergic and suppressive CD25(+)CD4(+) T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int Immunol., 12(8):1145-55.
  89. Li G, Satyamoorthy K, Herlyn M. (2001). N-cadherin-mediated intercellular interactions promote survival and migration of melanomacells. Cancer Res., 61(9):3819-25.
  90. Moretti C, Mammi C, Frajese GV, Mariani S, Gnessi L, Arizzi M, Wannenes F, Frajese G. (2006). PACAP and type I PACAP receptors in human prostate cancer tissue. Ann N Y Acad Sci., 1070:440-9.
  91. García-Fernández MO, Bodega G, Ruíz-Villaespesa A, Cortés J, Prieto JC, Carmena MJ. (2004). PACAP expression and distribution in human breast cancer and healthy tissue. Cancer Lett., 205(2):189-95.
  92. Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J. (2009). PD1 blockade reverses the suppression of melanoma antigen- specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol., 21(9):1065-77.
  93. Gaytan F, Martinez-Fuentes AJ, Garcia-Navarro F, Vaudry H, Aguilar E. (1994). Pituitary adenylate cyclase-activating peptide (PACAP) immunolocalization in lymphoid tissues of the rat. Cell Tissue Res., 276(2):223-7.
  94. Program in Evidence-Based Care. (2007). Temozolomide for the treatment of metastatic melanoma. Curr Oncol., 14(1):27-33.
  95. Seidah NG, Chrétien M. (1999). Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res., 848(1-2):45-62.
  96. Pruitt K, Der CJ. (2001). Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett., 171(1):1-10.
  97. Segre GV, Goldring SR. (1993). Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G- protein-linked receptor family. Trends Endocrinol Metab., 4(10):309-14.
  98. Utton MA, Eickholt B, Howell FV, Wallis J, Doherty P. (2001). Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells. J Neurochem., 76(5):1421-30.
  99. Vivanco I, Sawyers CL. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2(7):489- 501.
  100. therapy chemosensitizes human melanoma in SCID mice. Nat Med., 4(2):232-4.
  101. Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. (1993). The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett., 334(1):3-8.
  102. Legha SS, Ring S, Bedikian A, Plager C, Eton O, Buzaid AC, Papadopoulos N. (1996). Treatment of metastatic melanoma with combined chemotherapy containing cisplatin, vinblastine and dacarbazine (CVD) and biotherapy using interleukin-2 and interferon-alpha. Ann Oncol., 7(8):827-35.
  103. Usdin TB, Bonner TI, Mezey E. (1994). Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology., 135(6):2662-80.
  104. Martínez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP. (1998). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol., 63(5):591-601.
  105. Lu N, Zhou R, DiCicco-Bloom E. (1998). Opposing mitogenic regu-lation by PACAP in sympathetic and cerebral cortical presursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res 53:651–662.
  106. Vertongen P, Devalck C, Sariban E, De Laet MH, Martelli H, Paraf F, Hélardot P, Robberecht P. (1996)b. Pituitary adenylate cyclase activating peptide and its receptors are expressed in human neuroblastomas. J Cell Physiol., 167(1):36-46.
  107. Nakamura K, Nakamachi T, Endo K, Ito K, Machida T, Oka T, Hori M, Ishizaka K, Shioda S. (2014). Distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the human testis and in testicular germ cell tumors. Andrologia., 46(5):465-71.
  108. Furukawa O, Nakamura E, Okabe S. (1997). Characterization of a novel cell damage model induced by acid and pepsin using rat gastric epithelial cells: protective effect of sucralfate. J Gastroenterol Hepatol., 12(2):115-21.
  109. Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A, Vaudry H, Gonzalez B, Eiden LE, Vaudry D. (2006). The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem., 98(2):321-9.
  110. Gonzalez BJ, Basille M, Mei YA, Vaudry D, Fournier A, Cazin L, Vaudry H. (1996). Ontogeny of PACAP and PACAP receptors in the rat brain: role of PACAP in the cerebellum during development. Ann N Y Acad Sci., 805:302-13.
  111. Journot L, Villalba M, Bockaert J. (1998). PACAP-38 protects cerebellar granule cells from apoptosis. Ann N Y Acad Sci., 865:100-10. Review.
  112. van den Bosch T, Koopmans AE, Vaarwater J, van den Berg M, de Klein A, Verdijk RM. (2013). Chemokine receptor CCR7 expression predicts poor outcome in uveal melanoma and relates to liver metastasis whereas expression of CXCR4 is not of clinical relevance. Invest Ophthalmol Vis Sci., 54(12):7354-61.
  113. Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM. (2008). PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem., 104(1):74-88.
  114. Gibbings DJ, Marcet-Palacios M, Sekar Y, Ng MC, Befus AD. (2007). CD8 alpha is expressed by human monocytes and enhances Fc gamma R-dependent responses. BMC Immunol., 8:12.
  115. Voice, J.K. Dorsam G, Lee H, Kong Y, Goetzl EJ. (2001). Allergic diathesis in transgenic mice with constitutive Tcell expression of inducible vasoactive intestinal peptide receptor. FASEB J. 15, 2489–2496 36
  116. Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Journot L. (1996). Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem., 271(36):22146-51.
  117. Morinaga Y, Suzuki H, Takatsuki F, Akiyama Y, Taniyama T, Matsushima K, Onozaki K. (1989). Contribution of IL-6 to the antiproliferative effect of IL-1 and tumor necrosis factor on tumor cell lines. J Immunol.,143(11):3538-42.
  118. Nelson BH. (2004). IL-2, regulatory T cells, and tolerance. J Immunol., 172(7):3983-8.
  119. Jen KY, Campo M, He H, Makani SS, Velasco G, Rothstein DM, Perkins DL, Finn PW. (2007). CD45RB ligation inhibits allergic pulmonary inflammation by inducing CTLA4 transcription. J Immunol., 179: 4212–4218.
  120. Vendetti S, Patrizio M, Riccomi A, De Magistris MT. (2006). Human CD41 T lymphocytes with increased intracellular cAMP levels exert regulatory functions by releasing extracellular cAMP. J Leukoc Biol., 80:880–888.
  121. Lee JT, Herlyn M. (2006). Embryogenesis meets tumorigenesis. Nat Med., 12(8):882-4.
  122. Wang Y, Becker D. (1997). Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med., 3(8):887-93.
  123. Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K, Larue L, Sansom OJ, Machesky LM. (2012). Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol., 132(11):2610-21.
  124. Chemokine-mediated migration of melanoma cells towards lymphatics--a mechanism contributing to metastasis. Oncogene., 26(21):2997-3005.
  125. Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE. (2005). Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. eptides., 26(12):2518-24.
  126. Martinez C, Abad C, Delgado M, Arranz A, Juarranz MG, Rodriguez-Henche N. (2002). Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proc Natl Acad Sci U S A 99: 1053–1058.
  127. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg., 244(1):113-20.
  128. Wei S, Kryczek I, Zou W. (2006). Regulatory T-cell compartmentalization and trafficking. Blood, 108(2):426-31.
  129. Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M. (2006). Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood., 107(9):3632-8.
  130. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C,Soper DM, Ziegler SF, Bluestone JA. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med., 203(7):1701-11.
  131. Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A. (2007). CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med., 204(4):735-45. Epub 2007 Mar 19.
  132. Wellbrock C, Marais R. (2005). Elevated expression of MITF counteracts B-RAF-stimulated melanocyte and melanoma cell proliferation. J Cell Biol., 170(5):703-8.
  133. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D,Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH,Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. (2008). Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A., 105(8):3041-6.
  134. Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. (2003). The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech., 14(1):33-43.
  135. Polak ME, Borthwick NJ, Gabriel FG, Johnson P, Higgins B, Hurren J, McCormick D, Jager MJ, Cree IA. (2007). Mechanisms of local immunosuppression in cutaneous melanoma. Br J Cancer, 96(12):1879-87.
  136. Tsao H, Goel V, Wu H, Yang G, Haluska FG. (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol., 122:337–341.
  137. Smalley SG, Barrow PA, Foster N. (2009). Immunomodulation of innate immune responses by vasoactive intestinal peptide (VIP): its therapeutic potential in inflammatory disease. Clin Exp Immunol., 157:225-234.
  138. Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc., 83(7):825-46.
  139. Lagouros E, Salomao D, Thorland E, Hodge DO, Vile R, Pulido JS. (2009). Infiltrative T regulatory cells in enucleated uveal
  140. Søndergaard JN, Nazarian R, Wang Q, Guo D, Hsueh T, Mok S, Sazegar H, MacConaill LE, Barretina JG, Kehoe SM, Attar N, von Euw E, Zuckerman JE, Chmielowski B, Comin-Anduix B, Koya RC, Mischel PS, Lo RS, Ribas A. (2010). Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J Transl Med., 8:39.
  141. Zhu S, Hong J, Tripathi MK, Sehdev V, Belkhiri A, El-Rifai W. (2013). Regulation of CXCR4-mediated invasion by DARPP-32 in gastric cancer cells. Mol Cancer Res., 11(1):86-94.
  142. Rodriguez G, Ross JA, Nagy ZS, Kirken RA. (2013). Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem., 288(10):7137-46.
  143. Goetzl EJ, Voice JK, Shen S, Dorsam G, Kong Y, West KM, Morrison CF, Harmar AJ. (2001). Enhanced delayed-type hypersensitivity and diminished immediate-type hypersensitivity in mice lacking the inducible VPAC2 receptor for vasoactive intestinal peptide. Proc Natl Acad Sci U S A., 98: 13854–13859.
  144. Saenz-Santamaria MC, Reed JA, McNutt NS. (1994). Immunohistochemical expression of BCL-2 in mela-nomas and intradermal nevi. J Cutan Pathol., 21:393–397.
  145. Song PI, Abraham TA, Park Y, Zivony AS, Harten B, Edelhauser HF, Ward SL, Armstrong CA, Ansel JC. (2001). The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells. Invest Ophthalmol Vis Sci., 42(12):2867-77.
  146. Voice JK, Dorsam G, Chan RC, Grinninger C, Kong Y, Goetzl EJ. (2002). Immunoeffector and immunoregulatory activities of vasoactive intestinal peptide. Regul Pept 109: 199–208.
  147. Le SV, Yamaguchi DJ, McArdle CA, Tachiki K, Pisegna JR, Germano P. (2002). PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human colonic tumor cells. Regul Pept., 109(1-3):115-25.
  148. Leyton J, Coelho T, Coy DH, Jakowlew S, Birrer MJ, Moody TW. (1998). PACAP(6-38) inhibits the growth of prostate cancer cells. Cancer Lett., 125(1-2):131-9.
  149. Mozdziak PE, Dibner JJ, McCoy DW. (2003). Glyceraldehyde-3-phosphate dehydrogenase expression varies with age and nutrition status. Nutrition., 19(5):438-40.
  150. Garbe C, Hauschild A, Volkenandt M, Schadendorf D, Stolz W, Reinhold U, Kortmann RD, Kettelhack C, Frerich B, Keilholz U,Dummer R, Sebastian G, Tilgen W, Schuler G, Mackensen A, Kaufmann R. (2008). Evidence and interdisciplinary consensus-based German guidelines: surgical treatment and radiotherapy of melanoma. Melanoma Res., 18(1):61-7.
  151. Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS. (2004). CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res., 10(7):2351-8.
  152. Vendetti S, Riccomi A, Sacchi A, Gatta L, Pioli C, De Magistris MT. (2002). Cyclic adenosine 5'-monophosphate and calcium induce CD152 (CTLA-4) up-regulation in resting CD4+ T lymphocytes. J Immunol., 169(11):6231-5.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten