Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Rolle von striatalen Tyrosinhydroxylase-positiven Neuronen bei L-DOPA-induzierten Dyskinesien der Maus
Autor:Keber, Ursula Johanna
Weitere Beteiligte: Depboylu, Candan (PD Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0630
DOI: https://doi.org/10.17192/z2014.0630
URN: urn:nbn:de:hebis:04-z2014-06309
DDC: Medizin
Titel (trans.):Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice
Publikationsdatum:2014-10-01
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Tyrosine hydroxylase, FosB, Dopamin, aromatic acid decarboxylase, Neuronale Plastizität, Tyrosin, Aromatische Aminosäure-Decarboxylase, Cortex, L-Dopa, Corpus striatum, Dyskinesie, Nucleus accumbens, Serotonin, Serotonintransporter, dyskinesia, FosB, Substantia n, Parkinson-Krankheit, Tyrosinhydroxylase, absolute involuntary movements

Zusammenfassung:
Die Parkinson-Krankheit ist die zweithäufigste neurodegenerative Erkrankung weltweit. Der Goldstandard zur symptomatischen Behandlung ist der Wirkstoff L 3,4 Dihydroxyphenylalanin (L-DOPA), der im Verlauf jedoch bei vielen Patienten ausgeprägte motorische Nebenwirkungen in Form von abnormen unfreiwilligen Bewegungen, sogenannten L-DOPA-induzierten Dyskinesien (LID), hervorruft. Deren genaue Ätiopathogenese liegt bislang noch im Dunkeln. Das Ziel dieser Arbeit war es, die Expression Tyrosinhydroxylase(TH)-positiver und damit L-DOPA-produzierender Zellen im denervierten Corpus striatum (Striatum) als fundamentalen Faktor für die Entstehung und Ausprägung von LID aufzudecken. Hierzu wurden 6-Hydroxydopamin-lädierte Mäuse über 15 Tage mit L-DOPA behandelt, das Auftreten von LID wurde charakterisiert und mit der immunhistochemisch bestimmten Anzahl striataler TH-positiver Zellen korreliert. Bemerkenswerterweise entwickelten 70% der L-DOPA-behandelten Mäuse ausgeprägte LID, die mit einer deutlich gesteigerten Expression TH-positiver Neurone einhergingen und deren Ausprägung eng mit der Zellzahl korrelierte. Die Zunahme TH-positiver Neurone stand im Einklang mit einer gesteigerten Expression von ∆FosB, einem validen molekularen Marker für Dyskinesien. Zudem wiesen dyskinetische Tiere eine erhöhte serotonerge Innervation des Striatums auf – Fasern, die mit ihrer aromatischen Aminosäure-Decarboxylase eine Konversion von L-DOPA in Dopamin vollführen können. Es ist also davon auszugehen, dass die TH-positiven Zellen synergistisch mit serotonergen Terminalen Dopamin synthetisieren und damit erhöhte extrazelluläre Dopaminkonzentrationen begünstigen. Dieser ursprünglich kompensatorische Mechanismus als Antwort auf das striatale dopaminerge Defizit beim Morbus Parkinson scheint im Rahmen einer L-DOPA-Therapie über das Ziel hinaus zu schießen und resultiert in der Entwicklung von LID. Zentraler Entstehungsort ist hierbei das laterale, dem menschlichen Putamen entsprechende Striatum, wohingegen ein prodyskinetischer Effekt der TH-Zellen im Nucleus accumbens und im Cortex ausgeschlossen werden konnte. Die Erkenntnisse dieser Arbeit tragen grundlegend zu einem besseren Verständnis über die Ätiopathogenese von LID und die Funktionalität der weitgehend unerforschten TH positiven Neurone bei. Zukünftige Studien, die sich die TH-positiven Zellen für eine potentielle Parkinsontherapie zunutze machen wollen, sollten deren LID-provozierenden Effekt kritisch berücksichtigen. Auf der anderen Seite könnten diese Neurone langfristig einen hoffnungsvollen Ansatz für neue antidyskinetische Behandlungsstrategien liefern.

Bibliographie / References

  1. Parkkinen L, O'Sullivan SS, Kuoppamaki M, Collins C, Kallis C, Holton JL, Williams DR, Revesz T, Lees AJ (2011) Does levodopa accelerate the pathologic process in Parkinson disease brain? Neurology 77:1420-1426.
  2. Ugrumov MV (2013) Brain neurons partly expressing dopaminergic phenotype: location, development, functional significance, and regulation. Adv Pharmacol 68:37-91.
  3. Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114 ( Pt 5):2283-2301.
  4. Huot P, Parent A (2007) Dopaminergic neurons intrinsic to the striatum. J Neurochem 101:1441-1447.
  5. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67:1612-1617.
  6. Manson AJ, Iakovidou E, Lees AJ (2000) Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson's disease. Mov Disord 15:336-337.
  7. Rylander D, Parent M, O'Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68:619-628.
  8. Lindgren HS, Rylander D, Iderberg H, Andersson M, O'Sullivan SS, Williams DR, Lees AJ, Cenci MA (2011) Putaminal upregulation of FosB/ΔFosB-like immunoreactivity in Parkinson's disease patients with dyskinesia. J Parkinsons Dis 1:347-357.
  9. Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, Watt H, Bhatia K, Quinn N, Lees AJ (2005) Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson's disease: a prospective study using single-dose challenges. Mov Disord 20:151-157.
  10. Group PS (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA : the journal of the American Medical Association 287:1653-1661.
  11. Melamed E, Hefti F, Wurtman RJ (1980) Nonaminergic striatal neurons convert exogenous L- dopa to dopamine in parkinsonism. Ann Neurol 8:558-563.
  12. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol 26:507-514.
  13. Calon F, Morissette M, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003) Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Mov Disord 18:241-253.
  14. Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C (2009) The role of the dorsal raphe nucleus in the development, expression, and treatment of L-dopa-induced dyskinesia in hemiparkinsonian rats. Synapse (New York, NY) 63:610-620.
  15. Sarre S, De Klippel N, Herregodts P, Ebinger G, Michotte Y (1994) Biotransformation of locally applied L-dopa in the corpus striatum of the hemi-parkinsonian rat studied with microdialysis. Naunyn Schmiedebergs Arch Pharmacol 350:15-21.
  16. Linazasoro G, Antonini A, Maguire RP, Leenders KL (2004) Pharmacological and PET studies in patient's with Parkinson's disease and a short duration-motor response: implications in the pathophysiology of motor complications. J Neural Transm 111:497-509.
  17. Fang C, Yin J, Xu Z, Wang Y, Xu H, Zhou H, Gao C (2011) Striatal dopaminergic fiber recovery after acute L-DOPA treatment in 6-hydroxydopamine (6-OHDA) lesioned rats. Cell biochemistry and biophysics 59:49-56.
  18. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 275:321-328.
  19. Mura A, Jackson D, Manley MS, Young SJ, Groves PM (1995) Aromatic L-amino acid decarboxylase immunoreactive cells in the rat striatum: a possible site for the conversion of exogenous L-DOPA to dopamine. Brain Res 704:51-60.
  20. Munoz A, Carlsson T, Tronci E, Kirik D, Bjorklund A, Carta M (2009) Serotonin neuron- dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219:298-307.
  21. Huot P, Lévesque M, Morissette M, Calon F, Dridi M, Di Paolo T, Parent A (2008) L-Dopa treatment abolishes the numerical increase in striatal dopaminergic neurons in parkinsonian monkeys. J Chem Neuroanat 35:77-84.
  22. Depboylu C (2014) Non-serine-phosphorylated tyrosine hydroxylase expressing neurons are present in mouse striatum, Ncl. accumbens and cortex that increase in number following dopaminergic denervation. J Chem Neuroanat 56C:35-44.
  23. Navailles S, Bioulac B, Gross C, De Deurwaerdere P (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region- dependent manner in a rat model of Parkinson's disease. Neurobiol Dis 41:585-590.
  24. Jollivet C, Montero-Menei CN, Venier-Julienne MC, Sapin A, Benoit JP, Menei P (2004) Striatal tyrosine hydroxylase immunoreactive neurons are induced by L- dihydroxyphenylalanine and nerve growth factor treatment in 6-hydroxydopamine lesioned rats. Neurosci Lett 362:79-82.
  25. Nicholas AP, Buck K, Ferger B (2008) Effects of levodopa on striatal monoamines in mice with levodopa-induced hyperactivity. Neurosci Lett 443:204-208.
  26. Depboylu C, Maurer L, Matusch A, Hermanns G, Windolph A, Behe M, Oertel WH, Hoglinger GU (2013) Effect of long-term treatment with pramipexole or levodopa on presynaptic markers assessed by longitudinal [123I]FP-CIT SPECT and histochemistry. NeuroImage 79:191-200.
  27. Grégoire L, Samadi P, Graham J, Bédard PJ, Bartoszyk GD, Di Paolo T (2009) Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy of L-Dopa in parkinsonian monkeys. Parkinsonism Relat Disord 15:445-452.
  28. Lopez-Real A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL (2003) Localization and functional significance of striatal neurons immunoreactive to aromatic L-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models. Brain Res 969:135- 146.
  29. West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51-61.
  30. Maeda T, Kannari K, Shen H, Arai A, Tomiyama M, Matsunaga M, Suda T (2003) Rapid induction of serotonergic hyperinnervation in the adult rat striatum with extensive dopaminergic denervation. Neurosci Lett 343:17-20.
  31. Birkmayer W, Hornykiewicz O (2001) The effect of l-3,4-dihydroxyphenylalanine (= DOPA) on akinesia in parkinsonism. 1961. Wien Klin Wochenschr 113:851-854.
  32. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B (2010) Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol 9:1106-1117.
  33. Eggert KM, Oertel WH, Reichmann H (2012) Parkinson-Syndrome -Diagnostik und Therapie. In: Leitlinien für Diagnostik und Therapie in der Neurologie, vol. 5 (Diener, H. C. and Weimar, C., eds) Stuttgart: Kommission "Leitlinien" der Deutschen Gesellschaft für Neurologie.
  34. Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid Redox Signal 7:685-693.
  35. Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study. Brain 123 ( Pt 11):2297-2305.
  36. Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain 123 ( Pt 7):1365-1379.
  37. de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain 127:2747-2754.
  38. Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194-1200.
  39. Huot P, Lévesque M, Parent A (2007) The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea. Brain 130:222-232.
  40. Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819-1833.
  41. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease. Brain 131:120-131.
  42. Carlsson T, Carta M, Muñoz A, Mattsson B, Winkler C, Kirik D, Björklund A (2009) Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration. Brain 132:319-335.
  43. Björklund T, Carlsson T, Cederfjäll EA, Carta M, Kirik D (2010) Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson's disease. Brain 133:496-511.
  44. Hardebo JE, Emson PC, Falck B, Owman C, Rosengren E (1980) Enzymes related to monoamine transmitter metabolism in brain microvessels. J Neurochem 35:1388-1393.
  45. Wolf ME, Roth RH (1990) Autoreceptor regulation of dopamine synthesis. Annals of the New York Academy of Sciences 604:323-343.
  46. Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Annals of the New York Academy of Sciences 877:113-128.
  47. Mones RJ, Elizan TS, Siegel GJ (1971) Analysis of L-dopa induced dyskinesias in 51 patients with Parkinsonism. J Neurol Neurosurg Psychiatry 34:668-673.
  48. Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30-33.
  49. Uhl GR, Hedreen JC, Price DL (1985) Parkinson's disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215-1218.
  50. Hornykiewicz O (1998) Biochemical aspects of Parkinson's disease. Neurology 51:S2-9.
  51. Guttman M, Stewart D, Hussey D, Wilson A, Houle S, Kish S (2001) Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 56:1559-1564.
  52. Fahn S (2000) The spectrum of levodopa-induced dyskinesias. Ann Neurol 47:S2-9; discussion S9-11.
  53. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54:S21-23.
  54. Blanchet PJ, Allard P, Grégoire L, Tardif F, Bédard PJ (1996) Risk factors for peak dose dyskinesia in 100 levodopa-treated parkinsonian patients. Can J Neurol Sci 23:189-193.
  55. Darmopil S, Muñetón-Gómez VC, de Ceballos ML, Bernson M, Moratalla R (2008) Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA. Eur J Neurosci 27:580-592.
  56. Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R (2012) L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 48:271-281.
  57. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66:603-613.
  58. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223-236; discussion 222.
  59. Mesnage V, Houeto JL, Bonnet AM, Clavier I, Arnulf I, Cattelin F, Le Fur G, Damier P, Welter ML, Agid Y (2004) Neurokinin B, neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin Neuropharmacol 27:108-110.
  60. Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6- OHDA-lesioned rats. Neuroreport 10:631-634.
  61. Schallert T, Tillerson JL (1999) Intervention strategies for degeneration of dopamine neurons in Parkinsonism: optimizing behavioral assessment of outcome. In: Central Nervous System Disease: Innovative Animal Models from Lab to Clinic (Emerich, D. F. et al., eds), pp 131-151 Totowa, New Jersey 07512: Humana Press Inc.
  62. Höglinger GU, Alvarez-Fischer D, Arias-Carrion O, Djufri M, Windolph A, Keber U, Chiu W-H, Borta A, Ries V, Schwarting RKW, Scheller D, Oertel WH (2014). A dopaminergic projection from the substantia nigra to the olfactory bulb. Nature Communications.
  63. van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, Brotchie JM (2005) A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J 19:1140-1142.
  64. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276:374-379.
  65. Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Crotty K, Mueller RA (1984) Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. The Journal of pharmacology and experimental therapeutics 231:343-354.
  66. Goetz CG (1986) Charcot on Parkinson's disease. Mov Disord 1:27-32.
  67. Lindgren P, von Campenhausen S, Spottke E, Siebert U, Dodel R (2005) Cost of Parkinson's disease in Europe. Eur J Neurol 12 Suppl 1:68-73.
  68. Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault JA, Hervé D, Greengard P, Fisone G (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal- regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27:6995- 7005.
  69. Juorio AV, Li XM, Walz W, Paterson IA (1993) Decarboxylation of L-dopa by cultured mouse astrocytes. Brain Res 626:306-309.
  70. Levine CB, Fahrbach KR, Siderowf AD, Estok RP, Ludensky VM, Ross SD (2003) Diagnosis and treatment of Parkinson's disease: a systematic review of the literature. Evid Rep Technol Assess (Summ) 1-4.
  71. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15:6179-6188.
  72. Nyholm D, Nilsson Remahl AI, Dizdar N, Constantinescu R, Holmberg B, Jansson R, Aquilonius SM, Askmark H (2005) Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 64:216-223.
  73. Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59:64-74.
  74. Prinssen EP, Balestra W, Bemelmans FF, Cools AR (1994) Evidence for a role of the shell of the nucleus accumbens in oral behavior of freely moving rats. J Neurosci 14:1555-1562.
  75. McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870-876.
  76. Meredith GE, Farrell T, Kellaghan P, Tan Y, Zahm DS, Totterdell S (1999) Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur J Neurosci 11:3585-3596.
  77. Cenci MA, Lee CS, Björklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin-and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694-2706.
  78. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K, Parkinson Study G (2004) Levodopa and the progression of Parkinson's disease. N Engl J Med 351:2498-2508.
  79. Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187-231.
  80. Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson's disease. Mov Disord 25:1357-1363.
  81. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334:345-348.
  82. Bradley A (2002) Mining the mouse genome. Nature 420:512-514.
  83. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ, Group CS (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N Engl J Med 362:2077-2091.
  84. Lewy FH (1912) Paralysis agitans. I Pathologische Anatomie. In: Handbuch der Neurologie, vol. 3 (Lewandowski, M., ed), pp 920-933 Berlin: Springer.
  85. Lang AE, Lozano AM (1998) Parkinson's disease. Second of two parts. N Engl J Med 339:1130- 1143.
  86. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000b) Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23:S8-19.
  87. Muenter MD, Sharpless NS, Tyce GM, Darley FL (1977) Patterns of dystonia ("I-D-I" and "D-I- D-") in response to l-dopa therapy for Parkinson's disease. Mayo Clin Proc 52:163-174.
  88. Troiano AR, de la Fuente-Fernandez R, Sossi V, Schulzer M, Mak E, Ruth TJ, Stoessl AJ (2009) PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 72:1211-1216.
  89. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401-415.
  90. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485-493.
  91. Schmitt KC, Reith ME (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Annals of the New York Academy of Sciences 1187:316-340.
  92. Moore KE, Riegle GD, Demarest KT (1985) Regulation of tuberoinfundibular dopaminergic neurons: prolactin and inhibitory neuronal influences. In: Catecholamines as Hormone Regulators, pp 31-48 New York: Raven Press.
  93. Di Monte DA, McCormack A, Petzinger G, Janson AM, Quik M, Langston WJ (2000) Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Mov Disord 15:459-466.
  94. Oertel W, Berardelli A, Bloem B, Bonuccelli U, Burn D, Deuschl G, Dietrichs E, Fabbrini G, Ferreira J, Friedman A, Kanovsky P, Kostic V, Nieuwboer A, Odin P, Poewe W, Rascol O, Sampaio C, Schüpbach M, Tolosa E, Trenkwalder C (2011) Review of the therapeutic management of Parkinson's disease. In: European Handbook of Neurological Management, vol. 1 (Gilhus, N. B., MP. Brainin, M., ed), pp 217-236 Oxford: Wiley- Blackwell.
  95. Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 72:1516-1522.
  96. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197-211.
  97. Striatal tyrosine hydroxylase expressing interneurons are regulated in a mouse model of L-DOPA-induced dyskinesia. FENS, Forum of European Neuroscience, Barcelona, Spanien.
  98. Wade LA, Katzman R (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25:837-842.
  99. Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S (2000) The 4F2hc/LAT1 complex transports L- DOPA across the blood-brain barrier. Brain Res 879:115-121.
  100. Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM (1999) The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L- dopa in the MPTP-lesioned primate model of Parkinson's disease. Mov Disord 14:744- 753.
  101. Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27:494-506.
  102. Paxinos G, Franklin KB (2001) The Mouse Brain in Stereotaxic Coordinates. San Diego, California: Academic Press.
  103. Weihe E, Depboylu C, Schütz B, Schäfer MK, Eiden LE (2006) Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co- expression. Cell Mol Neurobiol 26:659-678.
  104. Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17:219-236.
  105. Tashiro Y, Sugimoto T, Hattori T, Uemura Y, Nagatsu I, Kikuchi H, Mizuno N (1989) Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat. Neurosci Lett 97:6- 10.
  106. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 29:577-580.
  107. Veröffentlichungen im Zusammenhang mit der hier vorliegenden Dissertation Wissenschaftliche Vorträge Brain Awareness Week -Dissertationswettbewerb (1. Preis), März 2014 in Marburg: " Die Rolle striataler Tyrosinhydroxylase-positiven Zellen bei L-DOPA-induzierten Dyskinesien der Maus " Publikationen [in Erst-bzw. Zweitrevision]
  108. Omote H, Moriyama Y (2013) Vesicular neurotransmitter transporters: an approach for studying transporters with purified proteins. Physiology (Bethesda, Md) 28:39-50.
  109. Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271-1283.
  110. Cenci MA, Lindgren HS (2007) Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 17:665-671.
  111. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease. Eur J Neurosci 15:120-132.
  112. Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574-579.
  113. Winkler C, Kirik D, Bjorklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165-186.
  114. Kirik D, Rosenblad C, Björklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259-277.
  115. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686-4700.
  116. Lundblad M, Picconi B, Lindgren H, Cenci MA (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16:110-123.
  117. Lundblad M, Usiello A, Carta M, Hakansson K, Fisone G, Cenci MA (2005) Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Exp Neurol 194:66-75.
  118. Carlsson T, Winkler C, Lundblad M, Cenci MA, Björklund A, Kirik D (2006) Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol Dis 21:657-668.
  119. Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA (2010) L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465-1476.
  120. Cenci MA, Lundblad M (2006) Post-versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99:381-392.
  121. Lindgren HS, Rylander D, Ohlin KE, Lundblad M, Cenci MA (2007) The "motor complication syndrome" in rats with 6-OHDA lesions treated chronically with L-DOPA: relation to dose and route of administration. Behav Brain Res 177:150-159.
  122. Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease. J Neurochem 101:483-497.
  123. Grealish S, Mattsson B, Draxler P, Bjorklund A (2010) Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson's disease. Eur J Neurosci 31:2266-2278.
  124. Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA (2011) Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson's disease. Neurobiol Dis 42:327-340.
  125. Iderberg H, Francardo V, Pioli EY (2012) Animal models of L-DOPA-induced dyskinesia: an update on the current options. Neuroscience 211:13-27.
  126. Halje P, Tamtè M, Richter U, Mohammed M, Cenci MA, Petersson P (2012) Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci 32:16541- 16551.
  127. Carlsson T (2007) Cell and Gene Therapy for Parkinson's Disease: Therapeutic Effect and Modulation of Dyskinesias in the 6-OHDA Rat Model. Lund, Schweden: Grahns Tryckeri AB.
  128. Carlsson T, Carta M, Winkler C, Björklund A, Kirik D (2007) Serotonin neuron transplants exacerbate L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. J Neurosci 27:8011-8022.
  129. Crosby NJ, Deane KH, Clarke CE (2003) Amantadine for dyskinesia in Parkinson's disease. Cochrane Database Syst Rev CD003467.
  130. Goetz CG, Damier P, Hicking C, Laska E, Müller T, Olanow CW, Rascol O, Russ H (2007) Sarizotan as a treatment for dyskinesias in Parkinson's disease: a double-blind placebo- controlled trial. Mov Disord 22:179-186.
  131. Mytilineou C, Han SK, Cohen G (1993) Toxic and protective effects of L-dopa on mesencephalic cell cultures. J Neurochem 61:1470-1478.
  132. Smith GA, Heuer A, Dunnett SB, Lane EL (2012) Unilateral nigrostriatal 6-hydroxydopamine lesions in mice II: predicting l-DOPA-induced dyskinesia. Behav Brain Res 226:281-292.
  133. Monville C, Torres EM, Pekarik V, Lane EL, Dunnett SB (2009) Genetic, temporal and diurnal influences on L-dopa-induced dyskinesia in the 6-OHDA model. Brain Res Bull 78:248- 253.
  134. Dodel RC, Berger K, Oertel WH (2001) Health-related quality of life and healthcare utilisation in patients with Parkinson's disease: impact of motor fluctuations and dyskinesias. Pharmacoeconomics 19:1013-1038.
  135. Schallert T, Lindner MD (1990) Rescuing neurons from trans-synaptic degeneration after brain damage: helpful, harmful, or neutral in recovery of function? Canadian journal of psychology 44:276-292.
  136. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J, German Parkinson Study Group NuS (2006) A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355:896-908.
  137. Devos D, Group FDS (2009) Patient profile, indications, efficacy and safety of duodenal levodopa infusion in advanced Parkinson's disease. Mov Disord 24:993-1000.
  138. Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 62:800-810.
  139. Goetz CG, Laska E, Hicking C, Damier P, Müller T, Nutt J, Warren Olanow C, Rascol O, Russ H (2008) Placebo influences on dyskinesia in Parkinson's disease. Mov Disord 23:700- 707.
  140. Ulusoy A, Sahin G, Kirik D (2010) Presynaptic dopaminergic compartment determines the susceptibility to L-DOPA-induced dyskinesia in rats. Proc Natl Acad Sci U S A 107:13159-13164.
  141. Eskow Jaunarajs KL, Angoa-Perez M, Kuhn DM, Bishop C (2011) Potential mechanisms underlying anxiety and depression in Parkinson's disease: consequences of l-DOPA treatment. Neuroscience and biobehavioral reviews 35:556-564.
  142. Guridi J, González-Redondo R, Obeso JA (2012) Clinical features, pathophysiology, and treatment of levodopa-induced dyskinesias in Parkinson's disease. Parkinsons Dis 2012:943159.
  143. DiCaudo C, Riverol M, Mundiñano IC, Ordoñez C, Hernández M, Marcilla I, Luquin MR (2012) Chronic levodopa administration followed by a washout period increased number and induced phenotypic changes in striatal dopaminergic cells in MPTP-monkeys. PLoS One 7:e50842.
  144. Nausieda PA, Glantz R, Weber S, Baum R, Klawans HL (1984) Psychiatric complications of levodopa therapy of Parkinson's disease. Adv Neurol 40:271-277.
  145. Melamed E, Zoldan J, Friedberg G, Ziv I, Weizmann A (1996) Involvement of serotonin in clinical features of Parkinson's disease and complications of L-DOPA therapy. Adv Neurol 69:545-550.
  146. Dodel RC, Singer M, Köhne-Volland R, Selzer R, Scholz W, Rathay B, Oertel WH (1997) [Cost of illness in Parkinson disease. A retrospective 3-month analysis of direct costs]. Nervenarzt 68:978-984.
  147. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 318:876-880.
  148. Fasano S, Bezard E, D'Antoni A, Francardo V, Indrigo M, Qin L, Doveró S, Cerovic M, Cenci MA, Brambilla R (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras- GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa- induced dyskinesia. Proc Natl Acad Sci U S A 107:21824-21829.
  149. Zhou FC, Bledsoe S, Murphy J (1991) Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain. Brain Res 556:108-116.
  150. Pardo B, Mena MA, Casarejos MJ, Paino CL, De Yebenes JG (1995) Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res 682:133-143.
  151. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107-110.
  152. Iwamoto ET, Loh HH, Way EL (1976) Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions. Eur J Pharmacol 37:339-356.
  153. Dubach M, Schmidt R, Kunkel D, Bowden DM, Martin R, German DC (1987) Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci Lett 75:205-210.
  154. Porritt MJ, Batchelor PE, Hughes AJ, Kalnins R, Donnan GA, Howells DW (2000) New dopaminergic neurons in Parkinson's disease striatum. Lancet 356:44-45.
  155. Linazasoro G (2005) New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci 26:391-397.
  156. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci 30:244-250.
  157. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo- pallidal 'hyperdirect' pathway. Neurosci Res 43:111-117.
  158. Ikemoto K, Nagatsu I, Kitahama K, Jouvet A, Nishimura A, Nishi K, Maeda T, Arai R (1998) A dopamine-synthesizing cell group demonstrated in the human basal forebrain by dual labeling immunohistochemical technique of tyrosine hydroxylase and aromatic L-amino acid decarboxylase. Neurosci Lett 243:129-132.
  159. Keber U, Klietz M, Carlsson C, Oertel WH, Weihe E, Schäfer M, Höglinger GU, Depboylu C (2014). Striatal tyrosine hydroxylase-positive neurons are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Neuropharmacology.
  160. Cossette M, Lecomte F, Parent A (2005) Morphology and distribution of dopaminergic neurons intrinsic to the human striatum. J Chem Neuroanat 29:1-11.
  161. Meissner W, Ravenscroft P, Reese R, Harnack D, Morgenstern R, Kupsch A, Klitgaard H, Bioulac B, Gross CE, Bezard E, Boraud T (2006) Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6- OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol Dis 22:586-598.
  162. Navailles S, Bioulac B, Gross C, De Deurwaerdere P (2010) Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson's disease. Neurobiol Dis 38:136-143.
  163. Obeso JA, Olanow CW, Nutt JG (2000a) Levodopa motor complications in Parkinson's disease. Trends Neurosci 23:S2-7.
  164. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. In: Lancet Neurol, vol. 5, pp 525-535 England.
  165. Everett GM, Borcherding JW (1970) L-dopa: effect on concentrations of dopamine, norepinephrine, and serotonin in brains of mice. Science (New York, NY) 168:849-850.
  166. Olanow CW, Agid Y, Mizuno Y, Albanese A, Bonuccelli U, Damier P, De Yebenes J, Gershanik O, Guttman M, Grandas F, Hallett M, Hornykiewicz O, Jenner P, Katzenschlager R, Langston WJ, LeWitt P, Melamed E, Mena MA, Michel PP, Mytilineou C, Obeso JA, Poewe W, Quinn N, Raisman-Vozari R, Rajput AH, Rascol O, Sampaio C, Stocchi F (2004) Levodopa in the treatment of Parkinson's disease: current controversies. Mov Disord 19:997-1005.
  167. Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, Jenner P (2010) Morphological changes in serotoninergic neurites in the striatum and globus pallidus in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol Dis 40:599-607.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten