Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen an AlGaInN-basierten Laserdioden im sichtbaren Spektralbereich
Autor:Hager, Thomas
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0588
DOI: https://doi.org/10.17192/z2014.0588
URN: urn:nbn:de:hebis:04-z2014-05887
DDC: Physik
Titel (trans.):Analyses of AlGaInN based laser diodes within the visible spectral range
Publikationsdatum:2014-09-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ladungsträgertransport, Nitride, InGaN, Laser, Nitride, carrier transport, Elektronischer Transport, InGaN, Laser

Zusammenfassung:
Ziel dieser Arbeit war die physikalischen Ursachen des unterschiedlichen Verhaltens grüner Laserdioden im Vergleich zu blauen Bauelementen zu identifizieren. Aus diesem Grund wurden zunächst die elektro-optischen Eigenschaften von blauen und grünen InGaN-basierten Laserdioden mit Hilfe gepulster L-I-Kennlinien analysiert und miteinander verglichen. Dabei zeigte sich, dass der grüne Laser Abweichungen von dem idealen Verhalten eines Halbleiterlasers aufweist. Während weder die internen Verluste noch die Injektionseffizienz (ηinj) beider Lasertypen eine explizite Temperaturabhängigkeit im Bereich von 10-90°C aufweisen, zeigt sich im Bezug auf die Stromabhängigkeit der Injektionseffizienz ein unterschiedliches Verhalten. Bei blauen InGaN-Laserdioden kann die Injektionseffizienz als konstant angesehen werden, wohingegen ηinj bei grünen Bauteilen eine stromabhängige Abnahme aufweist. Diese konnte mit einem unzureichenden Einfang der Ladungsträger in die Quantenfilme korreliert werden. Anschließend wurde mit Hilfe von Teststrukturen untersucht, ob die Reduktion der Injektionseffizienz durch ein Überschießen von Elektronen oder Löchern verursacht wird. Durch die Variation des Aluminiumgehaltes in der Elektronenbarriere (EBL) wurde der unzureichende Einfang von Elektronen in die Quantenfilme nachgewiesen. Obwohl die Qualität der EBL einen drastischen Einfluss auf die Absolutwerte der Injektionseffizienz hat, zeigte sich jedoch keine Auswirkung auf die relative Abnahme von ηinj als Funktion des Stroms. Stattdessen konnte durch eine Teststruktur mit n-seitiger InGaN-Detektionsschicht ein stromabhängiges Überschießen von Löchern nachgewiesen werden. Um den Einfluss der stromabhängigen Injektionseffizienz auf die Laserschwelle, insbesondere den temperaturabhängigen Anstieg, zu analysieren, wurden die entsprechenden Einflussgrößen im weiteren Verlauf der Arbeit experimentell quantifiziert und es wurde ein empirisches Modell für die Laserschwelle hergeleitet. Die optische Verstärkung wurde für unterschiedliche Temperaturen und Betriebsströme mit Hilfe von Hakki-Paoli-Messungen untersucht. Für die Herleitung einer Schwellbedingung ist jedoch die Verstärkung als Funktion der Ladungsträgerdichte notwendig. Die für die Umrechnung des Stroms in Ladungsträgerdichte erforderlichen Rekombinationsparameter wurden für Temperaturen von 25 bis 80°C bestimmt. Die experimentellen Daten der Hakki-Paoli-Messungen wurden genutzt, um die physikalischen Parameter eines linearen Gewinnmodells zu bestimmen, insbesondere die Temperaturabhängigkeit der Transparenzladungsträgerdichte und des differentiellen Gewinns. Auf der Grundlage dieses Parametersatzes wurden dann die Einflussgrößen des temperaturabhängigen Schwellanstiegs anhand der Schwellbedingung, basierend auf dem linearen Gewinnmodell, hergeleitet. Somit konnte die Ladungsträgerlebensdauer, welche in dem betreffenden Operationsregime maßgeblich durch Auger-Verluste dominiert ist, als Hauptursache für den temperaturabhängigen Schwellstromanstieg identifiziert werden. Um die Langzeitstabilität der Injektionseffizienz zu untersuchen, wurden zunächst die Beschleunigungsfaktoren der Degradation grüner Laserdioden untersucht. Es zeigte sich, dass die Alterung der Bauteile elektro-thermisch aktiviert ist und sich damit vergleichbar zu dem Degradationsmechanismus von Blu-Ray Lasern verhält. Durch die Alterung einer grünen Laserdiode im Wechsel zwischen zwei unterschiedlichen Betriebszuständen, bei denen die Temperatur der aktiven Zone konstant gehalten wurde, konnte der Strom als dominierender Einflussfaktor identifiziert werden. Während des elektrischen Betriebs zeigt die Schwelle einen wurzelförmigen Anstieg, welcher bereits von blauen Laserdioden bekannt ist. Die Steilheit und damit auch die Injektionseffizienz oberhalb der Schwelle nehmen jedoch während der Degradation nicht ab. Auch die optische Verstärkung, welche durch Hakki-Paoli-Messungen vor bzw. nach Degradation charakterisiert wurde, bleibt unverändert. Allerdings konnte nachgewiesen werden, dass die Ladungsträgerdichte in den Quantenfilmen während des Betriebs abnimmt. Basierend auf den im Rahmen dieser Arbeit bestimmten Rekombinationsparametern konnte abgeschätzt werden, dass sich die Rate der defekt-assistierten Rekombinationsprozesse in den Quantenfilmen verdreifachen müsste, um die experimentell beobachtete Zunahme der Schwelle um 20% zu erklären. Dies ist unwahrscheinlich und konnte durch einen Vergleich des experimentell bestimmten EL-Verhaltens einer grünen Laserdiode unterhalb der Schwelle vor bzw. nach der Alterung mit berechneten Kennlinien als Ursache ausgeschlossen werden. In den Untersuchungen des Ladungsträgertransportes wurde gezeigt, dass auch außerhalb der Quantenfilme eine nicht zu vernachlässigende Ladungsträgerdichte existiert. Die Degradation muss somit nicht auf die Quantenfilme beschränkt sein.

Bibliographie / References

  1. Shen, Y.C. ; Mueller, G.O. ; Watanabe, S. ; Gardner, N.F. ; Munk- holm, A. ; Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. In: Applied Physics Letters 91 (2007), S. 141101
  2. Iveland, Justin ; Martinelli, Lucio ; Peretti, Jacques ; Speck, James S. ; Weisbuch, Claude: Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop. In: Physical review letters 110 (2013), Nr. 17, S. 177406
  3. Nakamura, Shuji ; Pearton, Stephen ; Fasol, Gerhard: The blue laser diode: the complete story. Springer, 2000
  4. Coldren, L. A. ; Corzine, S. W. ; Chang, Kai (Hrsg.): Diode Lasers and Photonic Integrated Circuits. Wiley-Interscience, WILEY SERIES IN MICRO- WAVE AND OPTICAL ENGINEERING, 1995
  5. Piprek, Joachim ; Sink, R K. ; Hansen, Monica A. ; Bowers, John E. ; DenBaars, Steven P.: Simulation and optimization of 420-nm InGaN/GaN laser diodes. In: Symposium on Integrated Optoelectronics International So- ciety for Optics and Photonics, 2000, S. 28–39
  6. Chichibu, Shigefusa F. ; Uedono, Akira ; Onuma, Takeyoshi ; Haskell, Benjamin A. ; Chakraborty, Arpan ; Koyama, Takahiro ; Fini, Paul T. ; Keller, Stacia ; Denbaars, Steven P. ; Speck, James S. u. a.: Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors. In: Nature materials 5 (2006), Nr. 10, S. 810–816
  7. Piprek, Joachim ; Piprek, Joachim (Hrsg.): Nitride Semiconductor Devices -Principles and Simulation. Wiley-VCH Verlag, 2007
  8. Hangleiter, A. ; Fuhrmann, D. ; Grewe, M. ; Hitzel, F. ; Kle- wer, G. ; Lahmann, S. ; Netzel, C. ; Riedel, N. ; Rossow, U.: Towards understanding the emission efficiency of nitride quan- tum wells. In: physica status solidi (a) 201 (2004), Nr. 12, 2808– 2813. http://dx.doi.org/10.1002/pssa.200405051. – DOI 10.1002/ps- sa.200405051. – ISSN 1521–396X
  9. Rumbolz, C. ; Brüderl, G. ; Leber, A. ; Eichler, C. ; Furitsch, M. ; Avramescu, A. ; Miler, A. ; Lell, A. ; Strauss, U. ; Härle, V.: Development of AlInGaN based blueviolet lasers on GaN and SiC substrates. In: physica status solidi (a) 203 (2006), Nr. 7, 1792– 1796. http://dx.doi.org/10.1002/pssa.200565320. – DOI 10.1002/ps- sa.200565320. – ISSN 1862–6319
  10. Peter, Matthias ; Laubsch, Ansgar ; Bergbauer, Werner ; Meyer, Tobias ; Sabathil, Matthias ; Baur, Johannes ; Hahn, Berthold: New develop- ments in green LEDs. In: physica status solidi (a) 206 (2009), Nr. 6, 1125– 1129. http://dx.doi.org/10.1002/pssa.200880926. – DOI 10.1002/ps- sa.200880926. – ISSN 1862–6319
  11. Lermer, Teresa ; Schillgalies, Marc ; Breidenassel, Andreas ; Queren, Desiree ; Eichler, Christoph ; Avramescu, Adrian ; Mueller, Jens ; Schei- benzuber, Wolfgang ; Schwarz, Ulrich ; Lutgen, Stephan ; Strauss, Uwe: Waveguide design of green InGaN laser diodes. In: physica status solidi (a) 207 (2010), Nr. 6, 1328–1331. http://dx.doi.org/10.1002/pssa.200983410. – DOI 10.1002/pssa.200983410. – ISSN 1862–6319
  12. Miyoshi, Takashi ; Masui, Shingo ; Okada, Takeshi ; Yanamo- to, Tomoya ; Kozaki, Tokuya ; Nagahama, Shin-ichi ; Mukai, Ta- kashi: InGaN-based 518 and 488nm laser diodes on c-plane GaN substrate. In: physica status solidi (a) 207 (2010), Nr. 6, 1389– 1392. http://dx.doi.org/10.1002/pssa.200983446. – DOI 10.1002/ps- sa.200983446. – ISSN 1862–6319
  13. Müller, Jens ; Strauss, Uwe ; Lermer, Teresa ; Brüderl, Georg ; Eich- ler, Christoph ; Avramescu, Adrian ; Lutgen, Stephan: Investigation of long wavelength green InGaN lasers on c-plane GaN up to 529nm conti- nuous wave operation. In: physica status solidi (a) 208 (2011), Nr. 7, 1590– 1592. http://dx.doi.org/10.1002/pssa.201000948. – DOI 10.1002/ps- sa.201000948. – ISSN 1862–6319
  14. Strittmatter, Andr ; Northrup, John E. ; Johnson, Noble M. ; Kisin, Mikhail V. ; Spiberg, Philippe ; El-Ghoroury, Hussein ; Usikov, Alexander ; Syrkin, Alexander: Semi-polar nitride surfa- ces and heterostructures. In: physica status solidi (b) 248 (2011), Nr. 3, 561–573. http://dx.doi.org/10.1002/pssb.201046422. – DOI 10.1002/pssb.201046422. – ISSN 1521–3951
  15. Danhof, J. ; Solowan, H.-M. ; Schwarz, U.T. ; Kaneta, A. ; Kawakami, Y. ; Schiavon, D. ; Meyer, T. ; Peter, M.: Lateral charge carrier diffusion in InGaN quantum wells. In: physica status solidi (b) 249 (2012), Nr. 3, S. 480–484
  16. Laubsch, Ansgar ; Sabathil, Matthias ; Bergbauer, Werner ; Strass- burg, Martin ; Lugauer, Hans ; Peter, Matthias ; Lutgen, Ste- phan ; Linder, Norbert ; Streubel, Klaus ; Hader, Jörg ; Molo- ney, Jerome V. ; Pasenow, Bernhard ; Koch, Stephan W.: On the origin of IQE-droop in InGaN LEDs. In: physica status solidi (c) 6 (2009), S913–S916. http://dx.doi.org/10.1002/pssc.200880950. – DOI 10.1002/pssc.200880950. – ISSN 1610–1642
  17. Galler, B. ; Sabathil, M. ; Laubsch, A. ; Meyer, T. ; Ho- eppel, L. ; Kraeuter, G. ; Lugauer, H. ; Strassburg, M. ; Peter, M. ; Biebersdorf, A. ; Steegmueller, U. ; Hahn, B.: Green high-power light sources using InGaN multi-quantum-well structu- res for full conversion. In: physica status solidi (c) 8 (2011), Nr. 7- 8, 2369–2371. http://dx.doi.org/10.1002/pssc.201001065. – DOI 10.1002/pssc.201001065. – ISSN 1610–1642
  18. Galler, B. ; Laubsch, A. ; Wojcik, A. ; Lugauer, H. ; Gomez-Iglesias, A. ; Sabathil, M. ; Hahn, B.: Investigation of the carrier distribution in InGaN-based multi-quantum-well structures. In: physica status solidi (c) 8 (2011), Nr. 7-8, S. 2372–2374
  19. Wickenden, A.E. ; Rowland, L.B. ; Doverspike, K. ; Gaskill, D.K. ; Freitas, J.A. ; Simons, D.S. ; Chi, P.H.: Doping of gallium nitride using disilane. In: Journal of electronic materials 24 (1995), Nr. 11, S. 1547–1550
  20. Keller, Stacia ; DenBaars, Steven P.: Metalorganic chemical vapor depo- sition of group III nitridesa discussion of critical issues. In: Journal of crystal growth 248 (2003), S. 479–486
  21. Gotz, W. ; Johnson, N.M. ; Chen, C. ; Liu, H. ; Kuo, C. ; Imler, W.: Activation energies of Si donors in GaN. In: Applied Physics Letters 68 (1996), Nr. 22, S. 3144–3146. http://dx.doi.org/10.1063/1.115805. – DOI 10.1063/1.115805. – ISSN 0003–6951
  22. Tsen, K.T. ; Joshi, R.P. ; Ferry, D.K. ; Botchkarev, A. ; Sverdlov, B. ; Salvador, A. ; Morkoç, H.: Nonequilibrium electron distributions and phonon dynamics in wurtzite GaN. In: Applied physics letters 68 (1996), Nr. 21, S. 2990–2992
  23. Nakamura, Shuji ; Senoh, Masayuki ; Nagahama, Shin ; Iwasa, Na- ruhito ; Yamada, Takao ; Matsushita, Toshio ; Sugimoto, Yasunobu ; Kiyoku, Hiroyuki: Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. In: Applied Physics Letters 69 (1996), Nr. 26, 4056-4058. http://dx.doi.org/10.1063/1.117816. – DOI 10.1063/1.117816
  24. Nakamura, Shuji ; Senoh, Masayuki ; Nagahama, Shin?ichi ; Iwa- sa, Naruhito ; Yamada, Takao ; Matsushita, Toshio ; Sugimoto, Ya- sunobu ; Kiyoku, Hiroyuki: Room-temperature continuous-wave operati- on of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours. In: Applied Physics Letters 70 (1997), Nr. 11, S. 1417–1419. http://dx.doi.org/10.1063/1.118593. – DOI 10.1063/1.118593. – ISSN 0003–6951
  25. Ellmers, C. ; Girndt, A. ; Hofmann, M. ; Knorr, A. ; Rühle, W. W. ; Jahnke, F. ; Koch, S. W. ; Hanke, C. ; Korte, L. ; Hoyler, C.: Measu- rement and calculation of gain spectra for (GaIn)As/(AlGa)As single quan- tum well lasers. In: Applied Physics Letters 72 (1998), Nr. 13, 1647-1649. http://dx.doi.org/10.1063/1.121140. – DOI 10.1063/1.121140
  26. Eliseev, Petr G. ; Osinski, Marek ; Li, Hua ; Akimova, Irina V.: Recom- bination balance in green-light-emitting GaN/InGaN/AlGaN quantum wells. In: Applied Physics Letters 75 (1999), Nr. 24, S. 3838–3840
  27. Hansen, M. ; Piprek, J. ; Pattison, P.M. ; Speck, J.S. ; Nakamura, S. ; DenBaars, S.P.: Higher efficiency InGaN laser diodes with an im- proved quantum well capping configuration. In: Applied Physics Letters 81 (2002), Nr. 22, S. 4275–4277. http://dx.doi.org/10.1063/1.1524690. – DOI 10.1063/1.1524690. – ISSN 0003–6951
  28. Vurgaftman, I. ; Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. In: Journal of Applied Physics 94 (2003), Nr. 6, S. 3675– 3696. http://dx.doi.org/10.1063/1.1600519. – DOI 10.1063/1.1600519. – ISSN 0021–8979
  29. Hakki, Basil W. ; Paoli, Thomas L.: cw degradation at 300 K of GaAs double- heterostructure junction lasers. II. Electronic gain. In: Journal of Applied Physics 44 (1973), Nr. 9, S. 4113–4119
  30. Ni, Xianfeng ; Fan, Qian ; Shimada, Ryoko ; ¨ OzgürOzgür¨ Ozgür¨Umit ; Morkoç, Ha- dis: Reduction of efficiency droop in InGaN light emitting diodes by cou- pled quantum wells. In: Applied Physics Letters 93 (2008), Nr. 17, 171113. http://dx.doi.org/10.1063/1.3012388. – DOI 10.1063/1.3012388 [98] ¨ Ozgür, ¨ U. ; Ni, X. ; Li, X. ; Lee, J. ; Liu, S. ; Okur, S. ; Avrutin, V. ; Matulionis, A. ; Morkoc, H.: Ballistic transport in InGaN-based LEDs: impact on efficiency. In: Semiconductor Science and Technology 26 (2011), Nr. 1, S. 014022
  31. Han, Sang-Heon ; Lee, Dong-Yul ; Lee, Sang-Jun ; Cho, Chu-Young ; Kwon, Min-Ki ; Lee, S. P. ; Noh, D.Y. ; Kim, Dong-Joon ; Kim, Yong-Chun ; Park, Seong-Ju: Effect of electron blocking layer on ef- ficiency droop in InGaN/GaN multiple quantum well light-emitting di- odes. In: Applied Physics Letters 94 (2009), Nr. 23, S. 231123–231123–3. http://dx.doi.org/10.1063/1.3153508. – DOI 10.1063/1.3153508. – ISSN 0003–6951
  32. Hvam, J. M.: Direct recording of optical-gain spectra from ZnO.
  33. Van Opdorp, C ; Hooft, GW t: Method for determining effective nonradia- tive lifetime and leakage losses in double-heterostructure lasers. In: Journal of Applied Physics 52 (1981), Nr. 6, S. 3827–3839
  34. Kim, Hee-Jin ; Choi, Suk ; Kim, Seong-Soo ; Ryou, Jae-Hyun ; Yoder, P. D. ; Dupuis, Russell D. ; Fischer, Alec M. ; Sun, Kewei ; Ponce, Fer- nando A.: Improvement of quantum efficiency by employing active-layer- friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes. In: Applied Physics Letters 96 (2010), Nr. 10, S. 101102–101102–3. http://dx.doi.org/10.1063/1.3353995. – DOI 10.1063/1.3353995. – ISSN 0003–6951
  35. Schubert, Martin F. ; Schubert, E F.: Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells. In: Applied Physics Letters 96 (2010), Nr. 13, S. 131102–131102
  36. Hader, J ; Moloney, JV ; Koch, SW: Density-activated defect recombina- tion as a possible explanation for the efficiency droop in GaN-based diodes. In: SPIE OPTO International Society for Optics and Photonics, 2011, S. 79540H– 79540H
  37. Lyons, J. L. ; Janotti, A. ; Van de Walle, C.G.: Carbon impurities and the yellow luminescence in GaN. In: Applied Physics Letters 97 (2010), Nr. 15, S. 152108–152108–3. http://dx.doi.org/10.1063/1.3492841. – DOI 10.1063/1.3492841. – ISSN 0003–6951
  38. Meneghini, M. ; Trivellin, N. ; Orita, K. ; Takigawa, S. ; Tanaka, T. ; Ueda, D. ; Meneghesso, G. ; Zanoni, E.: Degradation of InGaN-based laser diodes analyzed by means of electrical and optical measurements. In: Applied Physics Letters 97 (2010), Nr. 26, S. 263501–263501
  39. Lermer, T. ; Gomez-Iglesias, A. ; Sabathil, M. ; Müller, J. ; Lutgen, S. ; Strauss, U. ; Pasenow, B. ; Hader, J. ; Moloney, J. V. ; Koch, S. W. ; Scheibenzuber, W. ; Schwarz, U. T.: Gain of blue and cyan InGaN laser diodes. In: Applied Physics Letters 98 (2011), Nr. 2, 021115. http://dx.doi.org/10.1063/1.3541785. – DOI 10.1063/1.3541785
  40. Kioupakis, Emmanouil ; Rinke, Patrick ; Delaney, K.T. ; Van de Wal- le, Chris G.: Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. In: Applied Physics Letters 98 (2011), Nr. 16, S. 161107–161107–3. http://dx.doi.org/10.1063/1.3570656. – DOI 10.1063/1.3570656. – ISSN 0003–6951
  41. Zhang, Yun ; Kao, Tsung-Ting ; Liu, Jianping ; Lochner, Zachary ; Kim, Seong-Soo ; Ryou, Jae-Hyun ; Dupuis, Russell D. ; Shen, Shyh-Chiang: Ef- fects of a step-graded AlxGa1-xN electron blocking layer in InGaN-based laser diodes. In: Journal of Applied Physics 109 (2011), Nr. 8, S. 083115–083115–5. http://dx.doi.org/10.1063/1.3581080. – DOI 10.1063/1.3581080. – ISSN 0021–8979
  42. Dorsaz, J. ; Boiko, D.L. ; Sulmoni, L. ; Carlin, J-F ; Scheibenzuber, W.G. ; Schwarz, U.T. ; Grandjean, N.: Optical bistability in InGaN- based multisection laser diodes. In: Applied Physics Letters 98 (2011), Nr. 19, S. 191115–191115–3. http://dx.doi.org/10.1063/1.3591977. – DOI 10.1063/1.3591977. – ISSN 0003–6951
  43. Meneghini, Matteo ; De Santi, C. ; Trivellin, Nicola ; Orita, Kenji ; Takigawa, Shinichi ; Tanaka, Tsuyoshi ; Ueda, D. ; Meneghesso, G. ; Zanoni, E.: Investigation of the deep level involved in InGaN laser degradation by deep level transient spectroscopy. In: Applied Physics Letters 99 (2011), Nr. 9, S. 093506–093506
  44. Yang, Wei ; Li, Ding ; Liu, Ningyang ; Chen, Zhao ; Wang, Lei ; Liu, Lei ; Li, Lei ; Wan, Chenghao ; Chen, Weihua ; Hu, Xiaodong ; Du, Weimin: Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser di- odes. In: Applied Physics Letters 100 (2012), Nr. 3, S. 031105–031105–5. http://dx.doi.org/10.1063/1.3678197. – DOI 10.1063/1.3678197. – ISSN 0003–6951
  45. Jain, S.C. ; Willander, M. ; Narayan, J. ; Overstraeten, R.Van: III nitrides: Growth, characterization, and properties. In: Journal of Applied Phy- sics 87 (2000), Nr. 3, S. 965–1006. http://dx.doi.org/10.1063/1.371971. – DOI 10.1063/1.371971. – ISSN 0021–8979
  46. Galler, B. ; Drechsel, P. ; Monnard, R. ; Rode, P. ; Stauss, P. ; Fro- ehlich, S. ; Bergbauer, W. ; Binder, M. ; Sabathil, M. ; Hahn, B. u. a.: Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates. In: Applied Physics Letters 101 (2012), Nr. 13, S. 131111–131111
  47. Hager, T. ; Brüderl, G. ; Lermer, T. ; Tautz, S. ; Gomez-Iglesias, A. ; Müller, J. ; Avramescu, A. ; Eichler, C. ; Gerhard, S. ; Strauss, U.: Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes. In: Applied Physics Letters 101 (2012), Nr. 17, 171109. http://dx.doi.org/10.1063/1.4764067. – DOI 10.1063/1.4764067
  48. Hager, T ; Binder, M ; Brüderl, G ; Eichler, C ; Avramescu, A ; Wurm, T ; Gomez-Iglesias, A ; Stojetz, B ; Tautz, S ; Galler, B u. a.: Carrier transport in green AlInGaN based structures on c-plane substrates. In: Applied Physics Letters 102 (2013), S. 231102
  49. People, R. ; Bean, J. C.: Calculation of critical layer thickness versus latti- ce mismatch for GeSi/Si strained-layer heterostructures. In: Applied Physics Letters 47 (1985), Nr. 3, 322-324. http://dx.doi.org/10.1063/1.96206. – DOI 10.1063/1.96206
  50. Narukawa, Yukio ; Ichikawa, Masatsugu ; Sanga, Daisuke ; Sano, Masa- hiko ; Mukai, Takashi: White light emitting diodes with super-high luminous efficacy. In: Journal of Physics D: Applied Physics 43 (2010), Nr. 35, S. 354002
  51. Melo, T. ; Hu, Y-L ; Weisbuch, C. ; Schmidt, M. C. ; David, Ellis B. A ; Poblenz, C ; Lin, Y-D ; Krames, M. R. ; Raring, J. W.: Gain compa- rison in polar and nonpolarsemipolar gallium-nitride-based laser diodes. In: Semiconductor Science and Technology 27 (2012), Nr. 2, S. 024015. – IOP Publishing
  52. Shockley, W. ; Read, W. T.: Statistics of the Recombinati- ons of Holes and Electrons. In: Phys. Rev. 87 (1952), Sep, 835– 842. http://dx.doi.org/10.1103/PhysRev.87.835. – DOI 10.1103/Phys- Rev.87.835
  53. Kaufmann, U. ; Kunzer, M. ; Obloh, H. ; Maier, M. ; Manz, Ch. ; Ra- makrishnan, A. ; Santic, B.: Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. In: Phys. Rev. B 59 (1999), Feb, 5561–5567. http://dx.doi.org/10.1103/PhysRevB.59.5561. – DOI 10.1103/PhysRevB.59.5561
  54. Kioupakis, Emmanouil ; Rinke, Patrick ; Schleife, André ; Bechs- tedt, Friedhelm ; Van de Walle, Chris G.: Free-carrier absorption in nitrides from first principles. In: Phys. Rev. B 81 (2010), Jun, 241201. http://dx.doi.org/10.1103/PhysRevB.81.241201. – DOI 10.1103/Phys- RevB.81.241201
  55. Wetzel, C. ; Suski, T. ; Ager III, J. W. ; Weber, E. R. ; Haller, E. E. ; Fischer, S. ; Meyer, B. K. ; Molnar, R. J. ; Perlin, P.: Pressure Induced Deep Gap State of Oxygen in GaN. In: Phys. Rev. Lett. 78 (1997), May, 3923–3926. http://dx.doi.org/10.1103/PhysRevLett.78.3923. – DOI 10.1103/PhysRevLett.78.3923
  56. Horio, K. ; Yanai, H.: Numerical modeling of heterojunctions including the thermionic emission mechanism at the heterojunction interface. In: Electron Devices, IEEE Transactions on 37 (1990), Nr. 4, S. 1093–1098
  57. Meneghini, M. ; Trivellin, N. ; Trevisanello, L.-R. ; Orita, K. ; Yuri, M. ; Ueda, D. ; Zanoni, E. ; Meneghesso, G.: Role of non-radiative recom- bination in the degradation of InGaN-based laser diodes. In: Electron Devices Meeting, 2008. IEDM 2008. IEEE International IEEE, 2008, S. 1–4
  58. Heinen, B. ; Zhang, Fan ; Sparenberg, M. ; Kunert, B. ; Koch, M. ; Stolz, W.: On the Measurement of the Thermal Resistan- ce of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs). In: IEEE Journal of Quantum Electronics 48 (2012), july, Nr. 7, S. 934 –940. http://dx.doi.org/10.1109/JQE.2012.2196678. – DOI
  59. Wunsch, D.C. ; Bell, R.R.: Determination of threshold failure levels of semi- conductor diodes and transistors due to pulse voltages. In: IEEE Transactions on Nuclear Science 15 (1968), Nr. 6, S. 244–259
  60. Hager, Thomas ; Strauss, Uwe ; Eichler, Christoph ; Vierheilig, Cle- mens ; Tautz, Sönke ; Brüderl, Georg ; Stojetz, Bernhard ; Wurm, Teresa ; Avramescu, Adrian ; Somers, Andre ; Ristic, Jelena ; Gerhard, Sven ; Lell, Alfred ; Morgott, Stefan ; Mehl, Oliver: Power blue and green laser diodes and their applications. In: Proc SPIE 8640 (2013), 86400G-86400G-8. http://dx.doi.org/10.1117/12.2006220. – DOI 10.1117/12.2006220
  61. Tomiya, Shigetaka ; Goto, Osamu ; Ikeda, Masao: Structural defects and degradation of high-power pure-blue GaN-based laser diodes. In: Integrated Optoelectronic Devices 2008 International Society for Optics and Photonics (2008), 68940N-68940N-6. http://dx.doi.org/10.1117/12.767769. – DOI 10.1117/12.767769
  62. Schwarz, Ulrich T.: Emission of biased green quantum wells in time and wavelength domain. In: Proc.SPIE7216 Gallium Nitride Materials and Devices IV (2009), 72161U-72161U-13. http://dx.doi.org/10.1117/12.803932. – DOI 10.1117/12.803932
  63. Redaelli, L. ; Martens, M. ; Piprek, J. ; Wenzel, H. ; Netzel, C. ; Linke, A. ; Flores, Yu V. ; Einfeldt, S. ; Kneissl, M. ; Tränkle, G.: Effect of ridge waveguide etch depth on laser threshold of InGaN MQW laser diodes. In: SPIE OPTO International Society for Optics and Photonics, 2012, S. 826219–826219
  64. Sizov, Dmitry ; Bhat, Rajaram ; Song, Kechang ; Allen, Do- nald ; Paddock, Barry ; Coleman, Sean ; Hughes, Lawrence C. ; Zah, Chung en: 60mW Pulsed and Continuous Wave Opera- tion of GaN-Based Semipolar Green Laser with Characteristic Tem- perature of 190K. In: Applied Physics Express 4 (2011), Nr. 10, 102103. http://dx.doi.org/10.1143/APEX.4.102103. – DOI 10.1143/APEX.4.102103
  65. Scheibenzuber, Wolfgang G. ; Schwarz, Ulrich T.: Unequal Pumping of Quantum Wells in GaN-Based Laser Diodes. In: Applied Physics Express 042103 5 (2012), S. 2
  66. Yanashima, Katsunori ; Nakajima, Hiroshi ; Tasai, Kunihiko ; Naga- numa, Kaori ; Fuutagawa, Noriyuki ; Takiguchi, Yoshiro ; Hamagu- chi, Tatsushi ; Ikeda, Masao ; Enya, Yohei ; Takagi, Shimpei ; Ada- chi, Masahiro ; Kyono, Takashi ; Yoshizumi, Yusuke ; Sumitomo, Ta- kamichi ; Yamanaka, Yuichiro ; Kumano, Tetsuya ; Tokuyama, Sh- inji ; Sumiyoshi, Kazuhide ; Saga, Nobuhiro ; Ueno, Masaki ; Kata- yama, Koji ; Ikegami, Takatoshi ; Nakamura, Takao: Long-Lifetime True Green Laser Diodes with Output Power over 50 mW above 525 nm Grown on Semipolar {20 ¯ 21} GaN Substrates. In: Applied Physics Express 5 (2012), Nr. 8, 082103. http://dx.doi.org/10.1143/APEX.5.082103. – DOI 10.1143/APEX.5.082103
  67. Hacke, Peter ; Maekawa, Atsuyoshi ; Koide, Norikatsu ; Hiramatsu, Ka- zumasa ; Sawaki, Nobuhiko: Characterization of the Shallow and Deep Levels in Si Doped GaN Grown by Metal-Organic Vapor Phase Epitaxy. In: Japa- nese Journal of Applied Physics 33 (1994), Nr. Part 1, No. 12A, 6443-6447. http://dx.doi.org/10.1143/JJAP.33.6443. – DOI 10.1143/JJAP.33.6443
  68. Nakamura, Shuji ; Mukai, Takashi ; Senoh, Masayuki: High- Power GaN P-N Junction Blue-Light-Emitting Diodes. In: Japa- nese Journal of Applied Physics 30 (1991), Nr. Part 2, No. 12A, L1998-L2001. http://dx.doi.org/10.7567/JJAP.30.L1998. – DOI 10.7567/JJAP.30.L1998
  69. Trivellin, Nicola ; Meneghini, Matteo ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Orita, Kenji ; Yuri, Masaaki ; Tanaka, Tsuyos- hi ; Ueda, Daisuke: Reliability analysis of InGaN Blu-Ray laser di- ode. In: Microelectronics Reliability 49 (2009), Nr. 911, 1236 -1239. http://dx.doi.org/http://dx.doi.org/10.1016/j.microrel.2009.07.002.
  70. Hall, Re. N.: Electron-hole recombination in germanium. In: Physical Review 87 (1952), Nr. 2, S. 387
  71. Ryu, H.Y. ; Ha, K.H. ; Son, J.K. ; Lee, S.N. ; Paek, H.S. ; Jang, T. ; Sung, Y.J. ; Kim, K.S. ; Kim, H.K. ; Park, Y. u. a.: Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics. In: Applied Physics Letters 93 (2008), Nr. 1, S. 011105–011105
  72. Peter, Y. Y. ; Cardona, Manuel: Fundamentals of semiconductors: physics and materials properties. Springer, 2010
  73. Funato, Mitsuru ; Ueda, Masaya ; Inoue, Daisuke ; Kawakami, Yoichi ; Narukawa, Yukio ; Mukai, Takashi: Experimental and theoretical conside- rations of polarization field direction in semipolar InGaN/GaN quantum wells. In: Applied Physics Express 3 (2010), Nr. 7, S. 1001
  74. Sheu, J.K. ; Chi, G.C. ; Jou, M.J.: Enhanced output power in an InGaN- GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer. In: Photonics Technology Letters, IEEE 13 (2001), Nr. 11, S. 1164–1166
  75. Miller, D. A. B. ; Chemla, D. S. ; Damen, T. C. ; Gossard, A. C. ; Wiegmann, W. ; Wood, T. H. ; Burrus, C. A.: Band- Edge Electroabsorption in Quantum Well Structures: The Quantum- Confined Stark Effect. In: Phys. Rev. Lett. 53 (1984), Nov, 2173–2176.
  76. ... A. Gomez-Iglesias für die Unterstützung bei Simulationen und theoretischen Fra- gestellungen.
  77. Peter Vogl, Dr. Alex Trellakis Dr. Tobias Zibold Peter Greck Thomas Eiss- feller Stefan B. Dr. Till Andlauer A. Dr. Till Andlauer ; Birner, Stefan (Hrsg.): nextnano++ (software). www.nextnano.de : Stefan Birner, 2004- 2010. – nextnano semiconductor software solutions
  78. Müller, Jens U.: Analyse AlGaInN-basierter Laserdioden im Wellängenbe- reich von 400 bis 530nm, Fakultät der Physik der Albert-Ludwigs-Universität Freiburg, Diss., 2011
  79. Sizov, Dmitry S. ; Bhat, Rajaram ; Heberle, Albert ; Song, Kechang ; Zah, Chung-en: Internal optical waveguide loss and p-Type absorption in blue and green InGaN quantum well laser diodes. In: Appl. Phys. Exp 3 (2010), S. 122104–1
  80. Sizov, Dmitry S. ; Bhat, Rajaram ; Zakharian, Aramais ; Napierala, Jerome ; Song, Kechang ; Allen, Donald ; Zah, Chung en: Impact of Carrier Transport on Aquamarine–Green La- ser Performance.
  81. Sizov, Dmitry S. ; Bhat, Rajaram ; Zakharian, Aramais ; Song, Kechang ; Allen, Donald E. ; Coleman, Sean ; Zah, Chung en: Carrier Transport in InGaN MQWs of Aquamarine-and Green-Laser Diodes. In: IEEE Journal of selected topics in quantum electronics 17 (2011), S. 1390–1401
  82. Rosencher, Emmanuel ; Vinter, Borge: Optoelectronics. Cambridge Uni- versity Press, 2002
  83. Meneghini, Matteo ; Meneghesso, Gaudenzio ; Trivellin, Nicola ; Zano- ni, Enrico ; Orita, Kenji ; Yuri, Masaaki ; Ueda, Daisuke: Extensive analysis of the degradation of Blu-Ray laser diodes. In: Electron Device Letters, IEEE 29 (2008), Nr. 6, S. 578–581
  84. Matthews, J.W. ; Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. In: Journal of Crystal Growth 27 (1974), S. 118–125
  85. Marona, L. ; Wisniewski, P. ; Prystawko, P. ; Grzegory, I. ; Suski, T. ; Porowski, S. ; Perlin, P. ; Czernecki, R. ; Leszczynski, M.: Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals. In: Applied physics letters 88 (2006), Nr. 20, S. 201111–201111
  86. Kim, C.C. ; Choi, Y. ; Jang, Y.H. ; Kang, M.K. ; Joo, Minho ; Noh, M.S.: Degradation modes of high-power InGaN/GaN laser diodes on low-defect GaN substrates. In: Integrated Optoelectronic Devices 2008 International Society for Optics and Photonics, 2008, S. 68940O–68940O
  87. ... dem OSRAM Opto Semiconductors Laserteam unter der Leitung von Dr. U.
  88. Schiavon, Dario ; Binder, Michael ; Peter, Matthias ; Galler, Bastian ; Drechsel, Philipp ; Scholz, Ferdinand: Wavelength-dependent determina- tion of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. In: physica status solidi (b) 2 (2012), S. 283–290
  89. Scheibenzuber, Wolfgang G.: Dynamics of Charge Carriers and Photons. In: GaN-Based Laser Diodes. Springer, 2012, S. 55–66
  90. Stringfellow, Gerald B. ; Edition 2nd (Hrsg.): Organometallic Vapor- Phase Epitaxy -Theory and Practice. Academic Press, 1999
  91. Chung, H.M. ; Chuang, W.C. ; Pan, Y.C. ; Tsai, C.C. ; Lee, M.C. ; Chen, W.H. ; Chen, W.K. ; Chiang, C.I. ; Lin, C.H. ; Chang, H.: Electrical charac- terization of isoelectronic In-doping effects in GaN films grown by metalorganic vapor phase epitaxy. In: Applied Physics Letters 76 (2000), Nr. 7, S. 897–899
  92. Lermer, Teresa B.: Epitaxie von langwelligen InGaN-Lasern, Alberts- Ludwigs-Universität Freiburg im Breisgau, Diss., 2011
  93. Meneghini, Matteo ; Trivellin, Nicola ; Orita, Kenji ; Takigawa, S ; Yuri, Masaaki ; Tanaka, Tsuyoshi ; Ueda, Daisuke ; Zanoni, Enrico ; Me- neghesso, Gaudenzio: Degradation of InGaN-based laser diodes related to nonradiative recombination. In: Electron Device Letters, IEEE 30 (2009), Nr. 4, S. 356–358
  94. Flory, Curt A. ; Hasnain, Ghulam: Modeling of GaN optoelectronic devi- ces and strain-induced piezoelectric effects. In: Quantum Electronics, IEEE Journal of 37 (2001), Nr. 2, S. 244–253
  95. ... Herrn Prof. Dr. M. Koch und Herrn Dr. Brüderl für die Betreuung dieser Ar- beit.
  96. Diehl, Roland: High-power diode lasers: fundamentals, technology, applicati- ons. Bd. 78. Springer Verlag, 2000
  97. Emanuel, M.A. ; Skidmore, J.A. ; Jansen, M. ; Nabiev, R.: High-power InAlGaAs-GaAs laser diode emitting near 731 nm. In: Photonics Technology Letters, IEEE 9 (1997), Nr. 11, S. 1451–1453
  98. Kaufmann, U. ; Schlotter, P. ; Obloh, H. ; Köhler, K. ; Maier, M.: Hole conductivity and compensation in epitaxial GaN: Mg layers. In: Physical Review B 62 (2000), Nr. 16, S. 10867
  99. Tinder, Richard F. ; Tinder, Richard F. (Hrsg.): Tensor Properties of Solids. Morgan & Claypool Publishers, 2008
  100. Gotz, W. ; Johnson, N.M. ; Walker, J. ; Bour, D.P. ; Amano, H. ; Akasa- ki, I.: Hydrogen passivation of Mg acceptors in GaN grown by metalorganic chemical vapor deposition. In: Applied physics letters 67 (1995), Nr. 18, S. 2666–2668
  101. Nakamura, Shuji ; Chichibu, Shigefusa F.: Introduction to nitride semicon- ductor blue lasers and light emitting diodes. CRC Press, 2000
  102. Van de Walle, Chris G. ; Neugebauer, Jorg: First-principles calculations for defects and impurities: Applications to III-nitrides. In: Journal of applied physics 95 (2004), Nr. 8, S. 3851–3879
  103. Tomiya, Shigetaka ; Goto, Shu ; Takeya, Motonobu ; Ikeda, Masao: De- fects in degraded GaN-based laser diodes. In: physica status solidi (a) 200 (2003), Nr. 1, S. 139–142
  104. Nakamura, Shuji ; Mukai, Takashi ; Senoh, Masayuki: Candela-class high- brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. In: Applied Physics Letters 64 (1994), S. 1687
  105. ... meinen Mitdoktoranden und -doktorandin für die nette Gesellschaft.
  106. Schillgalies, M.: MOVPE von InGaN-basierten Halbleiterlasern im Wellängenbereich von 400nm bis 500nm, Universität Leizig, Diss., 2008
  107. Nakamura, Shuji ; Mukai, Takashi ; Senoh, Masayuki ; Iwasa, Naruhito: Thermal annealing effects on p-type Mg-doped GaN films. In: Jpn. J. Appl. Phys 31 (1992), Nr. 2B, S. L139–L142
  108. Kümmler, Volker B.: Optimierung der Leistung und Lebensdauer von AlGaInN-Halbleiterlaserdioden. Mensch-und-Buch-Verlag, 2004
  109. Winston, David W.: Physical Simulation of Optoelectronic Semiconductor Devices, Faculty of the Graduate School of the University of Colorado, Diss., 1996
  110. Piprek, J. ; Nakamura, S.h.: Physics of high-power InGaN/GaN lasers. In: Optoelectronics, IEE Proceedings Bd. 149 IET, 2002, S. 145–151
  111. Eichler, C.: Themisches Management InGaN Laser. In: Cuvillier Verlag Goettingen 1 (2005), S. 161
  112. Grundman, Marius ; Grundman, Marius (Hrsg.): The Physics of Semicon- ductor -An introduction Including Devices and Nanophysics. Springer Verlag berlin Heidelberg, 2006
  113. Strauss, U ; Brüninghoff, S ; Schillgalies, M ; Vierheilig, C ; Gmein- wieser, N ; Kümmler, V ; Brüderl, G ; Lutgen, S ; Avramescu, A ; Queren, D u. a.: True-blue InGaN laser for pico size projectors. In: Integrated Optoelectronic Devices 2008 International Society for Optics and Photonics, 2008, S. 689417–689417
  114. Vierheilig, Clemens ; Eichler, Christoph ; Tautz, Sönke ; Lell, Alfred ; Müller, Jens ; Kopp, Fabian ; Stojetz, Bernhard ; Hager, Thomas ; Brüderl, Georg ; Avramescu, Adrian ; Lermer, Teresa ; Ristic, Jelena ; Strauss, Uwe: Beyond blue pico laser: development of high power blue and low power direct green. In: Belyanin, Alexey A. (Hrsg.) ; Smowton, Peter M. (Hrsg.) ; INternational Socienty for Optics and Photonics (Veranst.): SPIE OPTO Bd. 8277 INternational Socienty for Optics and Photonics, SPIE, 2012, 82770K–82770K
  115. Lutgen, Stephan ; Avramescu, Adrian ; Lermer, Teresa ; Schill- galies, Marc ; Queren, Desiree ; Mueller, Jens ; Dini, Dimitri ; Breidenassel, Andreas ; Strauss, Uwe: Progress of blue and green InGaN laser diodes. In: Proc SPIE 7616 (2010), 76160G-76160G-8.
  116. Svante Littmarck, Farhad S.: COMSOL Multiphysics. Software. www.comsol.com [131] Takagi, Shimpei ; Enya, Yohei ; Kyono, Takashi ; Adachi, Masahi- ro ; Yoshizumi, Yusuke ; Sumitomo, Takamichi ; Yamanaka, Yuichiro ; Kumano, Tetsuya ; Tokuyama, Shinji ; Sumiyoshi, Kazuhide ; Sa- ga, Nobuhiro ; Ueno, Masaki ; Katayama, Koji ; Ikegami, Takatos- hi ; Nakamura, Takao ; Yanashima, Katsunori ; Nakajima, Hiroshi ; Tasai, Kunihiko ; Naganuma, Kaori ; Fuutagawa, Noriyuki ; Takigu- chi, Yoshiro ; Hamaguchi, Tatsushi ; Ikeda, Masao: High-Power (over 100mW) Green Laser Diodes on Semipolar {20 ¯ 21} GaN Substrates Ope- rating at Wavelengths beyond 530nm. In: Applied Physics Express 5 (2012), Nr. 8, 082102. http://dx.doi.org/10.1143/APEX.5.082102. – DOI 10.1143/APEX.5.082102
  117. Kim, Min-Ho ; Schubert, Martin F. ; Dai, Qi ; Kim, Jong K. ; Schubert, E.Fred ; Piprek, Joachim ; Park, Yongjo: Origin of efficiency droop in GaN- based light-emitting diodes. In: Applied Physics Letters 91 (2007), S. 183507
  118. Rozhansky, I.V. ; Zakheim, D.A.: Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping. In: physica status solidi (a) 204 (2007), Nr. 1, S. 227–230
  119. Müller, J. ; Brüderl, G. ; Schillgalies, M. ; Breidenassel, A. ; Tautz, S. ; Dini, D. ; Lermer, T. ; Lutgen, S. ; Strauß, U.: Analytical methods to study loss mechanisms and lifetime investigations of blue InGaN laser diodes. In: OPTO International Society for Optics and Photonics, 2010, S. 760222– 760222
  120. Zhu, Di ; Noemaun, Ahmed N. ; Schubert, Martin F. ; Cho, Jaehee ; Schubert, E. F. ; Crawford, Mary H. ; Koleske, Daniel D.: Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping. In: Applied Physics Letters 96 (2010), Nr. 12, S. 121110–121110
  121. Marona, L. ; Perlin, P. ; Czernecki, R. ; Leszczyñski, M. ; Bockowski, M. ; Jakiela, R. ; Suski, T. ; Najda, S.P.: Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes. In: Applied Physics Letters 98 (2011), Nr. 24, S. 241115–241115
  122. Ryu, Han-Youl ; Jun Choi, Won ; Jeon, Ki-Seong ; Kang, Min-Goo ; Choi, Yunho ; Lee, Jeong-Soo: Analysis of below-threshold efficiency characteristics of InGaN-based blue laser diodes. In: Journal of Applied Physics 112 (2012), Nr. 8, S. 083109–083109
  123. Kane, Evan O.: Theory of tunneling. In: Journal of Applied Physics 32 (1961), Nr. 1, S. 83–91
  124. Vurgaftman, I. ; Meyer, J. ; Ram-Mohan, L.: Band parameters for IIIV compound semiconductors and their alloys. In: Journal of Appplied Physics 89 (2001), S. 5815–5875
  125. Monemar, Bo ; Sernelius, B.E.: Defect related issues in the current roll-off in InGaN based light emitting diodes. In: Applied Physics Letters 91 (2007), Nr. 18, S. 181103–181103
  126. Look, David C. ; Fang, Z.-Q. ; Claflin, B.: Identification of donors, ac- ceptors, and traps in bulk-like HVPE GaN. In: Journal of crystal growth 281 (2005), Nr. 1, S. 143–150
  127. Sizov, Dmitry ; Bhat, Rajaram ; Zah, Chung-En: Gallium Indium Nitride- Based Green Lasers. In: Journal of Lightwave Technology 30 (2012), Nr. 5, S. 679–699


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten