Publikationsserver der Universitätsbibliothek Marburg

Titel:Functional analysis of the histone arginine methyltransferase PRMT6
Autor:Riedl, Stefanie
Weitere Beteiligte: Bauer, Uta-Maria (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0797
URN: urn:nbn:de:hebis:04-z2014-07971
DOI: https://doi.org/10.17192/z2014.0797
DDC: Medizin
Titel (trans.):Funktionelle Analyse der Protein-Arginin-Methyltransferase 6 (PRMT6)
Publikationsdatum:2015-01-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
DNA Reparatur, cancer, senescence, PRMT6, DNA repair, Seneszenz, proliferation, arginine methyltransferase, Tumorsuppressorgene, Krebs, tumour suppressor genes, Proliferation, Arginin-Methyltransferase

Summary:
Aberrant expression of several PRMTs is linked to the pathogenesis of human cancer. PRMTs catalyse the arginine methylation of many substrates, which are implicated in cancer development, progression and aggressiveness. In this context, only few studies investigated PRMT6 so far and its possible role in tumourigenesis and the control of cellular processes, which could also be deregulated in human cancer by PRMT6. Hence, the present study analysed the expression of PRMT6 in murine lung cancer, tried to reveal the role of PRMT6 in cell proliferation and senescence and continued the validation of putative interaction partners of PRMT6. In the first part of this thesis, immunohistochemical (IHC) stainings demonstrated that Prmt6 protein levels are predominantly increased in lung tumour cells compared to healthy tissue using the LLC1 and KrasLA2 mouse models. The second part of this thesis showed that PRMT6 negatively regulates the transcriptional expression of the tumour suppressor genes CDKN1A and p16-INK4A. Both are direct target genes of PRMT6, whereby the corresponding histone mark H3R2me2a is exclusively enriched at the CDKN1A gene. Knockdown of PRMT6 results in proliferation defects of several transformed cell lines and induces a senescent phenotype in non-transformed human diploid fibroblasts. Furthermore, PRMT6 was found to inhibit the onset of oncogene-induced senescence (OIS), in which CDKN1A is an activator of the senescent phenotype. In the third part of this thesis, PRMT6 was shown to interact with PCNA, DDB1 and DDB2. These interactors are subunits of the CUL4A-RING ubiquitin E3-ligase complex (CRL4) and hint to possible novel cellular functions of PRMT6 in the ubiquitylation processes either after DNA damage or during replication and transcription. In summary, the present study reveals that PRMT6 is overexpressed in murine lung cancer. It uncovers novel functional aspects of PRMT6 being a positive regulator of proliferation and negative regulator of senescence by transcriptional repression of tumour suppressor genes. Finally, it opens up a field of so far undescribed possible functions of PRMT6 by validation of novel interaction partners of PRMT6.

Bibliographie / References

  1. Miranda, T.B., Miranda, M., Frankel, A., and Clarke, S. (2004). PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 279, 22902–22907.
  2. Wei, S., and Sedivy, J.M. (1999). Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res. 59, 1539–1543.
  3. Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., et al. (2005). UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387–400.
  4. Hayflick, L., and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.
  5. Lamond, A.I., and Earnshaw, W.C. (1998). Structure and function in the nucleus. Science 280, 547–553. REFERENCES 136
  6. Yoshimatsu, M., Toyokawa, G., Hayami, S., Unoki, M., Tsunoda, T., Field, H.I., Kelly, J.D., Neal, D.E., Maehara, Y., Ponder, B.A.J., et al. (2011). Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int. J. Cancer 128, 562–573.
  7. Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5, 741–747.
  8. Yang, Y.-L., Hung, M.-S., Wang, Y., Ni, J., Mao, J.-H., Hsieh, D., Au, A., Kumar, A., Quigley, D., Fang, L.T., et al. (2014). Lung tumourigenesis in a conditional Cul4A transgenic mouse model. J. Pathol. 233, 113–123.
  9. Paik, W.K., and Kim, S. (1967). Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem. Biophys. Res. Commun. 29, 14–20.
  10. Loyola, A., and Almouzni, G. (2004). Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta 1677, 3–11.
  11. Kim, C., Lim, Y., Yoo, B.C., Won, N.H., Kim, S., and Kim, G. (2010). Regulation of post-translational protein arginine methylation during HeLa cell cycle. Biochim. Biophys. Acta 1800, 977–985.
  12. Wang, X., Huang, Y., Zhao, J., Zhang, Y., Lu, J., and Huang, B. (2012a). Suppression of PRMT6-mediated arginine methylation of p16 protein potentiates its ability to arrest A549 cell proliferation. Int. J. Biochem. Cell Biol. 44, 2333–2341.
  13. Iovine, B., Iannella, M.L., and Bevilacqua, M.A. (2011a). Damage-specific DNA binding protein 1 (DDB1) is involved in ubiquitin-mediated proteolysis of p27Kip1 in response to UV irradiation. Biochimie 93, 867– 875.
  14. Elakoum, R., Gauchotte, G., Oussalah, A., Wissler, M.-P., Clément-Duchêne, C., Vignaud, J.-M., Guéant, J.-L., and Namour, F. (2014). CARM1 and PRMT1 are dysregulated in lung cancer without hierarchical features. Biochimie 97, 210–218.
  15. Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Cell 128, 707– 719.
  16. Mantri, M., Krojer, T., Bagg, E.A., Webby, C.A., Butler, D.S., Kochan, G., Kavanagh, K.L., Oppermann, U., McDonough, M.A., and Schofield, C.J. (2010). Crystal Structure of the 2-Oxoglutarate-and Fe(II)- Dependent Lysyl Hydroxylase JMJD6. J. Mol. Biol.
  17. Han, Z., Guo, L., Wang, H., Shen, Y., Deng, X.W., and Chai, J. (2006). Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol. Cell 22, 137–144.
  18. Lee, J., and Zhou, P. (2007). DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775– 780.
  19. Terai, K., Abbas, T., Jazaeri, A.A., and Dutta, A. (2010). CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol. Cell 37, 143–149.
  20. Takai, H., Smogorzewska, A., and de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Curr.
  21. Fierro-Monti, I., and Mathews, M.B. (2000). Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem. Sci. 25, 241–246.
  22. Shim, J., Lim, H., R Yates, J., and Karin, M. (2002). Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 10, 1331–1344.
  23. Milne, T.A., Briggs, S.D., Brock, H.W., Martin, M.E., Gibbs, D., Allis, C.D., and Hess, J.L. (2002). MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117.
  24. Hughes, C.M., Rozenblatt-Rosen, O., Milne, T.A., Copeland, T.D., Levine, S.S., Lee, J.C., Hayes, D.N., Shanmugam, K.S., Bhattacharjee, A., Biondi, C.A., et al. (2004). Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597.
  25. Serrano, M., and Blasco, M.A. (2007). Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol. 8, 715–722.
  26. Migliori, V., Müller, J., Phalke, S., Low, D., Bezzi, M., Mok, W.C., Sahu, S.K., Gunaratne, J., Capasso, P., Bassi, C., et al. (2012). Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat. Struct. Mol. Biol. 19, 136–144.
  27. Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016.
  28. Lanigan, F., Geraghty, J.G., and Bracken, A.P. (2011). Transcriptional regulation of cellular senescence. Oncogene 30, 2901–2911.
  29. Histone arginine methylation keeps RUNX1 target genes in an intermediate state. Oncogene 32, 2565– 2575.
  30. Berthet, C., Guéhenneux, F., Revol, V., Samarut, C., Lukaszewicz, A., Dehay, C., Dumontet, C., Magaud, J.- P., and Rouault, J.-P. (2002). Interaction of PRMT1 with BTG/TOB proteins in cell signalling: molecular analysis and functional aspects. Genes Cells 7, 29–39.
  31. Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283, 3006–3010.
  32. Teyssier, C., Chen, D., and Stallcup, M.R. (2002). Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J. Biol. Chem. 277, 46066– 46072.
  33. Shi, L., Zhao, G., Qiu, D., Godfrey, W.R., Vogel, H., Rando, T.A., Hu, H., and Kao, P.N. (2005). NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3'-untranslated region of MyoD and p21WAF1/CIP1 mRNAs. J. Biol. Chem. 280, 18981–18989.
  34. Sgarra, R., Lee, J., Tessari, M.A., Altamura, S., Spolaore, B., Giancotti, V., Bedford, M.T., and Manfioletti, G. (2006). The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J. Biol. Chem. 281, 3764–3772.
  35. El-Mahdy, M.A., Zhu, Q., Wang, Q., Wani, G., Praetorius-Ibba, M., and Wani, A.A. (2006). Cullin 4A- mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J. Biol. Chem. 281, 13404–13411.
  36. Lim, Y., Lee, E., Lee, J., Oh, S., and Kim, S. (2008). Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. J. Biochem. 144, 523–529.
  37. Kuhn, P., Chumanov, R., Wang, Y., Ge, Y., Burgess, R.R., and Xu, W. (2011). Automethylation of CARM1 allows coupling of transcription and mRNA splicing. Nucleic Acids Res. 39, 2717–2726.
  38. Neault, M., Mallette, F.A., Vogel, G., Michaud-Levesque, J., and Richard, S. (2012). Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res. 40, 9513–9521.
  39. Phalke, S., Mzoughi, S., Bezzi, M., Jennifer, N., Mok, W.C., Low, D.H.P., Thike, A.A., Kuznetsov, V.A., Tan, P.H., Voorhoeve, P.M., et al. (2012). p53-Independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res. 40, 9534–9542.
  40. Arginine methylation of the HIV-1 nucleocapsid protein results in its diminished function. AIDS 21, 795– 805.
  41. Xu, W., Cho, H., Kadam, S., Banayo, E.M., Anderson, S., Yates, J.R., Emerson, B.M., and Evans, R.M. (2004). A methylation-mediator complex in hormone signaling. Genes Dev. 18, 144–156.
  42. Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument-Bromage, H., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22, 640–653.
  43. Abbas, T., Sivaprasad, U., Terai, K., Amador, V., Pagano, M., and Dutta, A. (2008). PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 22, 2496–2506.
  44. Kim, Y., Starostina, N.G., and Kipreos, E.T. (2008). The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev. 22, 2507–2519.
  45. Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463–2479.
  46. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3380.
  47. Agger, K., Cloos, P.A.C., Rudkjaer, L., Williams, K., Andersen, G., Christensen, J., and Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene-and stress-induced senescence. Genes Dev. 23, 1171–1176.
  48. Webby, C.J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M.L., Schmitz, C., Butler, D.S., Yates, J.R., et al. (2009). Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90–93.
  49. Arginine Methylation of CRTC2 Is Critical in the Transcriptional Control of Hepatic Glucose Metabolism. Sci. Signal. 7, ra19.
  50. Fennell, M., Xiang, Q., Hwang, A., Chen, C., Huang, C.-H., Chen, C.-C., Pelossof, R., and Garippa, R.J. (2014). Impact of RNA-Guided Technologies for Target Identification and Deconvolution. J. Biomol. Screen.
  51. Lee, D.Y., Teyssier, C., Strahl, B.D., and Stallcup, M.R. (2005a). Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147–170.
  52. hCAF1, a new regulator of PRMT1-dependent arginine methylation. J. Cell Sci. 120, 638–647.
  53. O'Brien, K.B., Alberich-Jordà, M., Yadav, N., Kocher, O., Diruscio, A., Ebralidze, A., Levantini, E., Sng, N.J.L., Bhasin, M., Caron, T., et al. (2010). CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137, 2147–2156.
  54. Ho, M.-C., Wilczek, C., Bonanno, J.B., Xing, L., Seznec, J., Matsui, T., Carter, L.G., Onikubo, T., Kumar, P.R., Chan, M.K., et al. (2013). Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 8, e57008. REFERENCES 134
  55. Imhof, A., and Becker, P.B. (2001). Modifications of the histone N-terminal domains. Evidence for an " epigenetic code " ? Mol. Biotechnol. 17, 1–13.
  56. Tropberger, P., and Schneider, R. (2010). Going global: novel histone modifications in the globular domain of H3. Epigenetics 5, 112–117.
  57. Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M.C., Di Giacomo, V., Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J., et al. (2013). Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell 155, 1119–1130.
  58. Vieira, F.Q., Costa-Pinheiro, P., Ramalho-Carvalho, J., Pereira, A., Menezes, F.D., Antunes, L., Carneiro, I., Oliveira, J., Henrique, R., and Jerónimo, C. (2014). Deregulated expression of selected histone methylases and demethylases in prostate carcinoma. Endocr. Relat. Cancer 21, 51–61.
  59. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636.
  60. Malatesta, M., Peschiaroli, A., Memmi, E.M., Zhang, J., Antonov, A., Green, D.R., Barlev, N.A., Garabadgiu, A. V, Zhou, P., Melino, G., et al. (2013). The Cul4A-DDB1 E3 ubiquitin ligase complex represses p73 transcriptional activity. Oncogene 32, 4721–4726.
  61. Hauser, A.-T., Bissinger, E.-M., Metzger, E., Repenning, A., Bauer, U.-M., Mai, A., Schüle, R., and Jung, M. (2012). Screening assays for epigenetic targets using native histones as substrates. J. Biomol. Screen. 17, 18–26.
  62. Poon, R.T., Chung, K.K., Cheung, S.T., Lau, C.P., Tong, S.W., Leung, K.L., Yu, W.C., Tuszynski, G.P., and Fan, S.T. (2004). Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin. Cancer Res. 10, 4150–4157.
  63. Pak, M.L., Lakowski, T.M., Thomas, D., Vhuiyan, M.I., Hüsecken, K., and Frankel, A. (2011). A protein arginine N-methyltransferase 1 (PRMT1) and 2 heteromeric interaction increases PRMT1 enzymatic activity. Biochemistry 50, 8226–8240.
  64. Bedford, M.T., and Richard, S. (2005). Arginine methylation an emerging regulator of protein function.
  65. Michaloglou, C., Vredeveld, L.C.W., Soengas, M.S., Denoyelle, C., Kuilman, T., van der Horst, C.M.A.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724.
  66. Mali, P., Esvelt, K.M., and Church, G.M. (2013). Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963.
  67. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.
  68. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829– 6834.
  69. Zobel-Thropp, P., Gary, J.D., and Clarke, S. (1998). delta-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J. Biol. Chem. 273, 29283–29286.
  70. Boffa, L.C., Karn, J., Vidali, G., and Allfrey, V.G. (1977). Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem. Biophys. Res. Commun. 74, 969–976. REFERENCES 131
  71. Herrmann, F., Lee, J., Bedford, M.T., and Fackelmayer, F.O. (2005). Dynamics of human protein arginine methyltransferase 1(PRMT1) in vivo. J. Biol. Chem. 280, 38005–38010.
  72. Harshman, S.W., Young, N.L., Parthun, M.R., and Freitas, M.A. (2013). H1 histones: current perspectives and challenges. Nucleic Acids Res. 41, 9593–9609.
  73. Wang, H., Zhai, L., Xu, J., Joo, H.-Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006). Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22, 383–394.
  74. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat. Struct. Mol. Biol. 13, 704–712.
  75. Wang, Y., Wysocka, J., Sayegh, J., Lee, Y.-H., Perlin, J.R., Leonelli, L., Sonbuchner, L.S., McDonald, C.H., Cook, R.G., Dou, Y., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283.
  76. Zurita-Lopez, C.I., Sandberg, T., Kelly, R., and Clarke, S.G. (2012). Human Protein Arginine Methyltransferase 7 (PRMT7) Is a Type III Enzyme Forming -NG-Monomethylated Arginine Residues. J. Biol. Chem. 287, 7859–7870.
  77. Pal, S., Vishwanath, S.N., Erdjument-Bromage, H., Tempst, P., and Sif, S. (2004). Human SWI/SNF- associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645. REFERENCES 139
  78. Lo Sardo, A., Altamura, S., Pegoraro, S., Maurizio, E., Sgarra, R., and Manfioletti, G. (2013). Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6).
  79. Henneke, I., Greschus, S., Savai, R., Korfei, M., Markart, P., Mahavadi, P., Schermuly, R.T., Wygrecka, M., Stürzebecher, J., Seeger, W., et al. (2010). Inhibition of urokinase activity reduces primary tumor growth and metastasis formation in a murine lung carcinoma model. Am. J. Respir. Crit. Care Med. 181, 611– 619.
  80. Malumbres, M., and Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641.
  81. Feng, Y., Maity, R., Whitelegge, J.P., Hadjikyriacou, A., Li, Z., Zurita-Lopez, C., Al-Hadid, Q., Clark, A.T., Bedford, M.T., Masson, J.-Y., et al. (2013). Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine-and Arginine-rich Regions. J. Biol. Chem. 288, 37010–37025.
  82. Philpott, A., Krude, T., and Laskey, R.A. (2000). Nuclear chaperones. Semin. Cell Dev. Biol. 11, 7–14.
  83. Soria, G., Podhajcer, O., Prives, C., and Gottifredi, V. (2006). P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25, 2829–2838.
  84. Najbauer, J., Johnson, B.A., Young, A.L., and Aswad, D.W. (1993). Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J. Biol. Chem. 268, 10501–10509.
  85. Muramatsu, D., Singh, P.B., Kimura, H., Tachibana, M., and Shinkai, Y. (2013). Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J.
  86. Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S., and Herschman, H.R. (2000a). PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol.
  87. Lee, J., Sayegh, J., Daniel, J., Clarke, S., and Bedford, M.T. (2005b). PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J. Biol. Chem. 280, 32890– 32896.
  88. Harrison, M.J., Tang, Y.H., and Dowhan, D.H. (2010). Protein arginine methyltransferase 6 regulates multiple aspects of gene expression. Nucleic Acids Res. 38, 2201–2216.
  89. Paik, W.K., and Kim, S. (1968). Protein methylase I. Purification and properties of the enzyme. J. Biol.
  90. Seet, B.T., Dikic, I., Zhou, M.-M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473–483.
  91. Sayegh, J., Webb, K., Cheng, D., Bedford, M.T., and Clarke, S.G. (2007). Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J. Biol. Chem. 282, 36444–36453.
  92. Baldwin, R.M., Morettin, A., and Côté, J. (2014). Role of PRMTs in cancer: Could minor isoforms be leaving a mark? World J. Biol. Chem. 5, 115–129.
  93. Zhang, X., and Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509–520.
  94. Spannhoff, A., Heinke, R., Bauer, I., Trojer, P., Metzger, E., Gust, R., Schüle, R., Brosch, G., Sippl, W., and Jung, M. (2007). Target-based approach to inhibitors of histone arginine methyltransferases. J. Med.
  95. Stein, C., Riedl, S., Rüthnick, D., Nötzold, R.R., and Bauer, U.-M. (2012). The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res. 40, 9522–9533.
  96. Lacroix, M., El Messaoudi, S., Rodier, G., Le Cam, A., Sardet, C., and Fabbrizio, E. (2008). The histone- binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. EMBO Rep. 9, 452–458.
  97. Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S., and Herschman, H.R. (1996). The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N- methyltransferase. J. Biol. Chem. 271, 15034–15044.
  98. Jacobs, J.J., Kieboom, K., Marino, S., DePinho, R.A., and van Lohuizen, M. (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168.
  99. Ben-Porath, I., and Weinberg, R.A. (2005). The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961–976.
  100. Weiss, V.H., McBride, A.E., Soriano, M.A., Filman, D.J., Silver, P.A., and Hogle, J.M. (2000). The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat. Struct. Biol. 7, 1165–1171.
  101. Maurer-Stroh, S., Dickens, N.J., Hughes-Davies, L., Kouzarides, T., Eisenhaber, F., and Ponting, C.P. (2003). The Tudor domain " Royal Family " : Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69–74.
  102. Thrombospondin-1 and -2 messenger RNA expression in invasive cervical cancer: correlation with angiogenesis and prognosis. Clin. Cancer Res. 7, 2826–2831.
  103. Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080.
  104. Iovine, B., Nino, M., Irace, C., Bevilacqua, M.A., and Monfrecola, G. (2009). Ultraviolet B and A irradiation induces fibromodulin expression in human fibroblasts in vitro. Biochimie 91, 364–372.
  105. el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825.
  106. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111– 1116.
  107. Pal, S., and Sif, S. (2007). Interplay between chromatin remodelers and protein arginine methyltransferases. J. Cell. Physiol. 213, 306–315.
  108. Wang, Y.-C., and Li, C. (2012). Evolutionarily conserved protein arginine methyltransferases in non- mammalian animal systems. FEBS J. 279, 932–945.
  109. Ramalingam, S.S., Owonikoko, T.K., and Khuri, F.R. (2011). Lung cancer: New biological insights and recent therapeutic advances. CA. Cancer J. Clin. 61, 91–112.
  110. Zou, Y., Webb, K., Perna, A.D., Zhang, Q., Clarke, S., and Wang, Y. (2007). A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation. Biochemistry 46, 7896– 7906.
  111. Narita, M., Nũnez, S., Heard, E., Narita, M., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716.
  112. Serrano, M., Hannon, G.J., and Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707.
  113. Ma, J., Liu, L., Che, G., Yu, N., Dai, F., and You, Z. (2010). The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10, 112. REFERENCES 137
  114. Jobert, L., Argentini, M., and Tora, L. (2009). PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp. Cell Res. 315, 1273–1286. REFERENCES 135
  115. Kao, P.N., Chen, L., Brock, G., Ng, J., Kenny, J., Smith, A.J., and Corthésy, B. (1994). Cloning and expression of cyclosporin A-and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J. Biol. Chem. 269, 20691–20699.
  116. Tang, J., Gary, J.D., Clarke, S., and Herschman, H.R. (1998). PRMT 3, a type I protein arginine N- methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem. 273, 16935–16945.
  117. Fibromodulin gene transcription is induced by ultraviolet irradiation, and its regulation is impaired in senescent human fibroblasts. J. Biol. Chem. 280, 31809–31817.
  118. Senga, T., Sivaprasad, U., Zhu, W., Park, J.H., Arias, E.E., Walter, J.C., and Dutta, A. (2006). PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J. Biol. Chem. 281, 6246–6252.
  119. Lakowski, T.M., and Frankel, A. (2008). A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism. J. Biol. Chem. 283, 10015–10025.
  120. Lloyd, C.M., Phillips, A.R.J., Cooper, G.J.S., and Dunbar, P.R. (2008). Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J. Immunol. Methods 334, 70–81.
  121. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260.
  122. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41–45.
  123. Arias, E.E., and Walter, J.C. (2006). PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat. Cell Biol. 8, 84–90.
  124. Lorenzo, A. Di, Yang, Y., Macaluso, M., and Bedford, M.T. (2014). A gain-of-function mouse model identifies PRMT6 as a NF-κB coactivator. Nucleic Acids Res.
  125. Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem. J. 358, 305–314.
  126. Essers, J., Theil, A.F., Baldeyron, C., van Cappellen, W.A., Houtsmuller, A.B., Kanaar, R., and Vermeulen, W. (2005). Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell. Biol. 25, 9350–9359.
  127. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. U. S. A. 103, 2588–2593.
  128. Btg2 enhances retinoic acid-induced differentiation by modulating histone H4 methylation and acetylation. Mol. Cell. Biol. 26, 5023–5032.
  129. Schuetz, A., Allali-Hassani, A., Martín, F., Loppnau, P., Vedadi, M., Bochkarev, A., Plotnikov, A.N., Arrowsmith, C.H., and Min, J. (2006). Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J. 25, 4245–4252.
  130. Feng, Q., Yi, P., Wong, J., and O'Malley, B.W. (2006). Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol. Cell. Biol. 26, 7846–7857.
  131. Yadav, N., Lee, J., Kim, J., Shen, J., Hu, M.C.-T., Aldaz, C.M., and Bedford, M.T. (2003). Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 100, 6464–6468.
  132. Naeem, H., Cheng, D., Zhao, Q., Underhill, C., Tini, M., Bedford, M.T., and Torchia, J. (2007). The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol. Cell. Biol. 27, 120–134.
  133. Mariño-Ramírez, L., Kann, M.G., Shoemaker, B.A., and Landsman, D. (2005). Histone structure and nucleosome stability. Expert Rev. Proteomics 2, 719–729.
  134. Xie, B., Invernizzi, C.F., Richard, S., and Wainberg, M.A. (2007). Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J. Virol. 81, 4226–4234.
  135. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X., and Xu, W. (2007). Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc. Natl. Acad. Sci. U. S. A. 104, 12318–12323.
  136. Troffer-Charlier, N., Cura, V., Hassenboehler, P., Moras, D., and Cavarelli, J. (2007). Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J. 26, 4391– 4401.
  137. Yue, W.W., Hassler, M., Roe, S.M., Thompson-Vale, V., and Pearl, L.H. (2007). Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. EMBO J. 26, 4402–4412.
  138. Motegi, A., Sood, R., Moinova, H., Markowitz, S.D., Liu, P.P., and Myung, K. (2006). Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol. 175, 703–708.
  139. Thoma, F., Koller, T., and Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427.
  140. Liu, Q., and Dreyfuss, G. (1995). In vivo and in vitro arginine methylation of RNA-binding proteins. Mol. Cell. Biol. 15, 2800–2808.
  141. Woods, D., Parry, D., Cherwinski, H., Bosch, E., Lees, E., and McMahon, M. (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611. REFERENCES 143
  142. Intrinsic negative cell cycle regulation provided by PIP box-and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 15, 890–900.
  143. Kotake, Y., Zeng, Y., and Xiong, Y. (2009). DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809–1814.
  144. Nishitani, H., Shiomi, Y., Iida, H., Michishita, M., Takami, T., and Tsurimoto, T. (2008). CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J. Biol. Chem. 283, 29045–29052.
  145. Lee, Y.-H., and Stallcup, M.R. (2009). Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol. Endocrinol. 23, 425–433.
  146. Scrima, A., Konícková, R., Czyzewski, B.K., Kawasaki, Y., Jeffrey, P.D., Groisman, R., Nakatani, Y., Iwai, S., Pavletich, N.P., and Thomä, N.H. (2008). Structural basis of UV DNA-damage recognition by the DDB1- DDB2 complex. Cell 135, 1213–1223.
  147. Yu, Z., Chen, T., Hébert, J., Li, E., and Richard, S. (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol. Cell. Biol. 29, 2982– 2996.
  148. Abbas, T., and Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414.
  149. Michaud-Levesque, J., and Richard, S. (2009). Thrombospondin-1 is a transcriptional repression target of PRMT6. J. Biol. Chem. 284, 21338–21346.
  150. Jackson, S., and Xiong, Y. (2009). CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci. 34, 562–570.
  151. Feng, Q., He, B., Jung, S.-Y., Song, Y., Qin, J., Tsai, S.Y., Tsai, M.-J., and O'Malley, B.W. (2009). Biochemical control of CARM1 enzymatic activity by phosphorylation. J. Biol. Chem. 284, 36167–36174.
  152. Fisk, J.C., Zurita-Lopez, C., Sayegh, J., Tomasello, D.L., Clarke, S.G., and Read, L.K. (2010). TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. Eukaryot. Cell 9, 866–877. REFERENCES 133
  153. Hong, X., Zang, J., White, J., Wang, C., Pan, C.-H., Zhao, R., Murphy, R.C., Dai, S., Henson, P., Kappler, J.W., et al. (2010). Interaction of JMJD6 with single-stranded RNA. Proc. Natl. Acad. Sci. U. S. A. 107, 14568–14572.
  154. Thomas, D., Lakowski, T.M., Pak, M.L., Kim, J.J., and Frankel, A. (2010). Förster resonance energy transfer measurements of cofactor-dependent effects on protein arginine N-methyltransferase homodimerization. Protein Sci. 19, 2141–2151.
  155. Sakamaki, J., Daitoku, H., Ueno, K., Hagiwara, A., Yamagata, K., and Fukamizu, A. (2011). Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt. Proc. Natl. Acad. Sci. U. S. A. 108, 6085–6090.
  156. Zhang, X., Zhou, L., and Cheng, X. (2000). Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J. 19, 3509–3519.
  157. Sun, L., Wang, M., Lv, Z., Yang, N., Liu, Y., Bao, S., Gong, W., and Xu, R.-M. (2011). Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc. Natl. Acad. Sci. U. S. A. 108, 20538–20543.
  158. Bedford, M.T., and Clarke, S.G. (2009). Protein arginine methylation in mammals: who, what, and why.
  159. Hao, N.-B., Lü, M.-H., Fan, Y.-H., Cao, Y.-L., Zhang, Z.-R., and Yang, S.-M. (2012). Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012, 948098.
  160. Di Lorenzo, A., and Bedford, M.T. (2011). Histone arginine methylation. FEBS Lett. 585, 2024–2031.
  161. Wang, X.-Y., Keefe, K.M., Jensen-Taubman, S.M., Yang, D., Yan, K., and Linnoila, R.I. (2012b). Novel method for isolation of murine clara cell secretory protein-expressing cells with traces of stemness. PLoS One 7, e43008.
  162. Kleinschmidt, M.A., de Graaf, P., van Teeffelen, H.A.A.M., and Timmers, H.T.M. (2012). Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS One 7, e41446.
  163. Quatromoni, J.G., and Eruslanov, E. (2012). Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res. 4, 376–389.
  164. James, T.C., and Elgin, S.C. (1986). Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6, 3862–3872.
  165. Wang, C., Zhu, Y., Chen, J., Li, X., Peng, J., Chen, J., Zou, Y., Zhang, Z., Jin, H., Yang, P., et al. (2014). Crystal Structure of Arginine Methyltransferase 6 from Trypanosoma brucei. PLoS One 9, e87267.
  166. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363–9367.
  167. Finch, J.T., and Klug, A. (1976). Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. U. S. A. 73, 1897–1901.
  168. Slebos, R.J., Lee, M.H., Plunkett, B.S., Kessis, T.D., Williams, B.O., Jacks, T., Hedrick, L., Kastan, M.B., and Cho, K.R. (1994). p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. U. S. A. 91, 5320–5324.
  169. Nag, A., Bondar, T., Shiv, S., and Raychaudhuri, P. (2001). The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol. Cell. Biol. 21, 6738–6747.
  170. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV- 1 activity. Retrovirology 10, 73.
  171. Invernizzi, C.F., Xie, B., Richard, S., and Wainberg, M.A. (2006). PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA. Retrovirology 3, 93.
  172. Dulić, V., Kaufmann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper, J.W., Elledge, S.J., and Reed, S.I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013–1023.
  173. Miller, C.W., Aslo, A., Campbell, M.J., Kawamata, N., Lampkin, B.C., and Koeffler, H.P. (1996). Alterations of the p15, p16,and p18 genes in osteosarcoma. Cancer Genet. Cytogenet. 86, 136–142.
  174. Park, Y.-B., Park, M.J., Kimura, K., Shimizu, K., Lee, S.H., and Yokota, J. (2002). Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet. Cytogenet. 133, 105–111.
  175. Kousaka, A., Mori, Y., Koyama, Y., Taneda, T., Miyata, S., and Tohyama, M. (2009). The distribution and characterization of endogenous protein arginine N-methyltransferase 8 in mouse CNS. Neuroscience 163, 1146–1157.
  176. Prieur, A., and Peeper, D.S. (2008). Cellular senescence in vivo: a barrier to tumorigenesis. Curr. Opin. Cell Biol. 20, 150–155.
  177. Toussaint, O., Remacle, J., Dierick, J.-F., Pascal, T., Frippiat, C., Zdanov, S., Magalhaes, J.P., Royer, V., and Chainiaux, F. (2002). From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing. Int. J. Biochem. Cell Biol. 34, 1415–1429. REFERENCES 142
  178. Rothbart, S.B., and Strahl, B.D. (2014). Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta 1839, 627–643.
  179. Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.
  180. El-Andaloussi, N., Valovka, T., Toueille, M., Steinacher, R., Focke, F., Gehrig, P., Covic, M., Hassa, P.O., Schär, P., Hübscher, U., et al. (2006). Arginine methylation regulates DNA polymerase beta. Mol. Cell 22, 51–62.
  181. Mirsadraee, S., Oswal, D., Alizadeh, Y., Caulo, A., and van Beek, E. (2012). The 7th lung cancer TNM classification and staging system: Review of the changes and implications. World J. Radiol. 4, 128–134.
  182. Waldmann, T., Izzo, A., Kamieniarz, K., Richter, F., Vogler, C., Sarg, B., Lindner, H., Young, N.L., Mittler, G., Garcia, B.A., et al. (2011). Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4, 11.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten