Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur Adsorptionsdynamik von Tetrahydrofuran, Trimethylamin und Cyclooctin auf Silizium-(001)
Autor:Lipponer, Marcus Americanus
Weitere Beteiligte: Höfer, Ulrich (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0078
URN: urn:nbn:de:hebis:04-z2015-00780
DOI: https://doi.org/10.17192/z2015.0078
DDC:530 Physik
Titel (trans.):Adsorption dynamics of Tetrahydrofurane, Trimethylamine and Cyclooctyne on silicon-(001)
Publikationsdatum:2015-02-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Silicium, Organic, Silizium, Dynamic, Organik, Dynamik, Adsorption, Adsorption

Zusammenfassung:
Ziel dieser Arbeit war es, die Adsorptionsdynamik von Tetrahydrofuran, Trimethylamin und Cyclooctin auf der Si(001)-Oberfläche zu untersuchen. Es wurde gezeigt, dass alle drei Moleküle einen grundlegend unterschiedlichen Adsorptionspfad und damit verbunden unterschiedliche Potentialkurven aufweisen. Zur Charakterisierung der zugehörigen Adsorptionsdynamik wurde die Molekularstrahltechnik mit mehreren Analysemethoden, insbesondere zur Bestimmung von Haftkoeffizienten, kombiniert. Dazu zählt die King-and-Wells-Methode, die Messung optischen Frequenzverdopplung (SHG) an Oberflächen, sowie die Auger-Elektronen-Spektroskopie (AES). Durch die Verwendung der Molekularstrahltechnik konnten Adsorptionsexperimente insbesondere bei wohl definierter, variabler kinetischer Energie Ekin der Moleküle im Strahl durchgeführt werden. Die King-and-Wells-Methode sowie die Messung des SHG-Signals während der Strahlexposition erlaubten dabei eine in-situ-Messung des Haftkoeffizienten s beziehungsweise der Reaktivität der Adsorbate auf der Oberfläche. Die Kombination der Messung des Anfangshaftkoeffizienten s0 bei verschiedenen kinetischen Energien s0(Ekin) mit Messungen von s0 als Funktion der Oberflächentemperatur lassen weitgehende Aussagen über die Potentialkurve der untersuchten Systeme und der zugehörigen Adsorptionsdynamik, zum Beispiel bezüglich der Energiedissipation beim Oberflächenstoff zu. Mit Tetrahydrofuran wurde ein zyklischer Ether untersucht, der eigentlich als reaktionsträge gilt und gerade deswegen häufig als Lösungsmittel eingesetzt wird. Durch die hier durchgeführten Molekularstrahlexperimente konnte allerdings gezeigt werden, dass Tetrahydrofuran bei geringen Strahlenergien Ekin und Probentemperaturen Ts mit einem hohen Anfangshaftkoeffizienten von s0 ' 0:9 auf der Si(001)-Oberfläche adsorbiert, also eine hohe Reaktivität aufweist. Erst wenn eine Probentemperatur von ca. 350K überschritten wird, fällt der Anfangshaftkoeffiient ab, bis er bei ca. 700K unter s0 = 0:2 liegt. Dieser Verlauf des Anfangshaftkoeffizienten konnte qualitativ und quantitativ mit einer Adsorption unter Beteiligung eines Zwischenzustands beschrieben werden; die Differenz der Energiebarrieren für Desorption und Konversion in den Endzustand wurde zu "d

Bibliographie / References

  1. A. Gross, Reactions at Surfaces Studied by Ab Initio Dynamics Calculations, Surf. Sci. Rep. 32, 291 (1998).
  2. F. Tao, S. L. Bernasek, Z. Yuan, W. C. Ying, Y. Qu, K. Han, K. T. Wong, S. F. Bent, A. V. Teplyakov, K. S. Yong, et al., Functionalization of semiconductor surfaces, (2012).
  3. G. Wittig and E. R. Wilson, Zur Existenz niedergliedriger Cycloalkine, V. ¨ Uber die Frage des intermediären Auftretens von Cyclobutin, Chemische Berichte 98, 451 (1965).
  4. P. Krüger and J. Pollmann, Theory of Adsorption -Ordered Monolayers from Na to Cl on Si(001) and Ge(001), Appl. Phys. A 59, 487 (1994).
  5. U. Höfer, Nonlinear optical investigations of the dynamics of hydrogen interac- tion with silicon surfaces, Appl. Phys. A 63, 533 (1996).
  6. P. Dreyfuss and M. Dreyfuss, Fortschritte der Hochpolymeren-Forschung, 4/4, 528 (1967).
  7. P. Bratu, K. L. Kompa, and U. Höfer, Optical second-harmonic investigations of H 2 and D 2 adsorption on Si(100)2×1: the surface temperature dependence of the sticking coefficient, Chem. Phys. Lett. 251, 1 (1996).
  8. P. Kisliuk, The sticking probabilities of gases chemisorbed on the surfaces of solids, Journal of Physics and Chemistry of Solids 3, 95 (1957).
  9. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  10. H. Ibach, H. Wagner, and D. Bruchmann, Dissociative Chemisorption of H2o on Si(10 0) and Si(1 11) -a Vibrational Study, Solid State Commun. 42, 457 (1982).
  11. P. Chen, M. Colaianni, and J. Y. Jr., Silicon backbond strain effects on NH 3 surface chemistry: Si(111)-(7 × 7) compared to Si(100)-(2 × 1), Surface Science 274, L605 (1992).
  12. L. Clemen, R. M. Wallace, P. A. Taylor, M. J. Dresser, W. J. Choyke, W. H. Weinberg, and J. T. Yates, Adsorption and Thermal-Behavior of Ethylene on Si(100)-(2x1), Surf. Sci. 268, 205 (1992).
  13. L. S. O. Johansson and B. Reihl, Unoccupied Surface-State Bands on the Single- Domain Si(100)2x1 Surface, Surf. Sci. 270, 810 (1992).
  14. A. J. Mayne, A. R. Avery, J. Knall, T. S. Jones, G. A. D. Briggs, and W. H. Weinberg, An Stm Study of the Chemisorption of C2h4 on Si(001)(2x1), Surf. Sci. 284, 247 (1993).
  15. Q. Gao, Z. Dohnalek, C. Cheng, W. Choyke, and J. Y. Jr., Direct images of isotropic and anisotropic vibrations in the Cl-Si and H-O-Si chemisorption bonds on Si(100), Surface Science 312, 261 (1994).
  16. R. E. Schlier and H. E. Farnsworth, Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon, J. Chem. Phys. 30, 917 (1959).
  17. J. Barker, D. Dion, and R. Merrill, Classical surface scattering computations; Rainbows and energy exchange, Surface Science 95, 15 (1980).
  18. F. Stucki, J. Anderson, G. Lapeyre, and H. Farrell, Multiple vibrational excita- tions of H2O and D2O on Si(100)(2 × 1): A HREELS study, Surface Science 143, 84 (1984).
  19. C. Rettner, J. Kimman, F. Fabre, D. Auerbach, and H. Morawitz, Direct vibra- tional excitation in gas-surface collisions of NO with Ag (111), Surface Science 192, 107 (1987).
  20. J. Barker and D. Auerbach, Gas-surface interactions and dynamics; Thermal energy atomic and molecular beam studies, Surface Science Reports 4, 1 (1984).
  21. J. Lombardo and A. T. Bell, A Review of Theoretical Models of Adsorption, Diffusion, Desorption, and Reaction of Gases on Metal Surfaces, Surf. Sci. Rep. 13, 1 (1991).
  22. G. Mette, C. H. Schwalb, M. Dürr, and U. Höfer, Site-selective reactivity of ethylene on clean and hydrogen precovered Si(001), Chem. Phys. Lett. 483, 209 (2009).
  23. G. Mette, M. Dürr, R. Bartholomäus, U. Koert, and U. Höfer, Real-space ad- sorption studies of cyclooctyne on Si(001), Chem. Phys. Lett. 556, 70 (2013).
  24. J. Yoshinobu, Physical Properties and Chemical Reactivity of the Buckled Dimer on Si(100), Prog. Surf. Sci. 77, 37 (2004).
  25. T. R. Leftwich and A. V. Teplyakov, Chemical manipulation of multifunctional hydrocarbons on silicon surfaces, Surface science reports 63, 1 (2008).
  26. A. Pietzsch, F. Hennies, A. Föhlisch, W. Wurth, M. Nagasono, N. Witkowski, and M. N. Piancastelli, Adsorption Geometry of C2h2 on the Single-Domain Si(001)-(2 X 1) Surface: Fully Polarization Resolved Nexafs, Surf. Sci. 562, 65 (2004).
  27. N. Takeuchi, First principles calculations of the adsorption of acetylene on the Si(001) surface at low and full coverage, Surface Science 601, 3361 (2007).
  28. W. Kim, H. Kim, G. Lee, Y.-K. Hong, S. Lee, and J.-Y. Koo, Empty-state scanning tunneling microscopy image of C 2 H 2 on Si(001) -new evidence for paired end-bridge di-s configuration, Surface Science 538, L477 (2003).
  29. M. Nishijima, J. Yoshinobu, H. Tsuda, and M. Onchi, The adsorption and ther- mal decomposition of acetylene on Si(100) and vicinal Si(100)9 @BULLET , Surface Science 192, 383 (1987).
  30. M. A. Filler and S. F. Bent, The Surface as Molecular Reagent: Organic Che- mistry at the Semiconductor Interface, Prog. Surf. Sci. 73, 1 (2003).
  31. J. S. Kachian, K. T. Wong, and S. F. Bent, Periodic Trends in Organic Functio- nalization of Group IV Semiconductor Surfaces, Accounts of Chemical Research 43, 346 (2010), pMID: 20041705.
  32. X. Cao and R. J. Hamers, Silicon Surfaces as Electron Acceptors: Dative Bon- ding of Amines with Si(001) and Si(111) Surfaces, Journal of the American Chemical Society 123, 10988 (2001), pMID: 11686703.
  33. R. Hoffmann and R. B. Woodward, Selection Rules for Concerted Cycloaddition Reactions, Journal of the American Chemical Society 87, 2046 (1965).
  34. M. Z. Hossain, S.-i. Machida, Y. Yamashita, K. Mukai, and J. Yoshinobu, Purely Site-Specific Chemisorption and Conformation of Trimethylamine on Si(100)c(4 × 2), Journal of the American Chemical Society 125, 9252 (2003), pMID: 12889928.
  35. X. Cao, S. K. Coulter, M. D. Ellison, H. Liu, J. Liu, and R. J. Hamers, Bonding of Nitrogen-Containing Organic Molecules to the Silicon(001) Surface: The Role of Aromaticity, The Journal of Physical Chemistry B 105, 3759 (2001).
  36. G. T. Wang, C. Mui, C. B. Musgrave, and S. F. Bent, Example of a Ther- modynamically Controlled Reaction on a Semiconductor Surface: Acetone on Ge(100)-2 × 1, The Journal of Physical Chemistry B 105, 12559 (2001).
  37. M. Z. Hossain, S.-i. Machida, M. Nagao, Y. Yamashita, K. Mukai, and J. Yos- hinobu, Highly Selective Surface Lewis Acid-Base Reaction: Trimethylamine on Si(100)c(4×2), The Journal of Physical Chemistry B 108, 4737 (2004).
  38. D. J. Doren and J. C. Tully, Precursor-mediated adsorption and desorption: a theoretical analysis, Langmuir 4, 256 (1988).
  39. A. L. Johnson, M. M. Walczak, and T. E. Madey, ESDIAD of first-row protic hydrides adsorbed on silicon(100): structure and reactivity, Langmuir 4, 277 (1988).
  40. H. Haberland, U. Buck, and M. Tolle, Velocity Distribution of Supersonic Nozzle Beams, Rev. Sci. Instrum. 56, 1712 (1985).
  41. C. Mui, G. T. Wang, S. F. Bent, and C. B. Musgrave, Reactions of methylamines at the Si(100)-2×1 surface, The Journal of Chemical Physics 114, (2001).
  42. S. Yamamoto and R. E. Stickney, Molecular Beam Study of the Scattering of Rare Gases from the (110) Face of a Tungsten Crystal, The Journal of Chemical Physics 53, (1970).
  43. M. Dürr and U. Höfer, Molecular beam investigation of hydrogen dissociation on Si(001) and Si(111) surfaces, J. Chem. Phys. 121, 8058 (2004).
  44. T. Mineva, R. Nathaniel, K. L. Kostov, and W. Widdra, Two Bonding Configu- rations of Acetylene on Si(001)-(2 X 1): A Combined High-Resolution Electron Energy Loss Spectroscopy and Density Functional Theory Study, J. Chem. Phys. 125, 194712 (2006).
  45. M. A. Lipponer, N. Armbrust, M. Dürr, and U. Höfer, Adsorption dynamics of ethylene on Si(001), J. Phys. Chem. 136, 144703 (2012).
  46. J. Yoshinobu, H. Tsuda, M. Onchi, and M. Nishijima, The Adsorbed States of Ethylene on Si(100)C(4x2), Si(100)(2x1), and Vicinal Si(100)9a): Elec- tron Energy Loss Spectroscopy and Low-Energy Electron Diffraction Studies, J. Chem. Phys. 87, 7332 (1987).
  47. G. R. Darling and S. Holloway, Angular and Vibrational Effects in the Sticking and Scattering of H2, J. Chem. Phys. 97, 5182 (1992).
  48. R. Konecny and D. J. Doren, Adsorption of Water on Si(100)-(2x1): A Study with Density Functional Theory, J. Chem. Phys. 106, 2426 (1997).
  49. G. Cantele, F. Trani, D. Ninno, M. Cossi, and V. Barone, A theoretical study of ethylene, cyclopentene and 1-amino-3-cyclopentene adsorption on the silicon 001 surface, Journal of Physics: Condensed Matter 18, 2349 (2006).
  50. R. I. G. Uhrberg, G. V. Hansson, J. M. Nicholls, and S. A. Flodstrom, Experi- mental Studies of the Dangling-Bond and Dimer-Bond-Related Surface Electron Bands on Si(100) (2x1), Phys. Rev. B 24, 4684 (1981).
  51. Y. J. Chabal and S. B. Christman, Evidence of Dissociation of Water on the Si(100)2x1 Surface, Phys. Rev. B 29, 6974 (1984).
  52. F. Bozso and P. Avouris, Photoemission studies of the reactions of ammonia and N atoms with Si(100)-(2 × 1) and Si(111)-(7 × 7) surfaces, Phys. Rev. B 38, 3937 (Aug 1988).
  53. L. S. O. Johansson, R. I. G. Uhrberg, P. Martensson, and G. V. Hans- son, Surface-State Band-Structure of the Si(100)2x1 Surface Studied with Polarization-Dependent Angle-Resolved Photoemission on Single-Domain Sur- faces, Phys. Rev. B 42, 1305 (1990).
  54. C. H. F. Peden, J. W. Rogers, N. D. Shinn, K. B. Kidd, and K. L. Tsang, Ther- mally grown Si 3 N 4 thin films on Si(100): Surface and interfacial composition, Phys. Rev. B 47, 15622 (Jun 1993).
  55. Y. Morikawa, Adsorption geometries and vibrational modes of C 2 H 2 on the Si(001) surface, Phys. Rev. B 63, 033405 (Jan 2001).
  56. J.-H. Cho and L. Kleinman, Adsorption of cyclopentene on the Si(001) surface: A first-principles study, Phys. Rev. B 64, 235420 (Nov 2001).
  57. R. Terborg, M. Polcik, J. T. Hoeft, M. Kittel, D. I. Sayago, R. L. Toomes, and D. P. Woodruff, Local adsorption geometry of acetylene on Si(100)(2 × 1) : Multiple sites and the role of substrate temperature, Phys. Rev. B 66, 085333 (Aug 2002).
  58. P. L. Silvestrelli, O. Pulci, M. Palummo, R. Del Sole, and F. Ancilotto, First- principles study of acetylene adsorption on Si(100): The end-bridge structure, Phys. Rev. B 68, 235306 (Dec 2003).
  59. J.-H. Cho and L. Kleinman, Contrasting structural and bonding properties of tri- methylamine and dimethylamine adsorbed on Si(001), Phys. Rev. B 68, 245314 (Dec 2003).
  60. M. B. Yilmaz, A. Rajagopal, and F. M. Zimmermann, Quenching of Optical Second Harmonic Generation at the Si(001) Surface by Hydrogen Adsorption, Phys. Rev. B 69, 125413 (2004).
  61. Q. J. Zhang, X. L. Fan, W. M. Lau, and Z.-F. Liu, Sublayer Si atoms as reactive centers in the chemisorption on Si(100): Adsorption of C 2 H 2 and C 2 H 4 , Phys. Rev. B 79, 195303 (May 2009).
  62. D. Chadi, Atomic and electronic structures of reconstructed Si (100) surfaces, Physical Review Letters 43, 43 (1979).
  63. C. Rettner, F. Fabre, J. Kimman, and D. Auerbach, Observation of direct vi- brational excitation in gas-surface collisions: NO on Ag (111), Physical review letters 55, 1904 (1985).
  64. B. D. Kay, T. D. Raymond, and M. E. Coltrin, Observation of Direct Multiquan- tum Vibrational Excitation in Gas-Surface Scattering: NH 3 on Au(111), Phys. Rev. Lett. 59, 2792 (Dec 1987).
  65. C. H. Chung, W. J. Jung, and I. W. Lyo, Trapping-Mediated Chemisorption of Ethylene on Si(001)-C(4 X 2), Phys. Rev. Lett. 97, 116102 (2006).
  66. R. Hamers, P. Avouris, and F. Boszo, A scanning tunneling microscopy study of the reaction of Si(001)-2×1 with NH 3 , Journal of Vacuum Science Technology A 6, 508 (1988).
  67. M. Dürr, M. B. Raschke, E. Pehlke, and U. Höfer, Structure Sensitive Reaction Channels of Molecular Hydrogen on Silicon Surfaces, Phys. Rev. Lett. 86, 123 (2001).
  68. X. Lu, Diradical Mechanism for the [2 + 2] Cycloaddition of Ethylene on Si(100) Surface, Journal of the American Chemical Society 125, 6384 (2003).
  69. M. Dürr and U. Höfer, Stereochemistry on Si(001): Angular Dependence of H 2 Dissociation, Phys. Rev. Lett. 88, 076107 (2002).
  70. K. T. Queeney, Y. J. Chabal, and K. Raghavachari, Role of Interdimer Inter- actions in Nh3 Dissociation on Si(100)-(2 X 1), Phys. Rev. Lett. 86, 1046 (2001).
  71. J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Si(100) Surface Recon- struction -Spectroscopic Selection of a Structural Model, Phys. Rev. Lett. 35, 729 (1975).
  72. P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke, and J. T. Y. Jr., Adsorption and decomposition of acetylene on silicon(100)-(2×1), Journal of the American Chemical Society 114, 6754 (1991), proceedings of the 11th International Conference on Vibrations at Surfaces.
  73. M. Lipponer, M. Dürr, and U. Höfer Poster: Adsorption dynamics of organic molecules on Si(001) Materialforschungstag Mittelhessen (Gießen, 2014) Wissenschaftlicher Werdegang 09/1994 – 07/2000 Walter-Erbe-Realschule, Tübingen, Mittlere Reife 09/2000 – 07/2002 Gewerbliche Schule, Tübingen, Ausbildung zum Physikalisch-Technischen Assistenten
  74. L. Brandsma and H. Verkruijsse, An Improved Synthesis of Cyclooctyne, Syn- thesis 1978, 290 (1978).
  75. G. Scoles, Atomic and Molecular Beam Techniques (Oxford University Press, Oxford, 1988).
  76. J. Agard, J. A. Prescher, and C. R. Bertozzi, A Strain-Promoted [3 + 2] Azide-Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems, Journal of the American Chemical Society 126, 15046 (2004), pMID: 15547999.
  77. Beispiel zur Auswertung einer einer idealisierten King-and-Wells-Messung 40
  78. T. Kugler, U. Thibaut, M. Abraham, G. Folkers, and W. Göpel, Chemically mo- dified semiconductor surfaces: 1,4-phenylenediamine on Si(100), Surface Science 260, 64 (1992).
  79. G. Mette, M. Reutzel, R. Bartholomäus, S. Laref, R. Tonner, M. Dürr, U. Koert, and U. Höfer, Complex Surface Chemistry of an Otherwise Inert Solvent Mole- cule: Tetrahydrofuran on Si(001), ChemPhysChem n/a (2014).
  80. G. Dufour, F. Rochet, H. Roulet, and F. Sirotti, Contrasted behavior of Si(001) and Si(111) surfaces with respect to {NH3} adsorption and thermal nitridation: a N 1s and Si 2p core level study with synchrotron radiation, Surface Science 304, 33 (1994).
  81. R. A. Wolkow, Controlled Molecular Adsorption on Silicon: Laying a Foundation for Molecular Devices, Annu. Rev. Phys. Chem. 50, 413 (1999).
  82. R. J. Hamers, S. K. Coulter, M. D. Ellison, J. S. Hovis, D. F. Padowitz, M. P. Schwartz, C. M. Greenlief, and J. N. Russell, Cycloaddition Chemistry of Orga- nic Molecules with Semiconductor Surfaces, Acc. Chem. Res. 33, 617 (2000).
  83. DFG-Graduate College 1782 Launch seminar: " Functionalization of semiconductors " (Rauischolzhausen, 2012)
  84. R. M. Tromp, R. J. Hamers, and J. E. Demuth, Si(001) Dimer Structure Ob- served with Scanning Tunneling Microscopy, Phys. Rev. Lett. 55, 1303 (1985).
  85. R. A. Wolkow, Direct Observation of an Increase in Buckled Dimers on Si(001) at Low-Temperature, Phys. Rev. Lett. 68, 2636 (1992).
  86. F. Goodman and H. Wachman, Dynamics of Gas-Surface Scattering. 1976, .
  87. M. Dürr, Reaktionsdynamik von Wasserstoff auf Silizium: Eine Untersuchung mittels optischer Frequenzverdoppelung, Molekularstrahltechnik und Rastertun- nelmikroskopie, Dissertation, Technische Universität München, February 2000.
  88. C. Voelkmann, Five-wave mixing investigation of electron dynamics at silicon surfaces, Dissertation, Technische Universität München, 2001. LITERATURVERZEICHNIS [114] C. Assmann, SHG-Vergleichsmessungen an Quarz und auf der Si(001)- Oberfläche mittels Photon Counting und Lock-In-Verfahren auf der Si(001)- Oberfläche, Bachelorarbeit (2012).
  89. R. J. Hamers, Formation and characterization of organic monolayers on semi- conductor surfaces, Annu. Rev. Anal. Chem. 1, 707 (2008).
  90. C. L. Hedberg and K. D. Childs, Handbook of Auger electron spectroscopy: a book of reference data for identification and interpretation in auger electron spectroscopy, (1995).
  91. A. G. Fallis, Harvesting Diels and Alder's garden: Synthetic investigations of in- tramolecular [4+2] cycloadditions, Accounts of chemical research 32, 464 (1999).
  92. R. B. Turner, A. D. Jarrett, P. Goebel, and B. J. Mallon, Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins, Journal of the American Chemical Society 95, 790 (1973).
  93. M. Lipponer, M. Dürr, and U. Höfer Adsorption dynamics of tetrahydrofuran on Si(001) studied by means of molecular beam techniques (Chemical Physics Letters, in preparation)
  94. M. Lipponer, M. Dürr, and U. Höfer Poster: Adsorption dynamics of tetrahydrofuran on Si(001) DFG-Graduate College 1782 seminar: " Functionalization of semiconductors " (Hofheim, 2013)
  95. Y. Chabal, Hydride formation on the Si(100):H 2 O surface, Phys. Rev. B 29, 3677 (Mar 1984).
  96. John Marshall High-School, High-School diploma
  97. K. Brixius, Nichtlineare optische Spektroskopie an der Galliumphosphid- Silizium(001)-Grenzfläche mit Si(001)-Oberflächen, Dissertation (2014).
  98. [100] Y. R. Shen, Optical Second Harmonic Generation at Interfaces, Annu. Rev. Phys. Chem. 40, 327 (1989).
  99. I. Fleming, Pericyclic Reactions (1999), .
  100. P. Bratu and U. Höfer, Phonon-Assisted Sticking of Molecular Hydrogen on Si(111)-(7×7), Phys. Rev. Lett. 74, 1625 (1995).
  101. T. Kato, S.-Y. Kang, X. Xu, and T. Yamabe, Possible Dissociative Adsorption of CH3OH and CH3NH2 on Si(100)-2 × 1 Surface, The Journal of Physical Chemistry B 105, 10340 (2001).
  102. J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Si (100) Surface .3. Surface Reconstruction, Phys. Rev. B 14, 588 (1976).
  103. M. Dresser, P. Taylor, R. Wallace, W. Choyke, and J. Y. Jr., The adsorption and decomposition of NH 3 on Si(100) -detection of the NH 2 species, Surface Science 218, 75 (1989).
  104. M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, The Adsorption and Reactions of Water on Si(100)-2x1 and Si(111)-7x7 Surfaces, Surf. Sci. 351, 87 (1996).
  105. J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 1996) (1996).
  106. M. Dürr, Untersuchung der Reaktionsdynamik von molekularem Wasserstoff mit Siliziumoberflächen mittels Molekularstrahl und optischer Frequenzverdoppelung, Diplomarbeit, Technische Universität München, 1997.
  107. C. U. S. Larsson, A. L. Johnson, A. Flodström, and T. E. Madey, Adsorption of H2O on planar and stepped Si(100): Structural aspects, Journal of Vacuum Science & Technology A 5, (1987).
  108. P. Bratu, W. Brenig, A. Groß, M. Hartmann, U. Höfer, P. Kratzer, and R. Russ, Reaction dynamics of molecular hydrogen on silicon surfaces, Phys. Rev. B 54, 5978 (1996).
  109. X.-Y. Zhu, J. A. Mulder, and W. F. Bergerson, Chemical Vapor Deposition of Organic Monolayers on Si(100) via Si-N Linkages, Langmuir 15, 8147 (1999).
  110. W. Carruthers, Cycloaddition reactions in organic synthesis, (1990).
  111. P. T. Czekala, H. Lin, W. A. Hofer, and A. Gulans, Acetylene adsorption on silicon (100)-(4×2) revisited, Surface Science 605, 1341 (2011).
  112. C. Huang, W. Widdra, X. S. Wang, and W. H. Weinberg, Adsorption of acetylene on the Si(100)-(2 × 1) surface, Journal of Vacuum Science & Technology A 11, (1993).
  113. X. Cao and R. J. Hamers, Interactions of alkylamines with the silicon (001) surface, Journal of Vacuum Science & Technology B 20, (2002).
  114. G. Schmitt, Untersuchungen der nichtlinearen optischen Eigenschaften von Si- liziumoberflächen im nahen Infrarot: Frequenzabhängigkeit und mikroskopische Mechanismen, Dissertation, Technische Universität München, 1996.
  115. M. Dürr, M. B. Raschke, and U. Höfer, Effect of beam energy and surface tem- perature on the dissociative adsorption of H 2 on Si(001), J. Chem. Phys. 111, 10411 (1999).
  116. D. A. King and M. G. Wells, Molecular Beam Investigation of Adsorption Ki- netics on Bulk Metal Targets: Nitrogen on Tungsten, Surf. Sci. 29, 454 (1972).
  117. X.-L. Zhou, C. Flores, and J. White, Adsorption and decomposition of water on Si(100): a TPD and SSIMS study, Applied Surface Science 62, 223 (1992).
  118. R. K. Schulze and J. F. Evans, Room-temperature water adsorption on the Si(100) surface examined by UPS, XPS, and static SIMS, Applied Surface Science 81, 449 (1994).
  119. M. Dürr and U. Höfer, Dissociative adsorption of molecular hydrogen on silicon surfaces, Surf. Sci. Rep. 61, 465 (2006).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten