Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchung der Multimode-Emission von optisch gepumpten Halbleiter-Scheibenlasern im Hinblick auf effiziente intrakavitäre Differenzfrequenzerzeugung
Autor:Wichmann, Matthias
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0787
URN: urn:nbn:de:hebis:04-z2014-07875
DOI: https://doi.org/10.17192/z2014.0787
DDC:530 Physik
Titel (trans.):Investigation of Multi-Mode Operation in Optically Pumped Semiconductor Disk Lasers with Regard to Efficient Intracavity Difference Frequency Generation
Publikationsdatum:2014-12-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Zwei-Farben-Emission, Differenzfrequenzerzeugung, VECSEL, difference frequency generation, multi-mode emission, two-color emission, intra-cavity, intrakavitär, Optisch gepumpter Halbleiterlaser, VECSEL, Multimode-Emission

Zusammenfassung:
Optisch gepumpte Halbleiterscheibenlaser mit externem Resonator (VECSEL) stellen hochinteressante Lasersysteme dar, welche einen Betrieb bei hohen Leistungen als auch die Emission auf einem guten transversalen Modenprofil ermöglichen. Weiterhin macht der externe Resonator diese Laser sehr flexibel sowie vielseitig einsetzbar und ermöglicht unter anderem das Erreichen neuer Wellenlängen durch intrakavitäre Frequenzkonversionsprozesse. Ein besonderer Multimode-Betriebszustand des VECSELs ist die Zwei-Farben-Emission, mit welcher es durch intrakavitäre Differenzfrequenzerzeugung in einem nichtlinearen Kristall möglich wird, in den Terahertz-Bereich des elektromagnetischen Spektrums vorzustoßen. Die Realisierung eines Zwei-Farben-Betriebes, bei dem beide Farben ihre Verstärkung aus demselben Ladungsträgerreservoir beziehen, ist keineswegs trivial, da der Laseremission durch eine nicht zu vernachlässigende Modenkonkurrenz eine komplexe Dynamik aufgezwungen wird. Die vorliegende Dissertation beschäftigt sich mit der grundlegenden Untersuchung der Multimode-Emission in optisch gepumpten Halbleiterscheibenlasern. Dabei liegt der Fokus sowohl auf der Entwicklung der spektralen Zusammensetzung der Laseremission als auch auf der Charakterisierung der zeitlichen Dynamik der Emission im Zwei-Farben-Betrieb. Für die untersuchten Konfigurationen werden Parameter identifiziert, welche eine Schlüsselrolle für die Emissionsstabilität spielen. Die Erkenntnisse ermöglichen es, Betriebszustände festzulegen, unter denen eine intrakavitäre Differenzfrequenzerzeugung effizient und sinnvoll ist.

Bibliographie / References

  1. O. Svelto: Principles of Lasers. Boston, MA: Springer US 2010.
  2. W. Chow, M. Sargent III, S. Koch: Semiconductor-Laser Physics. Springer 1. Aufl., 1994.
  3. W. Demtröder: Laser Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg 4. Aufl., 2008.
  4. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. Koch, J. Moloney: Passively mo- delocked VECSEL emitting 682 fs pulses with 5.1 W of average output power. Elec- tronics Letters 48 (2012) 10, 588.
  5. L. Kornaszewski, G. Maker, G. Malcolm, M. Butkus, E. Rafailov, C. Hamilton: SESAM-free mode-locked semiconductor disk laser. Laser & Photonics Reviews 6 (2012) 6, L20–L23.
  6. A. Bäumner, S. W. Koch, J. V. Moloney: Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers. physica status solidi (b) 248 (2011) 4, 843–846.
  7. A. Kemp, A. Maclean, J. Hastie, S. Smith, J.-M. Hopkins, S. Calvez, G. Valentine, M. Dawson, D. Burns: Thermal lensing, thermal management and transverse mode control in microchip VECSELs. Applied Physics B 83 (2006) 2, 189–194.
  8. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, J. L'huillier: Temperature-dependent Sellmeier equation in the MIR for the extraordinary refrac- tive index of 5% MgO doped congruent LiNbO 3 . Applied Physics B 86 (2006) 1, 111–115.
  9. J. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, R. Beigang: Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate -Part 1: Theory. Applied Physics B 86 (2006) 2, 185–196.
  10. R. Sowade, I. Breunig, C. Tulea, K. Buse: Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime. Applied Physics B 99 (2010) 1-2, 63–66.
  11. @BULLET B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, Characterization of Micro-Powders for the Fabrication of Compression Molded THz Lenses, J. Infrared, Millimeter, Terahertz Waves 32 (7), 943-951 (2011).
  12. M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, M. Koch: Interferometric Characterization of a Semiconductor Disk Laser driven Terahertz Source. Journal of Infrared, Millimeter, and Terahertz Waves 35 (2014) 6-7, 503–508.
  13. T. H. Maiman: Stimulated Optical Radiation in Ruby. Nature 187 (1960) 4736, 493–494.
  14. P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, K. Cho- quette: Direct monitoring of the coupling constant in vectorial lasers. Optics Com- munications 148 (1998) 4-6, 270–274.
  15. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. Koch, J. Moloney, M. Koch, W. Stolz: 106 W continuous-wave output power from vertical- external-cavity surface-emitting laser. Electronics Letters 48 (2012) 9, 516.
  16. C. L. Tang, H. Statz, G. DeMars: Spectral Output and Spiking Behavior of Solid- State Lasers. Journal of Applied Physics 34 (1963) 8, 2289.
  17. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, K. Kawase: Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler. Applied Physics Letters 88 (2006) 7, 071122.
  18. P. Klopp, U. Griebner, M. Zorn, M. Weyers: Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser. Applied Physics Letters 98 (2011) 7, 071103.
  19. A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, M. Koch: Time-dynamics of the two-color emission from vertical-external- cavity surface-emitting lasers. Applied Physics Letters 100 (2012) 4, 041114.
  20. C. Hessenius, M. Lukowski, M. Fallahi: High-power tunable two-wavelength genera- tion in a two chip co-linear T-cavity vertical external-cavity surface-emitting laser. Applied Physics Letters 101 (2012) 12, 121110.
  21. J. Hader, T.-L. Wang, J. V. Moloney, B. Heinen, M. Koch, S. W. Koch, B. Kunert, W. Stolz: On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers. Journal of Applied Physics 113 (2013) 15, 153102.
  22. @BULLET N. Kocic, M. Wichmann, T. Hochrein, P. Heidemeyer, K. Kretschmer, I. Radova- novic, A. S. Mondol, M. Koch, and M. Bastian, Lenses for terahertz applications: Development of new materials and production processes, AIP Conf. Proc. 1593, 416, pp. 416-419, 2014.
  23. M. Lorenz, G. Pettit, R. Taylor: Band Gap of Gallium Phosphide from 0 to 900°K and Light Emission from Diodes at High Temperatures. Physical Review 171 (1968) 3, 876–881.
  24. K. Henneberger, F. Herzel, S. Koch, R. Binder, A. Paul, D. Scott: Spectral hole burning and gain saturation in short-cavity semiconductor lasers. Physical Review A 45 (1992) 3, 1853–1859.
  25. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, U. Keller: Soliton- like pulse-shaping mechanism in passively mode-locked surface-emitting semiconduc- tor lasers. Applied Physics B: Lasers and Optics 75 (2002) 4-5, 445–451.
  26. @BULLET N. Born, I. A. I. Al-Naib, C. Jansen, M. Wichmann, N. Vieweg, and M. Koch, Polarization and angle independent high Q-factor THz metamaterials, in 2011 In- ternational Conference on Infrared, Millimeter, and Terahertz Waves, 2011.
  27. @BULLET M. Wichmann, S. Busch, B. Scherger, S. Schumann, S. Lippert, C. Jansen, M. Scheller, and M. Koch, Astigmatism-free Brewster lenses for terahertz applications, in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, 2012.
  28. @BULLET M. Wichmann, A. S. Mondol, N. Kocic, S. Lippert, T. Probst, S. Schumann, M. Schwerdtfeger, T. Hochrein, P. Heidemeyer, M. Bastian, G. Bastian, and M. Koch, Highly refracting terahertz lenses made of polymeric compounds, in 2013 38th Inter- national Conference on Infrared, Millimeter, and Terahertz Waves, 2013.
  29. S. Beyertt, M. Zorn, T. Kubler, H. Wenzel, M. Weyers, A. Giesen, G. Trankle, U. Brauch: Optical in-well pumping of a semiconductor disk laser with high optical efficiency. IEEE Journal of Quantum Electronics 41 (2005) 12, 1439–1449.
  30. T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, W. Stolz: High-Power Optically Pumped Semiconductor Laser at 1040 nm. IEEE Photonics Technology Letters 22 (2010) 9, 661–663.
  31. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz: 15 W Single Frequency Optically Pumped Semiconductor Laser With Sub-Megahertz Linewidth. IEEE Photonics Technology Letters 26 (2014) 2, 131–133.
  32. M. Scheller, A. G. Young, J. M. Yarborough, J. V. Moloney, S. W. Koch, C. Y. Drouet d'Aubigny, C. K. Walker: Heterodyne Detection of Intracavity Generated Terahertz Radiation. IEEE Transactions on Terahertz Science and Technology 2 (2012) 3, 271–277.
  33. @BULLET M. Wichmann, M. K. Shakfa, M. Scheller, A. Rahimi-Iman, B. Heinen, J. V. Molo- ney, S. W. Koch, and M. Koch, Systematic investigation of single-and multi-mode operation in vertical-external-cavity surface-emitting lasers, in Proc. of SPIE, 2014, vol. 8966, p. 89660N.
  34. @BULLET M. Wichmann, A. Chernikov, M. K. Shakfa, A. Bäumner, M. Koch, M. Scheller, J. Hader, J. V. Moloney, and S. W. Koch, VECSELs: non-equilibrium effects and two-color operation, in Proc. of SPIE, 2012, vol. 8242, p. 82420I.
  35. @BULLET M. Gaafar, C. Möller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, Passively Harmonically Self-Mode-Locked Vertical-External- Cavity Surface-Emitting Laser (VECSEL), in CLEO: 2014, p. JTu4A.121.
  36. @BULLET A. Chernikov, M. Wichmann, M. K. Shakfa, S. W. Koch, M. Scheller, J. V. Moloney, and M. Koch, Temporal dynamics of the two-color emission in vertical-external- cavity surface-emitting lasers, in Conference on Lasers and Electro-Optics 2012, 2012, p. CTu3N.5.
  37. R. Haring, M. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, U. Keller: High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics 38 (2002) 9, 1268–1275.
  38. A. Garnache, A. Ouvrard, D. Romanini: Single-Frequency operation of External- Cavity VCSELs: Non-linear multimode temporal dynamics and quantum limit. Op- tics Express 15 (2007) 15, 9403.
  39. R. Sowade, I. Breunig, I. Cámara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, K. Bu- se: Continuous-wave optical parametric terahertz source. Optics Express 17 (2009) 25, 22303–10.
  40. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, F. Bretenaker: Measurement of the coupling con- stant in a two-frequency VECSEL. Optics Express 18 (2010) 5, 5008–14.
  41. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, A. Garnache: Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations. Optics Letters 34 (2009) 21, 3421–3.
  42. M. Scheller, S. W. Koch, J. V. Moloney: Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers. Optics Letters 37 (2012) 1, 25–7.
  43. C. Hessenius, M. Lukowski, M. Fallahi: Tunable type II intracavity sum-frequency generation in a two chip collinear vertical external cavity surface emitting laser. Optics Letters 38 (2013) 5, 640–2.
  44. J. R. Paul, M. Scheller, A. Laurain, A. Young, S. W. Koch, J. Moloney: Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity. Optics Letters 38 (2013) 18, 3654–7.
  45. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz: Optical noise of stabilized high-power single frequency optically pumped semiconductor laser. Optics Letters 39 (2014) 6, 1573–6.
  46. H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, E. H. Linfield: Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Optics Express 13 (2005) 15, 5890.
  47. M. Gaafar, D. A. Nakdali, C. Möller, K. A. Fedorova, M. Wichmann, M. K. Shakfa, F. Zhang, A. Rahimi-Iman, E. U. Rafailov, M. Koch: Self-mode-locked quantum-dot vertical-external-cavity surface-emitting laser. Opt. Lett. 39 (2014) 15, 4623–4626.
  48. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, J. S. Roberts: Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. Applied Physics Letters 80 (2002) 21, 3892.
  49. A. Tropper, S. Hoogland: Extended cavity surface-emitting semiconductor lasers. Progress in Quantum Electronics 30 (2006) 1, 1–43.
  50. A. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloy- es, S. Balle, E. Viktorov, P. Mandel: Dynamics of multimode semiconductor lasers. Physical Review A 69 (2004) 5, 053816.
  51. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch: Terahertz-wave generation in quasi-phase-matched GaAs. Applied Physics Letters 89 (2006) 14, 141119.
  52. P. Khandokhin, I. Koryukin, Y. Khanin, P. Mandel: Influence of carrier diffusion on the dynamics of a two-mode laser. IEEE Journal of Quantum Electronics 31 (1995) 4, 647–652.
  53. T. Hill, M. Hamilton, D. Pieroux, P. Mandel: Intensity coherence of a multimode Nd-doped yttrium aluminum garnet laser. Physical Review A 66 (2002) 6, 063803.
  54. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, P. Glorieux: Alternate time scale in multimode lasers. Physical Review A 46 (1992) 3, 1692–1695.
  55. A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney: He- at Management in High-Power Vertical-External-Cavity Surface-Emitting Lasers. IEEE Journal of Selected Topics in Quantum Electronics 17 (2011) 6, 1772–1778.
  56. S. Kaspar, M. Rattunde, T. Topper, R. Moser, S. Adler, C. Manz, K. Kohler, J. Wag- ner: Recent Advances in 2-µm GaSb-Based Semiconductor Disk Laser-Power Sca- ling, Narrow-Linewidth and Short-Pulse Operation. IEEE Journal of Selected Topics in Quantum Electronics 19 (2013) 4, 1501908–1501908.
  57. @BULLET M. Wichmann, M. K. Shakfa, B. Heinen, A. Rahimi-Iman, M. Scheller, J. V. Mo- loney, S. W. Koch and M. Koch, Evolution of multi-mode emission from vertical- external-cavity surface-emitting lasers, 16th International Conference " Laser Optics 2014 " , 2014.
  58. B. Peters, J. Hünkemeier, V. Baev, Y. Khanin: Low-frequency dynamics of a Nd- doped glass laser. Physical Review A 64 (2001) 2, 023816.
  59. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, M. M. Fe- jer: Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range. Applied Physics B 100 (2010) 1, 109–115.
  60. R. Paschotta, U. Keller: Passive mode locking with slow saturable absorbers. Applied Physics B: Lasers and Optics 73 (2001) 7, 653–662.
  61. Abbildung A.1: (a) Korrelationsgraphen für intrakavitäre Leistungen von 6 W, 110 W und 390 W. (b) Korrelationskoeffizient r (oben), 2σ-Diagramm (unten), in Abhängigkeit von der effektiven Pumpleistung.
  62. F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, M. Koch: A 23-watt single-frequency vertical-external-cavity surface- emitting laser. Optics Express 22 (2014) 11, 12817.
  63. M. Stein: Aufbau eines kompakten Michelson-Interferometers zur Detekti- on und Charakterisierung von elektromagnetischer Strahlung im Terahertz- Frequenzbereich. Bachelorarbeit, Fachbereich Physik, Philipps-Universität Mar- burg, 2013.
  64. C. Weiss, G. Torosyan, Y. Avetisyan, R. Beigang: Generation of tunable narrow- band surface-emitted terahertz radiation in periodically poled lithium niobate. Optics Letters 26 (2001) 8, 563–5.
  65. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg: Multigra- ting quasi-phase-matched optical parametric oscillator in periodically poled LiNbO 3 . Optics Letters 21 (1996) 8, 591–3.
  66. D. R. Bosomworth: THE FAR INFRARED OPTICAL PROPERTIES OF LiNbO3. Applied Physics Letters 9 (1966) 9, 330.
  67. N. Schulz, M. Rattunde, C. Ritzenthaler, B. Rösener, C. Manz, K. Köhler, J. Wag- ner, U. Brauch: Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 µm. Applied Phy- sics Letters 91 (2007) 9, 091113.
  68. De, V. Pal, A. El Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, F. Bretenaker: Intensity noise correlations in a two-frequency VECSEL. Optics Express 21 (2013) 3, 2538.
  69. A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, D. Burns: Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders. Journal of the Optical Society of America B 26 (2009) 12, 2228.
  70. S. Kasap, P. Capper (Hrsg.): Springer Handbook of Electronic and Photonic Mate- rials. Boston, MA: Springer US 2007.
  71. A. Uchida, Y. Liu, I. Fischer, P. Davis, T. Aida: Chaotic antiphase dynamics and synchronization in multimode semiconductor lasers. Physical Review A 64 (2001) 2, 023801.
  72. T. Tanabe, K. Suto, J.-i. Nishizawa, T. Sasaki: Characteristics of terahertz-wave generation from GaSe crystals. Journal of Physics D: Applied Physics 37 (2004) 2, 155–158.
  73. Datenpunkte vorhanden sind. Die Daten weisen auf den ersten Blick ein relativ starkes Rauschen auf, was sich zunächst durch die auftretende Anti-Phasen-Dynamik erklären ließe. Nach dem Streak-Kamera Bild zu urteilen, beträgt das relative Rauschen ca. 16 %.
  74. M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, M. Koch: Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers. Optics Express 21 (2013) 26, 31940.
  75. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine- Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, J. Moloney: Fourier- transform external cavity lasers. Optics Communications 207 (2002) 1-6, 261–271.
  76. J. Huang, L. W. Casperson: Gain and saturation in semiconductor lasers. Optical and Quantum Electronics 25 (1993) 6, 369–390.
  77. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas: Generati- on of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Applied Physics Letters 76 (2000) 18, 2505.
  78. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, A. Galvanauskas: Temperature dependence of narrow-band terahertz generation from periodically poled lithium nio- bate. Applied Physics Letters 77 (2000) 9, 1244.
  79. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache: Multiwatt-power highly- coherent compact single-frequency tunable vertical-external-cavity-surface-emitting- semiconductor-laser. Optics Express 18 (2010) 14, 14627–36.
  80. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, A. Garnache: Shot-noise- limited operation of a monomode high-cavity-finesse semiconductor laser for micro- wave photonics applications. Optics Letters 32 (2007) 6, 650.
  81. Husaini, R. G. Bedford: Graphene saturable absorber for high power semiconduc- tor disk laser mode-locking. Applied Physics Letters 104 (2014) 16, 161107.
  82. E. Kantola, T. Leinonen, S. Ranta, M. Tavast, M. Guina: High-efficiency 20 W yellow VECSEL. Optics Express 22 (2014) 6, 6372.
  83. M. Gaafar, C. Möller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, M. Koch: Harmonic self-mode-locking of optically pumped semiconduc- tor disc laser. Electronics Letters 50 (2014) 7, 542–543.
  84. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, S. H. Hoogland: Vertical- external-cavity semiconductor lasers. Journal of Physics D: Applied Physics 37 (2004) 9, R75–R85.
  85. A. Garnache, A. A. Kachanov, F. Stoeckel, R. Houdré: Diode-pumped broad- band vertical-external-cavity surface-emitting semiconductor laser applied to high- sensitivity intracavity absorption spectroscopy. Journal of the Optical Society of America B 17 (2000) 9, 1589.
  86. C. Rullière (Hrsg.): Femtosecond Laser Pulses. Springer 2. Aufl., 2005.
  87. M. Ahmed, M. Yamada: Influence of instantaneous mode competition on the dyna- mics of semiconductor lasers. IEEE Journal of Quantum Electronics 38 (2002) 6, 682–693.
  88. A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. Chat- terjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Mo- loney: Influence of the spatial pump distribution on the performance of high power vertical-external-cavity surface-emitting lasers. Applied Physics Letters 97 (2010) 19, 191110.
  89. D. E. Zelmon, D. L. Small, D. Jundt: Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium nio- bate. Journal of the Optical Society of America B 14 (1997) 12, 3319.
  90. J. D. Jackson: Classical Electrodynamics. John Wiley & Sons, Inc. 3. Aufl., 1999.
  91. J. Shikata, M. Sato, T. Taniuchi, H. Ito, K. Kawase: Enhancement of terahertz- wave output from LiNbO 3 optical parametric oscillators by cryogenic cooling. Optics Letters 24 (1999) 4, 202–4.
  92. M. Schall, H. Helm, S. R. Keiding: Far infrared properties of electro-optics crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves 20 (1999) 4, 595–604.
  93. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, J. T. Murray: Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser. Applied Physics Letters 90 (2007) 18, 181124.
  94. S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, J. Wagner: Linewidth Narrowing and Power Scaling of Single-Frequency 2.X µm GaSb-Based Semiconductor Disk Lasers. IEEE Journal of Quantum Electronics 49 (2013) 3, 314–324.
  95. L. A. Coldren, S. W. Corzine, M. L. Mašanović: Diode Lasers and Photonic Inte- grated Circuits. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2. Aufl., März 2012.
  96. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian: High-power (>0.5 W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM 00 beams. IEEE Photonics Technology Letters 9 (1997) 8, 1063–1065.
  97. K. Otsuka: Multimode laser dynamics. Progress in Quantum Electronics 23 (1999) 3, 97–129.
  98. A. Harada, Y. Nihei: Bulk periodically poled MgO-LiNbO 3 by corona discharge me- thod. Applied Physics Letters 69 (1996) 18, 2629.
  99. A. Härkönen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pes- sa, O. G. Okhotnikov: High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm. Optics Express 15 (2007) 6, 3224.
  100. O. G. Okhotnikov (Hrsg.): Semiconductor Disk Lasers: Physics and Technology. Wiley-VCH 1. Aufl., 2010.
  101. J. Rautiainen, I. Krestnikov, M. Butkus, E. U. Rafailov, O. G. Okhotnikov: Optically pumped semiconductor quantum dot disk laser operating at 1180 nm. Optics Letters 35 (2010) 5, 694–6.
  102. T. D. Germann, A. Strittmatter, J. Pohl, U. W. Pohl, D. Bimberg, J. Rautiai- nen, M. Guina, O. G. Okhotnikov: Temperature-stable operation of a quantum dot semiconductor disk laser. Applied Physics Letters 93 (2008) 5, 051104.
  103. G. Agrawal, N. Olsson: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics 25 (1989) 11, 2297–2306.
  104. P. Mandel, K. Otsuka, J.-Y. Wang, D. Pieroux: Two-Mode Laser Power Spectra. Physical Review Letters 76 (1996) 15, 2694–2697.
  105. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, K. Polgár: Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO 3 in the THz range. Journal of Applied Physics 97 (2005) 12, 123505.
  106. @BULLET M. Wichmann, S. Wietzke, M. Schwerdtfeger, B. Scherger, M. Scheller, C. Jansen, O. Peters, N. Krumbholz and M. Koch, Pulsed THz Systems and their Applicati- ons for Security Inspection and Non-Destructive Testing, Air Force Special Session Terahertz Workshop, Halifax, Canada, June 12, 2011.
  107. M. A. Scheller: Erzeugung und Nachweis von Terahertz-Strahlung unter Verwen- dung von Multimode-Lasersystemen. Dissertation, Philipps-Universität Marburg, 2011.
  108. P. H. Siegel: THz Instruments for Space. IEEE Transactions on Antennas and Propagation 55 (2007) 11, 2957–2965.
  109. A. E. Siegman: Lasers. University Science Books 1986.
  110. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, D. B. Tanner: Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 46 (2007) 32, 7884–7888.
  111. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz: 4.35 kW peak power femtosecond pulse mode-locked VECSEL for super- continuum generation. Optics Express 21 (2013) 2, 1599.
  112. @BULLET M. Wichmann, A. Chernikov, M. K. Shakfa, S. W. Koch, M. Scheller, J. V. Moloney, and M. Koch, Study of the two-color emission dynamics from a vertical-external- Veröffentlichungen des Autors cavity surface-emitting laser, in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, 2012.
  113. U. Keller, A. C. Tropper: Passively modelocked surface-emitting semiconductor la- sers. Physics Reports 429 (2006) 2, 67–120.
  114. J. Hebling, A. Stepanov, G. Almási, B. Bartal, J. Kuhl: Tunable THz pulse genera- tion by optical rectification of ultrashort laser pulses with tilted pulse fronts. Applied Physics B: Lasers and Optics 78 (2004) 5, 593–599.
  115. D. Bimberg, N. Kirstaedter, N. Ledentsov, Z. Alferov, P. Kop'ev, V. Ustinov: InGaAs-GaAs quantum-dot lasers. IEEE Journal of Selected Topics in Quantum Electronics 3 (1997) 2, 196–205.
  116. B. Heinen: Wärmetransport in optisch gepumpten Hochleistungs-Halbleiter- Scheibenlasern. Dissertation, Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig, 2014.
  117. W. Zinth, U. Zinth: Optik. Lichstrahlen -Wellen -Photonen. München: Oldenbourg 1. Aufl., 2005.
  118. A. Albrecht, Y. Wang: Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers. Optics Express 21 (2013) 23, 28801– 28808.
  119. J. Moloney, J. Hader, S. Koch: Quantum design of semiconductor active materials: laser and amplifier applications. Laser & Photonics Review 1 (2007) 1, 24–43.
  120. @BULLET C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, Terahertz birefringence for orientation analysis, Appl. Opt. 48 (11), 2037-44 (2009).
  121. Y. Sasaki, A. Yuri, K. Kawase, H. Ito: Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO 3 crystal. Applied Physics Letters 81 (2002) 18, 3323.
  122. A. R. Zakharian, J. Hader, J. V. Moloney, S. W. Koch, P. Brick, S. Lutgen: Ex- perimental and theoretical analysis of optically pumped semiconductor disk lasers. Applied Physics Letters 83 (2003) 7, 1313–1315.
  123. G. P. Agrawal: Spectral hole-burning and gain saturation in semiconductor lasers: Strong-signal theory. Journal of Applied Physics 63 (1988) 4, 1232.
  124. A. R. Albrecht, C. P. Hains, T. J. Rotter, A. Stintz, K. J. Malloy, G. Balakris- hnan, J. V. Moloney: High power 1.25 µm InAs quantum dot vertical external-cavity surface-emitting laser. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 29 (2011) 3, 03C113.
  125. @BULLET F. Zhang, B. Heinen, C. Möller, M. Wichmann, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, 22W Single-Frequency Vertical-External-Cavity Surface-Emitting Laser, in CLEO: 2014, p. SF1G.1.
  126. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, I. Sagnes: Experimental Investigation and Analytical Modeling of Excess Intensity Noise in Semiconductor Class-A Lasers. Journal of Lightwave Technology 26 (2008) 8, 952–961.
  127. G. P. Agrawal: Population pulsations and nondegenerate four-wave mixing in se- miconductor lasers and amplifiers. Journal of the Optical Society of America B 5 (1988) 1, 147.
  128. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, S. W. Koch: Room temperature continuous wave milliwatt terahertz source. Optics Express 18 (2010) 26, 27112–7.
  129. T. D. Raymond, W. J. Alford, M. H. Crawford, A. A. Allerman: Intracavity fre- quency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser. Optics Letters 24 (1999) 16, 1127.
  130. M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, S. W. Koch: Dynamics of two- color laser systems with spectrally filtered feedback. Journal of the Optical Society of America B 21 (2004) 10, 1758.
  131. J. Hebling, G. Almasi, I. Kozma, J. Kuhl: Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express 10 (2002) 21, 1161.
  132. M. C. Hoffmann, K.-L. Yeh, J. Hebling, K. a. Nelson: Efficient terahertz generation by optical rectification at 1035 nm. Optics Express 15 (2007) 18, 11706.
  133. M. Mangold, V. Wittwer, O. Sieber, M. Hoffmann, I. L. Krestnikov, D. A. Livshits, M. Golling, T. Südmeyer, U. Keller: VECSEL gain characterization. Optics Express 20 (2012) 4, 5770–5775.
  134. M. Butkus, E. A. Viktorov, T. Erneux, C. J. Hamilton, G. Maker, G. P. A. Mal- colm, E. U. Rafailov: 85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states. Opt. Express 21 (2013) 21, 25526–25531.
  135. M. Butkus, K. G. Wilcox, J. Rautiainen, O. G. Okhotnikov, S. S. Mikhrin, I. L. Krestnikov, A. R. Kovsh, M. Hoffmann, T. Südmeyer, U. Keller, E. U. Rafailov: High-power quantum-dot-based semiconductor disk laser. Optics Letters 34 (2009) 11, 1672.
  136. P. Khandokhin, P. Mandel, I. Koryukin, B. Nguyen, Y. Khanin: Disappearance of relaxation oscillation frequencies in a multimode solid-state laser. Physics Letters A 235 (1997) 3, 248–252.
  137. I. V. Koryukin, V. A. Povyshev: Antiphase dynamics of a multimode quantum well semiconductor laser. Laser Physics 17 (2007) 5, 680–683.
  138. H. Haug, S. W. Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific 5. Aufl., 2009.
  139. C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, M. R. Hofmann: New Two-Color Laser Concepts for THz Generation. IEEE Journal of Selected Topics in Quantum Electronics 14 (2008) 2, 270–276.
  140. Y. Jin, G. Kim: Terahertz dielectric properties of polymers. Journal of the Korean Physical Society 49 (2006) 2, 513–517.
  141. @BULLET M. Wichmann, B. Scherger, S. Lippert, N. Kocic, S. Wietzke, N. Vieweg, C. Jansen, M. Scheller, T. Hochrein, I. Radovanovic, P. Heidemeyer, M. Bastian, K. Wiesauer, and M. Koch, Terahertz lenses made by compression molding, in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, 2011.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten