Publikationsserver der Universitätsbibliothek Marburg

Titel:Insects in forests. Assemblages, effects of tree diversity and population dynamics
Autor:Alalouni, Urwa
Weitere Beteiligte: Brandl, Roland (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0408
DOI: https://doi.org/10.17192/z2014.0408
URN: urn:nbn:de:hebis:04-z2014-04088
DDC: Biowissenschaften, Biologie
Titel (trans.):Insekten in Wäldern. Ansammlungen, Eiflüsse auf die Baumvielfalt und Populationsdynamik
Publikationsdatum:2014-10-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Insekten, Ökosystem, Wald, Population Dynamics, Insects, Tree Diversity

Summary:
Sound management and conservation of insect communities and forests require a thorough understanding of the factors affecting insects and their habitats. Insects play an essential role in forest ecosystems. Many species of forest insects, e.g., the gypsy moth (Lymantria dispar L), impose a great danger on forests by defoliating trees. Other species, such as butterflies, are considered indicator species for nature conservation. The purpose of this dissertation is to provide some insight into the relationship between insects and forests. I use moths as a model to study the processes affecting insect assemblages, tree-insect interactions and population dynamics of insects. In the first chapter, I present the topics of my dissertation starting with a general introduction about the roles of insects in forests. The second chapter points out the effects of environmental and neutral processes on species compositions. I particularly disentangle the effects of environmental versus spatial distance on the compositions of moth assemblages. Two statistical approaches were applied for this purpose: the raw and distance approaches. Our results show that both environmental and spatial distance influence the composition of species assemblages. Thus, environmental and neutral processes contribute to the diversity of Lepidoptera insects in Bavarian forests. However, the statistical methods (raw and distance approaches) showed inconsistent results with regard to the relative importance of each process on moth assemblages. In the third chapter, I investigate the effects of the diversity of tree stands on insect herbivory on oak and whether the effects of tree diversity on herbivory damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. The study shows that the damage on oak caused by herbivores decreases with the increased diversity of tree stands. This decrease is not reflected by the performance of a generalist herbivore (Lymantria dispar), neither in field nor in lab assays. Hence, the changes in the tree quality do not explain the reduction of damage by herbivores. Alternative mechanisms such as natural enemies and resource dilution (associational resistance) are suggested. In the fourth chapter, I study and review factors affecting the population dynamics of forest insects. I use the foliage feeding insect, the gypsy moth (Lymantria dispar), as a study- model. I highlight the role of natural enemies in the population dynamics and population cycles of the gypsy moth in its native and invasive ranges. The results show that natural enemies have a large impact on the population dynamics of the gypsy moth because they cause the highest mortality rates. Among parasitoids, the tachinids cause the highest rates of mortality in larvae and pupae populations. These mortality rates increase in the northern latitudes. Furthermore, the effects of the parasitoids seem to be density dependent. Parasitoids are thought to influence the population cycles in the native range. In the invasive range, predators were reported to be responsible for the population cycles. Certain types of forests and host plants were additionally reported to influence population cycles in the invasive range. We speculate that the population dynamics of the gypsy moth is largely influenced by the interaction of several factors, basically weather, host plants and natural enemies. However, this may differ between native and invasive ranges.

Bibliographie / References

  1. Odell, T.M., & Godwin, P.A. (1979). Attack behavior of Parasetigena silvestris in relation to host density and behavior. Annals of the Entomological Society of America, 72,281–286.
  2. Witter, J.A., Stoyenoff, J.L., & Sapio, F. (1992). Impacts of the gypsy moth in Michigan. Michigan Academician, 25, 67–90.
  3. Montgomery, M.E. (1990). Variation in the suitability of tree species for the gypsy moth. In K.W. Gottschalk, M.J. Twery, & S.I. Smith (Eds.), Gypsy moth research review 1990 (pp. 1-
  4. Camerini, G. (2009). Factors affecting Lymantria dispar mortality in a willow wood in northern Italy. Bulletin of Insectology, 62, 21–25.
  5. May, R.M. (1974). Biological populations with nonoverlapping generations -stable points, stable cycles, and chaos. Science, 186, 645-647.
  6. Mauffette, Y., Lechowicz, M.J., & Jobin, L. (1983). Host preferences of the gypsy-moth, Lymantria-dispar (L), in southern Quebec. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 13, 53-60.
  7. Maddox, J.V., Baker, M.D., Jeffords, M.R., Kuras, M., Linde, A., Solter, L.F., McManus, M.L., Vavra, J., & Vossbrinck, C.R. (1999). Nosema portugal, n. Sp., isolated from gypsy moths (Lymantria dispar L.) collected in Portugal. Journal of Invertebrate Pathology, 73, 1- 14.
  8. Lovett, G.M., & Ruesink, A.E. (1995). Carbon and nitrogen mineralization from decomposing gypsy-moth frass. Oecologia, 104, 133-138.
  9. Webb, J.R., Cosby, B.J., Deviney, F.A., Eshleman, K.N., & Galloway, J.N. (1995). Change in the acid-base status of an Appalachian mountain catchment following forest defoliation by the gypsy moth. Water, Air, and Soil Pollution, 85, 535–540.
  10. Odell, T.M., & Godwin, P.A. (1984). Host selection by Blepharipa pratensis (Meigen), a tachinids parasite of the gypsy moth, Lymantria dispar L. Journal of Chemical Ecology, 10, 311–320.
  11. Schopf, A., & Rembold, H. (1993). Changes in juvenile hormone titer of gypsy moth larvae by parasitism of Glyptapanteles liparidis. Naturwissenschaften, 80, 527–528.
  12. Villemant, C., & Ramzi, H. (1995). Predators of Lymantria dispar (Lep. Lymantriidae) egg masses: Spatio-temporal variation of their impact during the 1988-89-pest generation in the Mamora cork oak forest (Morocco). Entomophaga, 40, 441-456.
  13. Yahner, R.H., & Smith, H.R. (1991). Small mammal abundance and habitat relationships on deciduous forested sites with different susceptibility to gypsy-moth defoliation. Environmental Management, 15, 113-120.
  14. Murray, K.D., & Elkinton, J.S. (1989). Environmental contamination of egg masses as a major component of transgenerational transmission of gypsy-moth nuclear polyhedrosis-virus (LDMNPV). Journal of Invertebrate Pathology, 53, 324-334.
  15. Brown, M.W., Williams, F.M., & Cameron, E.A. (1983). Simulations on the role of egg parasite, Ooecyrtus kuvane (Howard), in the population dynamics of the gypsy moth. Ecological Modelling,18, 253–268.
  16. Turchin, P. (1990). Rarity of density dependence or population regulation with lags. Nature, 344, 660–663.
  17. Zolubas, P., Gedminas, A., & Shields, K. (2001). Gypsy moth parasitoids in the declining outbreak in Lithuania. Journal of Applied Entomology, 125, 229–234.
  18. Lee, J.H., & Pemberton, R.W. (2010). Parasitoid complex of the Asian gypsy moth (Lymantria dispar) (Lepidoptera: Lymantriidae) in Primorye Territory, Russian Far East. Biocontrol Science and Technology, 20, 197–211.
  19. Weseloh, R.M. (1985a). Changes in population-size, dispersal behavior, and reproduction of Calosoma-sycophanta (Coleoptera, Carabidae), associated with changes in gypsy-moth, Lymantria-dispar (Lepidoptera, Lymantriidae), abundance. Environmental Entomology, 14, 370-377.
  20. Weseloh, R., Bernon, G., Butler, L., Fuester, R., McCullough, D., & Stehr F. (1995). Releases of Calosoma sycophanta (Coleoptera: Carabidae) near the edge of gypsy moth (Lepidoptera: Lymantriidae) distribution. Environmental Entomology, 24, 1713-1717.
  21. Eichhorn, O. (1996). Experimental studies upon the parasitoid complex of the gypsy moth (Lymantria dispar L.) (Lep., Lymantriidae) in lower host populations in eastern Austria. Journal of Applied Entomology, 120, 205–212.
  22. Alalouni, U., Schädler, M., & Brandl, R. (2013). Natural enemies and environmental factors affecting the population dynamics of the gypsy moth. Journal of Applied Entomology, 137, 721–738.
  23. Leonard, D.E. (1974). Recent developments in ecology and control of gypsy moth. Annuals Review of Entomology, 19, 197–229.
  24. Watt, A.D., Woiwod, I.P. (1999). The effect of phonological asynchrony on population dynamics: analysis of fluctuations of British macrolepidoptera. Oikos, 87, 411–416.
  25. Gould, J.R., Elkinton, J.S., & Wallner, W.E. (1990). Density dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera, Lymantriidae), population by natural enemies. Journal of Animal Ecology, 59, 213–233.
  26. Fuester, R.W., Drea, J.J., Gruber, J.R., & Mercadier, G. (1983). Larval parasites and other natural enemies of Lymantria dispar (Lepidoptera: Lymantriidae) in Burgenland, Austria, and Würzburg, Germany. Environmental Entomology, 12, 724–737.
  27. Narang, N., Herard, F., Dougherty, E.M., Chen, K., & Vega, F.E. (2001). A gypsy moth (Lymantria dispar, Lepidoptera : Lymantriidae) multinucleocapsid nuclear polyhedrosis virus from France: Comparison with a North American and a Korean strain. European Journal of Entomology, 98, 189-194.
  28. Berryman, A.A. (1998). The role of parasitoids in the population dynamics of forest Lepidoptera. In: McManus, M.L. & Liebhold, A.M. (Eds.), population dynamics, impacts, and integrated management of forest defoliating insects (pp. 253–260). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.
  29. Wallis, R.C. (1957). Incidence of polyhedrosis of gypsy-moth larvae and the influence of relative humidity. Journal of Economic Entomology, 50, 580-583.
  30. Woods, S.A., Elkinton, J.S., Murray, K.D., Liebhold, A.M., Gould, J.R., & Podgwaite, J.D. (1991). Transmission dynamics of a nuclear polyhedrosis virus and predicting mortality in gypsy moth (Lepidoptera, Lymantriidae) populations. Journal of Economic Entomology, 84, 423–430.
  31. Weseloh, R.M. (1993). Behavior of the gypsy-moth predator, Calosoma-sycophanta L (Carabidae, Coleoptera), as influenced by time of day and reproductive status. Canadian Entomologist, 125, 887-894.
  32. Moraal, L.G., & Hilszczanski, J. (2000). The oak buprestid beetle, Agrilus biguttatus (f.) (Col., Buprestidae), a recent factor in oak decline in Europe. Anzeiger Fur Schadlingskunde- Journal of Pest Science, 73, 134-138.
  33. Bathon, H. (1993). Biologische Bekämpfung des Schwammspinners: Räuber und Parasitoids.
  34. Schopf, A., & Hoch, G. (1997). Bionomics and the significance of Glyptapanteles liparidis (Hym., Braconidae) as a regulator of Lymantria dispar (Lep., Lymantriidae) in different host population densities. Journal of Applied Entomology, 121, 195–203.
  35. Murray, B.G. (1999). Can the population regulation controversy be buried and forgotten? Oikos, 84, 148-152.
  36. Giese, R.L., & Schneider, M.L. (1979). Cartographic comparisons of Eurasian gypsy moth distribution (Lymantria dispar – Lepidoptera, Lymantriidae). Entomological News, 90, 1–16.
  37. Maier, K.J. (1990). Contribution to the biology of primary and secondary parasitoids of Lymantria dispar L. (Lep., Lymantriidae). Journal of Applied Entomology, 110, 167–182.
  38. U.S. Department of Agriculture, Forest Service, Northeastern Forest Station, Newtown Square, PA.
  39. S. Department of Agriculture, Northeastern Forest Experiment Station, Broomall, PA.
  40. Maier, K.J. (1995). Der Einfluß der Parasitoide auf Lymantria dispar L. (Lep., Lymantriidae) in Wäldern mit unterschiedlich starkem Massenwechsel. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie, 10, 129–134.
  41. Mauffette, Y., & Lechowicz, M.J. (1984). Differences in the utilization of tree species as larval hosts and pupation sites by the gypsy-moth, Lymantria-dispar (Lepidoptera, Lymantriidae). Canadian Entomologist, 116, 685-690.
  42. Campbell, R.W., & Podgwait, J.d. (1971). Disease complex of gypsy moth. 1. Major components. Journal of Invertebrate Pathology,18, 101–107.
  43. Berryman (Eds.), Dynamics of forest insect populations: patterns, causes, implications (pp. 353-375). Population Ecology, Plenum Press, New York.
  44. Sukovata, L., & Fuester, R.W. (2005): Effects of gypsy moth population density and host-tree species on parasitism. In K. W. Gottschalk (Eds.), 16th U.S. department of agriculture interagency research forum on gypsy moth and other invasive species 2005 (pp. 79–80).U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA.
  45. Murray, K.D., Elkinton, J.S., Woods, S.A., & Podgwaite, J.D. (1989). Epizootiology of gypsy moth Nucleopolyhedrosis virus. In W.E. Wallner, & K.A. McManus (Eds.), Lymantriidae: a comparison of features of New and Old World tussock moths (pp. 439-454). U.S. Department of Agriculture, Forest Service Northeastern Forest Experiment Station, Broomall, PA.
  46. Wallner, W.E. (1987). Factors affecting insect population-dynamics -differences between outbreak and non-outbreak species. Annual Review of Entomology, 32, 317-340.
  47. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA.
  48. Schaefer, P.W., Idebe, K. & Higashiura, Y. (1988). Gypsy moth, Lymantria dispar (L.), and its natural enemies in the Far East (especially Japan). Del. Agric. Exp. Sm. Bull, 476, 160– 165.
  49. Wulf, A., & Giraser, E. (1996). Gypsy moth outbreaks in Germany and neighboring countries. Nach. Deut. Pflanzsch, 48, 265-269.
  50. Lee, J.H., Lee, H.P., Schaefer, P.W., Fuester, R.W., Park, J.D., Lee, B.Y., & Shin, C.H. (2002). Gypsy moth parasitoid complex at Mt. Halla National Park, Cheju Island, Korea. Entomological News, 113, 103–112.
  51. Muzika, R.M., & Gottschalk, K.W. (1995). Gypsy moth role in forest ecosystems: the good, the bad, and the indifferent. In L.G. Eskew (Eds.), Forest health through silviculture (pp. 99-
  52. McManus, M., & Csoka, G. Y (2007). History and impact of gyps moth in North America and comparison to the recent outbreaks in Europe. Acta Silvatica & Lignaria Hungarica, 3, 47– 64. NATURAL ENEMIES 93
  53. Wallner, W.E., & Walton, G.S. (1979). Host defoliation -possible determinant of gypsy moth (Lepidoptera, Lymantriidae) population quality. Annals of the Entomological Society of America, 72, 62-67.
  54. McManus, M. (2007). In the beginning: gypsy moth in the United States. In Gen. Tech. Rep. NRS-6. Slow the spread: a national program to manage the gypsy (pp. 3-14). U.S.
  55. Brown, M.W. (1984). Literature review of Ooecyrtus kuvane Hym., Encyrtidae, an egg parasite of Lymantria dispar Lep., Lymantriidae. Entomophaga, 29,249–265.
  56. Vogt, H., & Dickler, E. (1993). Lymantria dispar: Wechselwirkungen zwischen Gradationsgebieten im Forst und in Obstanlagen; Beobachtungen 1993 und geplante Untersuchungen 1994. In A.B. Wulf, & K.H. Berendes (Eds.), Schwammspinner-Kalamität im Forst: Konzepte zu einer integrierten Bekämpfung freifressender Schmetterlingsraupen (pp. 55-56). Mitteil. Biol. Bundesanst. Land und Forstwirtsch., Berlin.
  57. Wallner, & K.A. McManus (Eds.), Lymantriidae: a comparison of features of new and old world tussock moths (pp. 101–112). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Broomall, PA.
  58. Novotny, J. (1989). Natural diseases of gypsy moth in various gradation phases. In W.E.
  59. Pemberton, R.W., Lee, J.H., Reed, D.K., Carlson, R.W., & Han, H.Y. (1993). Natural enemies of the Asian gypsy moth (Lepidoptera, Lymantriidae) in South Korea. Annals of the Entomological Society of America ,86, 423–440.
  60. Campbell, R.W., & Sloan, R.J. (1977). Natural regulation of innocuous gypsy moth (Lepidoptera-Lymantriidae) populations. Environmental Entomology, 6, 315–322.
  61. Grijpma, P. (1989). Overview of research of Lymantriids in eastern and western Europe. In W.E. Wallner, & K.A. McManus (Eds.), Lymantriidae: a comparison of features of new and old world tussock moths (pp. 21–49). U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Broomall, PA.
  62. Avci, M. (2009). Parasitoid complex and new host plants of the gypsy moth, Lymantria dispar L. in the Lakes District, Turkey. Journal of Animal and Veterinary Advances, 8 (7), 1402–1405.
  63. Weiser, J. (1998). Pathogens of the gypsy moth in Central Europe: Host range and interaction.
  64. Weiser, J. (1987). Patterns over place and time. In J.R. Fuxa, & Y. Tanada (Eds.), Epizootiology of insect diseases (pp. 215-244), New York, Tanada Y, Wiley.
  65. McNamara, D.G. (1996). Perspective on the gypsy moth in Europe. Proceedings EPPO's, 1995. Annual Gypsy Moth Review. Michigan. Department of Agriculture, Lansing, 60-65.
  66. Mopper, S. (2005). Phenology -how time creates spatial structure in endophagous insect populations. Annals Zoologici Fennici, 42, 327-333.
  67. In M.L. McManus, & A.M. Liebhold (Eds.), Population dynamics, impacts, and integrated management of forest defoliating insects (pp. 322-333). U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Radnor, PA.
  68. Elkinton, J.S., & Liebhold, A.M. (1990). Population dynamics of Gypsy moth in North America. Annuals Review of Entomology, 35, 571–596.
  69. Weseloh, R.M. (1985b). Predation by Calosoma-sycophanta L (Coleoptera, Carabidae) - evidence for a large impact on gypsy-moth, Lymantria-dispar L (Lepidoptera, Lymantriidae), pupae. Canadian Entomologist, 117, 1117-1126.
  70. Mason, T.L., & Ticehurst, M. (1984). Predation of Cryptorhopalum-ruficorne (Coleoptera, Dermestidae) on egg masses of the gypsy-moth, Lymantria-dispar (Lepidoptera, Lymantriidae). Canadian Entomologist, 116, 1675-1677.
  71. Whitmore, R.C., & Greer, R.D. (1991). Short-term effects of gypsy moth defoliation on nongame birds. In K.W. Gottschalk, M.J. Twery, & S.I. Smith (Eds.), Gypsy moth research review 1990 (pp. 129 -130). U.S. Department of Agriculture, Forest Service, Northeastern Forest Station, Newtown Square, PA.
  72. Gould, J.R., Elkinton, J.S., & Odell, T.M. (1992). Superparasitism of gypsy moth, Lymantria dispar (L.) (Lepidoptera, Lymantriidae), larvae by Parasetigena silvestris (Robineau- Desvoidy) (Diptera, Tachinidae). Canadian Entomologist, 124, 425–436.
  73. Myers, J.H. (1998). Synchrony in outbreaks of forest lepidoptera: A possible example of the Moran effect. Ecology, 79, 1111-1117.
  74. Schopf, A. (1991). The effects of host age of Lymantria dispar larvae Lep., Lymantriidae on the development of Glypapanteles liparidis (Hym., Braconidae). Entomophaga, 36, 593–604.
  75. Montgomery, M.E., & Wallner, W.E. (1988). The gypsy moth: a westward migrant. In A.A.
  76. Hoch, G., Zubrik, M., Novotny, J., & Schopf, A. (2001). The natural enemy complex of the gypsy moth, Lymantria dispar (Lep., Lymantriidae) in different phases of its population dynamics in eastern Austria and Slovakia – a comparative study. Journal of Applied Entomology, 125, 217–227.
  77. Novotny, J., Turcani, M., & Zubrik, M. (1998). The system of gypsy moth population regulation in the Slovak republic. In M.L. McManus, & A.M. Liebhold (Eds.), Population Villemant, C., & Andrei-Ruiz, M.C. (1999). Life-cycles and biological features of eggs predators of Lymantria dispar (Lepidoptera: Lymantriidae) in the Mamora cork oak forest, Morocco. European Journal of Entomology, 96, 29-36.
  78. Berryman, A.A. (1996). What causes population cycles of forest Lepidoptera? Trends in Ecology & Evolution, 11, 28–32.
  79. Wolfe, L.M. (2002). Why alien invaders succeed: Support for the escape-from-enemy hypothesis. American Naturalist, 160, 705-711.
  80. McManus, M., & Csóka, G.Y. (2007). History and impact of gypsy moth in North America and comparison to the recent outbreaks in Europe. Acta Silvatica & Lignaria Hungarica, 3, 47-64.
  81. Logan, J.A., Regniere, J., & Powell, J.A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1, 130-137.
  82. Turcani, M., Novotny, J., Zubrik, M., McManus, M.L., Pilarksa, D., & Maddox, J. (2001): The role of biotic factors in gypsy moth population dynamics in Slovakia: present knowledge. NATURAL ENEMIES 94
  83. The predictability of phytophagous insect communities: host specialists as habitat specialists.
  84. McManus, M.L., & Solter, L. (2003). Microsporidian pathogens in European gypsy moth populations. In M.L., McManus, & A.M. Liebhold (Eds.), Proceedings: ecology, survey and management of forest insects (pp. 44-51). U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA.
  85. Woods, S.A., & Elkinton, J.S. (1987). Bimodal patterns of mortality from nuclear polyhedrosis virus in gypsy moth (Lymantria dispar) populations. Journal of Invertebrate Pathology, 50, 15 1-57.
  86. Williams, D.W., Fuester, R.W., Metterhouse, W.W., Balaam, R.J, Bullock, R.H., Chianese, R.J., & Reardon, R.C. (1992). Incidence and ecological relationships of parasitism in larval populations of Lymantria dispar (Lepidoptera: Lymantriidae). Biological Control, 2, 35-43.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten