
 
 

 

Aus dem Institut für Molekularbiologie und Tumorforschung 

Geschäftsführender Direktor: Prof. Dr. Rolf Müller 

des Fachbereichs Medizin der Philipps-Universität Marburg 

 

Function of the ATP-dependent chromatin remodeler Mi-2 
in the regulation of ecdysone dependent genes in 

Drosophila melanogaster 

 

Inaugural-Dissertation 

zur Erlangung des Doktorgrades der Naturwissenschaften 

 (Dr. rer. nat.)  

 

dem Fachbereich Medizin der Philipps-Universität Marburg 
vorgelegt von 

 

Judith Kreher 

aus Gera, Deutschland 

 

Marburg, 2014 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angenommen vom Fachbereich Medizin der Philipps-Universität Marburg am: 

29.09.2014 

 

Gedruckt mit Genehmigung des Fachbereichs. 

 

Dekan: Prof. Dr. Helmut Schäfer 

Referent: Prof. Dr. Alexander Brehm 

1. Korreferent: Prof. Dr. Rainer Renkawitz 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“It is not the critic who counts; not the man who points out how the strong man 
stumbles, or where the doer of deeds could have done them better. The credit 
belongs to the man who is actually in the arena, whose face is marred by dust 
and sweat and blood; who strives valiantly; who errs, who comes short again 
and again, because there is no effort without error and shortcoming; but who 
does actually strive to do the deeds; who knows great enthusiasms, the great 
devotions; who spends himself in a worthy cause; who at the best knows in the 
end the triumph of high achievement, and who at the worst, if he fails, at least 
fails while daring greatly, so that his place shall never be with those cold and 
timid souls who neither know victory nor defeat.” 

       Theodor Roosevelt, Paris 1910 
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1 Summary 

1.1 Abstract 

The development of the fruitfly Drosophila melanogaster is regulated by the steroid 

hormone ecdysone. Ecdysone is released at the onset of metamorphosis and initiates 

a cascade of transcriptional events. First, it leads to the heterodimerisation of the 

Ecdysone receptor (EcR) with its binding partner ultraspiracle. This complex recruits 

the transcription machinery to ecdysone inducible genes and thereby initiates 

transcription of genes that contribute to pupariation and metamorphosis. ATP-

dependent chromatin remodelers regulate transcription by altering DNA accessibility 

and often reside in multimeric protein complexes. Mi-2 is a member of the CHD family 

of ATP-dependent chromatin remodelers and can function both as co-repressor and 

co-activator in transcription regulation. The results described in this thesis investigate 

the function of the chromatin remodeler Mi-2 in the regulation of ecdysone dependent 

genes. Further, they provide a model by which Mi-2 is targeted to and influences 

transcription of ecdysone dependent genes. 

 

In the first part of this thesis, genome-wide Mi-2 binding sites were mapped by 

chromatin immunoprecipitation followed by DNA-Sequencing (ChIPSeq) in untreated 

and ecdysone treated Drosophila S2 cells. This led to the identification of 103 Mi-2 

binding sites that show increased binding of Mi-2 upon hormonal stimulation. Further 

analyses showed that a significant proportion of these binding sites resides in the close 

proximity of ecdysone inducible genes, implicating that Mi-2 functions in the regulation 

of these loci. Six ecdysone induced Mi-2 binding sites at two ecdysone dependent 

genes, the vrille and the broad loci were investigated in more detail. Here, depletion of 

Mi-2 resulted in a strong increase in expression of these genes in untreated and 

ecdysone treated cells. However, depletion of a different ATP-dependent chromatin 

remodeler, Iswi, did not result in derepression of broad and vrille, indicating that Mi-2 

function is specific at the broad and vrille genes.  

 

In the second part of this thesis, interaction studies revealed that Mi-2 can bind to EcR. 

This interaction was found to be independent of the hormone ecdysone. Further, the 

interaction between Mi-2 and EcR was mapped to the ATPase domain of Mi-2. These 

results demonstrated the first described interaction between the catalytic domain of Mi-

2 and a nuclear receptor. In addition, the activation function 2 (AF2 domain) of EcR 

was found to be important for the interaction with Mi-2. The finding that Mi-2 and EcR 
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can physically interact led to the hypothesis that EcR can recruit Mi-2 to specific sites 

in the genome. Indeed, a significant overlap between EcR and Mi-2 binding sites was 

found in both untreated and ecdysone treated cells. In agreement with this hypothesis, 

depletion of EcR led to decreased ecdysone induced Mi-2 recruitment to the vrille and 

broad genes. These findings established a new recruitment model for Mi-2 by EcR to 

chromatin. Finally, Micrococcal nuclease (MNase) mapping demonstrated that Mi-2 

functions at the vrille gene by maintaining a closed chromatin structure at this locus. 

Here, depletion of Mi-2 resulted in a more open chromatin structure, which correlated 

with an increase in expression of vrille. 

 

In summary, the results of this thesis support a model, which suggests that Mi-2 

recruitment to ecdysone dependent genes is mediated by EcR. At these genes Mi-2 

functions as a repressive modulator of transcription by maintaining a closed chromatin 

structure at relevant genomic regions. Thereby this thesis contributes to a better 

understanding into the co-operation of transcription factors and chromatin remodelers 

on chromatin. Further it gives a mechanistic insight into the function of ATP-dependent 

chromatin remodelers in the regulation of developmentally transcribed genes. 

 

  



1 SUMMARY 

11 
 

1.2 Zusammenfassung 

Die Entwicklung der Fruchtfliege Drosophila melanogaster wird durch das 

Steroidhormon Ecdyson reguliert. Ecdyson wird zu Beginn der Metamorphose 

sekretiert und initiiert eine Kaskade von transkriptionellen Ereignissen. Zunächst führt 

es zur Heterodimerisierung des Ecdyson Rezeptors (EcR) mit seinem Bindungspartner 

ultraspiracle. Dieser Komplex rekrutiert die Transkriptionsmaschinerie an Ecdyson 

induzierbare Gene und initiiert dadurch die Transkription von Genen, welche direkt zur 

Verpuppung und Metamorphose beitragen. ATP-abhängige Chromatinremodeler 

regulieren die Transkription in dem sie die Zugänglichkeit der DNA ändern und 

befinden sich in multimeren Proteinkomplexen befinden. Mi-2 ist ein Mitglied der CHD 

Familie der ATP-abhängigen Chromatin Remodeler und fungiert als Korepressor und 

Koaktivator in der transkriptionellen Regulation. Die in dieser Arbeit beschriebenen 

Resultate untersuchen die Funktion des Chromatin Remodelers Mi-2 in der Regulation 

von ecdysonabhängigen Genen. Diese Ergebniss führten zu einem Modell welches 

beschreibt, wie Mi-2 an hormonregulierte Gene bindet und die Transkription von 

ecdysonabhängigen Genen beeinflußt. 

 

Im ersten Teil dieser Arbeit wurden genomweite Mi-2 Bindungsstellen durch 

Chromatin-Immunopräzipitation gefolgt von DNA-Sequenzierung (ChIPSeq) in 

unbehandelten und ecdysonbehandelten Drosophila S2 Zellen kartiert. Dies führte zur 

Identifizierung von 103 Mi-2 Bindestellen, die verstärkte Bindung von Mi-2 nach 

hormoneller Stimulation zeigen. Weitere Analysen zeigten, dass ein signifikanter Anteil 

dieser Bindungsstellen in der Umgebung von ecdysoninduzierbaren Genen liegt, was 

eine Funktion von Mi-2 in der Regulation dieser Loci impliziert. Sechs 

ecdysoninduzierte Mi-2 Bindungsstellen an zwei ecdysonabhängigen Genen, broad 

und vrille, wurden eingehender untersucht. Hier führte Depletierung von Mi-2 zu einem 

starken Anstieg dieser Gene in unbehandelten und ecdysonbehandelten Zellen. Die 

Depletierung eines anderen ATP-abhängigen Chromatin Remodelers, Iswi, führte 

hingegen nicht zu einer Dereprimierung von broad und vrille. Dies deutet darauf hin, 

dass die Funktion von Mi-2 an den Genen broad und vrille spezifisch ist. 

 

Interaktionsstudien im zweiten Teil dieser Arbeit machten deutlich, dass Mi-2 an den 

EcR binden kann. Es wurde gezeigt, dass diese Interaktion unabhängig von dem 

Hormon Ecdyson ist. Desweiteren wurde die Interaktion zwischen Mi-2 und EcR auf 

die ATPase Domäne von Mi-2 kartiert. Diese Ergebnisse weisen zum ersten mal eine 

Interaktion zwischen der katalytischen Domäne von Mi-2 und einem Kernrezeptor 
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nach. Zusätzlich dazu wurde beobachtet, dass die Aktivierungsfunktion 2 (AF2 

Domäne) des EcR wichtig für die Interaktion mit Mi-2 ist. Die Erkenntnis, dass Mi-2 und 

EcR physisch interagieren können, führte zu der Hypothese, dass EcR Mi-2 an 

spezifische Stellen im Genom rekrutieren kann. In der Tat wurde ein signifikanter 

Überlapp zwischen Mi-2 und EcR Bindungsstellen, sowohl in unbehandelten als auch 

in ecdysonbehandelten Zellen, gefunden. In Übereinstimmung mit dieser Hypothese, 

führte eine Depletierung von EcR zu einer verminderten, ecdysoninduzierten 

Rekrutierung von Mi-2 an die Gene broad und vrille. Diese Ergebnisse etablierten ein 

neues Modell für die Rekrutierung von Mi-2 durch den EcR an das Chromatin. 

Schließlich zeigten MNase Kartierungsstudien mit Mikrokokkus-Nuklease (MNase), 

dass Mi-2 durch die Aufrechterhaltung einer geschlossenen Chromatinsstruktur am 

vrille Gen fungiert. Hier führte eine Depletierung von Mi-2 zu einer geöffneten 

Chromatinstruktur, welche mit einer verstärkten Expression von vrille korrelierte. 

 

Zusammenfassend führten die Ergebnisse zu einem Model das nahelegt, dass die 

Rekrutierung von Mi-2 an ecdysoninduzierte Gene durch den EcR vermittelt wird. An 

diesen Genen fungiert Mi-2 als repressiver Modulator der Transkription durch die 

Aufrechterhaltung einer geschlossenen Chromatinstruktur an relevante genomischen 

Regionen. Dadurch trägt diese Arbeit zu einem besseren Verständnis der Kooperation 

von Transkriptionsfaktoren und Chromatin Remodeler am Chromatin bei. Des 

Weiteren gewährt sie einen Einblick in den funktionellen Mechanismus ATP-

abhängiger Chromatin Remodeler in der Regulation von Genen, die in der Entwicklung 

transkribiert werden. 
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2 Introduction 

The discovery that living organisms inherit characteristic traits from their ancestors by 

Gregor Johann Mendel, is perceived as the birth of the research field of modern 

genetics. Mendel studied seven independently inherited traits in pea such as seed 

shape and flower colour, elegantly demonstrating the action of invisible “factors” that 

provide phenotypic characteristics in predictable ways (Mendel and Tschermak, 1901). 

These days it is known that these “factors” refer to genes, the hereditary unit of a living 

organism that is encoded in the DNA. The sum of all genes of one organism is also 

referred to as the genome. Further experiments by Thomas Hunt Morgan and 

colleagues in Drosophila melanogaster (Drosophila) revealed that genes are arranged 

on chromosomes, thereby formulating the mechanistic explanation for heredity 

(Morgan, 1915). This theory allowed to predict the outcome of a genetic cross with the 

help of a crossing scheme and simple probability computation. However, there were 

phenotypical exceptions that could not be explained by genetics. For example, a 

phenomenon called position-effect variegation (PEV) caught the attention of geneticists 

(Elgin and Reuter, 2013). PEV occurs when an otherwise actively transcribed gene is 

placed in the close vicinity of a transcriptionally inactive, chromosomal region. This 

results in somatic inactivation of the gene in some cells and variegating phenotypes 

such as the red and white mosaic eye pattern of Drosophila carrying the wm4 (white-

mottled-4) allele (Figure 2.1A). Another example of phenotypical variation in the same 

genetic background is the Agouti (Avy) mouse model that displays coat colours ranging 

from yellow to brown depending on the degree of DNA methylation at a specific gene 

promoter (Figure 2.1B) (Rosenfeld, 2010).  

 

 
Figure 2.1: Epigenetic phenomena – Position effect variegation (PEV) in Drosophila and 
the Agouti mouse model. (A) Genomic rearrangement of the white gene in the wm4 mutant 
changes the wildtype eye (red) into a variegating phenotype (white mottled). Adapted from 
(Elgin and Reuter, 2013) (B) Spectrum of mice carrying the Avy allele with phenotypes ranging 
from yellow to agouti. Adapted from (Cropley et al., 2006). 
 



2 INTRODUCTION 

14 
 

These observations forced scientists to question the traditional genetic paradigm as 

the sole explanation for inheritance mechanisms and to reach out for additional 

explanations of phenotypical variation. In 1996, Arthur Riggs and colleagues defined 

the term “epigenetics” as “the study of mitotically and/or meiotically heritable changes 

in gene function that cannot be explained by changes in DNA sequence” . Epigenetic 

mechanisms are studied on the basis of chromatin biology that involves a multitude of 

mechanisms such as chemical modifications of histones and the DNA, the effects of 

RNA interference and the formation of the higher order structure of chromosomes 

within the nucleus (Li and Reinberg, 2011; Rinn and Chang, 2012; Zentner and 

Henikoff, 2013). 

 

2.1 Chromatin 

2.1.1 Chromatin organization 

Chromatin was first described by Walther Flemming as a cellular structure that strongly 

absorbed basophilic dyes (Flemming, 1882). It consists of contiguous DNA molecules 

that associate with octamers of core histone proteins (Figure 2.2). In detail, 147 base 

pairs (bp) of DNA are wrapped 1.65 times around the histone octamer. This structure is 

referred to as the nucleosome and represents the first degree of chromosomal 

packaging (Luger et al., 1997). 

 

 
Figure 2.2: The nucleosome as the basic subunit of chromatin. Crystal structure of the 
nucleosome at 1.9Å resolution. Ribbon traces for the DNA phosphodiester backbone (grey) and 
eight histone proteins (blue: H3; green: H4; yellow: H2A; red: H2B ). Adapted from (Davey et 
al., 2002). 
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The highly basic nature of the histone octamer primarily favours contacts with the DNA 

helix via the phosphodiester backbone, allowing interaction in a largely sequence 

independent manner. Depending on species and cell type, nucleosomes are spaced by 

10 to 60 bp of linker DNA, assembling into a 10nm “beads on a string” array (Szerlong 

and Hansen, 2011). Chromatin can be further compacted by binding of the linker 

histone H1 to the entry and exit region of linker DNA. It was hypothesised that 

association of H1 with the nucleosomal array contributes to a higher order chromatin 

fiber with a diameter of 30nm (Finch and Klug, 1976). However, this idea was 

challenged by recent cryo electron-microscopy studies that could not confirm the 

existence of the 30nm fiber in human mitotic chromosomes (Nishino et al., 2012). It 

has been proposed that intermolecular interactions within the 30nm fiber can form 

even higher order chromatin structures during interphase and a 200-300nm 

chromonema in mitotic chromosomes (Horn and Peterson, 2002). However, the 

compaction of nucleosomal arrays into these tertiary structures remains elusive and 

subject to ongoing research (Luger et al., 2012). During the metaphase of cell cycle, 

chromatin is visible as highly condensed chromosomes that align in an equatorial 

plane of the cell in order to be distributed to the dividing daughter cells. However, 

during interphase, chromatin is a more loose structure that arranges into two different 

subtypes: eu- and heterochromatin (Lamond and Earnshaw, 1998). Heterochromatin 

remains mostly condensed during interphase as it consists of tightly arranged 

nucleosomes and is therefore transcriptionally silent. In contrast, euchromatin is 

defined by a more open chromatin structure and a high density of actively transcribed 

genes. 

 

The histone octamer consists of two copies of each core histone H2A, H2B, H3 and 

H4. Expression of these canonical histones occurs during S-phase from a large histone 

gene cluster and is tightly regulated (DeLisle et al., 1983). Histones are subsequently 

incorporated into chromatin during DNA replication. The core histones are highly 

conserved within eukaryotes and share a very similar structure (Malik and Henikoff, 

2003). All histones harbor a common structural motif, the histone fold, that is involved 

in the pairwise association of the dimerisation partners H2A/H2B and H3/H4 also 

described as the “handshake motif” (Arents et al., 1991). Additionally, all four histones 

contain an N-terminal tail that appears as a disordered structure and protrudes from 

the nucleosomal core (Luger et al., 1997). The fundamental nucleosome unit can be 

modified by the incorporation of variant or “replacement” histone subspecies as well as 

the attachment of posttranslational modifications (PTMs). These mechanisms 

contribute to the dynamic nature of chromatin. 
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2.1.2 Histone variants  

Histone variants differ in sequence, genome-wide localisation, deposition mechanism 

and most importantly, their function from canonical histones(Biterge and Schneider, 

2014). In contrast to canonical histones, histone variants are usually coded as single 

genes in the genome and are incorporated into chromatin throughout the cell cycle in a 

replication-independent manner (Skene and Henikoff, 2013). 

 

With respect to histone H3, two canonical isoforms, H3.1 and H3.2, as well as two 

variants, H3.3 and cenH3 have been described in detail. H3.3 differs in its sequence 

only in five amino acid positions from H3.1 and H3.2. It has been shown to localise to 

transcriptionally active loci such as the rDNA cluster, where it is incorporated as a 

consequence of transcription (Ahmad and Henikoff, 2002). However, H3.3 was also 

shown to be deposited at telomeric and pericentric repeats, where it contributes to the 

repression of telomeric repeat containing RNA (Goldberg et al., 2010). The presence of 

the H3 variant cenH3 (CENP-A in mammals, cid in Drosophila) marks specifically 

centromeres (Verdaasdonk and Bloom, 2011). Interestingly, overexpression of cenH3 

leads to its spreading across the chromosome and to the formation of neocentromeres 

(Mendiburo et al., 2011; Van Hooser et al., 2001).  

For core histone H2A, four different variants (H2AX, H2AZ, macroH2A and H2AB) 

have been reported that exert distinct nuclear functions. H2AZ has been demonstrated 

to localise to actively described loci that are in close vicinity to heterochromatic 

regions, where it functions to limit spreading of repressive chromatin (Meneghini et al., 

2003). In addition, H2A.Z was shown to flank the nucleosome free region (NFR) at the 

transcriptional start site (TSS) of nearly all genes (Raisner et al., 2005). Here, 

incorporation of H2A.Z was shown to promote rapid induction of gene expression as 

H2A.Z containing nucleosomes are less stable than nucleosomes containing canonical 

histones (Zhang et al., 2005). The histone variant H2AX is an essential component in 

the repair of DNA double strand breaks. In response to DNA damage it is rapidly 

phosphorylated to yH2AX that marks foci thereby recruiting the DNA repair machinery 

(Scully and Xie, 2013). Deletion of H2AX in mice is viable, but results in genomic 

instability due to failed DNA repair (Celeste et al., 2002). MacroH2A is a variant 

specific to mammals and contains a globular, C-terminal (macro-) domain that is not 

present in any other histone isoform (Gamble and Kraus, 2010). It is specifically 

enriched on the inactive X chromosome of female cells where it contributes to X 

inactivation (Costanzi and Pehrson, 1998). H2AB (bar body-deficient) shares only 

~50% identity with canonical H2A and is enriched on transcriptionally active loci on the 
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active X and the autosomes, but completely absent from the inactive X in mammals 

(Chadwick and Willard, 2001; Tolstorukov et al., 2012). Both, H2B and H4 are 

markedly deficient in variants. The few existing H2B variants are highly stage specific 

and their precise function is unknown. For example, the sperm-specific variant in sea 

urchin (Green et al., 1995). Histone H4 is one of the slowest evolving proteins, the 

reason for this lack of sequence variability is not known. 

 

2.1.3 Histone modifications 

As described above, the histones contain N-terminal tails that protrude from the 

nucleosome core. Interestingly, both the globular domains of the histones as well as 

the histone tails are subject to post-translational, covalent modification (PTM). The best 

studied modifications include acetylation, methylation, phosphorylation and 

ubiquitination (Figure 2.3). However, also more rare modifications such as 

SUMOylation, ADP-ribosylation, proline-isomerisation, propionylation, butyrylation and 

glycosylation are of great interest to the scientific community (Kouzarides, 2007; 

Sakabe et al., 2010; Zhang et al., 2009). 

 

 
Figure 2.3: Covalent, posttranslational modification of histones. Histones can be 
acetylated, methylated and phosphorylated at specific residues. Position of modified residues is 
depicted by the number below the amino acid sequence. Adapted from (Bhaumik et al., 2007). 
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Histone modifications contribute to the higher order chromatin structure by influencing 

intra- and inter-nucleosomal DNA-histone contacts. Further, they provide direct binding 

surfaces for chromatin associated factors. Proteins that bind PTMs are referred to as 

histone “readers” and can further recruit protein complexes acting on chromatin 

(Ruthenburg et al., 2007). Protein complexes that catalyse the attachment of histone 

modifications are termed “writers” whereas the removal of PTMs is conducted by 

“eraser” proteins. Histone modifications have been demonstrated to be specifically 

localised at certain chromatin regions such as active genes and heterochromatin, but 

also to mark biological processes on chromatin such as transcription, DNA repair and 

replication. Therefore, they play a key role in a majority of biological processes and 

their understanding forms the foundation of studying chromatin related processes.  

 

2.1.3.1 Histone acetylation 

Histone acetylation is accomplished by histone acetyltransferases (HATs) that use 

acetyl coenzyme A (acetyl-CoA) to catalyse the transfer of an acetyl residue onto the ε-

amino group of a lysine residue (Marmorstein and Zhou, 2014). Newly translated, 

cytoplasmic histones are acetylated upon synthesis. For example, histone H4 is 

acetylated at lysine residues 5 and 12 (H4K5 and K12) (Ruiz-Carrillo et al., 1975; 

Sobel et al., 1995). Following their integration during replication, histones are rapidly 

deacetylated (Jackson et al., 1976). Generally speaking, histone acetylation 

neutralises the electrostatic interaction between histones and DNA and thereby leads 

to less compaction and a more open chromatin structure (Shahbazian and Grunstein, 

2007). Therefore, histone acetylation is crucial to permit binding of the transcriptional 

machinery and the initiation of gene transcription. This hypothesis has been supported 

by genome-wide studies demonstrating that acetylation of histone H3 and H4 positively 

correlates with active gene transcription in yeast (Pokholok et al., 2005). The removal 

of acetyl moieties is performed by proteins with histone deacetylase activity (HDACs). 

HDACs are classified into two subgroups; the family of NAD-dependent Sir proteins 

and the classical HDAC family. Reader proteins of histone acetylation are 

characterised by the presence of a Bromo domain or the tandem Plant Homeo Domain 

(PHD)(Sanchez and Zhou, 2011). The Bromo domain was originally described by 

Tamkun and colleagues as a module of the Drosophila protein brahma that binds to 

acetylated lysines (Dhalluin et al., 1999; Tamkun et al., 1992). Several chromatin 

regulators possess a Bromo domain, including the chromatin remodeling factor Snf2 

and several histone acetyltransferases such as CBP/p300 and Gcn5 (Goodwin, 1997; 

Mujtaba et al., 2004; Ornaghi et al., 1999).  
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2.1.3.2 Histone methylation 

The methylation of histones is catalysed by histone methyltransferases (HMTs) that 

transfer one, two or three methyl-groups from S-Adenosylmethionine (SAM) onto a 

lysine or arginine residue (Trievel et al., 2002). The exact location of the methyl-group 

within the histone as well as the degree of methylation determines its specific function 

and distribution within the genome (Black et al., 2012). For example, when histone H3 

is methylated at lysine 4 or 36 (H3K4me and H3K36me) it is associated with active 

genes whereas methylation of H3K9 and H3K27 is a mark for heterochromatic, 

transcriptionally inactive chromatin regions (Bernstein et al., 2002; Ebert et al., 2006; 

Krogan et al., 2003; Ng et al., 2003; Peters et al., 2003). Further, methylation of the 

lysine residue 4 of histone H3 can occur as mono-, di- or trimethylated state 

(H3K4me1, me2 or me3). H3K4me3 is localised at TSS of active and poised genes, 

and plays an important role in the initiation of transcription. In contrast, H3K4me1 is 

crucial to establish enhancers, gene regulatory elements that are located in cis up to 

one megabase away from the gene they regulate (Heintzman et al., 2007; Santos-

Rosa et al., 2002; Schneider et al., 2004). An additional layer of complexity is added by 

the methylation of arginine residues within the histone tails. This modification can be 

present as mono- as well as symmetric and asymmetric di-methylation. Also 

methylation of arginine residues can have both, a positive (e.g. H3R17me2a) or 

negative (e.g. H3R2me2a) effect on transcriptional activation (Bauer et al., 2002; 

Guccione et al., 2007; Hyllus et al., 2007).  

 

For several years, it was believed that methylation of histones is a thermodynamically 

highly stable modification that cannot be reversed. This hypothesis had to be revised 

when the first histone demethylase LSD1 was discovered (Shi et al., 2004). LSD1 

catalyses the demethylation of mono- and di-methylated histone H3K4 and K9 in a 

flavin adenine dinucleotide (FAD)-dependent amine oxidase reaction (Forneris et al., 

2005). Further, a protein family containing the JmjC domain that was first discovered in 

Jarid2, is capable of demethylating trimethylated histones (Tsukada et al., 2006).  

 

Histone reader proteins that recognise methylated histone possess a domain from the 

so-called Royal family of domains (Maurer-Stroh et al., 2003). This Royal family is a 

group of structurally related protein folds and includes the Tudor, PWWP, MBT and 

chromodomain. The chromodomain (chromatin organisation modifier domain) was first 

discovered as a module within the Drosophila heterochromatin protein 1 (HP1) that is 

crucial of heterochromatic silencing. HP1 has a high affinity for methylated lysine 9 of 
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histone H3 (Bannister et al., 2001). The crystal structure of its chromodomain revealed 

that the methylated histone tail is caged by three aromatic side chains thereby 

explaining a specific targeting mechanism of chromatin associated proteins with 

histones (Jacobs and Khorasanizadeh, 2002).  

 

2.1.3.3 Histone phosphorylation 

Phosphorylation of histones can occur on serine, threonine and tyrosine residues. 

These residues are modified by several kinases that transfer a phosphate-group from a 

high-energy donor, such as ATP onto their substrate (Rossetto et al., 2012). The best 

characterised phosphorylation site within a histone is serine 10 of histone H3. This 

mark is set by the kinase AuroraB and first visible during late G2 phase in pericentric 

heterochromatin from where it further spreads across the whole chromosome arm (Hsu 

et al., 2000). Phosphorylation of H3S10 has been demonstrated to directly correlate 

with chromatin compaction during mitosis and meiosis, and is therefore commonly 

used as a mark for these cellular processes (Hans and Dimitrov, 2001). 

Dephosphorylation of H3S10 by protein phosphatase 1 (PP1) starts during anaphase 

and is critical for proper chromosome segregation (Hsu et al., 2000). In addition, 

studies on histone phosphorylation have demonstrated a link to transcriptional 

activation. Data suggest that H3S10, T11 and S28 phosphorylation promote histone 

acetylation of H3K14 by the acetyltransferase Gcn5 thereby demonstrating a cross talk 

between different histone modifications (Lo et al., 2000). 

 

2.1.3.4 Genome-wide mapping of histone modifications  

The finding that histones can be modified on several residues and that these 

modifications are interdependent creates a complex diversity of possible combinations, 

each of which potentially implies a different functional consequence. Therefore, a 

multitude of genome-wide analyses of histone modifications and chromatin associated 

proteins have led to the definition of “chromatin states” (Ernst et al., 2011; Filion et al., 

2010). Kharchenko and colleagues defined nine combinatorial patterns of histone 

marks as well as reader and writer proteins within the Drosophila genome (Kharchenko 

et al., 2011). For example, chromatin stage 1 includes active gene promoters and TSS 

that are marked by an enrichment of H3K4me2/3, H3K9ac and the presence of the 

RNA Pol II complex whereas chromatin stage 7 is characterised by high levels of 

H3K9me2/3, HP1 and therefore represents constitutive heterochromatin. This 
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annotation allowed a systematic characterisation of the Drosophila genome as well as 

the prediction of functional elements within newly sequenced genomes. 

 

2.1.4 Chromatin-remodeling enzymes 

The organisation of DNA into regularly spaced nucleosomes allows the condensation 

of this large molecule and therefore its packaging into the nucleus. However, it also 

makes DNA sequences essential for gene transcription, DNA replication and repair 

inaccessible to the binding of regulatory protein complexes. In order to overcome the 

nucleosomal barrier the cell contains a set of specific proteins named ATP-dependent 

chromatin remodeler that enable dynamic access to DNA (Narlikar et al., 2013). These 

enzymes use the energy derived from the hydrolysis of ATP to reposition, reconstitute 

or eject the histone octamer within chromatin in order to expose or mask specific DNA 

regions.  

 

 
Figure 2.4: Families of ATP dependent chromatin remodeler. Schematic representation of 
the domain structure of the four different families of ATP-dependent chromatin remodeler. 
Function of the depicted domains is explained in the legend. Adapted from (Manelyte and 
Längst, 2013). 
 
There are four main families of ATP-dependent chromatin remodelers: SWI/SNF, 

INO80, ISWI and CHD (Figure 2.4) (Durr et al., 2006). All members of these families 

share common features such as a general affinity to nucleosomes as well as the 
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presence of an DEAD/H-Box containing, SNF2-type ATPase domain. However, they 

differ from each other in the composition of adjacent domains, which provide specificity 

for the recognition of modified histones and the interaction with various proteins in 

large multimeric complexes (Manelyte and Längst, 2013). The following paragraphs 

describe the four different families of ATP-dependent chromatin remodelers in 

Drosophila as the main focus of this study is the function of the chromatin remodeler 

Mi-2 in Drosophila. 

 

2.1.4.1 SWI/SNF family 

The SWI/SNF (SWItch/ Sucrose Non Fermenting) family of ATP-dependent chromatin 

remodelers was first discovered in a genetic screen for S.cerevisiae mutants with 

defects in the fermentation of sucrose (Neigeborn and Carlson, 1984). This effect was 

later explained by the finding that snf2Δ mutants fail to eliminate promoter-bound 

nucleosomes resulting in repression of the SUC2 gene due to blocked transcription 

factor binding (Wu and Winston, 1997). SWI/SNF complexes are highly evolutionary 

conserved from yeast to man. However, other than S.cerevisiae and mammals that 

contain two distinct SWI/SNF enzymes, Drosophila possesses only a single SWI/SNF-

type ATPase that is encoded in the gene brahma. Loss-of-function of brahma causes 

peripheral neural system defects, homeotic transformation and decreased cell viability 

in the fly (Elfring et al., 1998; Tamkun et al., 1992). Purification of brahma associated 

proteins identified six subunits that differ between two kinds of complexes: BAP and 

PBAP (Mohrmann et al., 2004; Papoulas et al., 1998). In brief, these complexes can be 

distinguished as BAP contains OSA, whereas PBAP encompasses Polybromo and 

BAP170. Studies on human SWI/SNF containing complexes identified 29 subunits that 

show differential combinatorial assembly and have diverse biological functions in 

various tissues (Ho and Crabtree, 2010) The catalytic ATPase brahma contains an N-

terminal HAS (helicase-SANT) and an C-terminal bromo domain. The bromo domain is 

thought to target SWI/SNF complexes to transcriptionally active chromatin via its 

interaction with acetylated histones. This hypothesis is underlined by the finding that 

brahma co-localises with RNA PolII and marks nearly all transcriptionally active loci on 

Drosophila polytene chromosomes (Armstrong et al., 2002; Mohrmann et al., 2004).. 

Further, the loss or inactivation of SWI/SNF complex subunits is frequently observed in 

cancer and the mammalian homolog of brahma, BRG1 has been shown to be a key 

tumour suppressor (Hargreaves and Crabtree, 2011). 
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2.1.4.2 INO80 family 

INO80 complexes were initially identified as transcriptional regulators of inositol 

responsive genes in yeast (Ebbert et al., 1999). Purification of the complex revealed 

the presence of five specific subunits: Reptin, Pontin, Actin and two actin-related 

protein Arp5 and 8. Reptin and Pontin represent homologs of the yeast Rvb1 and 2 

AAA-ATPases, constituting a helicase function in the INO80 complex (Klymenko et al., 

2006). The ATPase domain of the INO80 family is characterised by the presence of a 

linker region that splits this conserved domain and most likely presents a binding 

platform for complex subunits such as RuvB-like AAA-ATPases (Wu et al., 2005). In 

addition, Klymenko et al. revealed the association of the transcription factor Pho 

(Pleiohomeotic) with the INO80 complex (Klymenko et al., 2006). Pho recognises 

Polycomb repressive elements (PRE) and recruits INO80 complexes to participate in 

the regulation of homeotic genes (Bhatia et al., 2010). Furthermore, the Drosophila 

ortholog Domino/p400 of the yeast SWR1 complex has been described to harbor Ino80 

as a subunit and to be specifically required for H2AZ deposition at DNA double strand 

breaks in both species (Kobor et al., 2004; Kusch et al., 2004). 

 

2.1.4.3 ISWI family 

ISWI (Imitation SWItch) was identified based on the sequence similarity to Drosophila 

brahma (Elfring et al., 1994). The chromatin remodeler is a subunit of three well-

studied protein complexes in Drosophila: NURF (nucleosome remodeling factor), ACF 

(ATP-dependent chromatin assembly and remodeling factor) and CHRAC (chromatin 

accessibility complex) (Ito et al., 1997; Tsukiyama et al., 1995; Tsukiyama and Wu, 

1995; Varga-Weisz et al., 1997). NURF consists of four subunits: ISWI, NURF301, 

NURF55 and NURF38. The complex has been purified from Drosophila embryonic 

extracts and demonstrated to enable GAGA factor binding to the hsp70 promoter by 

establishing a DNase I hypersensitive site (Tsukiyama and Wu, 1995). Further, NURF 

is a regulator of ecdysone and STAT responsive genes, as it can directly interact with 

the ecdysone receptor (EcR) and Ken, a negative regulator of STAT signalling 

(Badenhorst et al., 2005; Kwon et al., 2008). In addition to the interaction with 

sequence specific transcription factors, NURF contains two well characterized domains 

that can bind PTMs on histones. The PHD finger can bind to H3K4me2/3, whereas the 

neighbouring bromodomain can interact with H4K16ac thereby enabling NURF 

recruitment to specific chromatin regions (Kwon et al., 2009; Wysocka et al., 2006). In 

comparison, ACF is a heterodimer of ISWI and its binding partner ACF1, whereas the 
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CHRAC complex contains ISWI, ACF1 and two additional subunits CHRAC14 and 16. 

Both complexes are capable of assembling nucleosomes from free DNA and histones 

in the presence of ATP in vitro (Ito et al., 1997; Varga-Weisz et al., 1997). 

 

2.1.4.4 CHD family 

The CHD (Chromodomain-Helicase-DNA-binding protein) family of ATP-dependent 

chromatin remodelers is distinguished from other ATPases by the presence of two N-

terminally located chromodomains. According to the presence of additional domains 

three subfamilies of CHD proteins have been designated in Drosophila: Chd1, Mi-

2/Chd3 and kismet.  

 

Chd1 exists predominantly as a monomer in the cell and its chromodomains bind 

specifically to H3K4me3 (Lusser et al., 2005; Morettini et al., 2011). In addition, 

immunofluorescence analysis in Drosophila polytene chromosomes visualised Chd1 

localisation to interbands (Stokes et al., 1996). These findings suggest a role of the 

ATP-dependent chromatin remodeler in the activation of transcription. Another 

interesting function of Chd1 has been demonstrated in the deposition of histone H3.3 

in the developing sperm of Drosophila (Konev et al., 2007). It was shown that Chd1 

mutants fail to incorporate the histone variant H3.3 in the paternal pronucleus. Further, 

Chd1 interacts with the histone chaperone HIRA that delivers the histones at the sites 

of incorporation, indicating that Chd1 is essential for nucleosome assembly during 

sperm condensation.  

 

In order to understand how the nucleosomal substrate is recognized by the ATP-

dependent chromatin remodeler and how the catalytic activity of the ATPase motor is 

regulated, the Bowman laboratory solved the crystal structure of yeast Chd1. (Hauk et 

al., 2010). It was previously shown that activation ATP dependent chromatin 

remodelers requires the N-terminus of histone H4 to stabilise the ATPase domain on 

the nucleosomal substrate (Clapier et al., 2001; Gangaraju et al., 2009). This was 

thought to enable the remodeler to distinguish between naked and nucleosomal DNA. 

The crystal structure of Chd1 showed that the chromodomains contact both ATPase 

lobes, thereby inhibiting their catalytic activity. The so-called chromo-wedge domain 

packs against a DNA binding surface of the ATPase domain interfering with DNA 

binding to the ATPase motor. A conformational switch in the presence of nucleosomes 

releases the chromodomains from the ATPase, allowing efficient ATP hydrolysis and 
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remodeling activity. Hence, this model explains the discrimination between naked DNA 

and nucleosomes and may apply to other ATP-dependent chromatin remodelers. 

 

The second subfamily of CHD proteins includes the two Drosophila proteins Mi-2 and 

Chd3. The mammalian homolog of Mi-2 was initially identified in and named after an 

antibody serum of a dermatomyositis patient by the name Mitchell (Seelig et al., 1995). 

Identification of factors involved in Polycomb-mediated gene repression classified 

Drosophila Mi-2 as a hunchback interacting protein (Kehle et al., 1998). This study also 

showed that homozygous deletion of Mi-2 resulted in developmental arrest during first 

and second instar larva stages. Several studies have purified Mi-2 as a subunit of the 

highly conserved protein complex NuRD (nucleosome remodeling and deacetylase) 

that contributes to the repression of gene expression. NuRD integrates the 

nucleosome remodeling activity of Mi-2 and the deacetylation of histones by a specific 

HDAC subunit (Tong et al., 1998; Wade et al., 1998; Xue et al., 1998; Zhang et al., 

1998). In Drosophila the complex is composed of Mi-2, the histone deacetylase Rpd3, 

MTA, MBD2/3, p55 and p66 and functions as a transcriptional repressor at its target 

genes (Brehm et al., 2000; Marhold et al., 2004). In addition to the NuRD complex, a 

second Mi-2 containing complex has been purified from Drosophila embryos (Kunert et 

al., 2009). The dMec (Mep1-containing) complex consists of Mi-2 and the newly 

identified dMep1 protein. It functions in the repression of proneural genes of the 

achaete-scute locus in an HDAC-independent manner.  

 

Several mechanisms for targeting of Mi-2 to chromatin have been proposed. First, Mi-2 

possesses two tandemly arranged PHD (plant homeodomain) fingers and a double 

chromodomain that was shown to preferentially bind unmodified H3K4 as well as 

methylated H3K9 in the human homolog Chd4 (Mansfield et al., 2011). Second, the 

MBD2/3 (methyl-CpG binding domain) subunit of the NuRD complex enables 

recruitment by binding to methylated DNA (Roder et al., 2000). Further, NuRD has 

been demonstrated to interact with sequence-specific transcription factors such as 

Tramtrack69 (Murawsky et al., 2001; Reddy et al., 2010). Interestingly, Mi-2 and Mep1 

have been identified as transcriptional repressors of SUMO (small ubiquitin-related 

modifier)-mediated repression of a reporter gene in a genome-wide RNAi screen 

(Stielow et al., 2008). Both proteins can bind the SUMO-modified transcription factor 

Sp3 and are thereby recruited to mediate HDAC-independent gene silencing in vivo. 

Also, Mi-2 has been demonstrated to be recruited to active heat shock loci promoting 

proper induction upon heat shock. Association with highly inducible genes is mediated 

by an interaction with poly-(ADP)ribose, enabling Mi-2 to spread over the entire heat 
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shock locus and participate in proper RNA processing of heat shock transcripts 

(Mathieu et al., 2012; Murawska et al., 2011). The finding that Mi-2 colocalises with 

RNA PolII at transcriptionally active loci on polytene chromosomes is in contrast to the 

well-established function of Mi-2 as a transcriptional repressor. In addition to the 

function of Mi-2/NuRD in the regulation of gene expression, evidence has accumulated 

that the complex also plays an important role in the regulation of DNA damage 

response (DDR) (O'Shaughnessy and Hendrich, 2013). The mammalian homolog of 

Mi-2, CHD4 was shown to be a phosphorylation target of the DDR kinases ATR and 

ATM and that its expression is induced upon UV irradiation (Burd et al., 2008; 

Matsuoka et al., 2007; Mu et al., 2007). Further studies established that CHD4 can be 

recruited to sites of DDR by interaction with PARylated proteins and the ubiquitin ligase 

RNF (RING finger protein) 8 (Polo et al., 2010). The recruitment of CHD4 allows the 

remodeler to decondense the chromatin at the damaged DNA site and stimulates the 

formation of ubiquitin conjugates by RNF8 (Luijsterburg et al., 2012). This amplifies the 

DNA-damage repair pathway and recruits downstream acting proteins for DNA break 

repair (Smeenk et al., 2010). 

 

The remodeler Chd3 is highly related to Mi-2 as it shares one PHD finger, the 

chromodomains and the ATPase domain with Mi-2. Purification of Chd3 from 

Drosophila embryonic extracts revealed its presence as a monomer in these early 

developmental stages (Murawska et al., 2008). Furthermore, Chd3 co-localises with 

Mi-2 to a multitude of interbands on polytene chromosomes. Since Chd3 is not part of 

a multisubunit complex and lacks parts of the N-terminal domain that is relevant for 

specific recruitment of Mi-2, recruitment mechanisms of Chd3 to chromatin are subject 

to ongoing experiments (S. Awe, personal communication). 

 

Finally, the CHD-domain containing protein kismet has been identified as a strong 

suppressor of homeotic transformation in several Polycomb mutants (Daubresse et al., 

1999). Molecular analysis defined the BRK-domain (BRM and KIS) in the C-terminus of 

kismet, a region also conserved in brahma. Staining of polytene chromosomes with an 

antibody recognising kismet revealed its association with actively transcribed loci and 

colocalisation with RNA PolII. Strikingly, loss of kismet results in dramatic reduction of 

elongating RNA PolII and the transcription elongation factors Spt5 and Chd1 

(Srinivasan et al., 2005). In line with these findings kismet was also shown to establish 

binding of the H3K4 methyltransferase TRX and ASH1 and to antagonise H3K27 

methylation on chromatin (Dorighi and Tamkun, 2013; Srinivasan et al., 2008). 
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Therefore, it has been suggested that kismet contributes to initial steps of 

transcriptional activation. 

 

In conclusion the family of ATP-dependent chromatin remodeler contains highly related 

proteins that can function in transcriptional activation and/or establishment of 

repressive chromatin. Therefore, their function is highly dependent on the interacting 

proteins within a complex and the chromatin environment to which they are recruited. 
 

2.2 Nuclear hormone receptors 

2.2.1 Nuclear receptor superfamily 

The nuclear receptor (NR) superfamily is a group of eukaryotic transcription factors 

that bind specific biologically active substances (ligands), which leads to a 

conformational change within the protein that can result in alterations in gene 

expression of a particular cell (Bain et al., 2007). Nuclear receptors have a significant 

importance in development, differentiation, metabolism and physiology of an organism. 

Members of this family include receptors that bind thyroid and steroid hormones, 

retinoids and vitamin D, as well as “orphan” receptors that have no defined 

endogenous ligand. Over the past decades scientists have identified more than 300 

members of the NR superfamily that are characterised by structural homology between 

several domains (Figure 2.5) (Nuclear Receptors Nomenclature, 1999). Even though 

the letters A/B, C, D, E and F have been traditionally designated to different regions 

within the protein, they do not necessarily correspond to structural domains. All family 

members harbour a centrally located DNA-binding domain (DBD, region C) containing 

two zinc fingers and a C-terminally located ligand binding domain (LBD, region E).  

 

 
Figure 2.5: Domain organisation of the nuclear receptor superfamily. Adapted from (Hill et 
al., 2013). 
 

Interestingly, it was found that a receptor lacking the LBD is constitutively active, 

suggesting that neither the hormone, nor the hormone-binding region is necessary for 

DNA-binding. Therefore, it was proposed that the LBD prevents the DBD from 

interaction with the DNA. This inhibition is relieved upon ligand binding (Godowski et 

al., 1987). In contrast to the highly conserved DBD, the N-terminus (AF1, region A/B) 
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of nuclear hormone receptors contains a region that is hypervariable in size and amino 

acid composition. It was shown that the N-terminus contributes to receptor function as 

deletion mutants show a 10- to 20-fold reduced activity in reporter gene activation 

(Hollenberg et al., 1987). In addition to the three structural domains described above, 

nuclear receptors contain a flexible hinge region between the DBD and LBD (region D) 

that harbours nuclear localisation signals. This region was also shown to further 

modulate receptor activity (Guiochon-Mantel et al., 1992; Jackson et al., 1997). 

 

Nuclear receptors conduct their function by making base-specific contacts with the 

major groove of the DNA via the zinc finger motif in the DNA binding domain (Helsen et 

al., 2012). Gene transfer studies with the mouse mammary tumour virus (MMTV) 

promoter demonstrated that short sequences, acting in cis, are necessary for 

transcriptional activation by hormones. If these elements are cloned in front of an 

otherwise hormone-nonresponsive gene, its transcription is induced upon hormonal 

stimulation (Robins et al., 1982). Functionality of these hormone response elements 

(HREs) is independent of their orientation and position with respect to the gene 

(Chandler et al., 1983). Therefore, these sequences act as transcriptional enhancers to 

which the hormone receptor binds in a ligand dependent fashion. In most cases, NRs 

recognise a purine base followed by the sequence GGTCA (Chalepakis et al., 1988; 

De Vos et al., 1993). This HRE is often present in two copies, which can occur in a 

head-to-head (palindrom), head-to-tail (direct repeats) or tail-to-tail (inverted repeats) 

orientation (Gronemeyer and Moras, 1995). Furthermore, two HREs within a repeat 

can be separated by variable linker sequences. Due to the dyad symmetry of the DNA 

motif, nuclear receptors bind as dimers to their specific sequence (Beato et al., 1995; 

Germain and Bourguet, 2013). In addition to a homology-based classification, the 

nuclear receptor superfamily can be broadly divided into four groups based on their 

dimerisation and DNA-binding properties (Olefsky, 2001). Class I receptors, such as 

the glucocorticoid and estrogen receptor, bind as ligand-induced homodimers to 

inverted repeats, whereas Class II receptors, like thyroid hormone receptor (TR), 

heterodimerise with their retinoid X receptor (RXR) binding partner and bind to direct 

repeats. Class III composes a group of nuclear receptors that bind as homodimers 

primarily to direct repeats. Receptors belonging to Class IV typically interact with a 

single PuGGTCA sites as monomers. Class III and IV include most orphan receptors 

(Mangelsdorf et al., 1995; Stunnenberg, 1993).  

 

Recent advances in sequencing technologies allowed scientists to dissect NR action 

on a genome-wide scale (Mendoza-Parra and Gronemeyer, 2013). Surprisingly, 
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ChIPSeq results revealed that most of the identified NR binding sites were situated 

within intronic or promoter-distal, intergenic regions and not, as expected, at 

promoters. In addition, the correlation between receptor occupancy and gene 

regulation was found to be very small (Carroll et al., 2006; Delacroix et al., 2010; Wang 

et al., 2007). These unexpected findings prompted scientists to question the simple 

promoter recruitment model and to investigate the cross-talk between nuclear 

receptors and chromatin associated proteins in detail. 

 

2.2.2 Chromatin architecture at hormone inducible promoters 

Nuclear receptors regulate transcription by binding specific DNA sequences and 

recruiting enzymes that establish a repressive or active chromatin state (Figure 2.6). 

Various co-activator complexes associate with the receptor in the presence of hormone 

in a sequential and combinatorial manner to potentiate NR activity. Direct interaction 

with the AF-2 of NRs is mediated by the presence of leucine-rich motifs of the 

consensus sequence LXXLL, where L represents leucine and X any amino acid (Heery 

et al., 1997). In contrast, co-repressor complexes bind to NRs in a ligand-independent 

fashion to limit or abolish transcription of target genes.  

 

 
Figure 2.6: Transcriptional regulation by nuclear receptors. NRs interact with co-activator 
complexes in the presence of hormonal substances and recruit the transcription machinery 
(grey circles and RNA PolII) to the transcriptional start site. In the absence of hormone, co-
repressor complexes bind to the nuclear receptor to establish a repressive chromatin 
environment and inhibit transcription. Adapted from (Nettles and Greene, 2005). TATA – TATA-
box, HRE – hormone responsive element., NR-nuclear receptor. 
 

The estrogen-dependent gene pS2 (trefoil factor 1; TFF1) has been used extensively 

as a model promoter to explore the processes by which nuclear receptors influence 

chromatin remodeling and thereby transcription. The pS2 promoter is a target of 

estrogen-receptor mediated transcriptional activation. It harbours a single consensus 

estrogen response element positioned 400 bp upstream of the TSS (Figure 2.7). 

Further, it is occupied by two nucleosomes positioned such that they encompass the 

TATA box (nucT) and the ERE (nucE) at their edge (Sewack and Hansen, 1997).  
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Figure 2.7: Chromatin architecture at the pS2 promoter. The positioning of specific 
nucleosomes (nuc) over relevant DNA sequences is illustrated. HRE-hormone responsive 
element, TATA-TATA box, ERE-estrogen responsive element. Adapted from (Sewack and 
Hansen, 1997). 
 

Detailed ChIP analyses provide a comprehensive picture of the timing of events at this 

locus and introduced the concept of a “transcriptional clock” (Burakov et al., 2002; 

Metivier et al., 2003; Reid et al., 2003; Shang et al., 2000). Metivier et al. describes the 

subsequent binding of 30 different proteins upon treatment of MCF-7 cells with 17b-

estradiol (E2) using re-ChIP assays, hereby identifying the combinations of factors 

engaged at the pS2 promoter. This showed that transcription factors, histone modifying 

enzymes and chromatin remodeler occupy the promoter in oscillatory waves of 

association. In detail, productive transcription is preceded by a non-productive cycle in 

which ER binds to the pS2 promoter and recruits co-activator complexes such as p160, 

p300 and PRMT1. That contribute to acetylation of H3K14 and dimethylation of H4R3 

(Shang et al., 2000). This first cycle is followed by two alternating, transcriptionally 

productive cycles. The factors to be recruited in the productive cycles are the SWI/SNF 

complex followed by CARM1 and p300/CBP, which promote additional covalent 

histone modifications such as H4K16ac and H3R17me2 (Chen et al., 1999; DiRenzo et 

al., 2000). This creates a chromatin environment that enables recruitment of the basal 

transcription machinery by binding of TBP, TFIIA and TAF130 and RNA PolII. The 

recruitment of Mediator and elongation promoting complexes facilitates separation of 

the DNA double strand, release of RNA PolII from the promoter and eventually mRNA 

synthesis.  

 

Termination of the hormonal response due to a decrease in hormone titer requires the 

removal of ER and its co-activators from the promoter in order to establish a repressive 

state. This is achieved by removal of active histone marks by HDAC1 and 7 that are 

recruited via NCoR/SMRT. Additionally, the NuRD complex was demonstrated to 

localise to the methylated CpGs in the promoter via MBD2/3 (Kangaspeska et al., 

2008; Metivier et al., 2008). The NuRD complex contributes to promoter clearance by 

shifting the nucT nucleosome over the TATA box, thereby excluding TBP binding. As 
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demonstrated by ChIP, cycling of the pS2 promoter occurs with a periodicity of around 

50 min. The mode of action of ER on a genome-wide scale has been established using 

ChIA-PET (Fullwood et al., 2009). This study demonstrated that ER is bound to 

promoter-distal regions and upon chromosomal loop formation it associates with RNA 

PolII at promoter-proximal regions. It was hypothesised that this three-dimensional 

architecture establishes “transcription factories” with a high concentration of factors 

important for transcription, which allows for efficient cycling of the involved complexes 

described above (Osborne et al., 2004). 

 

2.2.3 Ashburner model of the ecdysone cascade 

The development of holometabolous invertebrates requires the moulting of the 

cuticula, a process termed ecdysis (Aguinaldo et al., 1997). In insects, this process is 

initiated by hormones in response to environmental and physiological cues such as the 

photoperiod and the weight of the animal (Heming, 2003; Truman, 2005). Ecdysone is 

the master regulator of development of Drosophila. It is a steroid hormone that is 

mainly produced in the prothoracic gland (Kopeć, 1922). Upon release into the 

hemolymph, ecdysone is converted to the biologically active substance 20-

hydroxyecdysone (20HE) that regulates the transition from larval to pupal stage (Petryk 

et al., 2003). The ecdysteroid titer rises rapidly at the end of the Drosophila third instar 

larva development, triggering puparium formation and the onset of metamorphosis 

(Handler, 1982; Richards, 1981). Subsequently, 20HE levels drop in mid prepupae and 

peak again 10- to 12-hours later, triggering head eversion and pupation (Handler, 

1982; Sliter and Gilbert, 1992).  

 

Through a series of detailed studies, Ashburner and colleagues postulated a model to 

explain the genetic regulation of polytene chromosome puffing by 20HE (Figure 2.8A) 

(Hill et al., 2013). Puffing of polytene chromosomes reflects the immense alteration of 

chromatin structure upon transcriptional activation by 20HE at specific loci. According 

to this model, the 20HE receptor complex directly induces a small set of “early genes” 

that are represented by a few polytene puffs visible immediately after the first pulse of 

hormone (most prominently 2B, 23E, 63F, 74EF, and 75B) (Ashburner, 1972a; 

Ashburner, 1972b; Ashburner, 1973). The protein products of early transcribed genes 

are transcription factors that directly contribute to activation of “late genes” as 

visualised by approximately 100 late puffs on the polytene chromosomes. Treatment 

with protein synthesis inhibitors, such as puromycin or cycloheximide, did not restrain 
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induction of early puffs. However, it did indicate that late-puff induction was dependent 

on new protein synthesis (Ashburner, 1974; Clever, 1964). 

 

 
Figure 2.8: Ashburner Model in comparison to a more complex ecdysone cascade. 
Adapted from (Ashburner, 1990; Thummel, 1995). 
 

In the past decades, molecular characterisation of early gene puffs and cloning of the 

related genes involved in the ecdysone cascade, lead to the isolation of the 

transcription factors broad (Br-C), E74 and E75. Genetic studies implied that the broad 

gene (residing within the 2B puff), is required for transcription of genes in the Eig71 

late puff. Also, mutations in broad were shown to prevent metamorphosis (Guay and 

Guild, 1991; Kiss et al., 1988). In order to identify the gene associated with the 

polytene puff at 75B, chromosomal walks were conducted and confirmed the gene 

product E75 to be a member of the nuclear receptor superfamily (Feigl et al., 1989; 

Segraves and Hogness, 1990). The sequence of the putative DNA-binding domain of 

E75 was subsequently used as a hybridisation probe in a cDNA library screen and 

allowed the isolation of the EcR gene (Koelle et al., 1991). Later, the functional 

ecdysone sensing receptor was shown to be generally a heterodimer consisting of the 

nuclear proteins EcR and ultraspiracle (USP). (Thomas et al., 1993; Yao et al., 1993; 

Yao et al., 1992). USP is the Drosophila homolog of the mammalian nuclear hormone 

receptor heterodimeric partner RXR (Oro et al., 1990). These results confirmed the 

basic concept of the Ashburner Model and lead to a better understanding of the 

sequential regulation of the ecdysone network (Figure 2.8B). 

 

The Ashburner model is an oversimplification of a direct response to a single ecdysone 

pulse. Therefore, it can not clarify how diverse tissues can respond differently to the 

same ecdysone pulse or how a specific tissue reacts to several independent ecdysone 

pulses (Rewitz et al., 2013). This can be in part explained by varying sensitivity to 
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20HE, the expression of different EcR isoforms and the availability of a distinct set of 

co-activator and –repressor complexes (discussed below) (Karim and Thummel, 1992; 

Talbot et al., 1993). The finding that the transcription factor/ nuclear receptor FTZ-F1 is 

differentially expressed in subsequent developmental stages and represses its own 

transcription added more complexity to the network (Lavorgna et al., 1993; Woodard et 

al., 1994). FTZ-F1 expression requires a high concentration of 20HE followed by 

ecdysone withdrawal, as is observed three to eight hours after pupariation (Handler, 

1982; Richards, 1976). Therefore, it acts as a competence factor to reset the system 

during the mid-prepupal period to allow both, the reinduction of the early puffs and the 

initial induction of the prepupal-specific early puffs by ecdysone (Broadus et al., 1999; 

Woodard et al., 1994).  

 

The tight regulation and expression of the transcription factors described above 

translates the hormonal signal into the expression of secondary-response effector 

genes such as the glue genes and apoptosis promoting genes (Yamanaka et al., 

2013). The expression of glue-genes is limited to the late third instar larva. Secretion of 

glue proteins at this stage allows the larva to adhere to a solid surface for the duration 

of the pupal period (Beckendorf and Kafatos, 1976; Kodani, 1948). Also, the late larval 

ecdysone pulse triggers a set of metamorphic responses such as larval tissue 

histolysis and eversion of the imaginal discs that will later form the adult appendages. 

The degradation of larval tissue is coordinated by the process of programmed cell 

death, for which the 20HE-induced expression of “death activator” genes like reaper 

(rpr) and head involution defective (hid) is essential (Denton et al., 2013a; Jiang et al., 

1997; Yin and Thummel, 2005). Approximately ten hours after puparium formation, this 

is followed by a second hormonal pulse that leads to growth and differentiation of adult 

tissues such as head eversion and gut formation (Bate and Martinez Arias, 1993). 

 

In order to identify all genes involved in the ecdysone response, several studies 

examined the genome-wide expression pattern upon an ecdysone pulse in cell culture 

or by analysing subsequent stages of the metamorphosis in the fly (Beckstead et al., 

2005; Gonsalves et al., 2011; White et al., 1999). Microarray analysis of whole staged 

animals showed approximately four times more genes were regulated during 

metamorphosis than Ashburner proposed by the appearance of puffs on polytene 

chromosomes (White et al., 1999). 

 

More recent studies demonstrated that the ecdysone response cascade is not only 

crucial for larval to pupal transition, but is already activated in the extraembryonic 
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amnioserosa during early embryo development. Here, ecdysone activation influences 

shaping events for the first instar larva, such as germ band retraction and head 

involution (Kozlova and Thummel, 2003). Additionally, ecdysone has been shown to be 

crucial for ovary development in the adult fly, as germline clones of EcR null mutants 

arrest during oogenesis resulting in female sterility (Buszczak et al., 1999). Further, 

EcR was shown to influence follicle development, border cell migration and to promote 

self-renewal of germline stem cells in the Drosophila ovary (Ables and Drummond-

Barbosa, 2010; Carney and Bender, 2000; Jang et al., 2009). In conclusion, ecdysone 

and its corresponding receptor complex is involved in a multitude of gene regulatory 

functions and is considered to be a master regulator of insect development. 

 

2.2.4 Regulation of gene expression by EcR 

In Drosophila, the EcR gene encodes for three different isoforms (EcR-A, -B1, -B2), of 

which each isoform has a distinct expression and trans-activation function during insect 

development (Davis et al., 2005). Mutations in a common exon of all isoforms, leads to 

embryonic lethality. In contrast, depletion of only the EcR-B1 isoform results in lethality 

at the onset of metamorphosis (Bender et al., 1997; Schubiger et al., 1998). The 

functional ecdysone receptor is a heterodimer between the nuclear receptors EcR and 

USP, and this heterodimer is required for binding both ecdysone response element 

DNA (EcRE) and ecdysteroids (Koelle et al., 1991; Thomas et al., 1993; Yao et al., 

1993). The LBD of EcR (activation function 2, AF-2) and USP both display a canonical 

nuclear receptor LBD tertiary structure, which consists of 12 α-helices (H1 to H12). 

These pack together in three antiparallel layers, which encloses the steroid hormone in 

a conserved position in the ligand binding pocket (Billas et al., 2003; Billas et al., 

2001). Crystal structure analysis of the DBD of EcR and USP bound to the hsp27 

promoter showed that important sequence specific base-contacts with the major 

groove are mediated by residues of the so called DNA-recognition α-helix. These 

contacts are formed such that the EcR DBD makes seven and the USP DBD ten 

specific interactions with the palindromic sequence (Figure 2.9) (Devarakonda et al., 

2003; Jakob et al., 2007). 
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Figure 2.9: Crystal structure of DNA-binding domains of USP (blue) and EcR (red) bound 
to the hsp27 EcRE. Adapted from (Jakob et al., 2007).  
 

The cellular distribution of EcR is subject to debate. In some cells it exclusively 

localises to the nucleus, yet in others it is evenly distributed between the cytoplasm 

and the nucleus (Smagghe, 2009). However, a recent study shows that in the absence 

of the hormone, both EcR subunits localise to the cytoplasm, and the heme-binding 

nuclear receptor E75A replaces EcR/USP at common target sequences in several 

genes (Johnston et al., 2011). Upon hormone release, the receptor complex shifts into 

the nucleus. Subsequent binding of the EcR/USP heterodimer to its DNA recognition 

sequence causes the release of associated co-repressor proteins. This allows receptor 

association with co-activator proteins that function to either modify chromatin structure 

or link the nuclear receptors to the transcription machinery.  

2.2.4.1 EcR co-activators 

Initiation of the ecdysone cascade can be observed in Drosophila instar larva as 

puffing of the underlying chromatin structure. Tulin and Spradling showed that puff 

formation requires ADP-ribosylation of histone and non-histone proteins by the 

poly(ADP)-ribose polymerase (PARP) (Tulin and Spradling, 2003). Parp mutants fail to 

form puffs and display a developmental arrest at the onset of ecdysis (Tulin et al., 

2002). Examination of the functional relationship between EcR and PARP revealed 

that PARP interacts with EcR and is recruited to the hsp27 promoter in a ligand-

dependent manner (Sawatsubashi et al., 2004). Adding to the concept of chromosomal 

puffing in response to 20HE, the Nasmyth laboratory demonstrated that Cohesin, a 

multisubunit complex that functions in sister chromatid segregation during mitosis, is 

also implicated in transcriptional regulation of ecdysone dependent genes. Depletion of 
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the Cohesin subunit Rad21 resulted in misregulation of 20HE inducible genes, which 

resulted in dramatic reduction of puff size at the Eip74 and Eip75 loci (Pauli et al., 

2010). 

 

Another EcR co-activator is the SET-domain containing protein TRR (trithorax related) 

that can methylate H3K4. It contains a C-terminal LXXLL motif that mediates 

interaction with both, USP and EcR and accordingly co-localises with the nuclear 

receptor complex to 20HE target genes on polytene chromosomes. Further, the 

presence of TRR at the promoter region of Br-C coincides with an increase in 

H3K4me3 upon hormonal stimulation demonstrated by ChIP analysis (Sedkov et al., 

2003). In comparison to its mammalian homolog, MLL2 and 3, TRR lacks the N-

terminal PHD and HMG domains that contribute to chromatin binding. Interestingly, the 

protein encoded by cmi (cara mitad) was identified as the N-terminal half of MLL2 

present in Drosophila. Cmi has been demonstrated to bind to mono- and di-methylated 

H3K4. This prevents demethylation and stabilises TRR for hormone-stimulated histone 

methylation (Chauhan et al., 2012). A subsequent study reported that ASH2 (absent, 

small or homeotic discs 2), a protein found to be a core subunit of methyltransferase 

complexes in mammals, also stabilises TRR at ecdysone response genes. Therefore, 

it also acts as a co-activator for EcR dependent transcription (Carbonell et al., 2013; 

Dou et al., 2006). Activation of transcription does not only require the establishment of 

active histone marks such as H3K4me3, but also removal of repressive marks like 

H3K27me3. The H3K27 demethylase UTX was studied in the regulation of apoptosis 

and autophagy genes during ecdysone-mediated programmed cell death of salivary 

glands. Here, UTX interacts with EcR and induces expression of apoptotic genes such 

as reaper, dark and dronc (Denton et al., 2013b). 

 

Badenhorst and colleagues identified the ISWI-containing chromatin remodeling 

complex NURF to physically associate with EcR (Badenhorst et al., 2005). Loss-of-

function mutation for NURF lead to a strong down-regulation of several genes of the 

ecdysone cascade. This resulted in pupariation defects highlighting the critical function 

of NURF in EcR-mediated gene activation. Comparable results have been reported for 

the Drosophila SWI/SNF complex. Overexpression of dominant negative brahma 

renders the chromatin remodeler catalytically inactive, but does not disrupt 

incorporation into the complex. These mutants showed a decreased expression of the 

late-induced Eig71 (ecdysone induced gene) cluster on chromosome 3 (Zraly et al., 

2006). This data was further supported by the finding that SAYP (supporter of 

activation of yellow protein) interacts with the orphan nuclear receptor DHR38 and is 
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recruited to ecdysone dependent genes (Vorobyeva et al., 2011). SAYP was found to 

form a super-complex connecting TFIID and the brahma-containing PBAP complex. 

and may thus tether brahma to DHR38 regulated loci where it contributes to 

transcriptional activation of second response genes in the ecdysone cascade 

(Soshnikova et al., 2009).  

 

A genetic screen for proteins that regulate chromosomal puffing in Drosophila 3rd instar 

larva identified the histone chaperone dDEK. DEK is a histone chaperone that interacts 

with EcR in an ecdysone dependent manner in S2 cells. It is suggested to function as a 

co-activator by incorporating H3.3 at transcriptionally active chromatin within EcR 

target gene promoters (Sawatsubashi et al., 2010).  

 

2.2.4.2 EcR co-repressors 

Studies on the mode of action of nuclear receptors in mammals demonstrated that 

repression of basal transcription by the thyroid receptor occurs via association with the 

co-repressor proteins N-CoR and SMRT (Chen et al., 1996). The homolog of N-CoR 

and SMRT was identified as the Drosophila protein SMRTER that contains two 

domains which bind with high affinity to the EcR/USP heterodimer (Tsai et al., 1999). 

Further, SMRTER is suggested to contribute to transcriptional repression by interaction 

with the histone deacetylase Sin3a (Nagy et al., 1997). However, in the presence of 

hormone the interaction with the nuclear receptor is lost, characterising SMRTER as 

an EcR ligand-dependent co-repressor. In addition to histone deacetylation, histone 

methylation plays a crucial role in the establishment of a repressive chromatin 

environment. The arginine methyltransferase DART1 interacts with EcR in the absence 

and presence of hormone. Knockdown of DART1 slightly enhanced 20HE-dependent 

EcR activation in a Luciferase reporter assay (Kimura et al., 2008). As described 

above, regulation of hormone induced genes is also accomplished by long-range 

promoter-enhancer interactions that are controlled by the presence of insulator 

elements. Insulators are DNA sequences that are bound by insulator proteins such as 

CTCF and Cp190 (Bartkuhn et al., 2009). Ecdysone treatment of Drosophila Kc cells 

resulted in new or increased binding of Cp190 to 306 DNA loci. In depth analysis of 

Cp190 binding to the Eip75B locus revealed that hormonal induction alters the 3D 

structure of the locus. Furthermore, it was demonstrated that depletion of Cp190 

resulted in misexpression of Eip75B neighbouring genes. Thus, Cp190 may create a 

chromatin environment that blocks the spread of 20HE-induced transcription to 

surrounding loci (Wood et al., 2011). 
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2.3 Objectives 

Previous studies of the ATP-dependent chromatin remodeler Mi-2 demonstrated its 

recruitment to active heat shock loci on third instar larva polytene chromosome of 

Drosophila. Here, Mi-2 is crucial for efficient transcription and co-transcriptional 

processing of the nascent hsp transcripts (Mathieu et al., 2012; Murawska et al., 2011). 

These findings were opposing to several studies that identified Mi-2 as a member of 

the repressive NuRD complex (Marhold et al., 2004; Wade et al., 1998; Zhang et al., 

1998).  

Interestingly, in addition to heat shock loci, Mi-2 was shown to localise to the ecdysone 

induced puff of the broad gene in third instar larvae (Murawska, 2011) (Figure 2.10). 

This locus is highly transcribed upon 20HE release. Therefore, Mi-2 may be involved in 

the regulation of ecdysone dependent genes. Involvement of various ATP-dependent 

chromatin remodelers in the regulation of 20HE dependent genes has been studied, 

however so far Mi-2 function has not been connected to the ecdysone cascade 

(Badenhorst et al., 2005; Zraly et al., 2006). This study aims to understand the function 

of Mi-2 at ecdysone dependent genes. Further, it investigates the underlying 

recruitment mechanism that leads to binding of the chromatin remodeler to 20HE 

inducible loci in Drosophila S2 cells. Finally, it examines an additional role of Mi-2 in 

the regulation of transcriptional activation. 

 

 
 
Figure 2.10: Mi-2 localises to the ecdysone induced puff of the broad gene on third instar 
larva polytene chromosomes. DNA is visualised by DAPI staining (left). Immunofluorescence 
with anti-Mi-2 antibody (right). Experiment performed by Magdalena Murawska. 
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3 Material and Methods 

3.1 Material  

3.1.1 Material sources 

The instruments, materials, chemicals and reagents used in this study were 

purchased from the following companies and trademarks: 

 

5 Prime, Abcam, Abgene Ltd., Agilent Technologies Inc., Alexis Biochemicals, 

Biosciences, AppliChem GmbH, Bayer AG, B. Braun Melsungen AG, Beckman 

Coulter Inc., Biometra, Bio-Rad Laboratories Inc., Biozym Scientific GmbH, 

Boehringer Ingelheim, Calbiochem, Camag, Covance Inc., Diagenode, Eppendorf, 

Fermentas, Fisher Scientific, Fujifilm, GE Healthcare, Gibco, Gilson Inc., G. Kisker, 

Greiner Bio-one, Hartmann Analytic GmbH, Heraeus, HMC Europe GmbH, Julabo 

Labortechnik GmbH, Otto E. Kobe AG, Kodak, Labnet International, Lauda Dr. R. 

Wobser GmbH & Co. KG, Leica Microsystems GmbH, Life Technologies 

Corporation, Merck Chemicals, Millipore, MWG Biotech, New England Biolabd, PAA 

Biolaboratories GmbH, PeqLab Biotechnologie GmbH, Perbio, Pierce, Polysciences 

Inc., Promega, Qiagen, Roche, Roth, Santa Cruz Biotechnology, Sarstedt AG & Co, 

Sartorius AG, Scientific Industries, Serva Electrophoretics GmbH, Sigma-Aldrich, 

Stratagene, Thermo Scientific Inc., Upstate, VWR International, Whatman and 

Zeiss. 

 

3.1.1.1 Enzymes 

Calf intestine alkaline phosphatase   Thermo Scientific  

DNase I (RNase-free)     Peqlab 

Fast AP Thermosensitive Alkaline   Thermo Scientific 

Phosphatase      Thermo Scientific 

Micrococcal Nuclease     Sigma 

M-MLV Reverse Transcriptase   Life Technologies  

Proteinase K      Roth 

Restriction endonucleases    Thermo Scientific, NEB 

RNase A (DNase-free)    Qiagen 

Taq DNA Polymerase     Thermo Scientific 

T4 DNA ligase      Thermo Scientific 
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3.1.1.2 Enzyme Inhibitors 

Aprotinin      Roth 

Leupeptin      Roth 

Pepstatin      Roth 

PMSF (phenyl-methane-sulfonyl-flouride)  Roth 

RiboLock RNase Inhibitor    Thermo Scientific 

 

3.1.1.3 Bioactive molecules 

20-Hydroxyecdysone     Sigma-Aldrich 
35S-Methionine     Hartmann Analytic  

 

3.1.1.4 Affinity purification material 

Anti-FLAG M2 Affinity Gel    Sigma-Aldrich 

Glutathione Sepharose    GE Healthcare 

Protein A Sepharose FF    GE Healthcare 

Protein G Sepharose FF    GE Healthcare 

 

3.1.1.5 Dialysis and filtration material 

Filtropur bottle top filters    Sarstedt 

Slide-A-Lyzer Dialysis Cassettes   Thermo Scientific 

Sterile syringe filters     VWR 

 

3.1.1.6 SDS-PAGE and Western blotting 

APS (ammonium persulfate)    Serva Electrophoresis  

Immobilon Western Chemiluminescent 

HRP Substrate     Millipore 

PageBlue Protein Staining Solution   Thermo Scientific 

PageRuler Prestained Protein Ladder  Thermo Scientific 

Protein Assay (Bradford solution)   Bio-Rad 

Rotiphorese Gel 30       

(Acrylamide-Bisacrylamide 37,5:1)   Roth 

Roti-PVDF membrane    Roth 
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SuperRX Fuji Medical X-ray film   Fujifilm 

TEMED (tetramethyl-ethylene-diamine)  Roth 

Whatman 3MM paper     Whatman  

 

3.1.1.7 Agarose gel electrophoresis 

Ethidium bromide     AppliChem 

GeneRuler 1kb DNA Ladder Plus   Thermo Scientific 

 

3.1.1.8 Other consumables 

Amicon Ultra-4 Centrifugal Filter Units  Millipore 

Amplify Flourographic Reagent   GE Healthcare 

Fish skin gelatin     Sigma 

Poly-prep column     Biorad 

Phenol/ Chloroform/ Isoamylalcohol (25:24:1) Roth 

 

3.1.1.9 Kits 

Table 3.1: List of application and supplier of the kits used in this study. 

Kit Application Supplier 

ABsolute SYBR Green Mix qPCR Thermo Scientific 

Bac-N-Blue Baculovirus 

Expression System 

Sf9 cell transfection for 

baculovirus generation 
Life Technologies 

Bac-to-Bac Baculovirus 

Expression System 

Sf9 cell transfection for 

baculovirus generation 
Life Technologies 

Expand High FidelityPLUS PCR 

System 
PCR Roche 

Immobilon Western  

Chemiluminescent HRP 

 

Detection of Western blot Millipore 

Megascript T7 Kit In vitro transcription Life Technologies 

peqGOLD Total RNA Kit RNA isolation Peqlab 

QIAGEN Plasmid Maxi Kit DNA isolation Qiagen 
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QIAquick Gel Extraction Kit DNA isolation from agarose 

gels 
Qiagen 

QIAquick PCR Purification kit DNA isolation after ChIP Qiagen 

TNT SP6 Coupled Reticulocyte 

Lysate System 

Coupled in vitro 

transcription and translation 
Promega 

 

3.1.2 Standard solutions and buffers 

Standard solutions and buffers were prepared according to standard protocols. 

Stock solutions were freshly diluted before use. Additional buffers are listed in the 

individual subsections of section 3.2 Methods. 

  

Phosphate Buffered Saline (PBS)   140 mM NaCl 

       2.7 mM KCl 

       8.1 mM Na2HPO4  

       1.5 mM KH2PO4 

       pH adjusted to 7.4 with HCl 

 

TAE Buffer      40 mM Tris-Acetate, pH 8.0 

       1 mM EDTA, pH 8.0 

 

3.1.3 Bacteria strains and culture media 

The Escherichia coli (E.coli) strain XL1-Blue [endA1 gyrA96(nalR) thi-1 recA1 relA1 

lac glnV44 F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] hsdR17(rK
- mK

+)] was used for 

cloning and propagation of plasmid DNA. 

 

The E.coli strain BL21 [(F- dcm ompT hsdS(rB- mB-) gal [malB+]K-12(λS)] was used for 

recombinant expression of GST fusion proteins. 

 

The E.coli strain DH10Bac [F– mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

recA1 endA1 araD139 Δ(ara, leu)7697 galU galK κ– rpsLnupG/bMON14272/ 

pMON7124] was used for recombination of plasmid DNA into a bacmid. 

 

The E.coli strain XL10-Gold [TetR ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 

supE44 thi-1 recA1 gyrA96 relA1 lac Hte (F´ proAB lacIq Z∆M15 Tn10 (TetR) Amy 
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CamR)a] was used for transformation of plasmids generated by site-directed 

mutagenesis.a 

 

Transformed bacteria were selected on agar plates with the according antibiotic 

resistance and/ or selection marker encoded on the plasmid. 

 

3.1.3.1 Antibiotics and selection marker 

Table 3.2: Antibiotics and selection marker and their corresponding 
concentration. 

Antibiotic/ Selection marker Concentration 

Ampicillin 100 µg/ml 

Gentamicin 7 µg/ml 

Kanamycin 50 µg/ml 

Tetracycline 10 µg/ml 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) 100 µg/ml 

 

3.1.3.2 Culture media 

Lysogeny Broth (LB) medium    1% (w/v) Peptone 

       0.5% (w/v) Yeast extract 

       1% (w/v) NaCl 

 

Agar plates      1.5% (w/v) Agar-agar in LB 

medium 

 

SOC medium       2% (w/v) tryptone 

0.5% (w/v) yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM glucose 

 

3.1.4 Insect cell lines and tissue culture 
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S2: Male aneuploidy Drosophila melanogaster cell line derived from a primary 

culture of 20 to 24 hrs old embryos (Schneider, 1972). S2 cells were cultured in 

Schneider’s Drosophila Medium (Life Technologies), supplemented with 10% (v/v) 

fetal bovine serum (FBS; Gibco) and 1% (v/v) Penicillin-Streptomycin (10mg/ml; 

PAA). 

 

Sf9: Female cell line established from pupal ovaries of Spodoptera frugiperda 

(Vaughn et al., 1977). Sf9 cells were cultured in Sf-900 II SFM medium (Life 

Technologies), supplemented with 10% (v/v) FBS and 0.1% (v/v) Gentamicin 

(10mg/ml; PAA). 

 

3.1.5 Plasmids 

Table 3.3: Plasmids used in this study. 

Plasmid Description 
Source/ 
Reference 

ER33854 
cDNA encoding for full length EcR-RB in the 

pFlc-1 vector. 

DGRC BDGP 

Gold collection 

pGex4T1 
Vector for IPTG-inducible expression of N-

terminal GST-tagged proteins in E.coli. 
GE Healthcare 

pGex4T1 dMi-2 

aa 2-690 

Vector for IPTG-inducible expression of N-

terminal GST-tagged dMi-2 amino acids 2-

690 in E.coli. 

(Murawska, 

2011) 

pGex4T1 dLint1 

aa 1-301 

Vector for IPTG-inducible expression of N-

terminal GST-tagged C-terminus of dLint-1 

in E.coli. 

(Meier, 2012) 

pING14A 
Vector for in vitro transcription containing an 

SP6 promoter. 

(Hagemeier et al., 

1993) 

pING14A-EcR 
Encodes full length EcR under the control of 

an SP6 promoter for in vitro transcription. 
(Amrhein, 2012) 

pFastBac1 

Baculovirus transfer vector for recombinant 

protein expression in Sf9 cells. (Bac-to-Bac 

Baculovirus Expression System) 

Life Technologies 

pVL1392 

Baculovirus transfer vector for recombinant 

protein expression in Sf9 cells. (Bac-N-Blue 

Baculovirus Expression System) 

Life Technologies 
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pFastBacDual 

Mi2-FLAG 

Encodes full length Mi-2 C-terminally FLAG 

tagged, for generation of recombinant 

baculovirus. 

Ulla Kopiniak 

 

Table 3.4: Plasmids generated in this study. 

Plasmid Description 

pING14A EcR 

aa 1-227 

Encodes the activation function 1 (AF1) of EcR under the control 

of an SP6 promoter for in vitro transcription, cloned with XbaI and 

SmaI using oligos EcR-AF1-Xba_fwd and EcR-AF1-Sma_rev 

pING14A EcR 

aa 228-431 

Encodes the DNA-binding domain (DBD) of EcR under the 

control of an SP6 promoter for in vitro transcription, cloned with 

XbaI and SmaI using oligos EcR-DBD-Xba_fwd and EcR-DBD-

Sma_rev. 
pING14A EcR 

aa 432-655  

Encodes the activation function 2 (AF2) of EcR under the control 

of an SP6 promoter for in vitro transcription, cloned with XbaI and 

SmaI using oligos EcR-AF2-Xba_fwd and EcR-AF2-Sma_rev. 

pING14A EcR 

aa 656-878 

Encodes the C-terminus of EcR under the control of an SP6 

promoter for in vitro transcription, cloned with XbaI and SmaI 

using oligos EcR-CTerm-Xba_fwd and EcR-CTerm-Sma_rev. 

pVL1392 EcR Encodes the full length EcR for generation of recombinant 

baculovirus, cloned with NotI and XbaI using oligos 

EcR_NotI_fwd and EcR_Xba_rev. 
pFastBac FLAG-

EcR 

Encodes the full length EcR, N-terminally FLAG-tagged, for 

generation of recombinant baculovirus, derived from pFastBac by 

site directed mutagenesis using oligos FastBac_EcR_FLAG_fwd 

and FastBac_EcR_FLAG_rev. 
pFastBac FLAG-

EcR 

aa 1-227 

Encodes the activation function 1 (AF1) of EcR, N-terminally 

FLAG-tagged, for generation of recombinant baculovirus, cloned 

with BamHI and NotI using oligos EcRAF1_FLAG_fwd and 

EcRAF1_rev. 
pFastBac FLAG-

EcR  

aa 228-431 

Encodes the DNA-binding domain (DBD) of EcR, N-terminally 

FLAG-tagged, for generation of recombinant baculovirus, cloned 

with BamHI and NotI using oligos EcRDBD_FLAG_fwd and 

EcRDBD_rev. 
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pFastBac FLAG-

EcR 

aa 432-655 

Encodes the activation function 2 (AF2) of EcR, N-terminally 

FLAG-tagged, for generation of recombinant baculovirus, cloned 

with BamHI and NotI using oligos EcRAF2_FLAG_fwd and 

EcRAF2_rev. 
pFastBac FLAG-

EcR 

aa 656-878 

Encodes the C-terminus of EcR, N-terminally FLAG-tagged, for 

generation of recombinant baculovirus, cloned with BamHI and 

NotI using oligos EcRCT_FLAG_fwd and EcRCT_rev. 

pFastBac HA-

EcR 

aa 1-227 

Encodes the activation function 1 (AF1) of EcR, N-terminally HA-

tagged, for generation of recombinant baculovirus, cloned with 

BamHI and NotI using oligos EcRAF1_HA_fwd and EcRAF1_rev. 

pFastBac HA-

EcR 

aa 432-655 

Encodes the activation function 2 (AF2) of EcR, N-terminally HA-

tagged, for generation of recombinant baculovirus, cloned with 

BamHI and NotI using oligos EcRAF2_HA_fwd and EcRAF2_rev. 

pGex4T1 Mi-2 

aa 691-1271 

Contains N-terminal GST fusion of Mi-2 ATPase domain for 

IPTG-inducible expression in E.coli, cloned with SmaI and NotI 

using oligos ATPase_Sma_fwd and ATPase_Not_rev. 

pGex4T1 Mi-2 

aa 691-1271 

LFHAA 

 

Contains N-terminal GST fusion of Mi-2 ATPase domain with a 

mutation of the LFHLL motif to LFHAA for IPTG-inducible 

expression in E.coli, derived from pGex4T1 Mi-2 aa 691-1271 by 

site-directed mutagenesis using oligos LXXAA_ATPase_fwd and 

LXXAA_ATPase_rev 
pGex4T1 Mi-2 

aa 691-965 

Contains N-terminal GST fusion of Mi-2 ATPase domain 

Fragment 1 for IPTG-inducible expression in E.coli, cloned with 

BamHI and NotI using oligos ATPase_F1_Bam_fwd and 

ATPase_F1_Not_rev 
pGex4T1 Mi-2 

aa 966-1183 

Contains N-terminal GST fusion of Mi-2 ATPase domain 

Fragment 2 for IPTG-inducible expression in E.coli, cloned with 

BamHI and NotI using oligos ATPase_F2_Bam_fwd and 

ATPase_F2_Not_rev 
pGex4T1 Mi-2 

aa 1184-1271 

Contains N-terminal GST fusion of Mi-2 ATPase domain 

Fragment 3 for IPTG-inducible expression in E.coli, cloned with 

BamHI and NotI using oligos ATPase_F3_Bam_fwd and 

ATPase_F3_Not_rev 
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pGex4T1 Mi-2 

aa 1272-1982 

Contains N-terminal GST fusion of Mi-2 C-terminal domain for 

IPTG-inducible expression in E.coli, cloned with SmaI and NotI 

using Cterm_Sma_fwd and Cterm_Not_rev. 

pGex4T1 Chd1 

aa 505-1067 

Contains N-terminal GST fusion of Chd1 ATPase domain for 

IPTG-inducible expression in E.coli, cloned with XhoI and NotI 

using oligos Chd1_Xho_fwd and Chd1_Not_rev. 

pGex4T1 Chd3 

aa 232-804 

Contains N-terminal GST fusion of Chd3 ATPase domain for 

IPTG-inducible expression in E.coli, cloned with EcoRI and NotI 

using oligos Chd3_Eco_fwd and Chd3_Not_rev. 

pGex4T1 ISWI  

aa 99-611 

Contains N-terminal GST fusion of ISWI ATPase domain for 

IPTG-inducible expression in E.coli, cloned with BamHI and NotI 

using oligos ISWI_Bam_fwd and ISWI_Not_rev. 

pFastBacDual 

Mi2-FLAG 

LFHAA 

Encodes full length Mi-2, C-terminally FLAG-tagged with a 

mutation of the LFHLL motif to LFHAA, for generation of 

recombinant baculovirus. Derived from pFastBacDual Mi-2-FLAG 

by site directed mutagenesis using oligos LXXAA_ATPase_fwd 

and LXXAA_ATPase_rev. 
 

3.1.6 Oligonucleotides 

Unmodified DNA oligonucleotides were purchased from Eurofins MWG Operon. The 

stock solutions were dissolved in double distilled water (ddH20) to a concentration of 

100 pmol/ µl and stored at -20°C. 

 

3.1.6.1 Oligonucleotides for PCR cloning 

Table 3.5: Oligonucleotides used for PCR cloning. Recognition sites of restriction 

endonucleases are underlined and HA/FLAG-tag sequences are depicted in bold. 

Oligo name Sequence 

EcR-AF1-Sma_rev AGGTCTAGAAAGCGGCGCTGGTCGAAC 

 

EcR-AF1-Xba_fwd TCTCCCGGGTAACCTGAAGATATAGAATTC 
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EcR-DBD-Xba_fwd AGGTCTAGACGCGATGATCTCTCGCCTTCG 

 

EcR-DBD-Sma_rev TCTCCCGGGTTACATCCTGGTACCAAATTAACT 

 

EcR-AF2-Xba_fwd AGGTCTAGATACCAGGATGGCTATGAG 

 

EcR-AF2-Sma_rev TCTCCCGGGTTAATGAACGTCCCAGATCTCC 

 

EcR-CTerm-Xba_fwd AGGTCTAGAGCCATCCCGCCATCGGTCCAG 

 

EcR-CTerm-Sma_rev TCTCCCGGGCTATGCAGTCGTCGAGTGCTCCG 

 

EcR_NotI_fwd GAAGCGGCCGCATGAAGCGGCGCTTGTCG 

 

EcR_XbaI_rev TCTAGACTATGCAGTCGTCGAGTGCTCCGA 

 

FastBac_EcR_FLAG_fwd CCGCTTTCGAATCTAGGATGGATTACAAGGATGAC
GACGATAAGAAGCGGCGCTGGTCGAAC 

FastBac_EcR_FLAG_rev GTTCGACCAGCGCCGCTTCTTATCGTCGTCATCCT

TGTAATCCATCCTAGATTCGAAAGCGG 

EcRAF1_FLAG_fwd AGAGGATCCATGGATTACAAGGATGACGACGATA
AGAAGCGGCGCTGGTCGAAC 

EcRAF1_rev TCTGCGGCCGCGTAACCTGAAGATATAGAATTC 

 

EcRDBD_FLAG_fwd AGAGGATCCATGGATTACAAGGATGACGACGATA
AGCGCGATGATCTCTCGCCTTCG 

EcRDBD_rev TCTGCGGCCGCTTACATCCTGGTACCAAATTAACT 

 

EcRAF2_FLAG_fwd AGAGGATCCATGGATTACAAGGATGACGACGATA
AGTACCAGGATGGCTATGAG 

EcRAF2_rev TCTGCGGCCGCGTTAATGAACGTCCCAGATCTCC 

 

EcRCT_FLAG_fwd AGAGGATCCATGGATTACAAGGATGACGACGATA
AGGCCATCCCGCCATCGGTCCAG 

EcRCT_rev TCTGCGGCCGCCTATGCAGTCGTCGAGTGCTCCG 
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EcRAF1_HA_fwd AGAGGATCCATGTACCCATACGACGTCCCAGACTA
CGCTAAGCGGCGCTGGTCGAAC 

EcRAF1_rev TCTGCGGCCGCGTAACCTGAAGATATAGAATTC 

 

EcRAF2_HA_fwd AGAGGATCCATGTACCCATACGACGTCCCAGACTA
CGCTTACCAGGATGGCTATGAG 

EcRAF2_rev TCTGCGGCCGCGTTAATGAACGTCCCAGATCTCC 

 

ATPase_Sma_fwd AGACCCGGGGACGACGAGGATCGCC 

 

ATPase_Not_rev AGAGCGGCCGCCTTAAACGAGGACAGATACTCGTT

GG 

LXXAA_ATPase_fwd GAGGAGCTGTTCCATGCGGCAAACTTCTTGAGCCG

C 

LXXAA_ATPase_rev GCGGCTCAAGAAGTTTGCCGCATGGAACAGCTCCT

C 

ATPase_F1_Bam_fwd GAAGGATCCGACGACGAGGATCGCCCG 

 

ATPase_F1_Not_rev TTCGCGGCCGCTCCTTCAGCACATCCGTCTT 

 

ATPase_F2_Bam_fwd GAAGGATCCAACATGCCGTCCAAGTCT 

 

ATPase_F2_Not_rev TTCGCGGCCGCTCCTCCTCCACAGAATT 

 

ATPase_F3_Bam_fwd GAAGGATCCCGCGTTACCCAGGTGGCC 

 

ATPase_F2_Not_rev TTCGCGGCCGCTCCTTAAACGAGGACAGATA 

 

Cterm_Sma_fwd AGACCCGGGGTGGCTTCGTACGCCACTAA 

 

Cterm_Not_rev AGAGCGGCCGCCGAAAGTTGGCAAAGTTGCCA 

 

Chd1_Xho_fwd AGGCTCGAGGTGATCAAGTATCGCCCCAA 

 

Chd1_Not_rev TCTGCGGCCGCTTATTTGAAGGCGGACAACAAGT 
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Chd3_Eco_fwd AGAGAATTCCGTCAAAGAGATAGACCTGC 

 

Chd3_Not_rev TCTGCGGCCGCTCACTTAAAGGACGAAAGATACT 

 

ISWI_Bam_fwd AGAGGATCCGAGGATGAGGAGTTGCTGGC 

 

ISWI_Not_rev TCTGCGGCCGCTCAGCTGAACACTTGGTTAGCTC 

 

 

3.1.6.2 Oligonucleotides for sequencing 

Table 3.6: Oligonucleotides used for sequencing. 

Oligo name Sequence 

EcRseq1_fwd AGTCCAGGCAGCGTGCCCAGC 

EcRseq2_fwd ATGACCACTTCGCCGAGCTC 

EcRseq3_fwd ACCACAGCTCGGACTCAATA 

GEX-F CTTTGCAGGGCTGGCAAG 

GEX-R GAGCTGCATGGTGCAGAGG 

pFastBacF ATTAAAATGATAACCATCTCTGC 

pFastBacR TCAGGTTCAGGGGGAGGT 

pVL1392seq_fwd AAAATGATAACCATCTCGC 

pVL1392seq_rev GTCCAAGTTTCCCTG 

 

3.1.6.3 Oligonucleotides for generation of dsRNA by in vitro transcription 

Oligonucleotides used to generate gene-specific dsRNA by in vitro transcription 

contain a T7 promoter sequence at the 5’ and 3’ end. dsRNA probes were used for 

RNA interference (RNAi) experimens to specifically knock down proteins in S2 cells. 

RNAi amplicons were designed using the E-RNAi database of the German Cancer 

Research Center (DKFZ, Heidelberg) available at http://www.dkfz.de/signaling/e-

rnai3/. 

 
Table 3.7: Oligonucleotides for dsRNA synthesis by in vitro transcription. T7 

promoter sequences are depicted in lowercase letters, whereas the gene-specific 

DNA sequence is shown in uppercase letters. 

http://www.dkfz.de/signaling/e-rnai3/
http://www.dkfz.de/signaling/e-rnai3/
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Oligo name Sequence 

5’-T7-EcR taatacgactcactatagggTACTCGCAGCGTTACGAAG 

3’-T7-EcR taatacgactcactatagggTACTCAACTGGACCGTGAG 

5'-T7-EGFP gaattaatacgactcactatagggaGAGCTGGACGGCGACGTAA 

3'-T7-EGFP gaattaatacgactcactatagggagACTTGTACAGCTCGTCCATG 

5'-T7-Mi-2(2)  taatacgactcactatagggTTAACTCGCTGACCAAGGCT 

3'-T7-Mi-2(2)  taatacgactcactatagggATATCGTTGTGGGGATTCCA 

 

3.1.6.4 Oligonucleotides for gene expression analysis by RT-qPCR 

For reverse transcription of polyA mRNA into cDNA an Oligo-dT primer, containing 

17 dT nucleotides, was used. Oligonucleotides for RT-qPCR were designed using 

the Universal Probe Library Assay Desgin Center (Roche) available at 

http://www.roche-applied-

science.com/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=10001&tab= 

Assay+Design+Center&identifier=Universal+Probe+Library&langId=-1 

 

Table 3.8: Oligonucleotides for RT-qPCR gene expression analysis. 

Oligo name Sequence 

broad(RB)_fwd TACAACCGCACCATCCAGT 

broad(RB)_rev ATGCGTTACGATGCGATG 

CG12535_fwd GCTAATGCTTATTTACGGAATCG 

CG12535_rev GGAAGCACTCCATCGTTAGG 

Cpr49Ac_fwd ATGAGGGTCGCCACAAGAT 

Cpr49Ac_rev CGCCATAGATTCCATTCTCAG 

CR44742_fw CAATGACACTTGGGCATGG 

CR44742_rev TGTGGACGTGGAATTGGAT 

CR44743_fw TTTTGTAAAAACCTTAAATGCCACT 

CR44743_rev TTGTGCTAACTAATCTGCGTACAGT 

E23_fwd GCTCATGCTCCTGGATGAA 

E23_rev CGCTGATCACGATGGTCTT 

Glut4EF_fwd GATCTTGAAAAATACGCTAAAAGGA 

Glut4EF_rev GTCGCGATTCCAGCAGAC 

Hr4_fwd TGCTCTCCCACATACCAGAGA 

Hr4_rev CACGAAGGGCACATAGAACA 
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Iswi_fwd AAAGGATGTGGCCGATCA 

Iswi_rev AGGCATCGAAGCGAAAGAT 

let-7_fwd AGGTGCGATCTAGTGTGCCGTCTC 

let-7_rev TTAGGGCAAGCTCTGTTGTCCGAA 

Mi-2_fwd CGATTCTCTCCCGACTGG 

Mi-2_rev CAATGTTGTGCCCTGGAAT 

Rh5_fwd TGCTGCCATTGTTCCAGAT 

Rh5_rev GTCCGTGTTGGTCAGGTAATC 

Rp49_fwd TGTCCTTCCAGCTTCAAGATGACCATC 

Rp49_rev CTTGGGCTTGCGCCATTTGTG 

vrille_fwd ATGAACAACGTCCGGCTATC  

vrille_rev CATATTTGCCCAGACTGTCG  

 

3.1.6.5 Oligonucleotides for ChIP analysis by qPCR 

Oligonucleotides for ChIP analysis by qPCR were designed using www.flybase.org.  

 

Table 3.9: Oligonucleotides for ChIP analysis by qPCR 

Oligo name Sequence 

Broad_ChIP1_fwd GCCGGCAATATTAGAAGTTCG 

Broad_ChIP1_rev ATTGGATTGGATGGTGCAG 

Broad_ChIP2_fwd AACTTTAGAGGCAGCCCACA 

Broad_ChIP2_rev AGGTAGCAGGGGTACAGTGG 

Broad_ChIP3_fwd TGCCCACACAGACACACAG 

Broad_ChIP3_rev GCCAACTGTGCCTAACTGGT 

Broad_ChIP4_fwd TTCGCAGTCGCTGTTTTCT 

Broad_ChIP4_rev AACAACCTGACGGCGTAGAC 

Broad_ChIP5_fwd CACAGAAGGAAGAAGCAGCA 

Broad_ChIP5_rev CGGGACTGGCAAATTTCTT 

Broad_ChIP6_fwd GCCAGCTGGAGAAAGGTG 

Broad_ChIP6_rev GATTCCCATTCCCACTGATACT 

Broad_ChIP7_fwd GCGCGTCTCTGGACTCAC 

Broad_ChIP7_rev TGGCCAATACTCACGCTGT 

Broad_ChIP8_fwd CAATGATGAAAGCGCAAGC 

Broad_ChIP8_rev CACAGTTTTTCCATTTGCCTAA 

http://www.flybase.org/
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Broad_ChIP9_fwd GGGGCGTTTTGGTAGAACTAA 

Broad_ChIP9_rev TGGTTAGGCATAGACGTGTCC 

intergenic2R_fwd TGCTGACTGCCATCAAATTC 

intergenic2R_rev TACTTGCTGTGACGGCTTTG 

vrille_ChIP1_fwd GATTTAAAAGCCGCCAACTG 

vrille_ChIP1_rev GAGCTGTTATCACAACTGCAAAG 

vrille_ChIP2_fwd TGTGGACGTGGAATTGGAT 

vrille_ChIP2_rev CAATGACACTTGGGCATGG 

vrille_ChIP3_fwd GCCGCTTGTCGCTTATGTA 

vrille_ChIP3_rev TTCTGAGACTGCTTCCTTTGC 

vrille_ChIP4_fwd GGGTTTTATCGCTGTTGCAT 

vrille_ChIP4_rev CATACGCCCCATGGGTTA 

vrille_ChIP5_fwd TCTCTTTGGCTCCCACTCTG 

vrille_ChIP5_rev AAGCGGTAATAGCCAGCAAA 

vrille_ChIP6_fwd GTTTCTTCTGCCCCAATGC 

vrille_ChIP6_rev CCTCTTTGGCCGAAAAATCT 

vrille_ChIP7_fwd TGTGTGTGTGTGATTGTGCTG 

vrille_ChIP7_rev AGAGGGAGCGAGAATTAGACG 

vrille_ChIP8_fwd AGGCCAATGTGGTAACCAGT 

vrille_ChIP8_rev TGGCCACCTCGGACTCTA 

vrille_ChIP9_fwd TTGTAGGGTATCCTGTCCGAAT 

vrille_ChIP9_rev GAAGATTTAGCATTTTGATGGATTT 

 

3.1.6.6 Oligonucleotides for MNase analysis by qPCR 

Oligonucleotides for MNase analysis by qPCR were designed using 

www.flybase.org. For each theoretical nucleosome, three overlapping oligo pairs 

were designed. Oligo pairs depicted in bold (Table 3.10) were selected as they 

showed to be protected from MNase digest according to qPCR results. 

 

Table 3.10: Oligonucleotides for MNase analysis by qPCR 

Oligo name Sequence 

vrille2_MN1_fw GGAATTGGATGTTGCTTCTGGT 
vrille2_MN1_re AAGTCTTTGGCTGGCGTCGC 

vrille2_MN2_fw CGCGGGCCCGTTCTGCCCAT 

http://www.flybase.org/


3 MATERIAL AND METHODS 

54 
 

vrille2_MN2_rev TTACCGCACGTCCTTTATG 

vrille2_MN3_fw TAACCTTGAAAAGTTTAACTT 

vrille2_MN3_rev CACATGATCCGAGTACATCG 

vrilleRE_MN1_fw AAGCAATTGCGTCGACTGAGC 

vrilleRE_MN1_re GGGTTGTTGTTGGGGATGATGTTG 

vrilleRE_MN2_fw GTGAAATTTCTGTGCGGCGGC 

vrilleRE_MN2_re TAACGACCAACGGCCGCGCCT 

vrilleRE_MN3_fw GGCAAAAGATCGAGAATTTC 

vrilleRE_MN3_re TGTGAGCAATTGCATATTTC 

vrilleRC_MN1_fw ACCGCTTATGTTAAGTGATT 

vrilleRC_MN1_re ACTTAGCCGTATTTATGACTC 

vrilleRC_MN2_fw GGATTTCTCAGCCGTTCTGA 

vrilleRC_MN2_re ATTTGATTTTGGGGTCTATTG 

vrilleRC_MN3_fw TATGTGTCATAAGGTGAAAC 

vrilleRC_MN3_re CGACACTATGAAGCCCAGTT 

vrille6_MN1_fw GTACAAAATTTCGGTTTCGT 

vrille6_MN1_re GGTTTTGGAAGAACCCCCAA 

vrille6_MN2_fw GAATTGCCCGGGTGGCGGGG 

vrille6_MN2_re GCTTACAACTTTCACACCGCA 

vrille6_MN3_fw TGTGCTAGACGTTTCGATGTTG 

vrille6_MN3_re CAACAAGCATTGGGGCAGAAG 

vrilleRA_MN1_fw AATGCTTTTACAAATTCAATTG 

vrilleRA_MN1_re AACCCGATCGGCTGTATATTA 

vrilleRA_MN2_fw GACTATACTACCAAACCATATA 

vrilleRA_MN2_re CTGCGCTTGATGCACTTGGCC 

vrilleRA_MN3_fw TCGAGCCGTTAAAAGCATTT 

vrilleRA_MN3_re GAAAATTGTTTTTCAAACACTTG 

vrilleEx_MN1_fw CTATCGCGTCGGGCCTGCTCACC 

vrilleEx_MN1_re TCGTGCTCCTGCTCATCATC 

vrilleEx_MN2_fw CATCGGGAGCTGTTTCCGGCG 

vrilleEx_MN2_re GCTTGAGGGGCAGACAGTTGT 

vrilleEx_MN3_fw AGTCCGCAGCAGGGCAGCGAT 

vrilleEx_MN3_re TGAGAGTAGCGCCGTGGC 

vrille3'_MN1_fw CCAGCAAAGGTCTTTTACTGCC 

vrille3'_MN1_re TGTGTAATAGATTAACTTGC 
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vrille3'_MN2_fw ATACACAATTATTGTATATCAGC 

vrille3'_MN2_re TAACTCATTCTGCAATATGCGAT 

vrille3'_MN3_fw CACCATCATCGCACGAGCTTA 

vrille3'_MN3_re TAATCTCTTTACCACTCGACG 
 

3.1.7 Antibodies and antisera 

3.1.7.1 Primary antibodies 

Table 3.11: Primary antibodies and antisera used in this study. Antibodies are 

listed with their name, clone number (if available) and order number (for commercial 

antibodies). Depending on the type of experiment, amounts (in µl) or dilutions are 

depicted. ChIP: Chromatin immunoprecipitation, WB: Western blot, DSHB: 

Developmental Studies Hybridoma Bank. 

Antibody Host origin Experiment Amount or 
dilution 

Source/ 
Reference 

αEcR 

(DDA2.7) 

Mouse, 

monoclonal 
WB 1:1000 DSHB 

αFLAG M2 

(F3165) 

Mouse, 

monoclonal 
WB 1:4000 Sigma-Aldrich 

αFLAG 

(F7425) 

Rabbit, 

polyclonal 
WB 1:2000 Sigma-Aldrich 

αMi-2 
Rabbit, 

polyclonal 

WB 

ChIP 

1:10000 

2 µl 

(Kehle et al., 

1998) 

αMi-2 (4D8) 
Rat 

monoclonal 
IP 200 µl E. Kremmer 

Normal rabbit 

IgG #2729 

Rabbit, 

polyclonal 
ChIP 2 µl Cell Signaling 

Normal Rat 

IgG 
Rat IP 16 µl Sigma Aldrich 

αp53 (7A7) 
Rat 

monoclonal 
IP 200 µl E. Kremmer 

αβ-Tubulin 

(KMX-1) 

Mouse, 

monoclonal 
WB 1:5000 Millipore 

αUsp 

(ab106341) 

Rabbit, 

polyclonal 
ChIP 5 µl Abcam 
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3.1.7.2 Secondary antibodies 

Table 3.12: Secondary antibodies used for Western blot analysis. 

Antibody Host origin Dilution Source 

ECL αrabbit Donkey, polyclonal 1:30000 GE Healthcare 

ECL αmouse Sheep, polyclonal 1:30000 GE Healthcare 

 

3.2 Methods 

If not stated otherwise reactions were performed at RT. 

 

3.2.1 Cell biological methods 

3.2.1.1 Standard cell culture procedures 

S2 and Sf9 cells were propagated in 75 cm² flasks (Greiner) at 26°C in their 

respective media with supplements (see 3.1.3.2). Every three to four days cells were 

removed from the flask using a cell scraper and re-seeded to a new flask with a 

density of 1.5-2∙106 cells/ ml. Cell number was determined using a hemocytometer. 

Collection of cells for experiments and freezing was achieved by spinning the cells 

down at 1200 rpm for 5 min (Heraeus Megafuge 1.0). 

 

3.2.1.2 Freezing and thawing of cells 

For freezing, cells from a dense flask were collected and resuspended in 0.5 ml 

freezing medium A. Afterwards 0.5 ml of freezing medium B was added dropwise. 1 

ml of this cell suspension was transferred into a cryovial and frozen in a 50 ml 

Falcon with isopropanol at -80°C. For long term storage, vials were transferred to 

liquid nitrogen. 

 

Freezing medium A Schneider’s insect or Sf-900 SFM 

medium 

      40% (v/v) FBS 

      1% (v/v) Penicillin-Streptomycin 

or 

0.1% (v/v) Gentamicin 
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Freezing medium B Schneider’s insect or Sf-900 SFM 

medium 

      40% (v/v) dimethyl-sulfoxide (DMSO) 

      1% (v/v) Penicillin-Streptomycin 

or  

0.1% (v/v) Gentamicin 

 

For thawing, cryovials with cells were transferred to RT and resuspended in 15 ml of 

Schneider’s insect medium or Sf-900 SFM medium. In order to remove the DMSO, 

cells were spun down and the supernatant was removed. Afterwards, the cell pellet 

was resuspended in fresh Schneider’s insect or Sf-900 SFM medium and cells were 

transferred into a 75 cm² flask. 

 

3.2.2 Molecular biological methods 

Standard molecular biology protocols such as plasmid DNA transformation into 

chemically-competent E.coli, amplification and purification of plasmid DNA from 

E.coli, digestion of plasmid DNA using specific restriction endonucleases, 

dephosphorylation of digested plasmid DNA using alkaline phosphatase, ligation of 

DNA fragments, determination of DNA concentration and analysis of DNA on TAE 

agarose gels were carried out according to standard protocols and manufacturer’s 

recommendation (Thermo Scientific)(Sambrook and Russell, 2001). Large scale 

plasmid DNA purification was done using the QIAGEN Plasmid Midi Kit (Qiagen). 

Purification of PCR products and digested plasmid DNA was conducted using the 

QIAquick Gel Extraction Kit. 

 

3.2.2.1 Isolation of total RNA 

Due to the sensitivity of RNA towards degradation by RNases, certain precautions 

were considered before working with RNA. Nuclease-free pipet tips and reaction 

tubes were used for all preparations. Additionally, working space and pipets were 

treated with RNaseZap (Ambion). For elution of RNA from columns and all further 

reaction steps nuclease-free water (Ambion) was used. Total RNA was purified from 

Drosophila S2 cells to determine expression levels of genes of interest using the 

peqGOLD Total RNA Kit (Peqlab). One well (6-well plate) of adherently growing 

cells was lysed in 400 µl of RNA lysis buffer. Further RNA isolation steps were 

conducted according to the manufacturer’s instructions, including on-column DNase 
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I digest using the peqGOLD DNase I Digest Kit (Peqlab). RNA concentration was 

determined at an absorption of 260 nm using the Nanodrop 2000c (Thermo 

Scientific). 

 

3.2.2.2 Complementary DNA (cDNA) synthesis 

In order to quantify the amount of specific RNA in the total RNA sample, cDNA was 

synthesized using an oligo (dT)17 for polyA-mRNA or random hexamer primer for 

non-coding RNAs. cDNA synthesis was conducted using the M-MLV Reverse 

Transcriptase kit (Life Technologies) according to the manual’s instructions. dNTPs 

were purchased from Thermo Scientfic and oligo (dT)17 were synthesized by MWG 

Biotech. Generally, 1µg of total RNA was transcribed, cDNA was further diluted 1:10 

in ddH2O and used as template for qPCR. 

 

3.2.2.3 Synthesis of double-strand RNA (dsRNA) by in vitro transcription (ivT) 

In order to generate a gene-specific template for dsRNA synthesis, PCR was used 

to amplify a DNA product with a length of 300-600 bp from plasmid DNA containing 

the gene of interest. The specific oligos contained both a minimal T7 polymerase 

recognition site (TAATACGACTCACTATAGGG) at their 5’-end. Upon gel 

purification of the PCR product, an ivT reaction was performed using the 

MEGAscript T7 Kit (Ambion). To 500 ng of DNA template, 2 µl of each rNTP, 

reaction buffer and T7 enzyme were added in a total volume of 20 µl. The reaction 

was incubated for 16 hrs at 37°C. Upon addition of stop solution (5 M ammonium 

acetate, 100 mM EDTA) in a 1:1 ratio, RNA was precipitated with 2.5 volume of 

100% ethanol at -20°C for one hour. The sample was centrifuged for 30 min at 

13000 rpm (Heraeus BIOFUGE pico). The resulting RNA pellet was washed by 5 

min of centrifugation in 70% ethanol. The supernatant was carefully removed and 

the pellet was dried at room temperature. Upon dissolving the RNA in 40 µl of 

nuclease-free H2O, the sample was incubated in a thermoshaker at 65°C for 30 min 

and allowed to cool down to RT by turning off the thermoshaker. This slow 

temperature decrease allows for proper alignment of complementary RNA strands. 

RNA concentration was subsequently determined at an absorption of 260 nm and 

integrity was judged by electrophoretic separation on an 1.5% TAE agarose gel. 
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3.2.2.4 RNAi mediated knockdown 

For RNAi mediated knockdown, 0.8-1.2x106 S2 cells were incubated with 15 µg of 

the relevant dsRNA per well of a 6-well plate. The amount of cells required for each 

experiment was spun down at 1200 rpm and resuspended in medium without any 

supplements. dsRNA was added to 1 ml of cell suspension and incubated at 26°C 

for one hour. Subsequently 1 ml of medium containing 20% FBS (v/v), 2% 

Pen/Strep (v/v) was added. For ChIP experiments the amount of cells and dsRNA 

was scaled up accordingly for use in 75 cm2 flasks. Transfections were incubated for 

five to six days at 26°C and further processed for nuclear extracts, RNA isolation or 

ChIP experiments. For each knockdown experiment, successful depletion of the 

protein of interest was determined by Western blot or changes in mRNA levels 

quantified by RTqPCR. 

 

3.2.2.5 Polymerase chain reaction (PCR) 

PCR allows the amplification of a specific DNA sequence based on a template and 

sequence specific oligos.(Saiki et al., 1985) All DNA fragments synthesized for 

cloning or in vitro transcription were amplified using the Expand High FidelityPLUS 

PCR System (Roche). In accordance with the manufacturer’s instruction, PCR 

reactions were set up as follows: 
 

10 µl  5x   Expand HiFiPLUS Reaction Buffer 

1 µl   10 mM  dNTPs 

2 µl  10 pmol/ µl  forward primer  

2 µl  10 pmol/ µl  reverse primer 

2 µl  50 ng   plasmid DNA 

0.5 µl  5U/ µl   Expand HiFiPLUS polymerase 

32.5 µl    ddH2O 

 

The PCR reaction was incubated in a T3000 Thermocycler (Biometra) with the 

following program: 
 

Initial denaturation 94°C  2 min 

Denaturation  94°C  20 sec 

Annealing  55-60°C 30 sec  35 cycles 

Elongation   72°C  1 min/ kb 

Final elongation 72°C  7 min 
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3.2.2.6 PCR for site-directed mutagenesis 

Introduction of specific changes in DNA sequence (mutagenesis) of a plasmid was 

conducted using the Quick Change II XL Site Directed Mutagenesis Kit (Stratagene) 

according to the manufacturer’s instructions. The PCR reaction was set up as 

follows: 

 

5 µl  10x   reaction buffer 

1 µl     dNTP mix 

2 µl    forward primer (125ng) 

2 µl    reverse primer (125ng) 

2 µl    plasmid DNA (10ng) 

3 µl    Quick Solution 

1 µl    PfuUltra HF DNA polymerase 

34 µl    ddH2O 

 

The PCR reaction was incubated in a T3000 Thermocycler (Biometra) with the 

following program: 
 

Initial denaturation 95°C  1 min 

Denaturation  95°C  50 sec 

Annealing  60°C  50 sec  18 cycles 

Elongation   68°C  1 min/ kb 

Final elongation 68°C  7 min 

 

3.2.2.7 Quantitative PCR (qPCR) 

In order to ascertain the amount of a specific cDNA, obtained from total mRNA or 

DNA fragment within a sample, isolated samples were subjected to qPCR. cDNA 

was usually diluted 1:10, whereas DNA precipitated from ChIP experiments was 

used in a 1:6 dilution. A total volume of 6 µl was provided in one well of a Thermo-

Fast 96 non-skirted PCR plate (Thermo Scientific). Thereafter, 19 µl of a PCR mix 

containing all necessary reagents as well as gene or locus specific oligos was 

added. The PCR mix consisted of 1 µl oligo (1:1 mixture of forward and reverse 

primers in a 1:10 dilution), 12 µl Absolute SYBR Green Mix (Thermo Scientific) and 

8 µl ddH2O. The PCR reaction and fluorescent measurement of SYBR Green were 

carried out according to the following program: 
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Initial denaturation 95°C  15 min 

Denaturation  95°C  15 sec 

Annealing  58°C  30 sec  45 cycles 

Elongation   72°C  20 sec 

 

Denaturation  95°C  1 min 

Dissociation curve 55°C  30 sec 

    55°C  95°C gradually 

    95°C  30 sec 

 

The Cycle threshold (Ct) for each reaction is calculated automatically by the MxPro 

Software. Ct is defined as the number of cycles required for the fluorescent signal to 

cross a detection threshold exceeding the background fluorescence. As all samples 

were measured in triplicates, the Ct is the mean of three values. 

 

For a comparative analysis of gene expression between two samples (e.g. untreated 

vs. 20HE treated), both samples were first normalized to Rp49 as a reference gene. 

The normalized value is referred to as ΔCt: 

 

𝛥𝐶𝑡 =  𝐶𝑡𝑠𝑎𝑚𝑝𝑙𝑒  −  𝐶𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 

 

The subtraction of the ΔCt of two samples results in the ΔΔCt: 

 

𝛥𝛥𝐶𝑡 =  𝛥𝐶𝑡 𝑠𝑎𝑚𝑝𝑙𝑒1 −  𝛥𝐶𝑡𝑠𝑎𝑚𝑝𝑙𝑒2. 

 

The fluorescent signal increases per amplification in an exponential manner, 

therefore the difference in expression (x) is calculated as  

 

𝑥 = 2− 𝛥𝛥𝐶𝑡. 

 

To show relative changes in gene expression, the control sample (i.e. “untreated”) 

was set to 1 and all other samples (i.e. “20HE treated”) were displayed normalized 

to the control. 

 

The standard deviation of each set of triplicate Ct values were used to calculate a 

standard deviation sΔCt of Ct: 
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𝑠𝛥𝐶𝑡  =  �𝑠𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒2 + 𝑠𝑠𝑎𝑚𝑝𝑙𝑒2 

 

and further a standard deviation snorm for the normalized fold expression: 

𝑠𝑛𝑜𝑟𝑚 = �(𝑥𝑛𝑜𝑟𝑚 ∙ ln(2))2 ∙ 𝑠𝑐𝑡2. 

 

 

For the analysis of chromatin immunoprecipitation samples, all values were 

normalized to the corresponding input sample before precipitation: 

 

𝛥𝐶𝑡 =  𝐶𝑡𝑖𝑛𝑝𝑢𝑡  −  𝐶𝑡𝑠𝑎𝑚𝑝𝑙𝑒  

 

and further displayed as percentage of the input: 

 

%𝑖𝑛𝑝𝑢𝑡 = 2∆𝐶𝑡𝑠𝑎𝑚𝑝𝑙𝑒. 

 

The standard deviation was calculated from the error of triplicate measurements as 

follows: 

 

𝑠𝑖𝑛𝑝𝑢𝑡 = ln(2) ∙ %input ∙ �𝑠𝑖𝑛𝑝𝑢𝑡2 + 𝑠𝑠𝑎𝑚𝑝𝑙𝑒2. 

 

For the analysis of MNase digested chromatin samples, all values were normalized 

to the corresponding undigested sample: 

 

𝛥𝐶𝑡 =  2−�𝐶𝑡𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑−𝐶𝑡𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑�. 

 

and further normalized to 1 by dividing all ΔCt of one locus by the highest ΔCt in the 

primer set.  

 

The standard deviation was calculated from the error of triplicate measurements as 

described above, replacing “input” by “undigested” and “sample” by “digested”. 

 

3.2.3 Biochemical methods 

When working with proteins, all buffers and samples were kept on ice and 

supplemented with fresh protease inhibitors (Leupeptin, Pepstatin, Aprotinin at a 
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concentration of 1µg/ml; 0.2 mM PMSF and 0.5 mM DTT). Critical steps were 

performed in the cold room and vortexing of protein samples was avoided whenever 

possible.  

 

3.2.3.1 Determination of protein concentration 

Protein concentration was determined using the Bio-Rad Protein Assay (Bio-Rad), 

which is based on the colorimetric method described by Bradford in 1976, according 

to the manufacturer’s instructions (Bradford, 1976). In order to estimate the protein 

concentration of purified GST proteins, a protein standard (bovine serum albumin) 

was loaded on the same SDS-PAGE as the protein of unknown concentration and 

subsequently stained with PageBlue Protein Staining Solution (Thermo Scientific). 

The protein concentration was calculated using Image J Gel Analyzer tool (Ferreira, 

2010 - 2012). 

 

3.2.3.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is used to separate proteins according to their electrophoretic mobility 

that is a function of length, conformation and charge of the molecule. Preparation of 

SDS-polyacrylamide gels (SDS-PAGE) and subsequent electrophoresis was 

conducted using disposable gel cassettes and the XCell SureLock mini-Cell system 

(Life Technologies). Gel solutions were prepared according to standard protocols 

using a ready-to-use acrylamide/bisacrylamide mixture (Rotiphoresegel 30, 37.5:1; 

Roth). The stacking gel contained 4% and the resolving gel 7.5, 10 or 15% of 

polyacrylamide depending on the protein of interest. Protein samples were 

supplemented with 1x SDS-PAGE loading buffer(Laemmli, 1970). In order to 

visualize the running behavior of known proteins, PageRuler Prestained Protein 

Ladder (Fermentas) was loaded onto the same SDS polyacrylamide gel. 

Electrophoresis was performed with 1x SDS-PAGE running buffer at a voltage of 

100V for proteins in the stacking gel and at 150V in the resolving gel. Subsequently 

gels were further processed by Western blot or Coomassie blue staining.  

 

1x SDS running buffer    25 mM Tris 

       192 mM Glycine 

       0.1% SDS (w/v) 
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SDS-PAGE loading buffer    375 mM Tris HCl, pH 6.8  

9% (w/v) SDS  

50% (v/v) Glycerol  

9% (v/v) β-mercaptoethanol  

0.5% (w/v) Bromophenol blue  

 

3.2.3.3 Coomassie staining of SDS polyacrylamide gel 

In order to visualize purified recombinant proteins after separation by SDS-PAGE, 

gels were washed in ddH2O for 15 min and incubated with PageBlue Protein 

Staining Solution (Fermentas) over night. The next day, gels were destained with 

ddH2O until the protein bands were clearly distinguishable from the background 

staining.  

 

3.2.3.4 Western blot 

Western blotting is the transfer of proteins onto a membrane, enabling the detection 

by specific antibodies against the protein of interest. All Western blots were 

conducted using the Biorad Wet Blot Module (Biorad). Proteins were generally 

transferred to a polyvinylidene fluoride (PVDF) membrane, upon equilibration in 

methanol. Subsequently, the gel and the membrane were placed between two 

layers of buffer-soaked Whatman paper and sponges provided with the Wet Blot 

Module. Transfer was carried out for 1 hr 15 min at 400 mA in the presence of an ice 

block inside the blotting chamber and further cooling from the outside. After 

successful transfer, the membrane was incubated for at least 30 min in blocking milk 

(5% milk powder in PBST) at RT to reduce background signals. 

 

PBST      1x PBS 

supplemented with 0.1% (v/v) Tween 

  

Transfer buffer     25 mM Tris 

       192 mM Glycine 

       20%(v/v) Methanol 

       0.02% (v/v) SDS 

 

All further antibody incubation and washing steps were carried out on a rocking 

platform. Antibodies were diluted in blocking milk at an appropriate concentration. 
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Incubation with primary antibody was performed overnight in the cold room, followed 

by three washes for 5 min at RT. Subsequently, the membrane was incubated with 

the relevant HRP-labelled secondary antibody for two hours at RT. After another 3 

washes of 5 min at RT, antigen-antibody complexes were detected by 

chemiluminescence using the Immobilon Western Chemiluminescent HRP 

Substrate Kit (Millipore) and SuperRX Fuji Medical X-ray films. Exposure times were 

estimated by empirical determination.  

 

For re-probing of Western blot membranes with a different primary antibody, 

membranes were incubated in 50 ml of stripping buffer for 30 min at 50°C in a water 

bath and subsequently washed in PBST three times for 10 min. Afterwards, 

membranes were blocked and incubated with antibody as described above. 

 

Stripping buffer     62.5 mM Tris HCl, pH 6.8 

       10% (v/v) β-mercaptoethanol 

       2% (w/v) SDS  

 

3.2.3.5 Nuclear extract preparation 

In order to prepare nuclear extracts, S2 cell were harvested, washed twice in 1x 

PBS and resuspended in an appropriate volume of low salt buffer (one well of a 6 

well plate: 200 µl; 75 cm2 flask: 1000 µl, 175 cm2 flask: 2500 µl). After incubation on 

ice for 10 min, cells were collected by centrifugation at 13000 rpm for 1 minute at 

4°C. The supernatant was removed and the remaining nuclear fraction was 

resuspended in an appropriate volume of high salt buffer (one well of a 6 well plate: 

50 µl; 75 cm2 flask: 200 µl, 175 cm2 flask: 750 µl). The suspension was further 

incubated for 20 min on ice and subsequently centrifuged at 13000 rpm for 30 min at 

4°C. The supernatant contained the nuclear extract and was further processed for 

Western blot or frozen in liquid nitrogen and stored at -80°C. 

 

Low salt buffer:     10 mM Hepes KOH, pH 7.6 

       1.5 mM MgCl2 

       10 mM KCl 

       DTT, protease inhibitors 

 

High salt buffer:     20 mM Hepes KOH, pH 7.6 

       1.5 mM MgCl2 
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       420 mM NaCl 

       0.2 mM EDTA 

       20% (v/v) Glycerol 

       DTT, protease inhibitors 

 

3.2.3.6 Immunoprecipitation of endogenous Mi-2 

For endogenous IP of Mi2, nuclear extract was prepared from S2 cells as follows. All 

steps were performed in the cold room with cold buffers. S2 cells were washed with 

1x PBS on the plate and harvested by scraping in 1x PBS with protease inhibitors 

and centrifugation. The cell pellet volume (PV) was determined and gently dissolved 

in 5 PVs of buffer A. The cell suspension was left to incubate on ice for 10 min. Cells 

were collected by centrifugation for 10 min at 3000 rpm and dissolved in 2 PVs of 

low salt buffer. The cell suspension was transferred to a glass dounce homogenizer 

and dounced ten times with the loose pestle A. The released nuclei were collected 

by centrifugation for 10 min at 3000rpm and dissolved in 1.5 PV of high salt buffer. 

The suspension was transferred to the glass dounce homogenizer and dounced ten 

times with the tight pestle B. The nuclear suspension was transferred to a falcon and 

incubated for 30 min on a rotating wheel at 4°C. The suspension was transferred to 

Eppendorf tubes and centrifuged for 15 min at 13000 rpm to pellet nuclear debris. 

The nuclear extract was transferred to a dialysis bag (MWCO 6-8kDa) and dialyzed 

in buffer D for two times 2 hrs. After dialysis, the nuclear extract was transferred to 

Eppendorf tubes and centrifuged for 15 min at 13000 rpm to remove precipitates. 

The nuclear extract was flash frozen and stored at -80°C.  

 

For immunoprecipitation (IP) of endogenous Mi-2, Protein G Sepharose was 

incubated for 1hr by rotation with 1% fish skin gelatine and 0.2 mg/mL BSA in buffer 

D +0.02% NP40 at room temperature. Subsequently, antibodies against Mi-2, p53 

and normal IgG were incubated for 1 hr at 4°C with pre-blocked Protein G 

sepharose. After antibody/Protein G Sepharose incubation, beads were washed 

twice with buffer D +0.02% NP40 and transferred to protein low-binding tubes. For 

each IP, 30ul of Protein G Sepharose were incubated with 200ul of dialyzed nuclear 

extract by rotation for 3hrs at 4°C. The precipitated protein/antibody complexes were 

washed five times with buffer D +0.02% NP40 and subsequently eluted by addition 

of 40ul 2x SDS Loading Buffer and boiling at 95°C for 5 min.  
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Buffer D      20 mM Hepes KOH, pH 7.6 

100 mM KCl 

1.5 mM MgCl2 

0.2 mM EDTA 

20% (v/v) Glycerol  

DTT, PMSF, protease inhibitors 

 

3.2.3.7 Whole cell extract preparation from Sf9 cells 

Whole cell extracts from Sf9 cells where prepared 48 to 72 hours post infection. For 

this purpose, cells were harvested, washed twice in ice cold 1x PBS and 

resuspended in LyBu200 buffer. Upon two subsequent cycles of freeze-thaw in 

liquid nitrogen, cell extracts were collected by centrifugation at 13000rpm for 20 min 

at 4°C and further used for Western blot or interaction assays. 

 

LyBux buffer      20 mM Hepes KOH, pH 7.6 

       x mM KCl 

       10% (v/v) Glycerol 

0.1% (v/v) NP40 

       DTT, protease inhibitors 

 

3.2.3.8 FLAG affinity purification 

For interaction assays using the FLAG affinity protocol, whole cell extracts from Sf9 

cells were prepared as described in 3.2.3.6. FLAG beads were equilibrated by 

washing three times 10 min in LyBu200 on a rotating wheel. 100 mg of total protein 

was incubated with 50 µl 1:1 slurry α-FLAG M2 agarose (FLAG beads, Sigma 

Aldrich) at 4°C for three hours on a rotating wheel. Beads were collected by 

centrifugation at 3500 rpm for 4 min at 4°C and washed three times for 10 min with 1 

ml of LyBu200 to remove unbound proteins. Precipitated proteins were eluted by 

boiling the beads in 1x SDS-PAGE loading buffer and further subjected to Western 

blot analyses.  

 
  



3 MATERIAL AND METHODS 

68 
 

3.2.3.9 Chromatin immunoprecipitation (ChIP)  

Chromatin immunoprecipitation allows the identification of genomic regions that are 

bound by a protein of interest. In short, 1∙108 S2 cells in culture medium were fixed 

with 1% (v/v) formaldehyde (10% methanol free stock, Polysciences) for 10 min at 

RT. Fixation was quenched with a final concentration of 240 mM glycine. Cells were 

harvested, washed twice in ice cold 1x PBS and resuspended in 1 ml ChIP lysis 

buffer. After an incubation of 10 min on ice, samples were sonicated with a Bioruptor 

(Diagenode) twice for 10 min with 30 seconds on-off cycles at high power. In order 

to properly cool the samples during sonication, the Bioruptor was filled with an 

appropriate amount of ice. Afterwards samples were centrifuged at 13000 rpm for 15 

min at 4°C. The supernatant containing the chromatin was further used for ChIP 

experiments. To quality check for proper sonication of all samples with a favored 

DNA length of about 500bp, 10 µl of chromatin was incubated with 5 µl of 5M NaCl 

for 4 hrs at 65°C. Upon RNase digest for 1 hr at 37°C, samples were subjected to 

agarose gel electrophoresis on a 1.5% TAE agarose gel. For further preparation 

Protein A beads (GE Healthcare) were washed twice in ddH2O and twice in TE 

Buffer and blocked over night with 1mg/ml BSA in TE buffer. Furthermore, 130 µl of 

chromatin were diluted 1:10 in ChIP IP buffer and precleared by the addition of 80 µl 

Protein A beads (GE Healthcare) for 30 min at 4°C on a rotating wheel. The 

supernatant was collected and 13 µl were taken out and stored at 4°C as “input” 

sample. The antibody against the protein of interest was added in an appropriate 

amount and samples were incubated overnight at 4°C on a rotating wheel. As 

controls, ChIPs using normal rabbit IgG antibody were performed. The next day, 35 

µl of 1:1 slurry Protein A beads was added to each sample and further incubated for 

2 hrs at 4°C on a rotating wheel. Next, samples were washed for each 10 min on a 

rotating wheel and subsequently collected by centrifugation at 3500rpm for 4 min: 

three times with low salt buffer, three times with high salt buffer, once with LiCl and 

twice with TE buffer. With the last TE buffer wash, beads were transferred into fresh 

reaction tubes for elution. Elution took place twice with 250 µl ChIP elution buffer for 

each 20 min at RT. Accordingly, 500 µl of ChIP elution buffer was added to input 

samples and all further steps were performed identically. Reversal of cross-links 

was done by the addition of 20 µl 5M NaCl and incubation at 65°C overnight. The 

next day, proteins were digested by the presence of 2 µl 10 mg/ml Proteinase K in 

20 µl 1 M Tris/ HCl, pH 6.5 for 1 hr a 45°C. The precipitated DNA was purified using 

the QIAquick PCR purification Kit (Qiagen) according to the manufacturer’s 

instructions. 
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ChIP lysis buffer     50 mM Tris/ HCl, pH 8.0 

       10 mM EDTA 

       1% (w/v) SDS 

       protease inhibitors 

 

ChIP IP buffer      16.7 mM Tris/ HCl, pH 8.0 

       16.7 mM NaCl 

       1.2 mM EDTA 

       0.01% (w/v) SDS 

       1.1% (v/v) Triton X-100 

       protease inhibitors 

 

Low salt buffer      20 mM Tris/ HCl, pH 8.0 

       150 mM NaCl 

       2 mM EDTA 

       0.1% (w/v) SDS 

       1% (v/v) Triton X-100 

 

High salt buffer     20 mM Tris/ HCl, pH 8.0 

       500 mM NaCl 

       2 mM EDTA 

       0.1% (w/v) SDS 

       1% (v/v) Triton X-100 

 

LiCl buffer      10 mM Tris/ HCl, pH 8.0 

       250 mM LiCl 

       1 mM EDTA 

       1% (v/v) NP-40 

       1% (w/v) sodium deoxycholate 

 

ChIP elution buffer     1% (w/v) SDS 

       0.1 M NaHCO3 

 

TE buffer      10 mM Tris/ HCl pH8.0 

       1 mM EDTA 
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3.2.3.10 ChIPSeq 

ChIP samples were prepared as described above. Three ChIP experiments were 

combined in the last step and eluted in 30 µl TE buffer. DNA concentration was 

determined using the Nanodrop 2000c (Thermo Scientific) and 15 ng total DNA 

were sent and further processed by Maren Scharfe, Genome analytics unit, 

Helmholtz Centre for Infection Research, Braunschweig. ChIPSeq reads for each 

sample were generated in duplicate on an Illumina GaIIx instrument according to the 

manufacturer’s instructions. Raw reads were aligned to the Ensembl import of 

FlyBase, revision 64 using Bowtie 0.12.7. Two of the lanes were aligned with a 

maximum of three mismatches in the seed, and a mismatch quality score sum of 

110 to compensate for a large number of 'N' base calls in this sequencing run. The 

other two lanes were aligned with Bowtie defaults (2 mismatches in the seed, 

maximum mismatch quality score sum of 70). The aligned data was deduplicated to 

a maximum of 8 reads at a given starting position and direction to avoid PCR 

artefacts, leading to 9.686.701 usable reads for the “+20HE” sample and 15.464.273 

“untreated” sample. Peak calling was performed with MACS 1.4.0rc2, modified to 

directly read BAM files. Parameters were m-fold=(6,36) and keep-dup=all. Peaks 

were annotated with distance to the next transcript and their genomic location (intra-

/intergenic, close to a transcription start site, intron / exon, close to the end of a 

gene), again using Ensembl revision 64. Peaks from all 4 assays were pooled, and 

tag counts within each peak were normalized to a total of 1 million tags per assay. 

Peaks were classified as differentialy, if they had a +20HE / untreated tag ratio of at 

least 2.3x or untreated/ +20HE tag ratio of at least 2.3x. 

 

3.2.3.11 Micrococcal nuclease (MNase) protection assay 

Micrococcal nuclease is a nuclease derived from Staphylococcus aureus that 

induces double strand breaks in nucleosome linker regions but only single-stranded 

nicks within the nucleosome itself (Heins et al., 1967). Therefore, it is very useful to 

determine whether a DNA fragment is within a nucleosome, and protected from 

MNase digestion, or not. The protocol was based on a study published by Petesch 

et al. with minor changes as described below (Petesch and Lis, 2008).  

 

Cells were harvested, counted and cross-linked by the addition of 10x MNase cross-

linking buffer to a final concentration of 1x for 1 min at RT. Cross-linking was 

quenched by the addition of glycine to a final concentration of 125 mM. Cells were 
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collected by centrifugation at 1200 rpm for 5 min at 4°C. Afterwards, 1∙108 cells were 

resuspended in 1 ml MNase buffer A. Samples were incubated on ice for 5 min and 

subsequently lysed by douncing 25 times rigorously using a small plastic pestle. The 

released nuclei were collected by centrifugation at 3500 rpm for 5 min at 4°C. 

Further they were washed twice with 1 ml MNase buffer A and twice with 1 ml 

MNase Buffer D. Finally nuclei were resuspended in 1 ml MNase buffer MN and 

allowed to warm up at room temperature for 5 min. For each MNase digest, 240 µl 

of isolated nuclei were incubated with a certain amount of MNase. The amount of 

MNase necessary to digest most of the chromatin to mononucleosomes was 

determined empirically for each new batch of MNase by titration. At the same time, 

one sample was kept aside as “undigested” reaction without the addition of MNase. 

All reactions were incubated for 1 hr at 28°C with moderate shaking at 300 rpm. The 

digest was stopped by the addition of 10x MNase Stop to a final concentration of 1x. 

De-cross-linking was performed by adding NaCl to a final concentration of 200 mM 

to each sample and incubation at 65°C in a horizontal shaker at 300 rpm overnight. 

The undigested and digested samples were treated with RNase A at a final 

concentration of 0.1 mg/ml for 30 min at 37°C. Further on proteins were digested by 

the addition of Proteinase K to a final concentration of 0.1 mg/ml and incubation at 

45°C in a horizontal shaker at 300 rpm.DNA purification was carried out by phenol-

chloroform extraction according to standard procedures. Samples were filled up with 

MNase buffer MN to a total volume of 500 µl, mixed with 500 µl Roti-

Phenol/Chloroform-Isoamylalcohol (25:24:1; Roth) by vortexing for 1 min at 

maximum speed. All liquid was transferred to Phase Lock Gel Heavy tubes (5 

Prime) under a fume hood and vials were centrifuged at 10000 rpm for 5 min at RT 

to achieve separation of aqueous and organic phase. The upper, aqueous phase 

was transferred to a fresh vial and supplemented with 500 µl ice cold isopropanol. 

Samples were incubated at -20°C for 2 hrs and subsequently centrifuged for 30 min 

at 13000 rpm at 4°C. The supernatant was aspirated, DNA precipitate was washed 

with 70% Ethanol and dried at RT. The pellet was resuspended in 200 µl of 

nuclease free ddH2O and stored at -20°C until use for qPCR. 

 

10x MNase cross-linking buffer    50 mM Tris/ HCl, pH 8.0 

100 mM NaCl 

1 mM EDTA 

0.5 mM EGTA 

3.3% (v/v) Methanol-free 

formaldehyde 



3 MATERIAL AND METHODS 

72 
 

MNase buffer A     10 mM Tris/ HCl, pH 8.0 

300 mM Sucrose 

3 mM CaCl2 

2 mM Mg-acetate 

0.1 % (v/v) Triton X-100 

protease inhibitors, DTT 

 

MNase buffer D     50 mM Tris/ HCl, pH 8.0 

5 mM Mg-acetate 

0.1 mM EDTA 

25% (v/v) Glycerol 

DTT 

 

MNase buffer MN     15 mM Tris/ HCl, pH 7.4 

60 mM KCl 

15 mM NaCl 

250 mM Sucrose 

1 mM CaCl2 

 

10x MNase STOP     125 mM EDTA 

5% (v/v) SDS 

 

3.2.3.12 Recombinant protein expression using the baculovirus system 

Expression of proteins using the baculovirus system is highly useful for the 

purification of recombinantly expressed, eukaryotic proteins. Coding sequences of 

the protein of interest were cloned into the pVL1392 (Bac-N-Blue Baculovirus 

Expression System, Life Technologies) or pFastBac1/pFastBacDual (Bac-to-Bac 

Baculovirus Expression System, Life Technologies) vector. 

 

3.2.3.12.1 Bac-N-Blue Baculovirus Expression System 

pVL1392 constructs were transfected into Sf9 cells using the Bac-N-Blue Linear 

Transfection Kit (Life Technologies). 106 Sf9 cells were plated in one well of a 6-well 

plate and left to settle for 20 min at 26°C. In the meantime, the transfection mix was 

prepared: 4 µg of DNA, 1 ml of Sf-900 II SFM medium (without supplements) and 20 

µl of Cellfectin Reagent were added to 0.5µg of Bac-N-Blue DNA, vortexed and 
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incubated for 20 min. The supernatant was removed from the attached Sf9 cells and 

replaced for 2 ml of unsupplemented medium. The transfection mix was added drop 

wise to the cells and incubated for 4 hr at RT on a rocking platform. 1 ml of 

supplemented Sf-900 II SFM medium was added and cells were incubated for 5 

days at 26°C. The supernatant containing the first viral stock (VA0) was transferred 

to 15 ml vials and stored at 4°C. 

 

3.2.3.12.2 Bac-to-Bac Baculovirus Expression System 

As Life Technologies replaced the Bac-N-Blue Baculovirus Expression System for 

the Bac-to-Bac Baculovirus Expression System, several of the viruses used in this 

thesis were produced using the Bac-to-Bac Baculovirus Expression System.  

 

pFastBac1/ pFastBacDual constructs were transformed into DH10Bac E.coli and 

successful recombination into the bacmid was verified by PCR according to the 

manufacturer’s instructions. 8∙105 Sf9 cells were seeded in one well of a 6-well plate 

and left to settle for 20 min at 26°C. In the meantime, the transfection mix was 

prepared: 5 µl of bacmid DNA was diluted in 100 µl of unsupplemented Sf-900 II 

SFM medium. Next to it, 8 µl of Cellfectin were added to 100 µl of unsupplemented 

Sf-900 II SFM medium. Both mixtures were combined and incubated for 20 min at 

RT. The supernatant was removed from the attached Sf9 cells and replaced with 2 

ml of plating medium (mixture of 1.5 ml supplemented Sf-900 II SFM medium and 

8.5 ml unsupplemented Sf-900 II SFM medium). The transfection mix was added 

drop wise to the cells and incubated for 24 hrs at 26°C. The next day, the medium 

was aspirated and replaced by supplemented Sf-900 II SFM. 6-well plates were 

wrapped in parafilm and incubated for 5 days at 26°C. The supernatant containing 

the first viral stock (VA0) was transferred to 15 ml vials and stored at 4°C. 

 

3.2.3.12.3 Viral stock amplification  

Virus amplification was carried out by infecting another two rounds of Sf9 cells. For 

the first viral amplification, 7.5∙106 Sf9 cells in a volume of 3 ml supplemented Sf-

900 II SFM medium were plated into a 10 cm dish and incubated with 500 µl of the 

first vial stock for 45 min on a rocking platform. After addition of 7 ml medium, cells 

were incubated for 6 days at 26°C. The supernatant containing the first viral 

amplification (VA1) was transferred to 15 ml vials and stored at 4°C. For the first viral 

amplification 12∙106 Sf9 cells in a volume of 5 ml supplemented Sf-900 II SFM 



3 MATERIAL AND METHODS 

74 
 

medium were plated into a 15 cm dish and incubated with 500 µl of the first vial 

stock for 45 min on a rocking platform. After addition of 10 ml medium, cells were 

incubated for 6 days at 26°C. The supernatant containing the second viral 

amplification (VA2) was transferred to 15 ml vials and stored at 4°C. 

 

3.2.3.12.4 Protein expression 

For protein expression the supernatant of the second viral amplification was used to 

infect Sf9 cells as described for the preparation of the second viral amplification. 

Cells were harvested after 48 to 72 hours to prepare whole cell extracts as 

described in 3.2.3.6. In order to investigate interactions between two proteins, Sf9 

cells were transfected with two different viral stocks. The amount of virus needed 

was titrated separately for each viral stock to achieve optimal levels of protein 

expression. 

 

Table 3.13: Amounts of virus used for Sf9 infection. 

Virus Amount 

EcR 400 µl 

FLAG-EcR 400 µl 

FLAG-EcR AF1 200 µl 

FLAG-EcR DBD 200 µl 

FLAG-EcR AF2 800 µl 

FLAG-EcR C-terminus 200 µl 

HA-EcR AF1 200 µl 

HA-EcR AF2 800 µl 

Mi-2 untagged 400 µl 

Mi-2-FLAG 400 µl 

Mi-2 LFHAA-FLAG 300 µl 

Mi-2 ATPase-FLAG  200 µl 

Lint-1-FLAG 300 µl 

 

3.2.3.12.5 Large scale purification of FLAG-tagged proteins 

For large scale expression of FLAG-tagged proteins, 30 dishes of 15 cm with Sf9 

cells were infected and harvested as described above. The whole cell extract was 

incubated for 4 hours with 1ml 1:1 slurry of anti-FLAG M2 affinity gel at 4°C on a 
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rotating wheel. Subsequently the mixture was transferred onto a conical poly-prep 

plastic column (Biorad). Flow-through was collected and reapplied onto the column. 

FLAG beads were washed with two column volumes of LyBu200, 500 and 1000 

followed by two more washing steps with LyBu500 and 200. Finally, FLAG beads 

were washed with FLAG elution buffer. Bound proteins were eluted from the FLAG 

beads by incubation with 0.25 mg/ml FLAG peptide in FLAG elution buffer twice for 

15 min. Eluates were combined and concentrated using a Amicon Ultra-4 centrifugal 

filter unit (MWCO30kDa). Concentrated proteins were aliquoted, flash frozen in 

liquid nitrogen and stored at -80°C. 

 

FLAG elution buffer     20mM Tris/ HCl, pH 8.0 

150mM KCl 

10% (v/v) Glycerol 

1mM ß-mercaptoethanol 

protease inhibitors 

 

3.2.3.13 GST protein expression 

cDNA of the protein of interest was cloned into the pGEX4T1 expression vector in 

frame with a N-terminal GST-tag. This DNA construct was transformed into E.coli 

BL21 and further expressed according to standard procedures. In short, 500 ml of 

LB medium was inoculated with 5 ml of E.coli BL21 overnight culture and further 

incubated at 37°C to an OD600 of 0.6-0.7. Subsequently, the temperature of the 

incubator was set to 18°C and cells were induced with 0.1 mM IPTG overnight. The 

next day, cells were harvested by centrifugation at 4000 rpm (Heraeus Cryofuge 

5000) and resuspended in 30 ml 1x PBS/ 1% (v/v) Triton X-100 supplemented with 

protease inhibitors. After sonication (10x12 sec, 25% output), the suspension was 

centrifuged for 30 min at 15000 rpm at 4°C (Sorvall RC-5B, SS34 rotor) to remove 

cell debris. The supernatant containing the GST fusion protein was bound to 500 µl 

of pre-washed Glutathione Sepharose 4 Fast Flow (GE Healthcare) for 2 hours on a 

rotating wheel. Afterwards, beads were washed five times with 10 ml 1x PBS/1% 

(v/v) Triton-X-100. GST-bound proteins were resuspended in 1x PBS/ 40% (v/v) 

Glycerol and stored at -20°C. Estimation of protein concentration and titration 

between different samples was monitored by Coomassie stained SDS-PAGE (see 

3.2.3.3). 
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3.2.3.14 GST pulldown with radioactively labelled proteins 

In order to investigate the interaction between two proteins, a GST pulldown with 

radioactively labelled protein was performed. For the synthesis of 35S-labelled EcR 

the TNT Quick Coupled Reticulocyte Transcription/ Translation System (Promega) 

was used according to the manufacturer’s instructions. Full-length EcR and EcR 

fragments were cloned into the pING14A vector under the control of a T7 RNA 

polymerase promoter. As a control, DNA encoding the luciferase gene, delivered 

with the kit, was used. Radioactively labelled 35S-methionine was purchased from 

Hartmann Analytic GmbH. The reaction was assembled as depicted below and 

incubated at 30°C for 90 min.  

 

12.5 µl   Rabbit reticulocyte lysate 

1 µl   Reaction buffer  

0.5 µl   T7 RNA Polymerase 

0.5 µl   Amino acid mixture without Met 

1 µl   35S methionine (>1000 Ci/mmol at 10mCi/ml)  

0.5 µl   RiboLock RNase Inhibitor (Thermo Scientific) 

2 µl    DNA template pING14A (0.5 µg/ µl) 

7 µl   Nuclease-free ddH2O (Ambion) 

 

Labelled proteins were further diluted in GST pulldown buffer. An input sample was 

taken and stored at -20°C. The 35S-labeled sample was incubated with 2 µg of GST-

fusion protein bound to GST-beads for 2 hours on a rotating wheel at 4°C. Beads 

were collected by centrifugation at 4000 rpm for 5 min at 4°C and washed 5 times 

with 1 ml of GST pulldown buffer for 5 min at 4°C. Proteins were eluted by boiling in 

1x SDS-PAGE loading buffer and subjected to SDS-PAGE. The gels were fixed with 

fixing solution (25% (v/v) isopropanol, 10% (v/v) acetic acid) and treated with 

Amplify (GE Healthcare) for 30 min at RT. After drying the gel, radioactively labeled 

proteins were exposed to a SuperRX Fuji Medical X-ray film. 

 

GST pulldown buffer     25 mM Hepes/ KOH, pH 7.6 

       150 mM KCl 

       12.5 mM MgCl2 

       0.1% (v/v) NP-40 

       DTT, protease inhibitors 
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4 Results 

Immunofluorescence with specific antibodies against Mi-2 on third instar larvae 

polytene chromosomes indicated that Mi-2 localises to the ecdysone induced puff of 

the broad gene (Figure 2.10) (Murawska, 2011). Transcription of the broad gene is 

strongly upregulated in the presence of ecdysone, suggesting a role for Mi-2 in the 

regulation of hormone inducible genes in Drosophila melanogaster (Drosophila). 

Previously it was shown that the ecdysone cascade can be induced in S2 cell culture. 

These cells were derived from a primary culture of late stage Drosophila embryos 

(Schneider, 1972). S2 cells can be easily cultured in high quantity and efficiently 

manipulated. Also, in contrast to multiple cell types that can be found within a tissue, 

S2 cells represent a uniform cell type. Therefore, these cells were used to conduct the 

majority of in vivo experiments described in this thesis. 

 

This study aimed to investigate the functions of Mi-2 in the regulation of ecdysone 

dependent genes. Therefore, I examined the mechanism by which Mi-2 contributes to 

hormone regulated gene expression in Drosophila. 

 

4.1 Identification of genome-wide Mi-2 binding sites in S2 cells 

4.1.1 Induction of ecdysone cascade in S2 cells 

In order to optimise the induction of the ecdysone cascade in S2 cells, different 

concentrations of the biologically active substance 20-hydroxecdysone (20HE) were 

applied to adherently growing S2 cells. A broad range of concentrations from 0.1 µM to 

10 µM was tested for its ability to induce the ecdysone cascade. Cells were harvested 

after six hours of 20HE induction, since this time point was shown to induce expression 

of both, early and late genes of the ecdysone cascade and was in accordance with 

previous studies (Gauhar et al., 2009). Induction was measured by RTqPCR as 

increase in broad mRNA transcripts normalised to Rp49, whose mRNA expression is 

not altered upon ecdysone treatment (Figure 4.1) (Kilpatrick et al., 2005; King-Jones et 

al., 2005). 
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Figure 4.1: Induction of the broad gene in S2 cells. Expression of broad(RB) mRNA upon 
treatment of S2 cells with increasing amounts of 20-hydroxyecdysone (20HE) was determined 
by RTqPCR. mRNA levels were calculated relative to the housekeeping gene Rp49 and mRNA 
levels in untreated cells were set to 1. Error bars denote standard deviation of technical 
triplicates of technical triplicates. Experiment was performed as biological triplicates and one 
representative experiment is shown here. 
 

The broad locus contains several alternative transcripts that show differences in spatio-

temporal expression in larvae, but were upregulated to a comparable extent in S2 cells 

(data not shown). Therefore, the change in transcript levels of the transcript broad(RB) 

was considered to be representative for all mRNAs produced at the broad locus upon 

20HE treatment of S2 cells. In untreated cells, broad(RB) was described at very low 

levels as demonstrated by RTqPCR. Upon treatment of S2 cells with 0.1 µM 20HE for 

six hours, broad(RB) was upregulated 170-fold compared to untreated cells. Higher 

transcript levels were achieved by treating cells with up to 1 µM 20HE, allowing the 

detection of 200-fold more broad(RB) mRNA as compared to untreated cells. Further 

increase in 20HE concentration did not lead to higher expression, but resulted only in a 

140-fold gene activation at 10µM 20HE. This effect was probably due to inhibition of 

cell proliferation and cellular aggregation that can result from treatment of insect cell 

lines with ecdysteroids (Mosallanejad et al., 2008; Smagghe et al., 2009). In 

accordance with the results shown here, the conditions for S2 cell incubation for all 

experiments were set to six hours treatment with 1µM 20HE. 

 

4.1.2 Mi-2 expression is not dependent on 20-hydroxyecdysone 

After optimisation of ecdysone induction, a possible effect of 20HE on Mi-2 expression 

and protein stability was analysed. This experiment was performed in order to exclude 

that changes in Mi-2 binding to chromatin in the following experiments were not due to 

alterations in Mi-2 expression levels. Therefore, mRNA as well as protein levels were 

investigated upon 20HE treatment of S2 cells. 
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Figure 4.2: Expression of Mi-2 upon 20HE induction. (A) Expression of Mi-2 upon treatment 
of S2 cells with increasing amounts of 20HE was determined by RTqPCR. mRNA levels were 
calculated relative to the housekeeping gene Rp49 and mRNA levels in untreated cells were set 
to 1. Error bars denote standard deviation of technical triplicates of technical triplicates. 
Experiment was performed as biological triplicates and one representative experiment is shown 
here. (B) Mi-2 protein levels were analysed upon 20HE treatment. Nuclear extracts from 
untreated and 20HE treated S2 cells were compared by Western blot using antibodies indicated 
on the right. Detection of tubulin served as a loading control. Molecular weight in kDa is 
depicted on the left. 
 

Transcript levels of Mi-2 were examined by RTqPCR after 20HE treatment with 

concentrations between 0.1 to 10 µm. Under these conditions mRNA levels ranged 

between 0.8 to 1.4-fold as compared to untreated cells (Figure 4.2A). These 

differences were very small compared to the changes in broad(RB) expression and did 

not follow the concentration dependent trend detected for broad(RB). Therefore, I 

concluded that Mi-2 transcription was not significantly altered upon 20HE treatment 

within six hours. Effects of 20HE treatment on Mi-2 protein stability levels were 

analysed by Western blot (Figure 4.2B). Tubulin was used to demonstrate equal 

loading of samples. No significant difference in Mi-2 protein levels was detected 

between untreated and 20HE treated cells. Taking together the results from the 

RTqPCR and the Western blot, I concluded that Mi-2 expression and protein stability 

was not influenced by the presence of ecdysone within six hours of 20HE treatment. 

This further supports that the findings described in the following sections were not due 

to changes in Mi-2 expression levels, but can be referred to changes in Mi-2 binding to 

chromatin detected by ChIPSeq. 

 

4.1.3 Mi-2 ChIP Seq analysis in S2 cells 

As described above, Mi-2 has been shown to bind to a single locus, the ecdysone 

induced puff of the broad gene (Magdalena Murawska, Figure 2.9). However, 

activation of the ecdysone cascade does influence the expression of several hundred 

genes (Ashburner, 1990). Therefore, I aimed to identify all sites of Mi-2 recruitment 

upon ecdysone induction. The identification of genome-wide binding sites of Mi-2 on 
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polytene chromosomes is limited due to the resolution of immunofluorescence. In order 

to identify Mi-2 binding sites across the Drosophila genome upon ecdysone treatment, 

chromatin immunoprecipitation followed by genome-wide sequencing (ChIPSeq) was 

performed in S2 cells. ChIP experiments using an antibody against an N-terminal Mi-2 

fragment were established before on heat shock inducible (hsp) genes (Mathieu, 2013; 

Murawska, 2011). For this thesis, ChIP was performed from S2 cells that were either 

untreated or induced with 1µM 20HE.As a proof of principle for a successful ChIP 

experiment, two regions in the broad gene were compared to an unrelated, intergenic 

region (Figure 4.3A and B). This intergenic region was previously shown to exhibit only 

low Mi-2 binding in untreated cells (Mathieu et al., 2012; Murawska et al., 2011).  
 

 
Figure 4.3: Test of Mi-2 binding to the broad gene by ChIP. (A) Detailed schematic 
representation of all transcripts at the broad locus and position of oligo binding sites tested in 
(B). (B) Chromatin was prepared from untreated and 20HE treated S2 cells. ChIP was 
performed using an antibody against Mi-2. Values are expressed as %input. Purified DNA was 
quantified by qPCR at binding sites indicated in (A). “Intergenic” refers to an unrelated 
intergenic region on chromosome arm 2R (see Material and Methods). Error bars denote 
standard deviation of technical triplicates.   
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Precipitated DNA from both ChIPs was detected by qPCR with specific oligos binding 

in a genomic region of interest (Figure 4.3A). Indeed, Mi-2 binding at the intergenic 

region was less than 0.01% of input as expected from previous studies (Mathieu et al., 

2012) (Figure 4.3B). In comparison, Mi-2 binding in untreated S2 cells was about 

tenfold higher (0.03% input) at the genomic region broad_test1 and about 17-fold 

higher (0.05%) at broad_test2. The %input enriched in Mi-2 ChIP were comparable to 

specific ChIP signals that have been described before at the hsp genes . Upon 

treatment of cells with 20HE the ChIP signal at both test regions was even higher, with 

an 1.8-fold increase at region broad_test1 and a small increase at region broad_test2, 

compared to untreated cells. These results indicate that Mi-2 ChIP in untreated and 

20HE treated cells was efficient. Moreover, it lead to the hypothesis that Mi-2 binds to 

the broad gene and that binding is increased upon 20HE treatment as it was observed 

on polytene chromosomes (Murawska, 2011). 

 

From the remaining precipitated ChIP DNA a library was prepared and sequenced 

using the Illumina GaIIx platform under the supervision of Maren Scharfe, Helmholtz 

Centre for Infection Research. The resulting reads were analysed as described in the 

Material and Methods section of this thesis by Florian Finkernagel, IMT Marburg. A 

peak is defined as enrichment of sequence read tag density over a certain region 

relative to the estimated background tag density (Pepke et al., 2009). This enrichment 

is an indication for the binding of the analysed protein to the sequenced DNA region. 

Bioinformatic analysis of the ChIP for Mi-2 identified 15425 peaks in untreated cells 

and 14161 peaks in 20HE treated. The comparison of ChIPSeq reads in untreated and 

20HE treated cells enabled the investigation of Mi-2 ChIPSeq peaks that are 

significantly increased or decreased upon hormonal induction. Mi-2 ChIP signals were 

considered increased or decreased when the region exhibited a 2.3-fold or more 

change in sequencing reads compared to untreated S2 cells. 103 Mi-2 binding sites 

that were enriched more than 2.3-fold upon 20HE treatment (Appendix, Table 7.1) 

were identified. ChIPSeq for Mi-2 verified the recruitment to the broad gene, as four 

20HE induced Mi-2 binding sites were located within the gene, one of which was 

demonstrated by RTqPCR (Figure 4.3B). Also 76 binding sites where Mi-2 binding was 

decreased more than 2.3-fold upon 20HE treatment were found (Appendix, Table 7.2). 

However, I focused my further analysis on binding sites that were enriched upon 

hormonal induction.  
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4.1.4 Mi-2 bound genes are ecdysone inducible 

In order to investigate regions where Mi-2 binding was induced upon 20HE treatment, 

a set of 12 strongly enriched (more than threefold) binding sites was selected (Table 

4.1). Mi-2 ChIPSeq reads mapped to “Uextra” (Appendix, Table 7.1) were excluded 

from this list as these reads could not be precisely aligned when the Drosophila 

genome was assembled (Hoskins et al., 2007). Further, I excluded the first two Mi-2 

binding sites that showed highest enrichment in 20HE treated cells (Appendix, Table 

7.1) since these peaks were located within the mRps5 gene, a locus that codes for a 

mitochondrial ribosomal protein. Ribosomal proteins are ubiquitously expressed and 

therefore I expected this gene to not be regulated by 20HE (Marygold et al., 2007). The 

selection of 12 strongly enriched Mi-2 ChIPSeq peaks shown in Table 4.1 

demonstrated that the size of these peaks ranged between 556 bp to 3132 bp, with an 

average of 1352 bps. In order to correlate the identified binding sites to a potentially 

regulated gene, all peaks were assigned to the closest transcriptional start site (TSS) 

(Next transcript, Table 4.1) and the two genes in the closest proximity (Primary and 

Secondary gene). This means that an assigned gene can be the next transcript and 

the primary gene (e.g. peak at X:1843508..1846640). Further, if another gene is closer 

to the identified Mi-2 binding site the assigned primary gene can differ from the next 

transcript (e.g. peak at X:1503765..1504886). However, by visual inspection of the 

ChIPSeq tracks in the genome browser it became clear, that the peak at chromosomal 

location X:3302484..3302942 was actually located within the gene CG12535. Similarly, 

the peak at chromosomal location 3R:5789105..5790032 resided within the gene 

Glut4EF. Both genes were not assigned by the bioinformatic algorithm described 

above, but since 20HE induced Mi-2 binding was detected within their coding region, 

they were considered for further analysis. Interestingly, the peak at chromosomal 

location 2L:5287818..5288374 was assigned to the genes Bub1 and Bsg25D. 

However, this peak was also in close proximity to the vrille (vri) gene promoter (570 bp 

from the TSS of vrille(RE)), a gene known to be induced by ecdysone. Therefore, this 

identified peak was assigned to the vrille gene. A literature search revealed that 

transcription of five of the 20 protein-coding genes close to ecdysone-induced Mi-2 

peaks are induced upon ecdysone treatment of Drosophila cells (Table 4.1, printed in 

bold). Two of the selected genes are expressed at the beginning of the ecdysone 

cascade. The so called “early genes” broad and Hr4 function as transcription factors to 

induce late genes. Late genes, such as vrille and let-7, directly contribute to the 

metamorphosis of the organism. I concluded that the identified Mi-2 binding sites were 

located within close vicinity of several genes with functions in the ecdysone cascade.  
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Table 4.1: Mi-2 binding sites induced upon 20HE treatment. Depicted is the exact 
chromosomal location within the Drosophila genome and the size of Mi-2 peaks in base pairs 
(bp). The next transcript as well as the two genes in the closest proximity (Primary and 
Secondary gene) of an identified Mi-2 binding site are given. Tag-count ratio of +20HE/ 
untreated represents the enrichment of tag counts of Mi-2 ChIPSeq in 20HE versus untreated 
S2 cells. 
chromosomal location Peak 

size 
  Next 

transcript 
Primary 
gene 

Secondary 
gene 

Tag-count 
ratio 
+20HE/un
treated 

X:3302484..3302942 458 bp a) CG14269 CR32493 CG14269 5.4689555 
X:1843508..1846640 3132 bp   Hr4 Hr4 CG3587 4.5522299 
X:1503765..1504886 1121 bp   br Mur2B br 4.4419439 
3R:5789105..5790032 927 bp b) Art4 Art4 Gr85a 4.0371862 
2L:5300104..5300770 666 bp   vri vri CG14024 3.6915450 
X:1504917..1507842 2925 bp   br Mur2B br 3.4217047 
2L:5287818..5288374 556 bp c) Bub1 Bub1 Bsg25D 3.4067035 
2L:12013199..12014424 1225 bp   Rh5 Rh5 CG6734 3.2973584 
2L:3338014..3339943 1929 bp   E23 CG15408 CG3285 3.2752513 
2R:8276716..8277539 823 bp   Cpr49Ad Cpr49Ad Cpr49Ac 3.2398497 
2R:8274002..8275419 1417 bp   Cpr49Ac Cpr49Ac CG8501 3.2058114 
2L:18466593..18467235 642 bp   Ntf-2r mir-100 let-7 3.1695083 

a) located within CG12535; b) located within Glut4EF; c) upstream of vri promoter 

 

In order to test if genes that are associated with Mi-2 recruitment upon ecdysone 

treatment are also 20HE inducible in S2 cells, expression levels of nine of the 12 

genes was examined by RTqPCR (Figure 4.4). Seven of the nine tested genes were 

highly induced upon ecdysone treatment. Interestingly, the genes Glu4EF and 

Cpr49Ac had not been described to be upregulated upon 20HE treatment in the 

literature. These results showed for the first time that Glut4EF and Cpr49Ac are 

expressed upon 20HE induction in S2 cells. However, the level of increased 

expression varied greatly between approximately tenfold for vrille, let-7-C and Glut4EF 

and several hundredfold for Cpr49Ac, broad and Hr4. For two of the tested genes, Rh5 

and CG12535, no significant change of RNA expression upon 20HE treatment was 

detected. These findings demonstrate that 10 of the 12 peaks that showed strong 

20HE induced Mi-2 binding were located within the close proximity of ecdysone 

inducible genes.  
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Figure 4.4: Expression of genes associated with Mi-2 binding upon 20HE treatment in S2 
cells. Expression of mRNA of nine genes associated with 20HE induced Mi-2 ChIPSeq signals 
(Table 4.1) was determined by RTqPCR in untreated and 20HE treated S2 cells. mRNA levels 
were calculated relative to the housekeeping gene Rp49 and mRNA levels in untreated cells 
were set to 1. Error bars denote standard deviation of technical triplicates. Experiments were 
performed as biological triplicates and one representative experiment is shown here. 
 

4.1.5 Validation of Mi-2 ChIPSeq data at the broad and vrille gene 

To confirm Mi-2 binding sites identified by the ChIPSeq experiment described above, I 

performed several control experiments. Six identified 20HE induced Mi-2 binding sites, 

two located within the vrille locus and four within the broad locus, were chosen for 

further investigation. This selection was made since broad was identified as an Mi-2 

binding region by immunofluorescence on polytene chromosomes. Further, vrille and 
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broad are expressed at different time points of the ecdysone cascade, with broad being 

an early and vrille being a late induced gene. In addition, both loci allowed the analysis 

of several 20HE induced Mi-2 peaks within the same genomic region. In order to gain 

more insight into induced Mi-2 binding sites, the surrounding genomic landscape was 

analysed. The broad gene is encoded on the X chromosome and spans a genomic 

region of almost 100kb, which is about ninefold larger than the average Drosophila 

gene with 11.3 kb (Lewin, 1994). It codes for 14 alternative transcripts and contains an 

extended first intron. In addition, it overlaps with the Mur2B gene in the 5’ region and 

contains three nested genes towards the 3’ end (Figure 4.5). Broad encodes a family 

of related zinc-finger containing transcription factors that are major regulators in a 

multitude of developmental processes (Guay and Guild, 1991). When analysing the Mi-

2 binding pattern in untreated S2 cells, it was observed that strong Mi-2 binding 

occurred at two regions (Figure 4.5). A small Mi-2 peak that spans approximately 1kb 

was found in the first intron shortly after the 5’ untranslated region of the broad(RN) 

and –(RO) transcripts (Figure 4.5, region A). A rather broad Mi-2 binding region that 

contained several peaks with a width of 8kb was situated within the first intron of most 

of the transcripts. Other regions of the broad locus such as the second and third intron, 

the exons and the 3’ UTR showed less Mi-2 ChIP signal. A region within the second 

intron did not contain any Mi-2 reads, which was most probable due to the fact that 

ChIPSeq reads could not be precisely mapped to this region. Sequence analysis 

revealed that this region indeed contained sequences that exist more than once within 

the Drosophila genome. These repetitive sequences are excluded from the 

bioinformatic analysis. When comparing the binding profile of Mi-2 in untreated and 

20HE treated cells it was observed that the majority of ChIPSeq peaks was not 

significantly altered. However, bioinformatic analysis found four regions where Mi-2 

binding was enriched up to 4.4-fold (Figure 4.5, red boxes). First, the peak in the 5’ 

untranslated region showed 2.3-fold more Mi-2 binding upon 20HE treatment 

(X:147165..1473414, Fig 4.5 region A). Second, two peaks with a 4.4-fold 

(X:1503765..1504886, Fig 4.5 region B) and 3.4-fold (X:1504917..1507842, Fig 4.5 

region C) Mi-2 enrichment were identified. These sites of enrichment were close to the 

major TSS of the broad gene. Finally, 2.3-fold stronger binding of Mi-2 within a region 

containing an exon within the broad gene was detected (X:1529697..1531480, Fig 4.5 

region D). In conclusion, these findings suggest that Mi-2 bound to several regions in 

the broad gene in untreated S2 cells and was further recruited to specific genomic sites 

upon induction of the ecdysone cascade.  
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The second locus that was chosen for further analysis as that of the vrille gene. The 

locus is located on the second chromosome, spans about 20kb and codes for four 

alternative transcripts (Figure 4.6). The promoter region of the vrille(RE) transcript 

overlaps with two annotated non-coding RNAs CR44743 and CR44742 that are 

transcribed in opposite direction from each other. Inspection of the binding pattern of 

Mi-2 in untreated cells at the vrille locus identified several peaks across the gene 

(Figure 4.6). Mi-2 peaks were mainly located in the extended first intron of the 

vrille(RE) transcript, but also in the intron region that is shared by all transcripts. In 

accordance with the observation at the broad gene, much less Mi-2 binding was 

detected in the exon and 3’ UTR region of vrille. Upon 20HE treatment of S2 cells, two 

Mi-2 binding sites showed significant enrichment (Figure 4.6, red boxes). The first 

gained peak spanned about 500 bp and was located in the region preceding the 

vrille(RE) transcript that also contained the two non-coding RNA genes (Figure 4.6, 

region X). The second peak spanned approximately 800 bp and was located within the 

intron of the vrille(RE) and (RD) transcripts (Figure 4.6, region Y). All other peaks 

across the gene were not significantly changed upon ecdysone induction. Therefore, I 

concluded that similar to what had been observed at the broad locus, Mi-2 was bound 

across the vrille gene and further recruited to two regions in response to 20HE 

treatment.  

 

 
Figure 4.6: Mi-2 binding profile at the vrille locus. (A) Schematic representation of the vrille 
locus. Numbers indicate the binding sites tested by ChIP qPCR (Figures 4.7, 4.8, 4.22, 4.26 
and 4.27). (B) Genome browser view showing Mi-2 sequencing reads obtained from ChIP with 
anti-Mi-2 antibody in untreated and 20HE treated cells. Regions with increased Mi-2 binding 
upon 20HE stimulation (X and Y) are framed in red lines. 
 

The identified Mi-2 binding sites at the broad an vrille loci were further investigated by 

ChIP followed by qPCR. Mi-2 binding at nine different locations was examined 

(depicted by the numbers 1-9 in Figure 4.5 and 4.6). These locations were chosen 
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because they either represent ecdysone induced Mi-2 binding sites (1, 4, 5 and 7 in 

broad, 2 and 6 in vrille) or neighbouring sites not responsive to hormone treatment as 

predicted by ChIPSeq (Figures 4.5 and 4.6). One ChIP sample for each condition was 

incubated with rabbit IgG that served as a negative control. All experiments were 

performed as biological triplicates and one representative experiment is depicted in 

Figure 4.7. Mi-2 ChIP from untreated S2 cells showed similar differences of Mi-2 ChIP-

signal between the nine analysed binding regions in ChIPSeq and ChIP followed by 

qPCR. In comparison, ChIP with rabbit IgG antibody was below 0.01% of input. At the 

broad locus, Mi-2 was detected strongly at binding sites 1 and 6 as 0.08% and 0.12% 

of input chromatin were precipitated in untreated S2 cells. In contrast, less binding of 

Mi-2, about 0.02 to 0.06% of input, was seen at all other binding sites as expected from 

the ChIPSeq profile (Figure 4.7). ChIP of Mi-2 in 20HE induced cells, precipitated 

significantly more Mi-2 at binding sites 4 and 5. This increase in Mi-2 binding was 

approximately threefold (0.11% of input) at position 4 and twofold at position 5 (0.14% 

of input) (Figure 4.7). Therefore, these regions represent an increased binding of Mi-2 

in the presence of hormone, a finding that is in agreement with the results from 

ChIPSeq. ChIPSeq for Mi-2 also identified binding sites 1 and 7 to be enriched upon 

20HE induction (Figure 4.5). However, only a slight increase in Mi-2 binding was 

observed at binding sites 1 and 7 in qPCR (Figure 4.7). From this, I concluded that Mi-

2 ChIP followed by qPCR could verify some, but not all 20HE induced Mi-2 binding 

sites at the broad locus identified by ChIPSeq. 

 

Comparable results were observed at the vrille locus (Figure 4.7). In contrast to the 

broad gene, Mi-2 binding was detected across the whole locus with less pronounced 

binding in the exon and 3’UTR in untreated cells (0.04 to 0.1% of input). This was in 

agreement with the findings from ChIPSeq (Figure 4.6). Further, the 20HE induced 

binding of Mi-2 to two regions of the vrille gene identified by ChIPSeq could be verified. 

Binding sites 2 and 6 showed a twofold increase (0.09 and 0.14% of input) in Mi-2 

binding. Surprisingly, binding sites 8 and 9 also showed twofold (0.06%) and threefold 

(0.045% of input) increase in Mi-2 binding. As an additional control, a gene poor region 

(intergenic) was tested in qPCR. This region exhibited very low Mi-2 binding (0.01%) 

and showed no Mi-2 recruitment upon ecdysone induction. In conclusion, the Mi-2 

binding pattern observed the broad and vrille locus in ChIPSeq was verified by qPCR 

and demonstrated ecdysone induced binding of Mi-2 to hormone regulated genes. 
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4.1.6 Lint-1 is not recruited to ecdysone dependent genes upon 20HE treatment 

To examine whether ecdysone dependent recruitment of Mi-2 to the broad and vrille 

loci is specific, ChIP was performed with an antibody against an unrelated protein, Lint-

1. Lint-1 is a subunit of the LINT repressor complex that contributes to the repression 

of germline specific genes in the brain of Drosophila larvae (Meier et al., 2012). 

Further, Lint-1 is a protein that was not known to be involved in regulation of the 

ecdysone cascade and was not identified as an Mi-2 interacting protein. ChIP was 

performed as described previously in untreated and 20HE treated S2 cells (Figure 4.7). 

Lint-1 binding was detected across the broad and vrille locus at about 0.05% to 0.1% 

of input. However, the binding pattern did not resemble the profile of Mi-2 binding in 

untreated cells. Furthermore, none of the tested regions showed increased Lint-1 ChIP 

signal upon 20HE treatment. Therefore, binding of Mi-2 in untreated cells and the 

increase of Mi-2 ChIP signal at particular sites (4 and 5 in broad, 2 and 6 in vrille) 

appeared to be specific. This result further excluded the possibility that certain DNA 

sequences were more susceptible to precipitation by ChIP upon hormone induction. 

 

4.1.7 Depletion of Mi-2 leads to a reduction of 20HE induced Mi-2 ChIP signals 

In order to test if the ChIP signals observed with the anti-Mi-2 antibody are specific, 

and to exclude cross-reactivity of the antibody an additional specificity control was 

performed. Therefore, RNAi experiments followed by ChIP were conducted. 

Introduction of double-stranded RNA (dsRNA) that corresponds in sequence to a 

segment of the targeted mRNA has been shown to induce post-transcriptional gene 

silencing and to result in the degradation of the targeted mRNA (RNA 

interference)(Clemens et al., 2000). This application is a powerful tool to deplete 

Drosophila cells of specific proteins of interest. S2 cells were transfected with a dsRNA 

against GFP as a negative control and a dsRNA against Mi-2. To check for the 

efficiency of dsRNA mediated knockdown, Mi-2 protein levels were analysed by 

Western blot (Figure 4.8A). Efficient Mi-2 depletion was observed when comparing 

nuclear extracts from cells treated with Mi-2 dsRNA (lanes 3 and 4) compared to cells 

treated with GFP dsRNA (lanes 1 and 2). This effect was not altered upon treatment of 

cells with 20HE.  

 

 



4 RESULTS 

91 
 

 
 
Figure 4.8: Validation of Mi-2 specific binding sites by ChIP qPCR by RNAi. (A) Nuclear 
extracts from S2 cells treated with dsRNA against GFP or Mi-2 and incubated with (+) or 
without (-) 20HE were subjected to Western blot using antibodies indicated on the right. 
Detection of tubulin served as a loading control. Molecular weight in kDa is depicted on the left. 
(B) ChIP was performed using an antibody against Mi-2. Chromatin was prepared from S2 cells 
incubated with dsRNA against GFP (white and grey bars) or Mi-2 (light and dark red bars) and 
incubated with (grey and dark red bars) or without 20HE (white and light red bars). Values are 
expressed as % input. Purified DNA was quantified by qPCR with oligos at the binding sites 
indicated in Figure 4.5 (broad) and Figure 4.6 (vrille). “Intergenic” refers to an unrelated 
intergenic region on chromosome arm 2R (see Material and Methods). Experiments were 
performed as biological triplicates and one representative experiment is shown here. 
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Cells treated with dsRNA were subjected to ChIP analysis followed by qPCR. The 

samples treated with GFP dsRNA showed an Mi-2 binding pattern for broad and vrille, 

in untreated and 20HE treated cells (Figure 4.8, white and grey bars) that was 

comparable to the profile described previously (Figure 4.7). However, the %input 

showed some variability in comparison to the experiment described in Fig. 4.7, which 

was probably due to biological variation. The Mi-2 binding profile in untreated S2 cells 

that were depleted of Mi-2 did not change considerably (Figure 4.7, light red bars). 

Only a small decrease at binding sites 6, 8 and 9 of the broad gene and binding sites 3 

and 4 of the vrille gene were observed. This is a surprising result as the depletion of 

Mi-2 seemed to not have a significant effect on Mi-2 binding to chromatin. One reason 

for this observation could be that only the soluble nuclear fraction of Mi-2 was depleted 

by dsRNA, whereas a rather stable fraction of Mi-2 remained associated with 

chromatin over several cell cycles (Anna Ernst, data not shown). However, when 

analysing the binding pattern of Mi-2 upon ecdysone treatment in Mi-2 dsRNA treated 

cells, it was observed that Mi-2 recruitment at the expected binding sites was abolished 

(Figure 4.7, dark red bars). This was clear at binding sites 1, 4 and 5 of the broad and 

binding sites 2 and 6 of the vrille gene Therefore, I concluded that Mi-2 enrichment 

upon hormonal stimulation was abolished in Mi-2 depleted cells. Also, these results 

indicated that the observed Mi-2 binding was specific and not a result of cross-

reactivity of the Mi-2 antibody. 

 

4.2 Function of Mi-2 at ecdysone dependent genes 

4.2.1 Mi-2 functions as a transcriptional repressor at ecdysone induced genes 

Mi-2 had been previously shown to function as a co-repressor at developmental and 

proneural genes (Kunert et al., 2009; Murawsky et al., 2001). In contrast, Mi-2 acts as 

a co-activator to promote full transcriptional activation of heat shock genes (Murawska 

et al., 2011). The observation that Mi-2 was recruited to several ecdysone dependent 

genes prompted us to examine its role at the broad and vrille gene. In order to 

investigate the function of Mi-2, expression of vrille and broad in Mi-2 depleted cells 

was analysed.  
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Figure 4.9: Expression of broad and vrille in Mi-2 depleted cells. (A) Nuclear extracts from 
S2 cells treated with dsRNA against GFP, EcR or Mi-2 and incubated with (+) or without (-) 
20HE were subjected to Western blot using antibodies indicated on the right. Detection of 
tubulin served as a loading control. Molecular weight in kDa is depicted on the left. (B) 
Expression of mRNA of broad and vrille from untreated S2 cells incubated with dsRNA against 
GFP (white bars), EcR (dark grey bars) or Mi-2 (light grey bars) was determined by RTqPCR. 
mRNA levels were calculated relative to the housekeeping gene Rp49 and mRNA levels in cells 
treated with GFP dsRNA were set to 1. (C) Timecourse of mRNA expression of broad and vrille 
upon 0, 30, 60, 120, 240 and 360 minutes of 20HE induction in S2 cells treated with dsRNA 
against GFP (rhombus), EcR (circle) or Mi-2 (square) was determined by RTqPCR. mRNA 
levels were calculated relative to the housekeeping gene Rp49 and mRNA levels in untreated 
cells incubated with GFP dsRNA were set to 1. Error bars denote standard deviation of 
technical triplicates. Standard deviations for broad are not visible in the time course due to the 
scale of the y-axis. Experiments were performed as biological triplicates and one representative 
experiment is shown here. 
 

Hence, S2 cells were subjected to dsRNA treatment as described above. In addition, a 

dsRNA specifically targeting EcR was introduced as a positive control since 

knockdown of EcR had been shown to efficiently abolish the activation of the ecdysone 

cascade (Beckstead et al., 2005). The depletion of EcR and Mi-2 was efficient as 

demonstrated by Western blot (Figure 4.9A, lanes 1-6). Additionally, it was observed 

that Mi-2 protein level was not affected upon EcR knockdown (lanes 3 and 4). 

However, upon Mi-2 depletion, EcR protein levels seemed to be slightly decreased 

(lanes 5 and 6). Expression analyses demonstrated that knockdown of Mi-2 as well as 

EcR lead to a 15-fold increase of broad transcript levels in cells that were not treated 

with 20HE (Figure 4.9B). Also, expression of vrille was fourfold upregulated in EcR and 

twofold upregulated in Mi-2 dsRNA treated cells. This demonstrated that depletion of 

Mi-2 and EcR lead to expression of ecdysone-regulated genes that are otherwise less 

transcribed in untreated S2 cells. Further, expression of broad and vrille was examined 
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at five different time points upon ecdysone induction in dsRNA treated cells (Figure 

4.9C). Cells incubated with a dsRNA against GFP showed an eightfold increase of 

broad expression 60 min after 20HE induction. Expression of broad mRNA further 

increased with time, reaching about 480-fold increase compared to non-treated cells 

(t=0’) after six hours. Vrille transcription was sixfold higher after 30 minutes and further 

increased up to 16-fold after six hours of 20HE treatment. As expected, in cells 

depleted of EcR, mRNA levels did not show a robust induction after six hours of 

ecdysone treatment. In contrast, depletion of Mi-2 from S2 cells, led to a significant 

increase of expression of broad at all measured time points compared to GFP treated 

samples (300-fold after 2 hours, 720-fold after six hours). Comparable results were 

found for the vrille gene, where expression in Mi-2 depleted cells was 18-fold 

upregulated after six hours as compared to a 12-fold increase in vrille mRNA in GFP 

dsRNA treated cells. From these results, I hypothesised that in untreated cells Mi-2 as 

well as EcR function as transcriptional repressors at the broad and vrille genes. 

Further, I confirmed that EcR is a crucial factor for efficient transcriptional activation 

upon 20HE treatment. By contrast, Mi-2 appears to retain its function as a co-repressor 

upon 20HE treatment, as its depletion resulted in superactivation of both genes.  

 

4.2.2. Depletion of Iswi does not lead to superactivation of ecdysone dependent 
genes 

To investigate whether the function of Mi-2 is specific for this particular ATP-dependent 

chromatin remodeler, we depleted a different ATP-dependent chromatin remodeler of 

the SNF2 family, namely Iswi, from S2 cells. Iswi was previously shown to function as 

a transcriptional activator of ecdysone regulated genes in Drosophila (Badenhorst et 

al., 2005). Efficient knockdown of Iswi by RNAi was verified by decreased levels of 

mRNA in RTqPCR as no antibody for detection of protein levels in Western blot was 

available (Figure 4.10A). In cells treated with a dsRNA against Iswi, expression of Iswi 

was 30-fold downregulated compared to GFP treated cells. Interestingly, Iswi 

expression was fivefold decreased in GFP dsRNA treated cell that were induced with 

20HE. Therefore, I hypothesised, that Iswi mRNA expression was negatively 

influenced by ecdysone. 
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Figure 4.10: Expression of broad and vrille in Iswi depleted cells. (A) Expression of mRNA 
of Iswi incubated with dsRNA against GFP (white and grey bars) and Iswi (light and dark purple 
bars) in S2 cells incubated with (grey and dark purple bars) or without (white and light purple 
bars) 20HE was determined by RTqPCR. mRNA levels were calculated relative to the 
housekeeping gene Rp49 and mRNA levels in untreated cells incubated with GFP dsRNA were 
set to 1. (B) Timecourse of mRNA expression of broad and vrille upon 0, 30, 60, 120, 240 and 
360 minutes of 20HE induction in S2 cells treated with dsRNA against GFP (rhombus) and Iswi 
(triangle) was determined by RTqPCR. mRNA levels were calculated relative to the 
housekeeping gene Rp49 and mRNA levels in untreated cells incubated with GFP dsRNA were 
set to 1. Error bars denote standard deviation of technical triplicates. Standard deviations for 
broad are not visible in the time course due to the scale of the y-axis. Experiments were 
performed as biological triplicates and one representative experiment is shown here. 
 

In uninduced cells (t=0’) broad was twofold upregulated when treated with Iswi dsRNA 

compared to GFP dsRNA treated cells, whereas no change was detected for vrille 

expression (Figure 4.10B and data not shown). Upon hormonal stimulation, expression 

of broad was decreased twofold in Iswi depleted cells as compared to GFP dsRNA 

after 60 and 120 minutes. This difference in expression levelled off four hours after 

induction when comparable amounts of mRNA in GFP and Iswi dsRNA treated cells 

were detected. No significant difference between GFP and Iswi dsRNA treated cells 

was observed for vrille expression. These experiments demonstrated that Iswi does 

not appear to function as a transcriptional repressor or activator of broad and vrille. 

Further, I hypothesised that Mi-2 functions as a major repressive ATP-dependent 

chromatin remodeler at the ecdysone induced genes broad and vrille. 

 

4.2.3 Mi-2 regulates transcription of two non-coding RNAs 

Mi-2 binding upon 20HE treatment occurred in a genomic region that does not only 

contain promoter sequences of the vrille gene, but also codes for two non-coding 
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RNAs CR44742 and CR44743. Thus, I proposed that Mi-2 may not only contribute to 

the regulation of vrille expression but could also influence expression of these ncRNAs. 

Both RNAs were expressed to a low extent in S2 cells, but were upregulated about 20-

fold upon 20HE treatment (Figure 4.11). Interestingly, changes in expression of both 

RNAs in EcR and Mi-2 depleted cells were comparable with the findings for the vrille 

gene (Figure 4.9C). In uninduced cells treated with a dsRNA against Mi-2 CR44742 

and CR44743 transcripts were upregulated about fivefold compared to GFP treated 

cells. In the presence of hormone, noncoding transcript levels were fourfold higher in 

Mi-2 depleted cells than in GFP dsRNA treated cells. In agreement with the findings 

above (Figure 4.9B), depletion of EcR resulted in derepression of both ncRNAs in 

uninduced S2 cells by about twofold. Induction of the ecdysone cascade resulted in an 

increase in both transcripts in EcR depleted cells, however this transcriptional 

activation was not as strong as the effect seen in GFP dsRNA treated cells. I 

concluded that Mi-2 and EcR contributed to the regulation of the two ncRNAs 

CR44742 and CR44743, in a manner comparable to what was observed for broad and 

vrille expression.  

 

 
Figure 4.11: Expression of non-coding RNAs in Mi-2 depleted cells. Expression of 
CR44743 and CR44742 incubated with dsRNA against GFP (light and dark grey bars), EcR 
(light and dark green bars) or Mi-2 (light and dark red bars) in untreated (light bars) and six 
hours 20HE treated (dark bars) S2 cells was determined by RTqPCR. mRNA levels were 
calculated relative to the housekeeping gene Rp49 and mRNA levels in untreated cells 
incubated with GFP dsRNA were set to 1.Error bars denote standard deviation of technical 
triplicates. Experiments were performed as biological triplicates and one representative 
experiment is shown here. 
 

4.3 Interaction studies on Mi-2 and EcR 

4.3.1 Mi-2 and EcR interact in vitro 

Mi-2 has been previously shown to interact with transcription factors such as 

tramtrack69 and hunchback (Kehle et al., 1998; Murawsky et al., 2001). Therefore, I 

hypothesised that recruitment to ecdysone dependent genes is mediated by an 

interaction with EcR. In order to test this hypothesis, the Baculovirus expression 
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system was used as it allows for overexpression and purification of large eukaryotic 

proteins such as Mi-2 (220kDa) and EcR (110kDa). Sf9 cells were infected with 

baculoviruses expressing Mi-2, EcR or, as a control, the unrelated Lint-1 protein. Mi-2 

and Lint-1 were overexpressed as epitope-tagged fusion proteins with an N-terminal 

FLAG octapeptide (from here on referred to as FLAG). Proteins were expressed 

individually or in combination and their expression was analysed in Western blot 

(Figure 4.12, lanes 1-6). Due to differences in virus titer, expression of Lint-1-FLAG 

was stronger than Mi-2-FLAG expression. However, EcR protein levels were 

comparable in all samples. FLAG-tagged proteins were precipitated from whole cell 

extracts using anti-FLAG antibody immobilised on agarose beads (from here on 

referred to as FLAG-beads). 

 

 
Figure 4.12: Mi-2 interacts with EcR in vitro. Sf9 cells were co-infected with baculoviruses 
expressing Mi-2-FLAG or Lint-1-FLAG and EcR as indicated on top. Extracts were 
immunoprecipitated with anti-FLAG antibody immobilised on agarose beads. 
Immunoprecipitates were subjected to Western blot using antibodies indicated on the right. Left 
panel shows 1% of the total input sample that was used for IP. Right panel shows 10% of the 
total immunoprecipitated sample. Molecular weight in kDa is depicted on the left. 
 

In the extracts before immunoprecipitation (IP) Mi-2-FLAG runs as a single band (lanes 

3 and 4), whereas after incubation with FLAG beads the electrophoretic mobility of Mi-

2-FLAG changed and it runs as two bands (lanes 9 and 10). This was probably due to 

protein degradation of Mi-2-FLAG by proteases during the IP. Also, there was a 

Western blot signal visible in the panel where Lint-1-FLAG was detected, but in lanes 

where Lint-1-FLAG was not expressed (lanes 3,4, 9 and 10). These bands originate 

from degradation products of Mi-2-FLAG with a smaller molecular weight that ran 

faster in SDS-PAGE and were also detected by the anti-FLAG antibody. When Mi-2-

FLAG and EcR were co-expressed in Sf9 cells, IP of Mi-2-FLAG showed clear co-

immunoprecipitation (co-IP) of EcR (lane 10). Precipitation of Lint1-FLAG did not show 

co-IP of EcR (lane 12), indicating the interaction between Mi-2 and EcR was specific. 

This demonstrated that Mi-2 and EcR can interact physically when overexpressed in 

Sf9 cells.  
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4.3.2 Interaction of Mi-2 and EcR is independent of 20HE 

Interaction studies have demonstrated that interaction of the EcR complex with other 

proteins can depend on the presence of ecdysone (Badenhorst et al., 2005; Tsai et al., 

1999). To investigate whether the interaction between Mi-2 and EcR may also be 

influenced by the hormone, a FLAG-IP experiment was performed. Sf9 cells were 

cultured under three different conditions. Generally, Sf9 cells were grown in fetal 

bovine serum (FBS) supplemented medium. However, FBS contains a mixture of 

bioactive substances including mammalian steroid hormones. These hormones are 

capable to function as hormone analogues, thereby changing the nuclear receptor 

(NR) conformation to a “hormone-bound” state (Samuels et al., 1973). In order to 

remove these hormones, FBS was treated with dextran-coated charcoal (Chen, 1967). 

Sf9 cells grown in charcoal-depleted, normal or 20HE supplemented medium and were 

co-infected with a virus expressing Mi-2 and FLAG-EcR. Western blot analysis showed 

that expression of Mi-2 and FLAG-EcR was not altered under different culture 

conditions (Figure 4.13, lanes 1-6). In accordance with the results described above, IP 

of FLAG-EcR enriched Mi-2 on FLAG beads (lanes 10-12). Interestingly, there was no 

change in the amount of precipitated Mi-2 under the three different culture conditions. 

Therefore, I concluded that the interaction between Mi-2 and EcR did not depend on 

ecdysone in this in vitro assay system. 

 

 
Figure 4.13: Interaction of Mi-2 with EcR is independent of 20HE. Sf9 cells were co-infected 
with baculoviruses expressing FLAG-EcR and untagged Mi-2 as indicated on top in hormone 
depleted, normal or 20HE supplemented medium.. Extracts were immunoprecipitated with anti-
FLAG antibody immobilised on agarose beads. Immunoprecipitates were subjected to Western 
blot using antibodies indicated on the right. Left panel shows 0.5% of the total input sample that 
was used for IP. Right panel shows 10% of the total immunoprecipitated sample. Molecular 
weight in kDa is depicted on the left. 
 

4.3.3 Mi-2 and EcR form a stable complex in vitro 

In order to investigate if Mi-2 and EcR interact in a stoichiometric manner, Sf9 cells 

were co-infected with viruses expressing FLAG-EcR and untagged Mi-2 protein. To 

purify sufficient amounts for visualisation of both proteins on Coomassie stained SDS-
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PAGE gels, large scale FLAG purifications were conducted. Additionally, FLAG-bound 

proteins were washed several times with high salt washing buffer of up to 1M. 

Coomassie staining revealed the purified proteins with almost no enrichment of 

unspecific contaminants (Figure 4.14). Precipitation of FLAG-Mi-2 resulted in strong 

enrichment of Mi-2 with a high purity (lanes 1 and 2). Only a small amount of 

degradation product below the full-length Mi-2 at 220kDa was detected. Purification of 

FLAG-EcR showed also strong enrichment of the protein at an expected molecular 

weight of 110kDa (lanes 3 and 4). However, several additional bands were detected in 

Coomassie stained SDS PAGE. These bands could either be degradation products of 

FLAG-EcR or endogenous Sf9 proteins that were co-immunoprecipitated together with 

FLAG-EcR. When co-expressing FLAG-EcR and Mi-2, purification of FLAG-EcR 

showed co-purification of Mi-2 at apparent stoichiometric quantities (lanes 5 and 6). 

This demonstrated that the interaction between EcR and Mi-2 occurred in a 

stoichiometric manner and was stable even under high salt conditions.  

 

 
Figure 4.14: Mi-2 and EcR form a stable complex. Sf9 cells were infected with baculoviruses 
expressing Mi-2-FLAG, FLAG-EcR or FLAG-EcR and untagged Mi-2, respectively. Large scale 
extracts from infected cells were immunoprecipitated with anti-FLAG antibody immobilised on 
agarose beads and washed twice with buffer containing 1M NaCl. Proteins were eluted from the 
beads with FLAG peptide. Purified proteins were subjected to SDS-PAGE and subsequently 
stained with Coomassie. 500ng and 1µg of protein was loaded. Molecular weight in kDa is 
depicted on the left. 
 

4.3.4 EcR and Mi-2 interact in vivo 

The results obtained from Sf9 cell overexpression experiments demonstrated that Mi-2 

and EcR can interact. In order to investigate if this interaction occurs under 

physiological conditions in S2 cells, co-IP of EcR and Mi-2 was performed. In addition, 
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a hormone dependency of the interaction was examined by comparing untreated and 

20HE treated S2 cells. As negative controls, IP with rat IgG and anti-p53 (rat) antibody 

was performed. Drosophila p53 is not known to interact with EcR. Mi-2 was 

immunoprecipitated from nuclear extracts using a monoclonal rat anti-Mi-2 antibody 

(Figure 4.15, lanes 4 and 8). In accordance with previous results, EcR was co-

immunoprecipitated in the Mi-2 IP sample. IP with control antibodies (p53: lanes 2 and 

6; IgG: lanes 3 and 7) did not show enrichment of Mi-2 or EcR. Moreover, there was no 

significant difference of EcR co-IP between untreated and 20HE treated S2 cells. This 

experiment confirmed the findings from overexpressed recombinant proteins and 

demonstrated that Mi-2 and EcR interact under physiological conditions in S2 cells. 

Further, it verified that this interaction is independent of the hormone 20HE. 

 

 
Figure 4.15: Mi-2 interacts with EcR in vivo. Nuclear extract from S2 cells were subjected to 
IP using monoclonal rat Mi-2 or rat p53 antibody or rat IgG, respectively. Immunoprecipitates 
were subjected to Western blot using antibodies indicated on the right. “1% In” refers to 1% of 
the total input sample that was used for IP. Molecular weight in kDa is depicted on the left. 
 

4.3.5 The ATPase domain of Mi-2 directly interacts with EcR 

Mi-2 and EcR were shown to interact when overexpressed in Sf9 cells. This system 

maximises proper folding and posttranslational modification of large proteins which is 

often a limitation in bacterial expression systems. However, as it is based on 

eukaryotic insect cells, it was possible that the interaction of Mi-2 and EcR was 

mediated by one or several endogenous proteins. In order to investigate whether Mi-2 

and EcR bind directly, a bacterial expression system was used. In addition, the Mi-2 

domain that is involved in interaction with EcR was mapped. For this purpose, several 

Mi-2 deletion mutants were designed (Figure 4.16A). The first fragment contained 690 

amino acids of the N-terminus including the PHD fingers and chromodomains, whereas 

the second fragment spanned the entire ATPase domain from amino acid 691 to 1270. 

A third fragment contained the complete C-terminal domain until amino acid 1982. All 
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fragments were expressed and purified via an N-terminal glutathione S-transferase 

(form here on referred to as GST) tag in E.coli (Figure 4.16B). GST and the C-terminus 

of Lint-1 were also expressed and purified to serve as negative controls in the GST 

pull-down. Both, the N-terminal and C-terminal fragment of Mi-2 as well as the Lint-1 

fragment ran as a double band, which was possibly due to protein degradation during 

the purification process. The purified proteins were used in an interaction study with in 

vitro translated, 35S-methionine labelled EcR that allows for easy detection (Figure 

4.16C). Interestingly, EcR was significantly enriched on beads containing the ATPase 

domain of Mi-2 (Figure 4.16, lane 4), whereas GST as well as the N-terminus and C-

terminus of Mi-2 and Lint-1 displayed only weak binding to EcR (lanes 2, 3, 5 and 9). 

As a negative control, all beads were incubated with in vitro translated, radioactively 

labelled luciferase. Luciferase was not detected to bind any of the GST-tagged 

proteins, demonstrating the specificity of the interaction assay. This result 

demonstrated that the EcR interaction surface within Mi-2 seems to reside in the 

ATPase domain and that this domain is sufficient for an interaction with EcR. This 

interaction is likely to be direct although it is formally possible that it is mediated by a 

factor present in the rabbit reticulocyte lysate used to in vitro translate EcR. 

 

Several studies have shown that certain NR interacting proteins bind to the NR upon 

hormonal induction and contribute to transcriptional activation of NR target genes. The 

interaction surface with which these co-activators bind to NRs has been shown to 

accommodate the highly conserved amino acid sequence “LXXLL” where “L” is leucine 

and “X” is any amino acid (Heery et al., 1997). Analysing the amino acid sequence 

within the ATPase domain of Mi-2, this motif was found to be present once in the first 

ATPase lobe (aa 913-917; Figure 4.16A yellow star). In order to test whether this motif 

mediates the interaction with the EcR the amino acid sequence “LFHLL” was mutated 

to “LFHAA”. Introduction of this mutation has been shown previously to disrupt the 

interaction surface between NRs and interacting proteins (McInerney et al., 1998). 

Expression and purification of the GST-tagged mutant ATPase domain demonstrated 

that the mutant protein was expressed to a comparable extent as the wildtype protein 

(Figure 4.16D). Subsequently, both proteins as well as the C-terminus of Mi-2 and GST 

(Figure 4.16D) as negative controls, were incubated with radioactively labelled EcR in 

a GST pull-down assay (Figure 4.16E).  
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Figure 4.16: ATPase domain of Mi-2 interacts with EcR. (A) Schematic representation of 
designed Mi-2 GST fragments. C-terminal GST-tag is indicated in red. Blue boxes depict 
domains within Mi-2: light blue - PHD domain, medium blue - Chromodomain, dark blue - 
ATPase domain. Yellow star indicates position of the LFHLL motif within the ATPase domain. 
Guide below depicts position of amino acids (aa) within the protein. (B) Coomassie stained 
SDS-PAGE of GST proteins depicted in (A) as well as GST and GST-Lint-1 C-terminus (Lint-1 
CT). 500ng of purified protein was loaded. (C) In vitro translated, 35S-labelled EcR (upper panel) 
or Luciferase (lower panel) were incubated with 2µg of proteins on Glutathione beads. Lint-1 C-
Terminus (Lint-1 CT) and GST served as a negative control. Bound proteins were separated by 
SDS-PAGE and detected by autoradiography. Input: 1% of in vitro translations. (D) Coomassie 
stained SDS-PAGE of GST-Mi-2 C-terminus (C-Term), wildtype ATPase and ATPase mutant 
(LFHAA) as well as GST. 500ng of purified protein was loaded. (E) In vitro translated, 35S-
labelled EcR (upper panel) or Luciferase (lower panel) were incubated with 2µg of proteins on 
Glutathione beads. Mi-2 C-Terminus (C-Term) and GST served as a negative control. Bound 
proteins were separated by SDS-PAGE and detected by autoradiography. Input (1%In): 1% of 
in vitro translations. (F) Sf9 cells were co-infected with baculoviruses expressing Mi-2-FLAG WT 
or LFHAA mutant and EcR as indicated on top. Extracts were immunoprecipitated with anti-
FLAG antibody immobilised on agarose beads. Immunoprecipitates were subjected to Western 
blot using antibodies indicated on the right. Left panel shows 0.5% of the total input sample that 
was used for IP. Right panel shows 10% of the total immunoprecipitated sample. Molecular 
weight in kDa is depicted on the left. 
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Similarly to the results observed before, the wildtype ATPase domain bound EcR 

whereas no binding to the C-terminal domain and the GST sample was observed 

(Figure 4.16E lanes 2-4). Notably, pull-down of EcR with the mutant ATPase domain 

was as efficient as with the wildtype protein (lanes 4 and 5). Also, specificity of the 

GST pull-down was confirmed by incubation of all proteins with radioactively labelled 

luciferase as a negative control (Figure 4.16F, lower panel). As expected, none of the 

GST-tagged proteins bound to luciferase (lanes 2-5). Therefore, I concluded that the 

LFHLL motif is not the crucial amino acid sequence that mediates the interaction with 

EcR in this in vitro assay. 

 

In the GST pull-down assay, the isolated ATPase domain was used to precipitate EcR. 

However, a difference in interaction may depend on the presence of full-length proteins 

in vivo. Hence, the same changes in amino acid sequence were introduced by site-

directed mutagenesis into the full-length Mi-2 protein for expression in the Baculovirus 

system. Western blot illustrates that the wildtype as well as the mutant proteins were 

expressed to a similar extent (Figure 4.16F, lanes 2-3 and 5-6). As shown previously, 

IP of wildtype Mi-2-FLAG co-purified EcR (lane 11). Co-expression of the FLAG-tagged 

LFHAA mutant and EcR did show stronger enrichment of EcR after co-IP (lane 12). 

However, EcR expression in the cells co-expressing EcR and the LFHAA mutant (lane 

6) was stronger than in the co-expression of Mi-2 WT and EcR (lane 5). Therefore, I 

concluded that both, the WT and LFHAA Mi-2 can interact with EcR to a similar extent. 

In summary, the LFHAA motif in the ATPase domain of Mi-2 did also not contribute to 

the interaction with EcR in the context of the full-length protein. 

 

Since the LFHLL motif within the first ATPase lobe of Mi-2 was shown to not be 

relevant for an interaction with EcR, I wanted to further map the binding domain within 

the Mi-2 ATPase that contributes to this interaction. In order to accomplish this, smaller 

fragments of the Mi-2 ATPase domain were designed. A recent publication by Hauk et 

al. addressed the structure of the ATPase domain of yeast Chd1 by crystallography 

(Hauk et al., 2010). Since the ATPase domain is highly conserved between different 

ATP-dependent chromatin remodelers of the SNF2 superfamily, this crystal structure 

was used to identify three subdomains within the ATPase domain of Mi-2. Therefore, 

the ATPase domain was split into three fragments, containing the first ATPase lobe 

(F1, aa 690 to 965), the second ATPase lobe (F2, aa 966 to 1183) and the C-terminal 

bridge (F3, aa 1184 to 1270) (Figure 4.16A). All three fragments were expressed, 

purified as GST fusion proteins (Figure 4.16B) and subjected to incubation with 

radioactively labelled EcR (Figure 4.16C lanes 6-8). The fragment F2, containing the 
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second ATPase lobe showed strongest interaction with EcR. However, also the C-

terminal bridge (F3) enriched EcR in the in vitro pull-down assay. Fragment F1 that 

contained the first ATPase lobe, showed no enrichment of EcR. In conclusion, the GST 

pull-down assay demonstrated that the interaction between Mi-2 and EcR is most likely 

direct. Interestingly, this interaction was mapped to the ATPase domain of Mi-2, more 

specifically to the second ATPase lobe as well as the C-terminal bridge. 

 

4.3.6 ATPase domains of several chromatin remodelers interact with EcR 

The ATPase domain is highly conserved between several ATP-dependent chromatin 

remodeler of the SNF2 superfamily in different species. Previous results demonstrated 

that the interaction between EcR and Mi-2 was dependent on the ATPase domain of 

Mi-2. To investigate whether other chromatin remodelers can bind via their ATPase 

domain to EcR, the ATPase domains of ISWI, Chd1 and Chd3 were expressed and 

purified as GST-tagged proteins. Detection of the purified samples on Coomassie 

showed enriched proteins at the expected molecular weights, yet in all protein samples 

few additional bands were detected, indicating protein degradation (Figure 4.17A). The 

GST-tagged ATPase domains of the different chromatin remodelers were incubated 

with in vitro translated, 35S-labelled EcR. Surprisingly, all tested ATPase domains 

showed binding to EcR (Figure 4.17B lanes 4-7). Mi-2, ISWI and Chd1 enriched 

comparable amounts of EcR, whereas Chd3 pulled down more EcR compared to the 

other ATPase domains. As demonstrated before, GST and Lint-1 C-terminus, that 

served as negative controls, showed only weak interaction with EcR (lanes 2 and 3). 

Also, incubation of GST-bound proteins with in vitro translated luciferase did not result 

in binding to any of the tested proteins, demonstrating the specificity of the experiment. 

From these results I concluded that the isolated ATPase domains of Mi-2, Iswi, Chd1 

and Chd3 can interact with EcR in vitro. 
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Figure 4.17: ATPase domains of several ATP-dependent chromatin remodelers interact 
with EcR. (A) Coomassie stained SDS-PAGE of GST-ATPases as well as GST and GST-Lint-1 
C-terminus (Lint-1 CT). 500ng of purified protein was loaded. (B) In vitro translated, 35S-labelled 
EcR (upper panel) or Luciferase (lower panel) were incubated with 2µg of proteins on 
Glutathione beads. Lint-1 C-Terminus (Lint-1 CT) and GST served as a negative control. Bound 
proteins were separated by SDS-PAGE and detected by autoradiography. Input: 1% of in vitro 
translations. Molecular weight in kDa is depicted on the left. Experiment was designed by me 
and performed by Anna Ernst under my supervision. 
 

4.3.7 The activation function 2 (AF2) of EcR interacts with Mi-2 

In order to identify the domain within EcR that mediates the interaction with Mi-2, 

mapping studies with isolated EcR domains were conducted. EcR contains four 

conserved domains that have been studied in detail in several NRs (Figure 4.18A) (Hill 

et al., 2013). The N-terminus contains a domain that has been shown to contribute to 

transcriptional activation independent of the presence on hormone and is therefore 

called activation function 1 (AF1). Located adjacent to the AF1 is the DNA binding 

domain (DBD) that has been shown to directly mediate DNA contacts. Further, the 

activation function 2 (AF2) that contains the ligand binding domain, and a rather 

unstructured C-terminal domain (CT) make up the full-length EcR protein. All four 

fragments were produced and radioactively labelled with 35S-methionine by in vitro 



4 RESULTS 

106 
 

translation (Figure 4.18B, lanes 4, 7, 10 and 13). These fragments were then used in a 

GST pull-down assay with GST-Mi-2-ATPase domain and GST (as a negative control). 

As expected, incubation of the ATPase domain and full-length EcR showed clear 

enrichment of EcR in comparison to GST (lanes 2 and 3). Interestingly, also incubation 

with AF1, DBD and AF2 showed interaction with the ATPase domain (lanes 6, 9 and 

12). In comparison, no protein was enriched when beads were exposed to in vitro 

translated C-terminus of EcR or luciferase (lanes 15 and 18). This observation was 

made in the presence of 150mM (data not shown) as well as under more stringent 

conditions with 250mM salt (Figure 4.18). This result showed that the AF1, DBD and 

AF2 domains of EcR can interact with the ATPase domain of Mi-2 in a GST pull-down. 

 

 
Figure 4.18: Multiple EcR fragments can interact with Mi-2 ATPase domain in GST pull-
down assays. (A) Schematic representation of EcR domains produced by in vitro translation in 
(B). Ecdysone (20HE) binding site is indicated in blue. Guide below depicts position of amino 
acids (aa) within the protein. (B) In vitro translated, 35S-labelled EcR domains or Luciferase 
were incubated with 2µg of GST or Mi-2 ATPase domain on Glutathione beads. Bound proteins 
were separated by SDS-PAGE and detected by autoradiography. Input (1%In): 1% of in vitro 
translations. Molecular weight in kDa is depicted on the left. 
 

Mapping of the interaction domain of EcR was also performed using an independent 

interaction assay. Therefore, FLAG-tagged versions of AF1, DBD, AF2 and the C-

terminal domain of EcR were expressed in Sf9 cells in the presence of untagged full-

length Mi-2. Three of the four viruses were expressed to a similar extent (Figure 4.19 

lanes 3,4 and 6), FLAG-AF2 however, was expressed less (lane 5). In order to get an 

idea which of the fragments interacts with Mi-2, FLAG-IP was performed (lanes 11-20). 
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Co-expression of the FLAG-AF2 and Mi-2 resulted in strong co-IP of Mi-2 (lane 19). All 

other FLAG-EcR fragments did not co-immunoprecipitate Mi-2 (lanes 17, 18 and 20). 

This result demonstrated that the AF2 domain of EcR can interact with full-length Mi-2 

when overexpressed in the Baculovirus system. In conclusion, the AF2 domain was 

identified in two independent assays as the domain that bound to Mi-2. Therefore, it is 

most likely that this domain plays an important role in mediating the interaction 

between Mi-2 and EcR. 

 

 
Figure 4.19: AF2 domain of EcR interacts with Mi-2. Sf9 cells were co-infected with 
baculoviruses expressing FLAG-tagged EcR domains as indicated in Figure 4.19A and Mi-2 as 
indicated on top. Extracts were immunoprecipitated with anti-FLAG antibody immobilised on 
agarose beads. Immunoprecipitates were subjected to Western blot using antibodies indicated 
on the right. Left panel shows 1% of the total input sample that was used for IP. Right panel 
shows 10% of the total immunoprecipitated sample. Molecular weight in kDa is depicted on the 
left. 
 

4.3.8 Mi-2 ATPase domain and AF2 domain of EcR are sufficient for interaction 

Previous results showed that the ATPase domain was able to interact with full-length 

EcR and that the AF2 domain bound to full-length Mi-2. In order to demonstrate that 

both domains are sufficient for this interaction, FLAG-tagged ATPase domain of Mi-2 

and HA-tagged AF2 domain of EcR were co-expressed in Sf9 cells (Figure 4.20, lane 

6). In addition, cells were infected with HA-AF1 as a negative control (lane 5). As 

observed earlier, expression of AF2 was much less efficient than expression of AF1. 

FLAG-IP of the Mi-2 ATPase domain showed co-IP of the EcR AF2 domain (lane 12). 

Also, co-IP of FLAG-Mi-2 in the presence of the AF1 domain showed enrichment of the 

AF1 in IP (lane 11). However, this interaction was much weaker compared to the 

interaction with the AF2 domain. Hence, it was confirmed that the ATPase domain of 

Mi-2 and the AF2 fragment of EcR were sufficient for an interaction between the two 

proteins. 
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Figure 4.20: AF2 domain of EcR and ATPase domain of Mi-2 are sufficient for interaction. 
Sf9 cells were co-infected with baculoviruses expressing HA-tagged AF1 or AF2 fragments and 
FLAG- Mi-2 ATPase as indicated on top. Extracts were immunoprecipitated with anti-FLAG 
antibody immobilised on agarose beads. Immunoprecipitates were subjected to Western blot 
using antibodies indicated on the right. Left panel shows 1% of the total input sample that was 
used for IP. Right panel shows 10% of the total immunoprecipitated sample. Molecular weight 
in kDa is depicted on the left. 
 

4.4 Recruitment of Mi-2 to ecdysone dependent genes 

4.4.1 Inhibition of transcription elongation does not affect Mi-2 recruitment 

Previous studies demonstrated various recruitment mechanisms for Mi-2 to chromatin. 

For example, Mi-2 can be recruited by poly-ADP-ribose (PAR) and binds to the 

nascent hsp70 transcript upon activation of gene expression by heat shock (Murawska 

et al., 2011). Therefore, it was proposed that Mi-2 follows the elongating RNA PolII by 

association with the nascent transcript. 5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole (DRB) blocks transcription at the early stages of RNA Pol II 

elongation by inhibiting CDK7 kinase (Dubois et al., 1994). To test the effect of 

inhibition of transcription elongation at the vrille gene, Mi-2 ChIP was performed in the 

presence of DRB. Efficient DRB treatment was demonstrated by a fivefold decrease of 

vrille transcript in 20HE stimulated cells in the presence of DRB as compared to 20HE 

induced cells without inhibitor. However, transcription elongation was not completely 

inhibited, since some increase in vrille transcript was detected compared to untreated 

S2 cells (Figure 4.21A). Mi-2 binding analysed by ChIP did not show any changes in 

untreated cells upon incubation with DRB (Figure 4.21B). Furthermore, recruitment of 

Mi-2 to the previously identified regions was not impaired in the presence of the 

inhibitor. In conclusion, reduction of nascent vrille RNA levels did not disturb Mi-2 

binding to the gene. This indicates that an interaction with the nascent RNA transcript 

does not make a significant contribution to binding of Mi-2 to the vrille locus. 
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Figure 4.21: Mi-2 binding to vrille is not altered upon 5,6-dichloro-1-bold beta-D-
ribofuranosylbenzimidazole (DRB) treatment. (A) Expression of mRNA of vrille in cells 
incubated with (white and grey bars) or without (light and dark blue bars) 20HE and additionally 
stimulated with DRB (grey and dark blue bar) was determined by RTqPCR. mRNA levels were 
calculated relative to the housekeeping gene Rp49 and mRNA levels in untreated cells were set 
to 1. (B) ChIP was performed using an antibody against Mi-2. Chromatin was prepared from S2 
cells incubated with (white and grey bars) or without (light and dark blue bars) 20HE and 
additionally stimulated with DRB (grey and dark blue bars). Purified DNA was quantified by 
qPCR with oligos at the binding sites indicated in Figure 4.6. Values are expressed as % input. 
Error bars denote standard deviation of technical triplicates. Experiments were performed as 
biological triplicates and one representative experiment is shown here. 
 

4.4.2 Mi-2 binding on chromatin correlates with EcR binding sites 

Since an interaction with the nascent RNA transcript appeared not to play an important 

role in dMi-2 recruitment I investigated the potential involvement of EcR in Mi-2 

recruitment to chromatin. NRs have been demonstrated to function by recruiting co-

regulatory proteins to chromatin. Since Mi-2 and EcR interact physically, I 

hypothesised that EcR can recruit Mi-2 to specific binding sites in the genome. EcR 

binding sites were mapped genome-wide in Drosophila in two studies to date. A 

publication by Gauhar and colleagues identified EcR/USP binding upon six hours of 

20HE treatment in Kc167 cells using DamID (Gauhar et al., 2009). This study identified 

502 binding sites for the EcR/USP complex. Due to technical reasons, the binding 

regions identified by DamID are rather broad with an average size of 4 to 5kb. A recent 

study by the Stark lab mapped EcR binding sites by ChIPSeq in S2 cells (Shlyueva et 

al., 2014). This technique identified 9148 EcR binding sites in untreated and 9305 EcR 

binding sites in cells that were treated for 24 hours with 20HE. 

 

In order to test if Mi-2 and EcR reside in close proximity on chromatin, the overlap 

between Mi-2 and EcR binding sites was analysed on a genome-wide level. Therefore, 

Mi-2 binding sites from ChIPSeq were compared to ChIPSeq data for EcR published 

by the Stark lab. To determine the correlation between Mi-2 and EcR binding sites, the 

strongest 10% Mi-2 peaks (in terms of tag counts) were selected and used to calculate 

the overlap with all EcR binding sites (Figure 4.22A). I selected the strongest 10% Mi-2 

peaks since these obtained the most reads from sequencing and were therefore the 
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most confident. Mi-2 and EcR peaks had to overlap by at least one base in order to be 

defined as “overlapping”. In case two or more Mi-2 binding sites overlapped with the 

same EcR peak, this co-occupancy was only counted once. In untreated S2 cells, 215 

out of 1643 Mi-2 binding sites overlapped with EcR binding sites. This overlap was 

comparable in 20HE treated cells, where 198 out of 1499 Mi-2 peaks coincided with 

EcR binding sites. In both conditions, approximately 13% of Mi-2 binding sites 

overlapped with EcR peaks. This overlap was significantly higher than expected if the 

binding sites were randomly distributed across the genome (Monte-Carlo-method, 

personal communication R. Pahl and F. Finkernagel). These results were further 

supported by a comparison between 20HE induced Mi-2 binding sites (103 peaks, 

Table 7.1) and all EcR binding sites in the presence of 20HE from the Stark data. Here, 

35 of 103 induced Mi-2 peaks overlapped with EcR binding sites in the presence of 

hormone (Figure 4.22B). Even though this comparison considered only a small subset 

of Mi-2 binding sites that are more than 2.3fold induced upon 20HE treatment, 33.7% 

of these binding sites show an overlap with EcR binding sites. In summary, genome-

wide analysis identified a significant overlap between Mi-2 and EcR binding sites in 

both untreated and 20HE treated S2 cells. 

 

 
Figure 4.22: Genome-wide overlap of Mi-2 and EcR binding sites. (A) Overlap between Mi-
2 and EcR binding sites in untreated and +20HE treated S2 cells is depicted in a Venn diagram. 
The 10% Mi-2 bindings sites with the highest tag count in ChIPSeq were considered. (B) 
Overlap between 20HE induced Mi-2 binding sites (Appendix, Table 7.1) and EcR binding sites 
in 20HE treated S2 cells is depicted in a Venn diagram. (A) and (B) EcR binding sites were 
taken from (Shlyueva et al., 2014). Overlap is defined as a co-occupancy of Mi-2 and EcR 
binding sites of at least 1bp at the same genomic region. 
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For detailed investigation of the co-occupancy of Mi-2 and EcR at the broad and vrille 

loci, the EcR binding profile, identified by the two studies described above, was 

analysed (Figures 4.23 and 4.24). Gauhar and colleagues identified several EcR/USP 

binding sites upon 20HE treatment at the broad locus (Figure 4.23, grey boxes). The 

Mi-2 peak in the 5’ UTR (Figure 4.5, region A) as well as the region within the first 

intron (Figure 4.5, region B and C) showed an overlap with 20HE induced EcR/USP 

binding mapped by DamID. However, no overlap between 20HE induced EcR/USP 

binding at region D within the exon of the broad (Figure 4.5) gene was identified. With 

respect to vrille the study found two broader regions of 20HE induced EcR/USP 

binding both of which overlap with either one of the regions where Mi-2 is recruited 

upon 20HE induction (Figure 4.24, grey boxes). 

 

 
Figure 4.23: Comparison of Mi-2 and EcR binding sites at the broad locus. Mi-2 binding 
profile at the broad locus as demonstrated in Figure 4.5. Regions A-D (red boxes) depict sites 
of increased Mi-2 binding upon 20HE treatment as calculated from ChIPSeq (Zoom-in Figure 
4.5). EcR/USP binding sites identified by DamID upon six hours of 20HE treatment taken from 
(Gauhar et al., 2009) are depicted as grey boxes. EcR ChIPSeq tracks from (Shlyueva et al., 
2014) in untreated and 20HE treated cells are illustrated. 
 

The identification of EcR binding sites by ChIPSeq from the Stark lab allowed to 

directly compare binding profiles of Mi-2 and EcR with a better resolution than the 

EcR/USP binding sites identified by DamID. Interestingly, at the broad locus, EcR 

displayed a similar binding pattern as Mi-2 in untreated cells (Figure 4.23). Both 

proteins showed enriched binding at the 5’ UTR and a broad binding region within the 

first intron (see Figure 4.5). EcR binding in 20HE treated cells was not altered 

significantly in the study from the Stark lab. No clear enrichment of EcR upon hormonal 

stimulation was detected across the broad gene and at the 20HE induced Mi-2 binding 
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sites A to D. This difference may be due to the fact that the Stark lab identified EcR 

binding sites by ChIPSeq after 24 hours of 20HE treatment. However, broad is an early 

induced gene that is transcribed shortly after 20HE treatment (Figure 4.9C). Therefore, 

I hypothesised that 20HE induced EcR binding at the broad locus can be detected 

shortly after hormonal treatment, but can not be seen after 24 hours, the time point 

analysed by the Stark lab. This may explain why no overlap between 20HE induced 

Mi-2 and EcR binding at the broad gene could be detected. Also, EcR and Mi-2 

ChIPSeq tracks were compared for the vrille gene (Figure 4.24). In contrast to the 

observations at the broad gene, the binding of Mi-2 and EcR identified by ChIPSeq in 

untreated cells did not display a comparable pattern. Interestingly, when comparing the 

EcR and Mi-2 binding profile in 20HE treated cells, EcR binding as determined by the 

Stark study was clearly enriched at the second 20HE induced Mi-2 binding site (region 

Y) at the vrille locus. No such overlap was observed for the first Mi-2 peak (region X) 

within the vrille gene. In conclusion, a comparison of the Stark ChIPSeq data set has 

revealed that Mi-2 and EcR coincide at several binding sites at the broad and vrille 

genes in the absence of hormone. Additionally, 20HE induced Mi-2 binding identified in 

this thesis and EcR binding upon hormonal treatment determined by the Stark lab were 

shown to coincide at one binding site within the vrille gene. 

 

 
Figure 4.24: Comparison of Mi-2 and EcR binding sites at the vrille locus. Mi-2 binding 
profile at the vrille locus as demonstrated in Figure 4.5. Regions X and Y (red boxes) depict 
sites of increased Mi-2 binding upon 20HE treatment as calculated from ChIPSeq. EcR/USP 
binding sites identified by DamID upon six hours of 20HE treatment taken from (Gauhar et al., 
2009) are depicted as grey boxes. EcR ChIPSeq tracks from (Shlyueva et al., 2014) in 
untreated and 20HE treated cells are illustrated. 
 

In order to verify binding of EcR/USP within the broad and vrille genes at the binding 

sites identified above, EcR ChIP followed by qPCR was performed. However, anti-EcR 
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antibody did not precipitate EcR efficiently in ChIP (data not shown). To circumvent this 

problem, binding sites were analysed by ChIP with an anti-USP antibody since EcR is 

recruited to ecdysone responsive genes in complex with its heterodimerisation partner 

USP (Figure 4.25) (Thomas et al., 1993). 

 

 
Figure 4.25: Identification of USP binding sites at vrille and broad by ChIP qPCR. (A) ChIP 
was performed using an antibody ag41ainst USP. Chromatin was prepared from untreated 
(white bars) and 20HE treated (grey bars) S2 cells. Values are expressed as % input. Purified 
DNA was quantified by qPCR with oligos at binding sites indicated in Figure 4.5 (broad) and 
Figure 4.6 (vrille). “Intergenic” refers to an unrelated intergenic region on chromosome arm 2R 
(see Material and Methods). Error bars denote standard deviation of technical triplicates. 
Experiment was performed as biological duplicate and one representative experiment is shown 
here. 
 

Unfortunately, precipitation of USP was also inefficient as only 0.01% input was 

precipitated at most of the sites tested in untreated and 20HE treated cells. However, a 

few binding sites showed higher enrichment of USP upon 20HE treatment. For the 

broad gene, binding site 1 and 4 showed two- to threefold increased USP signal upon 

hormonal stimulation. Both of these regions overlapped with sites of Mi-2 recruitment 

upon ecdysone induction (Figure 4.23). However, binding site 5 that overlapped with a 
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predicted EcR/USP region, did not show enrichment of USP in ChIP (Gauhar et al., 

2009). At the vrille gene two binding sites (2 and 6) showed twofold increased 

recruitment of USP upon 20HE stimulation. In fact, these two sites also showed 

enrichment of Mi-2 in ecdysone treated cells (Figure 4.6 and Figure 4.7, regions X and 

Y), and overlapped with the predicted EcR/USP binding sites in the study by Gauhar 

and colleagues (Figure 4.24). In summary, USP binding sites at the broad and vrille 

locus were identified by ChIP. These are likely to be also bound by EcR since EcR and 

USP heterodimerise in the presence of ecdysone. This may further confirm the 

correlation between Mi-2 and EcR/USP binding on chromatin. The co-occupancy of Mi-

2 and EcR at ecdysone dependent genes together with the ability of both proteins to 

interact physically (Figure 4.12 and 4.15) may indicate a functional interaction of both 

proteins in the regulation of hormone regulated genes. 

 

4.4.3 Depletion of EcR decreases recruitment of Mi-2 to broad and vrille in 20HE 
treated cells 

As described above, Mi-2 and EcR co-occupy several binding sites on chromatin. 

Further it was shown that both proteins can interact in S2 cells. EcR contains a DNA 

binding domain that can interact with DNA in a sequence specific manner (Hill et al., 

2013) whereas Mi-2 does not contain such a domain. Therefore, I hypothesised that 

EcR recruits Mi-2 to the broad and vrille genes in S2 cells. In order to test this 

hypothesis, EcR was depleted by RNAi and subsequently Mi-2 ChIP was performed for 

the broad and vrille genes. The depletion of EcR was efficient as demonstrated by 

Western blot (Figure 4.9A and data not shown). The binding of Mi-2 across both the 

broad and vrille genes did not decrease significantly in untreated, EcR depleted S2 

cells as compared to cells treated with GFP dsRNA. (Figure 4.26, bright green bars). 

However, when EcR depleted S2 cells were stimulated with 20HE, no further 

recruitment of Mi-2 to the expected sites was detected (dark green bars broad: 1, 4 

and 5; vrille: 2 and 6). I concluded that EcR was not required to maintain Mi-2 binding 

at ecdysone dependent genes in untreated S2 cells. However, EcR was required for 

recruitment of Mi-2 to the broad and vrille genes upon 20HE induction. 

 



4 RESULTS 

115 
 

 
Figure 4.26: Mi-2 recruitment to broad and vrille upon depletion of EcR. Chromatin was 
prepared from S2 cells incubated with dsRNA against GFP (white and grey bars) or EcR (light 
and dark green bars) and incubated with (grey and dark green bars) or without 20HE (white and 
light green bars). Values are expressed as % input. Purified DNA was quantified by qPCR with 
oligos at binding regions indicated in Figure 4.5 (broad) and Figure 4.6 (vrille). Error bars 
denote standard deviation of technical triplicates. Experiment was performed as biological 
triplicates and one representative experiment is shown here. 
 

4.5 Regulation of chromatin structure by Mi-2 at the vrille gene 

4.5.1 Mi-2 maintains chromatin structure at the vrille gene 

Mi-2 is a nucleosome stimulated, ATP-dependent chromatin remodeler that functions 

by altering DNA-nucleosome contacts. Therefore, I hypothesised that Mi-2 may 

contribute to repression of ecdysone dependent genes by changing the DNA 

accessibility at these loci. In order to establish sites of less DNA accessibility at the 

vrille gene, MNase mapping was performed. MNase is a nuclease that preferentially 

cleaves internucleosomal DNA. However, DNA that is wrapped within a nucleosome is 
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relatively protected from digestion by MNase (Heins et al., 1967). I designed three 

overlapping oligo pairs for every region of interest, such that each oligo pair covered 

approximately 147 bps, the size of a DNA fragment that is protected from MNase 

digest by a nucleosome. Seven regions across the vrille gene were tested for their 

sensitivity to MNase (Figure 4.27A, regions A-G). Only when the DNA fragment 

including both binding sites of an oligo pair were not digested by MNase, a PCR 

fragment could be generated (Figure 4.27B). Thereby, I determined one oligo pair for 

each of the seven tested regions that showed the least MNase sensitivity (highest 

relative MNase protection, Figure 4.27B).  

 

 

Figure 4.27: Identification of regions in the vrille locus that are less sensitive to MNase 
digest. (A) Schematic representation of the vrille locus. Identified regions with less MNase 
sensitivity are indicated (A-G). Regions X and Y depict binding sites with increased Mi-2 binding 
upon 20HE treatment as identified from ChIPSeq (Figure 4.6). (B) MNase mapping was 
performed in untreated S2 cells. DNA protected from MNase digest was detected by qPCR with 
three different oligo pairs (1-3) for each tested genomic region (A-G). Relative MNase digest 
was calculated as 𝛥𝐶𝑡 =  2−�𝐶𝑡𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑−𝐶𝑡𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑� (see Material and Methods). Best protected 
sample for each genomic region was set to 1. Error bars denote standard deviation of technical 
triplicates. Experiment was performed as biological triplicates and one representative 
experiment is shown here. 
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The protection of these regions from MNase is likely due to the presence of 

nucleosomes. Therefore, these regions are referred to as nucleosomes from here on. 

However, important to note is that this experiment can not exclude that the observed 

MNase protection of these regions was due to the binding of other proteins such as 

transcription factors (Henikoff et al., 2011). 

 

In order to analyse the effect of 20HE treatment on the MNase sensitivity of these 

seven potential nucleosomes, MNase mapping in untreated and 20HE treated S2 cells 

was performed (Figure 4.28, white and grey bars). No significant change in MNase 

sensitivity was observed at most of the tested nucleosomes (A, B, C, F and G). 

However, at nucleosomes D and E a twofold increase in MNase sensitivity (less 

relative MNase protection) was detected. Nucleosome D is located within the 

transcribed region of vrille(RE) and (RC), whereas nucleosome E resides at the TSS of 

the vrille(RA) and (RD) transcripts. This showed that two regions within the vrille gene 

displayed higher sensitivity to MNase digestion upon 20HE stimulation, whereas the 

majority of regions tested did not change significantly. 

 
Further, I wanted to investigate the role of Mi-2 in the maintenance of the chromatin 

structure at the vrille gene. Therefore, S2 cells were treated with a dsRNA against Mi-2 

and efficient depletion of Mi-2 was verified by Western blot (Figure 4.8 and data not 

shown). Depletion of Mi-2 showed no significant effect on the MNase sensitivity of 

most tested nucleosomes compared to GFP dsRNA treated cells (light red bars, B, E, 

F and G). A small increase (25%) in MNase sensitivity (less relative MNase protection) 

was detected for nucleosome D, whereas nucleosome C showed decreased (22%) 

MNase sensitivity (more relative MNase protection). The strongest effect was observed 

for nucleosome A. Here, depletion of Mi-2 resulted in an 80% increase in sensitivity to 

MNase digestion as compared to GFP dsRNA treated cells. Nucleosome A overlaps 

with the region where 20HE induced Mi-2 binding was detected (Figure 4.6, region X). 

Further, this region is in close proximity to the TSS of vrille(RE) and located within the 

transcribed regions of the two non-coding RNAs CR44742 and CR44743. Both, the 

vrille gene and the non-coding RNAs showed higher expression levels in Mi-2 

depleted, untreated cells as compared to GFP dsRNA treated cells (Figure 4.9B and 

4.11). Therefore, I concluded that the loss in MNase sensitivity at region A upon Mi-2 

depletion correlated with the derepression of vrille and the non-coding RNAs. 
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Figure 4.28: Depletion of Mi-2 results in increased MNase sensitivity at the vrille gene. 
MNase mapping was performed in cells treated with dsRNA against GFP (white and grey bars) 
or Mi-2 (light and dark red bars) in the absence (white and light red bars) or presence (grey and 
dark red bars) of 20HE. MNase digest was detected by qPCR with one oligo pairs for each 
tested genomic region (A-G) as determined in Figure 4.27.Relative MNase digest was 
calculated as 𝛥𝐶𝑡 =  2−�𝐶𝑡𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑−𝐶𝑡𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑� (see Material and Methods). Best protected 
sample for each genomic region was set to 1. Error bars denote standard deviation of technical 
triplicates. Experiment was performed as biological triplicates and one representative 
experiment is shown here. 
 
In addition, I wanted to examine the effect of 20HE treatment on MNase sensitivity in 

Mi-2 depleted cells. Similar to the previous experiment, no strong effect was observed 

at nucleosomes B, E,F and G and an increase in MNase sensitivity was detected for 
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nucleosome D. However, nucleosome E showed less increase in MNase sensitivity 

upon 20HE treatment in Mi-2 depleted cells (25% less relative MNase protection) 

compared to GFP dsRNA treated cells (50% less relative MNase protection). The 

increase in MNase sensitivity at nucleosome A upon 20HE treatment was comparable 

to the findings in untreated, Mi-2 depleted cells. Mi-2 depletion resulted again in a 

strong increase in MNase sensitivity as compared to GFP dsRNA treated cells (81% 

less relative MNase protection). From these findings I concluded, that the MNase 

sensitivity at the vrille gene is changed upon 20HE treatment. Further, Mi-2 potentially 

maintains the chromatin structure at a certain position in the vrille gene and the two 

non-coding RNAs both in untreated and 20HE treated cells. This function of Mi-2 may 

correlate with its role in the regulation of transcription of vrille and the non-coding 

RNAs in untreated and 20HE treated cells. 
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5 Discussion 

The results described in this thesis demonstrate a function of the ATP dependent 

chromatin remodeler Mi-2 in the transcriptional regulation of ecdysone dependent 

genes. Mi-2 was shown to be recruited to several ecdysone dependent genes upon 

induction of the ecdysone cascade where it functioned as a transcriptional co-

repressor. The recruitment of Mi-2 was mediated by a physical interaction with EcR. 

More specifically, this interaction was found to take place between the ATPase domain 

of Mi-2 and the activation function 2 (AF2) of EcR. Finally, Mi-2 was shown to maintain 

a closed chromatin structure at the vrille gene. Depletion of Mi-2 resulted in an 

increased DNA accessibility which correlated with the expression of the vrille gene. 

 

5.1 Mi-2 is recruited to ecdysone dependent loci 

Initially, it was demonstrated by immunofluorescence experiments that Mi-2 binds to 

the ecdysone induced puff of the broad gene on 3rd instar larvae polytene 

chromosomes (Magdalena Murawska, Figure 2.10). Previously, broad gene expression 

has been shown to be strongly induced upon ecdysone release and to directly 

contribute to the expression of late induced genes (Guay and Guild, 1991). Since Mi-2 

bound to the broad locus on polytene chromosomes, I hypothesized that it is recruited 

to several other ecdysone inducible genes. In order to test this hypothesis, I aimed to 

identify genome-wide chromatin binding sites of Mi-2 in response to the hormone 

ecdysone (20HE). However, immunofluorescence on polytene chromosomes is very 

limited in its resolution. In order to get a detailed idea of ecdysone induced Mi-2 

binding sites, Mi-2 ChIPSeq in untreated and 20HE treated S2 cells was performed.  

 

Bioinformatic analysis identified 103 binding sites where Mi-2 recruitment was 

increased upon 20HE treatment (Supplementary table 4.1). One region that was highly 

occupied by Mi-2 upon 20HE treatment, was the broad gene (Figure 4.5). This finding 

verified the observation made on salivary gland polytene chromosomes (Figure 2.10). 

Several of the 103 identified Mi-2 binding sites were found to be in close proximity or 

within ecdysone regulated genes. From a selection of 12 Mi-2 binding sites that were 

strongly increased upon 20HE treatment, 10 were found to be associated with genes 

that are upregulated upon hormonal stimulation (Figure 4.4). These findings strongly 

indicate that Mi-2 is involved in the transcriptional regulation of ecdysone dependent 

genes. Further, the results demonstrate that, in addition to heat shock genes, Mi-2 
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functions as a regulator of a second group of environmentally regulated genes, namely 

ecdysone dependent genes (Murawska et al., 2011). This suggests that Mi-2 is 

involved in the coordinated regulation of related gene sets in Drosophila. 

 

Bioinformatic analysis also identified Mi-2 binding sites upon 20HE induction that were 

not in the close proximity of an ecdysone inducible gene (Figure 4.4, Table 4.1). It has 

been shown that transcription of developmental genes is controlled by proteins that 

bind to enhancers. Enhancers are DNA sequences that can regulate gene transcription 

independent of the distance, orientation or location with respect to the promoter they 

control (Ong and Corces, 2011). In order to function, enhancers establish long-

distance interactions with the promoter by looping of the intervening sequences 

(Levine et al., 2014). Therefore, I hypothesised that Mi-2 binding sites, that were not 

found in close proximity to a ecdysone regulated gene, may be located at ecdysone 

inducible enhancers with a greater distance from the gene they regulate. However, 

further experiments need to be conducted in order to confirm this hypothesis. 

 

Mi-2 binding to chromatin was tested in the presence of hormone six hours after 

addition of 20HE to the medium. Therefore, ChIPSeq analysis visualised Mi-2 binding 

only at this particular stage of the ecdysone cascade. The gene regulatory processes 

initiated upon hormonal treatment were shown to occur in a cascade with numerous 

interrelated steps that activate or inhibit each other (Thummel, 1995). Gene expression 

analysis of different Drosophila tissues demonstrated that 2268 genes are differentially 

regulated during the larva to pupa transition (Li and White, 2003). Therefore, it is 

important to note that Mi-2 may occupy many more binding sites during the course of 

the ecdysone cascade, which were not identified in this experimental set up.  

 

The binding determined by ChIPSeq was validated at two paradigmatic ecdysone-

regulated genes, namely the broad and vrille loci (Figure 4.7). Here, the Mi-2 binding 

profile in untreated cells as well as in 20HE treated cell was verified by ChIP followed 

by qPCR. Recent studies found that highly expressed genes can produce an artefact in 

ChIPSeq (Teytelman et al., 2013). These so called “hyper-ChIPable” regions show a 

high enrichment of all kinds of unrelated proteins due to an open chromatin structure. 

In order to exclude misinterpretation of ChIP results, a ChIP experiment against a 

heterologous protein was suggested. Since ecdysone induced genes are highly 

induced upon 20HE treatment, I performed ChIPs with two different control antibodies 

(Figure 4.7). Control IP with an IgG rabbit antibody demonstrated the specificity of the 

Mi-2 antibody. Further, ChIP with an antibody against an unrelated protein Lint-1 
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showed a different distribution at the broad and vrille gene. Additional confidence about 

the ChIPSeq profile was gained by knockdown of Mi-2. Here, 20HE induced 

recruitment of Mi-2 was lost in Mi-2 depleted cells (Figure 4.8). This verified that Mi-2 

binding was specific and that the identified DNA sequences were not precipitated due 

to an open, “hyper-ChIPable” chromatin structure at the loci.  

 

Interestingly, the relative binding pattern of Mi-2 across the two analysed loci, broad 

and vrille upon ecdysone treatment was different from the relative pattern observed 

upon induction of heat shock genes in S2 cells. At the heat shock loci hsp70 and 

hsp22, Mi-2 was shown to spread over the entire transcribed region upon induction by 

heat shock (Mathieu et al., 2012). Here, Mi-2 binding is strongest at the 

polyadenylation site of the heat shock genes and decreases further downstream where 

transcription termination takes place. However, Mi-2 is not recruited to the promoter of 

heat shock induced hsp genes. Therefore, it was hypothesised that Mi-2 associates 

with the nascent transcript and that this mechanism contributes to Mi-2 recruitment to 

heat shock genes. In comparison, at broad and vrille, Mi-2 is recruited to promoter 

regions (vrille, Figure 4.6 region X) as well as the first intron (broad, Figure 4.5 regions 

A-C and vrille, Figure 4.6 region Y). Mi-2 did neither associate with the entire gene 

body nor did it bind downstream of the polyadenylation site of the broad and vrille 

genes. These observations imply that the mechanism by which Mi-2 influences the 

transcription of heat shock loci and ecdysone inducible loci may differ between these 

genes. 

 

Ecdysone induced Mi-2 binding was found in close proximity of the TSSs and within 

the introns of broad (Figure 4.6) and vrille (Figure 4.5). Genome-wide analysis of Mi-2 

binding demonstrated that Mi-2 is globally enriched at intragenic regions (Mathieu, 

2013). Within intragenic binding sites, Mi-2 has been found to preferentially bind close 

to the TSS and in introns. According to the classification by Kharchenko and 

colleagues, Mi-2 is enriched within chromatin state 1 (promoter and TSS marked by 

H3K4me3 and H3K9ac) and chromatin state 3 (intronic regulatory regions marked by 

H3K4me1, H3K18ac and H3K27ac) (Kharchenko et al., 2011). These findings are in 

line with results from Mi-2 ChIPSeq at the broad and vrille genes described in this 

thesis. 

 

5.2 Mi-2 is a regulator of ecdysone dependent transcription 
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Mi-2 has been shown to be part of two repressive complexes in Drosophila. First, Mi-2 

is a subunit of the NuRD complex that contributes to transcriptional repression by its 

histone deacetylase subunit (Kunert et al., 2009; Tong et al., 1998; Wade et al., 1998; 

Zhang et al., 1998). Second, Mi-2 interacts with Mep-1 in the Mec complex (Kunert et 

al., 2009). However, Mi-2 is also recruited to active heat shock loci upon heat shock 

where it promotes full transcriptional activation of hsp genes as detected by polytene 

chromosome staining and ChIP. (Mathieu et al., 2012; Murawska et al., 2011). 

Additionally, it binds to ecdysone regulated genes upon hormonal induction as 

described in this thesis. Therefore, Mi-2 can function as both, transcriptional activator 

and repressor, depending on the specific gene and the chromatin environment that it is 

recruited to. 

 

RNASeq (Whole Transcriptome Shotgun Sequencing) analysis in Mi-2 depleted S2 

cells showed changes in transcript levels of 1083 genes (E. Wagner, personal 

communication). 79% (857 genes) were upregulated upon depletion of Mi-2 whereas 

21% (226 genes) were downregulated. Interestingly, RNASeq also identified several 

ecdysone dependent genes that were differentially expressed in Mi-2 knockdown cells. 

Most of these identified ecdysone dependent genes were upregulated (Hsp27, 

Eip71CD, Eip63, Eip78, E23 and Cpr49Ac) and only two were downregulated (ImpL2 

and 3) upon Mi-2 depletion. These results are in line with the finding that Mi-2 

contributes to repression of ecdysone dependent genes in the absence of hormone 

(Figure 4.9B).  

 

Upon induction of the ecdysone cascade in S2 cells, Mi-2 depletion resulted in stronger 

transcriptional activation of vrille, broad and two non-coding RNAs as compared to 

GFP dsRNA treated cells (Figure 4.9C and D, Figure 4.11). This indicates that the 

presence of Mi-2 at these genes limits their expression. Hence, Mi-2 functions as a 

repressive modulator of transcription in the regulation of ecdysone dependent genes. 

The finding, that Mi-2 regulated transcription of an early induced gene (broad) in the 

ecdysone cascade as well as a late induced gene (vrille), demonstrates that Mi-2 

influences gene expression at several time points of the ecdysone cascade. 

 

The specificity of Mi-2 function in the transcriptional regulation of broad and vrille was 

further demonstrated by depletion of Iswi from S2 cells. Like Mi-2, Iswi belongs to the 

family of SNF2 type ATP-dependent chromatin remodelers and has been 

demonstrated to reside in three different complexes (ACF, CHRAC and NURF) in 

Drosophila. The NURF complex has been linked to activation of the ecdysone 
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cascade, since Nurf mutants display pupariation defects and fail to express ecdysone 

target genes (Badenhorst et al., 2005). Thus, it was expected that depletion of Iswi 

leads to a decrease in vrille and broad RNA levels. Surprisingly, neither broad nor vrille 

showed reduced expression as compared to GFP dsRNA treated cells (Figure 4.10B). 

The expected function of Iswi as an activator of ecdysone dependent genes could not 

be demonstrated. The absence of an effect on broad and vrille expression in Iswi 

depleted cells showed that not all ATP-dependent chromatin remodelers regulate the 

two analysed genes in the same way. However, due to the lack of an anti-Iswi 

antibody, knockdown efficiency on Iswi protein level could not be analysed and was 

only demonstrated on RNA level in RTqPCR (Figure 4.10A). It is possible that 

depletion of Iswi protein was insufficient and that therefore no effect on gene 

expression of broad and vrille was detected. However, this experiment demonstrated 

that the increased expression of broad and vrille was not a general feature of 

knockdown of an ATP-dependent chromatin remodeler, but that the effect seen in Mi-2 

depleted cells was specific.  

 

A study of the ATP dependent chromatin remodeler brahma demonstrated that it 

functions in the repression of a specific set of ecdysone induced genes (Zraly et al., 

2006). Overexpression of a dominant negative brahma mutant in Drosophila resulted in 

strong derepression of the Eig71 genes. The Eig71 genes are a cluster on 

chromosome 3L that is coordinately transcribed from common intergenic promoter 

elements (Wright et al., 1996). Brahma was shown to be bound to these promoter 

elements in the absence of ecdysone, but dissociates upon transcriptional activation by 

20HE treatment. In comparison to the results obtained for Mi-2 that functions in the 

regulation of broad, vrille and two non-coding RNAs, brahma functions as a repressor 

at a different set of genes, the Eig71 cluster. Further, brahma is absent from the 

promoter upon transcriptional activation whereas Mi-2 binding is increased at several 

binding sites upon hormonal stimulation. In addition to the studies described for 

brahma and Iswi, an RNAi screen for EcR co-regulators in different Drosophila cell 

lines identified the CHD family member kismet as a strong activator of ecdysone 

dependent gene transcription (Davis et al., 2011). These studies show that several 

ATP-dependent chromatin remodelers have different functions in the regulation of 

ecdysone dependent genes. This thesis demonstrates for the first time a link between 

the ATP-dependent chromatin remodeler Mi-2 and the ecdysone cascade. 

 

As mentioned above, Mi-2 resides in two different protein complexes in Drosophila. An 

open question is, which complex is responsible for the regulation of ecdysone 
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dependent genes. In general, the Mec complex, in which Mi-2 heterodimerises with 

Mep1, is the most abundant Mi-2 complex in Drosophila (Kunert et al., 2009). 

However, the p66 subunit of the NuRD complex has been demonstrated to be involved 

in the regulation of ecdysone inducible genes. In p66 mutants, induction of E74 and 

DHR3 at the onset of metamorphosis was shown to be abolished (Kon et al., 2005). 

This thesis demonstrates that Mi-2 depletion results in activation of the ecdysone 

inducible genes broad and vrille. From the studies conducted so far, it is unclear which 

Mi-2 containing complex is more likely to be responsible for the regulation of 20HE 

genes. In order to answer this question, ChIP for overexpressed, FLAG-tagged NuRD 

and Mec subunits is currently being established in the Brehm lab. This strategy was 

chosen, since no suitable ChIP antibodies for NuRD and Mec subunits are available. 

FLAG-ChIPs for other complex subunits will be able to demonstrate which complex 

contributes to the modulation of ecdysone dependent genes by Mi-2. These 

experiments will lead to a better understanding of the mechanism by which Mi-2 

contributes to repression of 20HE dependent genes. 

 

The results described above demonstrating that Mi-2 represses ecdysone dependent 

genes were obtained in S2 cells (Figure 4.9). However, it will be interesting to analyse 

the function of Mi-2 in different tissues and time points of the ecdysone cascade in 

Drosophila larva. Initial experiments in this direction turned out problematic, since RNAi 

mediated knockdown of Mi-2 in larva resulted in developmental delay (data not 

shown). In order to circumvent these technical difficulties, UAS/Gal4 inducible 

expression system and overexpression of dominant negative Mi-2 mutants should be 

considered for future experiments. 

 

5.3 Mi-2 interacts with EcR in vivo 

The interaction of Mi-2 with EcR was demonstrated with the use of several 

experimental systems. First and foremost, Mi-2 was shown to interact with EcR in vivo 

in S2 cells by co-immunoprecipitation (co-IP) (Figure 4.15). This result was supported 

by the finding that Mi-2 binds to EcR when overexpressed in Sf9 cells (Figure 4.12 and 

4.13). These experiments also demonstrated that Mi-2 and EcR form a stoichiometric 

complex (Figure 4.14).  

 

Several interactions between nuclear receptors and their co-regulatory proteins have 

been demonstrated to occur in a hormone dependent manner. Classical co-activators, 
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such as the H3K4 methyltransferase TRR (trithorax related), interact with EcR in the 

presence of ecdysone (Sedkov et al., 2003). In contrast, transcriptional co-repressors, 

such as Smrter, associate with EcR in the absence of ligand (Tsai et al., 1999). 

However, interaction between Mi-2 and EcR has been demonstrated to be 

independent of 20HE (Figure 4.13 and 4.15). This finding suggests, that Mi-2 functions 

as a more general EcR co-regulator in uninduced and 20HE treated S2 cells. Further it 

implies that the increased binding of Mi-2 upon 20HE treatment to chromatin is not a 

consequence of an increased affinity to EcR. Instead, 20HE induced Mi-2 binding may 

be due to an increase in EcR binding to specific chromatin regions. 

 

In addition, the interaction between EcR and Mi-2 did not require the classical “LXXLL” 

motif to be present in Mi-2 (Figure 4.16). This amino acid sequence is present in co-

activators that interact with NRs in a hormone-dependent fashion (Heery et al., 1997). 

Accordingly, a motif “L/I-XX-I/V-I” had been identified to mediate the interaction 

between NRs and their co-repressors (Hu and Lazar, 1999). However, none such motif 

could be identified in Mi-2. These findings strengthen the hypothesis that Mi-2 is likely 

to function as a modulator of EcR in the presence and absence of 20HE. 

 

Another aspect that has to be considered, is the role of ultraspiracle (USP). USP is the 

heterodimerisation partner of EcR and binds to the NR in the presence of hormone 

(Yao et al., 1992). The interaction studies conducted upon overexpression in Sf9 cell, 

addressed the binding of Mi-2 in the absence of USP (Figures 4.12 and 4.13). It is 

possible that the presence of USP could enhance or diminish Mi-2 binding to EcR. 

However, the interaction studies were also performed in S2 cells (Figure 4.25). Here, 

USP is expressed as judged by Western blot (data not shown) and ChIP analysis 

(Figure 4.25). No difference in Mi-2 binding to EcR was observed in the presence of 

20HE, when USP potentially binds to EcR, as compared to untreated cells. Therefore, 

it is less likely that USP has an influence on the interaction between Mi-2 and EcR but 

further experiments have to be conducted to analyse the role of USP in detail. 

 

5.4 The ATPase domain of Mi-2 interacts with the AF2 domain 
of EcR 

Previous studies identified the C-terminus of Mi-2 to interact with sequence specific 

transcription factors like hunchback and Ttk69 (Kehle et al., 1998; Murawsky et al., 

2001). Further, several K/R rich regions in the N-terminus of Mi-2 have been shown to 
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be critical for PAR-mediated recruitment of Mi-2 to active heat shock loci on polytene 

chromosomes (Murawska et al., 2011). In this thesis, mapping studies using Mi-2 and 

EcR fragments revealed that the Mi-2 ATPase domain interacts with the AF2 domain of 

EcR (Figures 4.16 – 4.21).This is the first time an interaction between an ATPase 

domain of a chromatin remodeler and a sequence specific transcription factor has 

been established. It also suggests a new possible regulatory mechanism for the 

catalytic activity of Mi-2 that may apply to other ATP-dependent chromatin remodelers.  

 

The ATPase domain is the catalytic core of the ATP-dependent chromatin remodeler 

and makes direct contacts with the nucleosome in order to reposition it. Therefore, the 

interaction between EcR and Mi-2 via the ATPase could have an effect on the catalytic 

activity of the remodeler. Interestingly, the Bowman laboratory published a crystal 

structure of the highly related remodeler Chd1 (Hauk et al., 2010). The double 

chromodomains of Chd1 lay across the central cleft of the ATPase and contact both 

ATPase lobes. This conformation locks the ATPase in a catalytically inactive state and 

interferes with DNA binding to the ATPase. Interaction with a nucleosome relieves this 

inhibition and puts the ATPase domain in a catalytically active conformation. Therefore, 

this study established the principle that the ATPase activity can be regulated by direct 

contacts between the ATPase domain and an adjacent domain of the same protein. 

This principle may also apply to the findings described in this study, such that the 

regulation of the ATPase domain might be exerted by intermolecular interactions e.g. 

with EcR. 

 

The auto-inhibitory mechanism provided by the Bowman laboratory allows Chd1 to 

discriminate between naked DNA and nucleosomes, thereby increasing the specificity 

of the remodeler. Substrate discrimination has also been observed for Mi-2, which is 

highly stimulated by nucleosomes, but shows almost no ATPase activity in the 

presence of DNA only (Brehm et al., 2000). As demonstrated in this thesis, EcR 

interacts mainly with a fragment containing the second ATPase lobe (Figure 4.16). In 

addition the C-terminal bridge of the Mi-2 ATPase domains was shown to bind to EcR. 

According to the Chd1 crystal structure this domain interacts with both ATPase lobes. 

Thereby the C-terminal bridge potentially influences domain motions of the ATPase 

domain. A possible effect of the interaction between EcR and the first ATPase lobe as 

well as the C-terminal bridge of the ATPase domain on the catalytic activity of Mi-2 is 

subject to current investigation in the Brehm lab. ATPase experiments are conducted 

to demonstrate if purified Mi-2 alone as well as Mi-2 bound to EcR (Figure 4.14) can 

hydrolyse ATP to the same extent in the presence of nucleosomes. These experiments 
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will further show whether the substrate discrimination between naked DNA and 

nucleosomes by the ATPase can be influenced by the presence of EcR. 

 

As mentioned above, Mi-2 interacts with the AF2 domain of EcR. Upon ligand binding, 

the AF2 domain has been demonstrated to change its structural conformation (Billas et 

al., 2003) thereby allowing EcR to interact with various co-activator proteins. 

Suprisingly, the interaction between Mi-2 and the AF2 of EcR is ecdysone 

independent. Therefore, I hypothesised that this interaction occurs in a subdomain of 

the AF2 domain that retains its structural features upon ligand binding. As mentioned 

above the binding of Mi-2 to the AF2 domain of EcR may further be influenced by the 

heterodimerisation partner USP. This may be the case since the interaction between 

USP and EcR in presence of hormone is partially mediated by the AF2 (Germain and 

Bourguet, 2013) 

 

5.5 Recruitment of Mi-2 is mediated by EcR 

The finding that Mi-2 and EcR can interact in S2 cells, led to the hypothesis that EcR 

can recruit Mi-2 to specific chromatin regions. Therefore, the Mi-2 binding sites 

identified by ChIPSeq in this thesis were compared to EcR binding sites identified by 

two different studies (Figures 4.23 and 4.24). On a genome-wide level, EcR ChIPSeq 

data form the Stark lab allows for a valid comparison with the Mi-2 dataset. Genome-

wide comparison of Mi-2 and EcR ChIPSeq showed a significant overlap (13%) 

between the top 10% Mi-2 peaks and EcR binding sites (Figure 4.22A) in both, 

untreated and 20HE treated cells. This overlap was even stronger (34%) when 

comparing 20HE induced Mi-2 binding sites and EcR binding sites in 20HE treated 

cells (Figure 4.22B). Further, comparison of ChIPSeq tracks at the vrille and broad 

gene dataset demonstrated a co-occupancy of genomic sites by EcR and Mi-2 

(Figures 4.23 and 4.24). Moreover, these regions were also identified as EcR/USP 

binding sites by the DamID study (Gauhar et al., 2009). These findings strongly 

suggest, that Mi-2 and EcR co-occupy a subset of target genes. However, not all Mi-2 

binding sites at both loci showed a clear correlation, which may be due to variations in 

the experimental setup. The EcR ChIPSeq dataset published by the Stark lab was 

prepared from S2 cells that were treated for 24 hours with 20HE, whereas Mi-2 binding 

sites in this thesis were analysed after six hours of hormonal treatment. Since the 

ecdysone response is a complex cascade, different genes might be regulated at the 

two time points tested. Therefore, I hypothesized that Mi-2 and EcR binding sites may 
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also differ between six and 24 hours after ecdysone induction. However, the finding 

that a significant proportion of Mi-2 binding sites overlap with EcR binding 

strengthened the hypothesis of EcR mediated Mi-2 recruitment to chromatin. 

 

This hypothesis was further verified by experiments where EcR was depleted from S2 

cells (Figure 4.26). As predicted, loss of EcR led to a decrease in 20HE induced Mi-2 

binding to vrille and broad. Surprisingly, no strong effect on Mi-2 binding to chromatin 

was observed in untreated S2 cells. As mentioned before, Mi-2 depletion experiments 

demonstrated that RNAi treatment of S2 cells results in reduction of the soluble Mi-2 

fraction (Anna Ernst, personal communication). However, some Mi-2 protein was not 

depleted by RNAi and remained associated with chromatin over several cell cycles. In 

that case, depletion of EcR would also not result in reduction of the stable, chromatin-

bound fraction of Mi-2, as was observed. Also, EcR may be required for recruitment of 

Mi-2 to chromatin in untreated cells, but may not be essential for the maintenance of 

Mi-2 binding to chromatin. This could further explain, why depletion of EcR did not 

result in decreased Mi-2 binding to chromatin in untreated S2 cells. In addition, it is 

possible that other mechanisms contribute to Mi-2 binding at these two genes and 

therefore recruitment of Mi-2 mediated by EcR is not the only factor important for Mi-2 

binding to chromatin (discussed below).  

 

Previous genome-wide analysis of Mi-2 binding sites determined DNA binding motifs 

that were significantly enriched within the genomic regions bound by Mi-2 (DREME 

tool; Discriminative Regular Expression Motif Elicitation) (Mathieu, 2013). This 

identified the DNA binding motif for the transcription factor Gaf (GAGA transcription 

factor), however no robust, direct interaction between Gaf and Mi-2 could be 

demonstrated (Mathieu, 2013). The DNA motif search did not identify ecdysone 

response elements (EcRE) to co-occur with Mi-2 binding sites on chromatin. These 

elements are a pseudopalindromic sequence containing G(G/A)(T/A)CA half-sites 

separated by a variable spacer and are recognized by the EcR/USP heterodimer 

(Riddihough and Pelham, 1987). A possible reason why these elements were not 

picked up by the DNA motif search within Mi-2 binding sites is that EcRE motifs are not 

well defined and highly degenerated within the Drosophila genome (Maletta et al., 

2014; Vogtli et al., 1998). Also, EcR may only be responsible for Mi-2 recruitment to 

chromatin of a small subset of all Mi-2 binding sites. This could further explain, why the 

EcRE motif was not identified as a significantly enriched DNA binding motif within 

genome-wide Mi-2 binding sites. 
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Since Mi-2 containing complexes lack subunits with sequence specific DNA binding 

activity, several recruitment mechanisms were proposed. First, the NuRD complex 

contains the subunits MBD2/3, which have been shown to bind to methylated CpG 

residues (Le Guezennec et al., 2006; Zhang et al., 1999). However, since methylation 

of CpG is confined to a short time window during embryonic development in 

Drosophila, MBD2/3 mediated recruitment of NuRD to methylated DNA seems to play 

a less general role in Drosophila than in mammals (Lyko et al., 2000). 

 

Second, Mi-2 has been shown to interact with specific transcription factors in a SUMO-

dependent manner (Stielow et al., 2008). The small ubiquitin-related modifier (SUMO) 

is reversibly attached to lysine residues of many transcription regulators and has been 

linked to repression of transcription (Hay, 2005). Interestingly, bioinformatic analysis 

predicted strong SUMOylation acceptor sites in the DBD and AF2 of EcR that could be 

verified experimentally (Seliga et al., 2013). In Western blot, SUMOylation of proteins 

results in a shift in mobility due to an increase of the molecular weight of about 15-

17kDa for each SUMO added to the protein (Tatham et al., 2009). No such mobility 

shift was observed for EcR in Western blot from nuclear extracts of S2 cells (Figure 

4.8, 4.9 and 4.15). However, the nuclear extracts subjected to Western blot did not 

include a SUMO protease inhibitor. It has been shown previously, that SUMOylation 

only occurs on a small proportion of a given transcription factor and that this 

modification is transient (Flotho and Melchior, 2013). Therefore, a possible 

SUMOylation of EcR in S2 cells may not have been detected in Western blot. In 

conclusion, SUMOylation could play a role in the interaction between Mi-2 and EcR, 

but further experiments have to be conducted in order to analyse the impact of EcR 

SUMOylation on Mi-2 interaction. 

 

Third, Mi-2 recruitment to chromatin may be facilitated by domains present in the N-

terminus of Mi-2. The PHD fingers are characterised by a Cys4-His-Cys3 motif that 

coordinates two zinc ions. Within the human homolog of Mi-2, CHD4, the PHD fingers 

have been shown to interact with the unmodified H3 tail and H3K9me3 (Mansfield et 

al., 2011). Further, Mi-2 contains two tandemly arranged chromodomains in its N-

terminus. Chromodomains have mainly been studied as methyl-lysine binding domains 

(Flanagan et al., 2005; Jacobs and Khorasanizadeh, 2002). However, the 

chromodomains of Mi-2 do not possess specificity towards a certain methylation status 

of the histone (Murawska, 2011). Interestingly, the chromodomains of Mi-2 have been 

shown to bind DNA in vitro (Bouazoune et al., 2002). The mechanisms discussed here 
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may further contribute to Mi-2 binding to chromatin at the vrille and broad locus in 

addition to EcR mediated recruitment in untreated cells. 

 

20HE induced Mi-2 binding is markedly reduced upon EcR depletion in S2 cells. 

Therefore, recruitment of Mi-2 by EcR occurs to be the major recruitment mechanism 

upon hormonal stimulation. However, other aspects of recruitment upon hormonal 

stimulation have to be taken in to consideration. Interaction of Mi-2 with poly-ADP-

ribose (PAR) was demonstrated to be important for Mi-2 recruitment to active heat 

shock loci (Murawska et al., 2011). Interestingly, also ecdysone inducible genes have 

been shown to be a target of strong PARylation upon activation by hormonal treatment 

(Tulin and Spradling, 2003). Therefore, PAR may also contribute to Mi-2 recruitment to 

ecdysone induced genes. Recently Mi-2 was shown to bind the nascent mRNA at heat 

shock induced genes (Murawska et al., 2011). Further, Mi-2 recruitment seems to 

follow the binding pattern of the RNA PolII at the hsp70 (Mathieu et al., 2012). In 

contrast to the Mi-2 binding pattern observed at heat shock genes, Mi-2 does not cover 

the entire transcribed region of the ecdysone inducible genes broad and vrille. At both, 

hsp genes and the vrille gene, inhibition of transcription elongation by 5,6-dichloro-1-

bold beta-D-ribofuranosylbenzimidazole (DRB) did not result in decreased Mi-2 

recruitment ((Murawska et al., 2011) (Figure 4.27B). However, the inhibition of 

transcription by DRB at the vrille gene was not complete (Figure 4.27A). In conclusion, 

recruitment of Mi-2 by transcription elongation or the nascent mRNA molecule to the 

vrille gene is less likely, but can not be fully excluded. The majority of EcREs are 

located within a transcribed region and as a consequence can not be tested in isolation 

from transcription. To test whether Mi-2 recruitment to EcREs is dependent on 

transcription, Mi-2 ChIP experiments at a reporter gene, that contains an isolated 

EcRE upstream of the promoter, are being established in the Brehm lab. In summary, 

the research described in this thesis established a new model for the recruitment of Mi-

2 to chromatin by demonstrating that an interaction between Mi-2 and EcR is important 

for binding of Mi-2 to ecdysone dependent genes (Figure 5.1). 

 

5.6 Several ATP-dependent chromatin remodeler can interact 
with EcR 

Since the ATPase domain is highly conserved between different families of ATP-

dependent chromatin remodelers, ATPase domains of selected chromatin remodelers 

were tested for an interaction with EcR (Figure 4.17). Interestingly, all tested ATPase 
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domains bound EcR in vitro. As described above, multiple studies have linked ATP-

dependent chromatin remodelers to the regulation of ecdysone dependent genes in 

Drosophila. It is therefore possible, that the interaction between EcR and the ATPase 

domain is a highly conserved mechanism. However, since different ATP-dependent 

chromatin remodelers have different effects on transcription, this hypothesis lacks an 

explanation for the specificity of each remodeler. Specificity to the mode of action could 

be added by differences in complex composition of the particular ATP-dependent 

chromatin remodeler. Further, specificity in EcR interaction might be added by the 

presence of additional domains in the N-terminal and C-terminal regions of the 

chromatin remodeler (Figure 2.4). Also, expression levels of ATP-dependent chromatin 

remodeler may differ between developmental time points and different tissues. 

 

As discussed above, the ATPase domains of several ATP dependent chromatin 

remodeler have been shown to interact with EcR. Therefore, I hypothesised that all 

chromatin remodeler have the potential to be recruited to chromatin by EcR. Notably, 

the Hager lab mapped the binding profile of three different ATP dependent chromatin 

remodeler by ChIPSeq in mouse cells (Morris et al., 2014). Comparing CHD4, the 

mammalian Mi-2 homolog, Brg1 and Snf2h they demonstrated that a large proportion 

of binding sites are shared by these three remodelers. This co-occupancy was not due 

to an interaction of these proteins, but due to a transient, sequential interaction of each 

remodeler with the same binding site. Although a study in Drosophila demonstrates 

that different chromatin remodeler are mutually exclusive at genomic regions (Moshkin 

et al., 2012), growing evidence indicates that different remodeler influence each other 

in an antagonistic manner. For example, this was shown on LPS stimulated immune 

responsive genes (Ramirez-Carrozzi et al., 2006). Here, SWI/SNF complex is recruited 

to enable activation of immune responsive genes. Along with recruitment of SWI/SNF, 

Mi-2/NuRD is binding to immune response genes where it functions to limit 

transcription of these genes in response to microbial infection. In conclusion, several 

ATP-dependent chromatin remodeler may be recruited to the same chromatin regions 

where they positively and negatively regulate transcription, thereby allowing a quick 

adaptation to extrinsic signals. 

 

The result discussed above also indicated that the ATPase domain of Iswi can bind 

EcR in vitro (Figure 4.17). Depletion of Iswi in S2 cells did not show the same effect as 

depletion of Mi-2 on expression of broad and vrille (Figures 4.9 and 4.10). These 

findings suggest, that even though several ATP-dependent chromatin remodeler of the 

SNF2 family can bind to EcR in vitro, their function in vivo differs. Therefore, the 
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interaction between EcR and ATP-dependent chromatin remodelers may be 

conserved, but the effect of this interaction on recruitment to chromatin and 

transcriptional regulation depends on several other aspects. Additional aspects that 

influence the outcome of this interaction include adjacent domains within the 

remodeler, additional proteins that modulate interaction between EcR and the 

remodeler as well as the spatio-temporal expression of a remodeler protein. 

 

5.7 Mi-2 maintains a closed chromatin structure at ecdysone 
regulated genes 

MNase mapping studies conducted in this thesis demonstrated that Mi-2 maintains a 

closed chromatin structure at the vrille gene (Figure 4.28). Regions of DNA 

accessibility at the vrille gene were mapped by MNase digestion. MNase preferentially 

cleaves internucleosomal DNA, whereas DNA within a nucleosome is relatively 

protected from digestion. However, also transcription factors (TFs) that make direct 

contacts with a specific DNA sequence can protect DNA from digestion by MNase. 

Even though TFs can influence the pattern of the MNase digest, it is most likely that 

the regions of less DNA accessibility identified at the vrille gene (Figure 4.27) are due 

to the presence of nucleosomes at these positions. This hypothesis is further 

strengthened by the observation that depletion of the ATP-dependent chromatin 

remodeler Mi-2 results in changes of DNA accessibility (Figure 4.28). In vitro studies 

on ATP-dependent chromatin remodelers have shown that these enzymes can move 

the histone octamer along a DNA substrate, a process which is referred to as 

nucleosome sliding. Studies on mononucleosomes showed that different remodeler 

can lead to different nucleosome sliding products. For example, Iswi preferentially 

slides a central located nucleosome towards the end of the DNA fragment, whereas 

Mi-2 has been shown to mobilise end-positioned nucleosomes (Brehm et al., 2000; 

Langst et al., 1999). These in vitro studies demonstrated that ATP-dependent 

chromatin remodelers can affect the position of a nucleosome on a DNA substrate. 

However, these mechanisms may be completely different in vivo, where no 

mononucleosomes exist. 

 

In vivo nucleosome positioning refers to the position a nucleosome favours with 

respect to the underlying DNA sequence. This positioning can be influenced by 

chromatin remodelers, transcription factors and RNA PolII. The proper positioning of 

nucleosomes over regulatory sequences allows the silencing of gene expression, 
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namely repression. The region that shows higher DNA accessibility upon Mi-2 

depletion at the vrille gene, is located in close vicinity to a regulatory region. The 

potential nucleosome A is in the promoter of the vrille(RE) transcript and also within the 

transcribed region of the two non-coding RNAs CR44743 and CR44742. Tissue-

specific, developmentally regulated genes often have a TSS covered with a 

nucleosome and less well positioned nucleosomes in the transcribed region (Bai and 

Morozov, 2010). Recruitment of chromatin remodeler by NRs results in remodeling of 

the chromatin structure, thereby revealing critical regulatory regions for the binding of 

the transcription machinery. In contrast, remodeling enzymes with a repressive 

function position nucleosomes such that they cover regulatory regions (Radman-Livaja 

and Rando, 2010). In line with this, the presence of Mi-2 most likely contributes to DNA 

accessibility by positioning potential nucleosomes over these regulatory regions. This 

establishes a balance between co-activator and co-repressor proteins thereby limiting 

expression of the vrille gene. 

 

The region that shows higher DNA accessibility upon Mi-2 depletion did overlap with 

an Mi-2 binding site that is increased upon 20HE treatment (Figure 4.6, regions X). 

Further, the increase in DNA accessibility upon Mi-2 depletion correlated with the 

expression status of the vrille gene as reduced levels of Mi-2 resulted in 

superactivation of the vrille gene upon 20HE treatment (Figure 4.9). This correlation 

may explain a mechanism by which Mi-2 contributes to the repression of ecdysone 

dependent genes by maintaining a closed chromatin structure at these loci. However, 

the MNase experiment only analysed one time point of the ecdysone cascade and few 

potential nucleosomes at the vrille gene. In order to gain a more detailed insight, it 

would be of interest to test the behaviour of all potential nucleosomes across the vrille 

gene in a time course experiment. In general, I concluded that the maintenance of a 

closed chromatin structure is the repressive mechanism by which Mi-2 contributes to 

transcriptional regulation of the vrille gene. Since Mi-2 is recruited to several ecdysone 

dependent genes, this mechanism may be general for the regulation of hormone 

regulated gene expression in Drosophila. 

 

5.8 A recruitment model for Mi-2 

The results obtained in this thesis, lead to the following model for the function of Mi-2 

at ecdysone regulated genes (Figure 5.1). In untreated cells Mi-2 interacts with EcR 

and contributes to repression of 20HE dependent genes by maintaining a closed 
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chromatin structure (A). Upon addition of ecdysone, EcR interacts with co-activator 

complexes in a ligand dependent manner (B). These co-activators establish an open 

chromatin environment by modification of histones and remodeling of nucleosomes, 

resulting in recruitment of the transcription machinery to the TSS. Elongation of RNA 

PolII along the transcribed region results in production of the mRNA molecule upon 

ecdysone treatment. At the same time, EcR recruits co-repressor complexes, such as 

Mi-2, to binding sites close to the TSS and additional genomic sites. Mi-2 maintains a 

closed chromatin structure, thereby counteracting the function of co-activator 

complexes. This establishes a balance of events on chromatin structure that activate 

and repress transcription, thereby limiting transcriptional activation of ecdysone 

dependent genes. When Mi-2 is depleted from S2 cells, the balance of transcription 

activating and repressing events is shifted towards transcriptional activation (C). This 

results in a more open chromatin and increased recruitment of RNA PolII. As a 

consequence, transcription is not limited and mRNA levels are markedly increased 

compared to cells with Mi-2. This model illustrates the function of Mi-2 as a repressive 

modulator of transcription at ecdysone dependent genes. 
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Figure 5.1: Model for function of Mi-2 at ecdysone regulated genes. (A) Chromatin 
environment of an ecdysone inducible gene in untreated cells. (B) 20HE treatment leads to 
transcription initiation and increased Mi-2 recruitment by EcR. (A) and (B) Mi-2 maintains a 
repressive chromatin structure at the gene. (C) Depletion of Mi-2 results in superactivation of 
ecdysone dependent genes due to a more open chromatin structure.  
 

5.9 Conservation of cooperation between Mi-2 and NRs  

The EcR/USP heterodimer is a conserved complex that resembles various vertebrate 

nuclear receptors. In line with this, the general mechanisms for co-activator and co-

repressor complexes are highly conserved between multicellular organisms. This leads 

to the assumption that the recruitment mechanism for Mi-2 by EcR is evolutionary 

conserved in other species. 
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The pS2 gene is an estrogen dependent gene that is regulated by the recruitment of 

co-activator and co-repressor complexes via the estrogen receptor (ER). Recruitment 

of these complexes has been shown to appear in a cyclical manner (Metivier et al., 

2003). The pS2 promoter contains two nucleosomes, NucE that covers the estrogen 

responsive element (ERE) and nucT that covers the TATA box (Figure 2.7). The 

nucleosome positions fluctuate in cycles together with the expression of the pS2 gene. 

Interestingly, when CHD4, the mammalian homolog of Mi-2, is present at the promoter, 

the NucT is stabilised in a position covering the TATA box at the end of a 

transcriptional cycle. This mechanism for Mi-2 compares well to the model described in 

this thesis for ecdysone dependent genes. Also, a role for the Mi-2/NuRD complex in 

ER regulation has been established via the MTA subunit of NuRD. MTA is 

overexpressed in metastatic and aggressive breast cancer tumours (Jang et al., 2006). 

Interestingly, MTA was shown to interact with the AF2 domain of ER. This interaction 

recruits the NuRD complex to the estrogen inducible genes pS2 and c-Myc in an 

estrogen dependent manner (Mazumdar et al., 2001). Here, a subunit of the NuRD 

complex other than Mi-2 has been identified to interact with the AF2 domain of a NR 

and is recruited to a gene promoter upon hormonal induction. This demonstrates that 

the interaction of a repressive complex with NRs via the AF2 domain can also be 

mediated by a different subunit within the complex. Thereby, these findings add further 

complexity to the mechanisms of coordinated recruitment of co-activator and co-

repressor complexes to chromatin.  

 

Another example is the association of CHD4 with the thyroid hormone receptor (TR) 

(Xue et al., 1998). TR functions in a wide variety of cellular processes thereby 

contributing to organ development, metabolism and heart rate. Antibody interference 

experiments with anti-CHD4 antibody demonstrated that the chromatin remodeler 

functions as a co-repressor of TR in the absence of thyroid hormone. This repressive 

activity was further linked to the NuRD complex, since incubation with the HDAC 

inhibitor TSA interfered with transcriptional repression by TR. These examples show, 

that Mi-2 is a conserved factor in regulation of hormone inducible genes and that the 

findings of this thesis could apply to other model systems. 

 

In conclusion, this thesis established a new model for the function of the ATP-

dependent chromatin remodeler Mi-2 in the regulation of a set of developmentally 

regulated genes in Drosophila. Mi-2 recruitment to ecdysone dependent genes is 

mediated by a physical interaction with EcR. Here, Mi-2 functions as a repressive 

modulator of ecdysone dependent gene transcription by maintaining a closed 
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chromatin structure at these loci. The finding that the ATPase domain of Mi-2 interacts 

with EcR implies a new regulatory mechanism for the catalytic domain of Mi-2 by 

intermolecular interactions. Future experiments will address this regulatory mechanism 

and the influence of EcR binding to the catalytic activity of Mi-2. Analysis of Mi-2 

binding sites at different time points of the ecdysone cascade as well as the 

identification of the complex in which Mi-2 resides at ecdysone target genes will give 

further insight in the mechanism that contributes to the transcriptional repression of 

ecdysone dependent genes. Finally, the evolutionary conservation of the mechanism 

described here has to be addressed by similar experiments in different species. 
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7 Appendix 

ChIPSeq results: Mi-2 binding sites that are increased and decreased upon 20HE 
treatment 

Table 7.1: List of >2.3-fold induced Mi-2 binding sites in 20HE treated cell. Depicted is the 
exact chromosomal location within the Drosophila genome and the next transcript as well as the 
primary and secondary gene associated with a binding site. Ratio +20HE/ untreated represents 
the enrichment of tag counts of Mi-2 ChIPSeq in 20HE versus untreated S2 cells. 
chromosomal location Next 

transcript 
Primary 
gene 

Secondary 
gene 

Ratio +20HE/ 
untreated 

3L: 
24462060..24462693 mRpS5 CR12460 mRpS5 13.8652 
3L:  
24458030..24458555 mRpS5 CR12460 mRpS5 12.2824 
Uextra: 
 28768380..28768617   mir-5613   7.9206 
X: 
3302484..3302942 CG14269 

tRNA: 
CR32493 CG14269 5.4690 

X: 
1843508..1846640 Hr4 Hr4 CG3587 4.5522 
X: 
1503765..1504886 br Mur2B br 4.4419 
Uextra: 
28123664..28124271   mir-5613   4.2924 
X: 
14721782..14722082 rut rut CG14408 4.2157 
3R:  
5789105..5790032 Art4 Art4 Gr85a 4.0372 
Uextra:  
28815421..28815618   mir-5613   3.8867 
Uextra:  
8455330..8455668   mir-5613   3.8001 
X:  
2231851..2232522 phl Ilp6 mRpL14 3.7960 
2L:  
5300104..5300770 vri vri CG14024 3.6915 
X:  
1504917..1507842 br Mur2B br 3.4217 
2L:  
5287818..5288374 Bub1 Bub1 Bsg25D 3.4067 
2L:  
12013199..12014424 Rh5 Rh5 CG6734 3.2974 
X:  
11324806..11325412 Gs2 Gs2 Sk1 3.2943 
2L:  
3338014..3339943 E23 CG15408 CG3285 3.2753 
X: 10103534..10103976 CG15309 CR43899 CG15309 3.2687 
3L:  
9874400..9874823 CG34382 CG34382 Taf2 3.2616 
2L:  
20775940..20776358 cad cad Pomp 3.2516 
2R:  
8276716..8277539 Cpr49Ad Cpr49Ad Cpr49Ac 3.2398 
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Uextra:  
28630820..28631122   mir-5613   3.2330 
2R:  
8274002..8275419 Cpr49Ac Cpr49Ac CG8501 3.2058 
2L:  
18466593..18467235 Ntf-2r mir-100 let-7 3.1695 
Uextra:  
22409842..22410060   mir-5613   3.1143 
X:  
20426782..20427264 RunxB CG42580 RunxB 3.0964 
X:  
8750894..8751585 CG12075 CG12075 Moe 3.0604 
3R:  
5794832..5795928 Art4 Art4 Gr85a 2.9624 
3L:  
14259140..14259394 fz fz CG7906 2.9244 
2R:  
8275543..8276672 Cpr49Ac Cpr49Ac Cpr49Ad 2.9186 
3L:  
18001599..18002423 Eip75B 

snoRNA:Me2
8S-A30 CG32192 2.8970 

3L:  
3513769..3514084 ImpE2 ImpE2 Eip63E 2.8835 
X:  
713260..713516 CG13358 CG13358 Sec22 2.8544 
3L:  
18070756..18071312 CG34252 CG34252 CG43253 2.8519 
2L:  
19143606..19144699 l(2)37Cg l(2)37Cg brat 2.8389 
X:  
10451120..10451663 spri CG15296 spri 2.8358 
3R:  
8473077..8475218 CG6234 CG6234 CG6753 2.8092 
2L:  
2201183..2203697 CG31668 CG31668 CG34172 2.8044 
3L:  
21246306..21248087 CG43218 CG43218 CG9391 2.8027 
3R:  
17716304..17717273 dnd CR43844 dnd 2.7873 
X:  
7615961..7616355 Hira Hira CG15478 2.7649 
2L:  
14133181..14134541 CG17341 CG17341 CG31769 2.7601 
Uextra:  
3142533..3143070   mir-5613   2.7504 
2R:  
8272367..8273672 Cpr49Ac Cpr49Ac CG8501 2.7439 
X:  
3301687..3302416 CG14269 

tRNA:CR324
93 CG14269 2.7324 

3L:  
18030730..18031379 CG32192 CG32192 CG42393 2.7290 
2R:  
16292917..16293375 CG12484 CG12484 CG11192 2.6889 
X:  
9933174..9934572 Yp2 Yp2 Yp1 2.6677 
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X:  
2641292..2641682 Syx4 Syx4 CR43494 2.6585 
3R:  
5790070..5791294 Art4 Art4 Gr85a 2.6272 
3R:  
8696512..8696792 CG10126 CG10126 d-cup 2.6102 
2L:  
19144962..19145706 l(2)37Cg l(2)37Cg brat 2.6092 
3L:  
18014925..18015483 CG32192 CG32192 Me28S-A30 2.5867 
3L:  
22584847..22585187 CG6914 CG6914 Trxr-2 2.5852 
3L:  
16188172..16189205 CG33687 CG33687 CG33688 2.5820 
2R:  
14461756..14462609 Rgk2 Rgk2 GEFmeso 2.5480 
3L:  
10394910..10395184 CG12362 CR43990 CG12362 2.5377 
2L:  
8194971..8195442 CG8475 CG8475 CG8460 2.5314 
2L:  
18464765..18465594 Ntf-2r mir-100 let-7 2.5236 
X:  
17774457..17774986 CG12985 CG12985 mnb 2.4949 
3L:  
17999364..17999887 Eip75B 

snoRNA:Me2
8S-A30 CG32192 2.4878 

2L:  
6553184..6553919 osm-6 osm-6 CoVb 2.4813 
2R:  
1250846..1251037 CG10417 CR42646 CG10417 2.4813 
3R:  
9615984..9617028 Dip-B 

tRNA:CR315
88 

tRNA:CR31
331 2.4813 

3L:  
20901170..20901495 CG11458 CG11458 CR43930 2.4813 
3L:  
15505120..15506229 Eip71CD Eip71CD gdl-ORF39 2.4754 
2R:  
5643448..5643852 CG1690 CG1690 trpl 2.4699 
3R:  
27237979..27238436 CG11337 CG11337 Gprk2 2.4620 
2L:  
6058316..6059133 CG34180 CG34180 CG9140 2.4415 
3L:  
16357029..16357942 Cpr72Eb Cpr72Eb Cpr72Ea 2.4299 
X:  
1529697..1531480 br CG11509 Mur2B 2.4295 
3R:  
18151526..18152007 CG34377 CG34377 CG7080 2.4259 
2L:  
3342851..3343810 E23 CG15408 E23 2.4243 
X:  
1875314..1876057 Hr4 CG4406 mir-2496 2.4230 
3L:  
10374649..10375147 CG12362 mir-276a CR43990 2.4228 
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Uextra: 
 9037036..9037469   mir-5613   2.4160 
2L:  
19138491..19139316 l(2)37Cg l(2)37Cg brat 2.4141 
3L:  
17920866..17921664 CG43173 CG43173 CG43174 2.4005 
3L:  
18029337..18029832 CG32192 CG32192 CG42393 2.3927 
3L:  
7985616..7986433 nmo nmo CG8038 2.3849 
2R:  
17359656..17360228 Sdc Sdc Sara 2.3843 
X:  
5864642..5865166 Grip Grip fs(1)M3 2.3808 
2R:  
14469701..14471433 GEFmeso GEFmeso CG42697 2.3737 
Uextra:  
19603848..19604095   mir-5613   2.3637 
X:  
1537028..1537665 CG11509 CG11509 dor 2.3538 
X:  
1533867..1534613 CG11509 CG11509 Mur2B 2.3458 
2L:  
7949371..7949722 Snoo CG7231 Snoo 2.3428 
X:  
11892213..11892525 fw CG18130 fw 2.3395 
X:  
9226269..9226871 CG34450 CG34450 c12.2 2.3365 
2R:  
14462841..14463419 Rgk2 Rgk2 GEFmeso 2.3322 
3L:  
21886645..21887430 mub CR43878 

tRNA: 
CR32449 2.3313 

X:  
2668112..2668569 CG32795 CG32795 w 2.3230 
3L:  
24463611..24464073 mRpS5 CR12460 mRpS5 2.3202 
3L:  
17774121..17774458 CG42815 CG42815 CG42816 2.3155 
3R:  
16311985..16312319 mun mun Dic2 2.3155 
2L:  
685066..685263 ds ds Hsp60B 2.3129 
2L:  
9013602..9014028 Rcd-1r Rcd-1r CG13102 2.3129 
X:  
1471465..1473414 br br 

snmRNA:40
0 2.3081 

Uextra:  
17026012..17026285   mir-5613   2.3047 
X:  
61849..62242 CG17168 CG17168 CG17163 2.3041 
2L:  
21243780..21244644 Hr39 Hr39 CG31626 2.3028 
3R:  
7747786..17748477 CG17843 CG17843 CG6690 2.3020 
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Table 7.2: List of >2.3-fold reduced Mi-2 binding sites in 20HE treated cell. Depicted is the 
exact chromosomal location within the Drosophila genome and the next transcript as well as the 
primary and secondary gene associated with a binding site. Tag-count ratio untreated/ +20HE 
represents the enrichment of tag counts of Mi-2 ChIPSeq in untreated versus 20HE S2 cells. 
chromosomal location Next 

transcript 
Primary 
gene 

Secondary 
gene 

Ratio 
untreated/20H
E 

Uextra:  
27400817..27400998   mir-5613   15.8296 
X:  
5236532..5236939 SK SK CanB 8.8053 
2R:  
109336..109515 CG40498 CG40498 CR41510 8.6932 
Uextra:  
13391307..13391485   mir-5613   8.3380 
3R:  
22570923..22571440 CG14247 CG14247 CG6403 7.2095 
3R:  
8888795..8889060 sim sim pic 7.0215 
X:  
10190575..10190924 

alpha-
Man-I alpha-Man-I CG2909 6.6932 

2L:  
11786961..11787359 CG14931 CG14931 CG14932 6.0110 
X: 
4230247..4230784 CG12693 CG12693 norpA 5.7990 
2L: 
5417933..5418411 H15 CR43713 H15 5.5308 
2L: 
7969397..7969762 Snoo CG7231 Snoo 5.3915 
3R: 
2722209..2722499 CG43252 CG43252 ftz 4.6670 
2L: 
6134668..6135176 CG9222 CG9222 tectonic 4.6084 
3L: 
11270134..11270638 CG6175 CG6175 scyl 4.4649 
Uextra: 
28804580..28804810   mir-5613   4.4622 
3L: 
19108530..19109016 Spn75F Spn75F Gem2 4.3457 
X: 
9384900..9385274 mgl mgl CR43497 4.0420 
X: 
12453252..12453494 Cpr11B Cpr11B CG43921 3.9795 
Uextra: 
28167248..28167427   mir-5613   3.9406 
3L: 
8362622..8362912 ImpE1 ImpE1 Idh 3.8399 
Uextra: 
2642373..2642607   mir-5613   3.7615 
2R: 
12734855..12735215 Ugt37c1 Ugt37c1 IntS8 3.6241 
X: 
17673342..17673732 unc-4 unc-4 OdsH 3.5118 
Uextra: 
28829111..28829429   mir-5613   3.4407 
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2L: 
13331861..13332546 CG43778 CG43778 CG16826 3.4150 
2L: 
11470160..11470631 CG43355 sala CG43355 3.3799 
Uextra: 
28220103..28220410   mir-5613   3.3639 
X: 
4171661..4172132 CG15578 CG15578 CG15577 3.1346 
2R: 
1266981..1267166 CG10417 CR42646 CG10417 3.0659 
2L: 
4914413..4914808 hoe1 CG2837 hoe1 3.0002 
2R: 
15454304..15454799 sm 

tRNA:CR335
35 CG43111 2.9778 

3R: 
6332978..6333331 hth mir-4944 Cyp12e1 2.9555 
X: 
10452041..10452481 spri CG15296 spri 2.9083 
2L: 
15487734..15488164 Tim17b2 Tim17b2 sna 2.8211 
X: 
6507477..6508039 pigs pigs Apc7 2.7943 
3L: 
10541371..10541787 CG6527 CG6527 S-Lap4 2.7819 
3R: 
10661706..10662371 CG3610 CG3610 btsz 2.7099 
3R: 
2343166..2343492 CG15185 CG15185 

tRNA:M2:83
F 2.7006 

3L: 
14682302..14682704 CG13477 CG13477 CG5048 2.6920 
Uextra: 
26582216..26582436   mir-5613   2.6818 
X: 
16004851..16005387 CG42353 CG42353 CG42354 2.6705 
3R: 
12367826..12368189 CG14891 CG14891 CG14903 2.6644 
3L: 
1263286..1263732 CG9134 CG9134 CG9133 2.6396 
X: 
3211203..3211736 CG10793 CG10793 dm 2.6350 
X: 
20326668..20327162 CG32506 CG32506 CG42578 2.6330 
3L: 
10023755..10024167 dpr6 dpr6 CG14160 2.6252 
X: 
4019863..4020204 GlcAT-I GlcAT-I Tip60 2.6252 
3L: 
1396356..1396650 CG40178 CG40178 CG41320 2.6183 
X: 
15146322..15146619 PPYR1 PPYR1 CG9106 2.6144 
X: 
3428489..3428843 CG32791 CR34335 CG13021 2.5495 
2L: 
22476847..22477185 CG17494 CG17494 CG17493 2.5468 
3L: Eip74EF Eip74EF CG6259 2.5464 
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17596817..17597587 
Uextra: 
28551649..28551832   mir-5613   2.5425 
X: 
18794163..18794556 CG7378 CG7378 CG7349 2.5390 
3L: 
2513457..2513863 Dbp80 Dbp80 

Me18S-
C419 2.5375 

3L: 
16451635..16452177 dsx-c73A dsx-c73A aos 2.5258 
2L: 
2399822..2400233 VGlut VGlut CG43750 2.5077 
2L: 
16845121..16845590 CG13284 CG13284 CG31810 2.4778 
3R: 
24109232..24109692 CG34437 CG34437 CG34436 2.4531 
2R: 
10785671..10786004 Cyp317a1 Cyp317a1 Cyp6a8 2.4450 
3L: 
19011488..19011984 CG18136 CG18136 CG3808 2.4428 
X: 
1495924..1496288 br Mur2B br 2.4380 
2R: 
15800029..15800365 CG13872 CR43421 CG13872 2.4293 
3R: 
13416301..13416786 CG7587 CG7587 Sgs5 2.4222 
2L: 
16361491..16361775 jhamt jhamt CaBP1 2.4181 
3R: 
9449234..9449624 CG9269 CG9269 CG10841 2.4087 
Uextra: 
8511041..8511394   mir-5613   2.4087 
3L: 
15530614..15531136 CrebA CrebA CG43248 2.3882 
2R: 
5427890..5428266 CG1888 CG1888 CR43651 2.3847 
2R: 
12496005..12496488 CG5065 CG5065 CG8303 2.3714 
2L: 
7181374..7181857 CG4495 CG4495 CG4496 2.3652 
2L: 
4237378..4237977 RpL40 RpL40 CG3702 2.3347 
2R: 
5350963..5351303 Camta CG33757 CG33758 2.3196 
3R: 
26458740..26459222 CG2267 CG2267 CG31013 2.3169 
2L: 
16874931..16875414 CG32832 CG32832 CG31743 2.3131 
3L: 
13349125..13349986 Nplp2 Nplp2 CG17687 2.3126 
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List of abbreviations and acronyms 

20HE   20-hydroxyecdysone 

α   anti 

A   alanine 

aa   amino acid 

ac   acetyl/ acetylated 

ADP   adenosine diphosphate 

AF   activation function 

Ash    absent, small, or homeotic discs 1 

ATP    adenosine triphosphate 

ATPase  ATP hydrolysing domain 

BAP   Brahma-associated proteins 

BLAST   basic local alignment search tool 

bp    base pair 

BRK    brahma and kismet domain 

BSA    bovine serum albumin 

C-    carboxy- 

CBP   CREB-binding protein 

cDNA    complementary DNA 

CG   computed protein-coding gene 

CHD    chromodomain-helicase-DNA binding 

ChIP    chromatin immunoprecipitation 

CoA   CoenzymeA 

CP190   centrosomal protein 190 

CpG    cytosine-phospatidyl-guanosine 

CR   computed non-protein-coding-gene 

Ct    cycle threshold  

CT   C-terminus 

CTCF   CCCCTC-binding factor 

Da   Dalton 

DAPI    4',6-diamidino-2-phenylindole 

DBD   DNA-binding domain 

dd   double distilled 

dMec    Drosophila MEP-1-containing complex 

DMSO   dimethyl sulfoxide 

DNA    desoxyribonucleic acid 
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dNTP   desoxyribonucleotide triphosphate 

DRB   5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole 

dsRNA   double stranded RNA 

DTT    dithiotreithol 

E.coli   Escherichia coli 

EcR   ecdysone receptor 

EcRE   ecdysone response element 

EDTA    ethylenedioxy-diethylene-dinitrilo-tetraacetic acid 

EGTA    ethylene glycol-bis-(2-aminoethyl)-N,N,N', N'-tetraacetic acid 

ER   estrogen receptor 

EtBr    ethidiumbromide 

F   phenylalanin 

FAD   flavin adenine dinucleotide 

FBS   fetal bovine serum 

FTZ-F1  fushi tarazu transcription factor 1 

fw/ fwd   forward 

g   gram 

Gaf   GAGA transcription factor 

Gcn5   General control of amino acid synthesis protein 5 

GFP   green fluorescent protein 

GR    glucocorticoid receptor  

GST    glutathione-S-transferase  

H    histone 

HAS   helicase-sant domain 

HAT   histone acetyltransferase 

HDAC    histone deacetylase 

HEPES   N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 

HMG    high mobility group 

HP1    heterochromatin protein 1 

HRP    horseradish peroxidase  

hr(s)   hour(s) 

HRE   hormone response element 

HS    heat shock 

hsp   heat shock protein 

Ig    immunoglobuline  

In   input 

INO80   inositol requiring 80  
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IP    immunoprecipitation  

IPTG    isopropyl β-D-1-thiogalactopyranoside  

ISWI    imitation switch 

ivT   in vitro translation 

K    lysine 

k   kilo 

L   leucine 

LB    Luria-Bertani 

LBD   ligand-binding domain 

LSD1   lysine-specific demethylase 1 

M    molar 

MCF-7   Michigan Cancer Foundation - 7 

MBP    methyl-CpG-binding protein 

me   methyl 

Mec   Mep1-containing complex 

Mep1   mog interacting ectopic P granulocytes 1 

min   minutes(s) 

MMTV   mouse mammary tumour virus 

MNase   micrococcal nuclease  

mRNA    messenger ribonucleic acid 

MTA    metastasis associated protein  

N-    amino- 

N-CoR   nuclear receptor co-repressor 

NF-1   nuclear factor 1 

NR   nuclear receptor 

nuc   nucleosome 

NuRD    nucleosome remodeling and histone deacetylation 

NURF   nucleosome remodeling factor 

OD    optical density  

PAA    polyacrylamide  

PAGE    polyacrylamide gel electrophoresis 

PAR    poly(ADP-ribose)  

PARP    poly(ADP-robose) polymerase 

PBAP   Polybromo-associated BAP 

PEV   position-effect variegation 

PBS    phosphate buffered saline 

PCR    polymerase chain reaction  
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Ph   polyhomeotic 

PHD    plant homeo domain  

PMSF    phenylmethane sulfonyl fluoride 

PRMT   protein arginine methyltransferase 

PTM   post-translational modification 

PVDF    polyvinylidine difluoride  

qPCR    quantitative PCR  

R    arginine 

rDNA   ribosomal DNA 

re/rev    reverse 

RNA    ribonucleic acid 

RNAi    RNA interference 

RNAPolII   RNA polymerase II 

Rp49    ribosomal protein 49 

Rpd3   reduced potassium dependency 3 

rpm    revolutions per minute 

RT   reverse transcriptase/ room temperature 

S   serine 

S. cerevisiae  Saccharomyces cerevisiae 

SDS    sodium dodecyl sulphate 

sec    second 

seq   sequencing 

SMRT   silencing mediator for retinoid or thyroid-hormone receptor 

Snf2    sucrose non-fermenting protein 2 homolog 

SUMO   small ubiquitin-like modifier 

SWI/SNF   switch/sucrose non-fermenting 

T   threonine 

TBP   TATA-binding protein 

Temed   N,N,N′,N′-Tetramethylethylenediamine 

TF   transcription factor 

TR   thyroid hormone receptor 

Tris   tris(hydroxymethyl)aminomethane 

TRR   trithorax related 

TSS   transcriptional start site 

Ttk69    tramtrack69 

USP   ultraspiracle 

UTX   ubiquitously transcribed tetratricopeptide repeat on X  
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UTR   untranslated region 

v/v    volume per volume  

w/v    weight per volume  

WT    wild type 

Zn   Zinc 
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