Publikationsserver der Universitätsbibliothek Marburg

Titel:Effektive Behandlung der Coulomb-Streueffekte in der Vielteilchentheorie optisch angeregter Halbleiter
Autor:Breddermann, Benjamin
Weitere Beteiligte: Koch, Stephan W. (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0362
URN: urn:nbn:de:hebis:04-z2014-03627
DOI: https://doi.org/10.17192/z2014.0362
DDC: Physik
Titel (trans.):Effective Treatment of Coulomb-Scattering Effects in the Many-Body Theory of Optically Excited Semiconductors
Publikationsdatum:2014-07-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Photoanregung, Vielteilchentheorie, terahertz, Photolumineszenz, Terahertzbereich, B, exciton, light-matter interaction, diffusives Streumodell, Coulomb-Streuung, Halbleiter, Exziton, Quantenwell, many-body theory, Galliumarsenid, Coulomb scattering

Zusammenfassung:
Eine wesentliche Herausforderung im Streben nach einem detaillierten Verständnis der optoelektronischen Eigenschaften von Halbleitern besteht in der Analyse des durch Coulomb-Wechselwirkung korrelierten Vielteilchensystems der Ladungsträger im Material. Dieses Vielteilchensystem wird geprägt durch vielfältige aus der Coulomb-Wechselwirkung resultierende Effekte. In exzitonischen Systemen kann dies - vor allem im Zusammenwirken mit Terahertz-Anregungen - zu bemerkenswerten Übergangsmechanismen führen. Allgemein ist das Hierarchieproblem der gekoppelten Vielteilchendynamik nur adäquat behandelbar, wenn problemangepasste systematische Approximationen vorgenommen werden. Daher ist eine effektive Behandlung der Coulomb-Streueffekte in der Vielteilchentheorie optisch angeregter Halbleiter notwendig, um die entsprechend in der Spektroskopie dieser Materialsysteme auftretenden Effekte mit hinreichender Genauigkeit aber angemessenem numerischem Aufwand effizient zu modellieren und zu erklären.

Bibliographie / References

  1. M. Schäfer. Microscopic Theory of Coherent and Incoherent Optical Properties of Semiconductor Heterostructures. PhD thesis, Universitätsbibliothek Marburg, 2008.
  2. I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80:885–964, 2008.
  3. R. A. Kaindl, D. Hägele, M. A. Carnahan, and D. S. Chemla. Transient terahertz spec- troscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole ga- ses. Phys. Rev. B, 79:045320, 2009.
  4. M. Usman, C. A. Broderick, A. Lindsay, and E. P. O'Reilly. Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B, 84:245202, Dec 2011.
  5. C. A. Broderick, M. Usman, S. J. Sweeney, and E. P. O'Reilly. Band engineering in di- lute nitride and bismide semiconductor lasers. Semiconductor Science and Technology, 27(9):094011, 2012.
  6. C. A. Broderick, M. Usman, and E. P. O'Reilly. Derivation of 12-and 14-band k· p hamiltonians for dilute bismide and bismide-nitride semiconductors. Semiconductor Science and Technology, 28(12):125025, 2013.
  7. W. Hoyer, M. Kira, and S. W. Koch. Influence of coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B, 67(15):155113, 2003.
  8. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. M. Gibbs, W. Hoyer, M. Kira, S. W. Koch, J. P. Prineas, and H. Stolz. Excitonic photoluminescence in semiconductor quan- tum wells: Plasma versus excitons. Phys. Rev. Lett., 92(6):067402, Feb 2004.
  9. W. Hoyer et al. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B, 72(7):075324, 2005.
  10. K. B. Nordstrom et al. Excitonic dynamical franz-keldysh effect. Phys. Rev. Lett., 81(2):457–460, 1998.
  11. E. Poem et al. Accessing the dark exciton with light. Nature Phys., 6(12):993, 2010.
  12. R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff. Optical emission from a charge-tunable quantum ring. Nature, 405:926–929, 2000.
  13. M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semiconduc- tor spectroscopy. Prog. Quant. Electron., 30(5):155, 2006.
  14. C. W. Luo et al. Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation. Phys. Rev. Lett., 92(4):047402, 2004.
  15. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Stras- ser, and M. Helm. Observation of the intraexciton autler-townes effect in GaAs/AlGaAs semiconductor quantum wells. Phys. Rev. Lett., 105:167401, 2010.
  16. M. Kira, W. Hoyer, and S. W. Koch. Microscopic theory of the semiconductor terahertz response. Phys. Status Solidi B, 238(3):443–450, 2003.
  17. P. Ludewig, Z. L. Bushell, L. Nattermann, N. Knaub, W. Stolz, and K. Volz. Growth of Ga(AsBi) on GaAs by continuous flow MOVPE. Journal of Crystal Growth, 396(0):95 – 99, 2014.
  18. M. Kira, W. Hoyer, and S. W. Koch. Terahertz signatures of the exciton formation dy- namics in non-resonantly excited semiconductors. Solid State Commun., 129(11):733– 736, 2004.
  19. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert. Co- herent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 495:210, 2013.
  20. S. Zybell, H. Schneider, S. Winnerl, M. Wagner, K. Kohler, and M. Helm. Photolumine- scence dynamics in GaAs/AlGaAs quantum wells under pulsed intersubband excitation. Appl. Phys. Lett., 99:041103, 2011.
  21. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys., 38:89, 1989.
  22. S. Imhof, C. Bückers, A. Thränhardt, J. Hader, J. V. Moloney, and S. W. Koch. Micros- copic theory of the optical properties of Ga(AsBi)/GaAs quantum wells. Semiconduc- tor Science and Technology, 23(12):125009, 2008.
  23. M. P. C. M. Krijn. Heterojunction band offsets and effective masses in III − V quater- nary alloys. Semiconductor Science and Technology, 6(1):27, 1991.
  24. Z. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. Magnetoexciton transitions in GaAs–Ga 1−x Al x As quantum wells. J. Phys. Condens. Matter, 14(5):1021, 2002.
  25. R. J. Elliott. Intensity of optical absorption by excitons. Phys. Rev., 108(6):1384–1389, 1957.
  26. G. H. Wannier. The structure of electronic excitation levels in insulating crystals. Phys. Rev., 52:191–197, Aug 1937.
  27. C. C. Hodge et al. Induced absorption spectroscopic determination of exciton binding energies in type-II GaAs/AlAs superlattices. Phys. Rev. B, 41:12319, 1990.
  28. T. C. Damen et al. Dynamics of exciton formation and relaxation in GaAs quantum wells. Phys. Rev. B, 42:7434–7438, 1990.
  29. T. Rappen, U.-G. Peter, M. Wegener, and W. Schäfer. Polarization dependence of de- phasing processes: A probe for many-body effects. Phys. Rev. B, 49(15):10774–10777, Apr 1994.
  30. R. Huber, R. A. Kaindl, B. A. Schmid, and D. S. Chemla. Broadband terahertz study of excitonic resonances in the high-density regime in GaAs/Al x Ga 1−x As quantum wells. Phys. Rev. B, 72:161314, Oct 2005. [66] J. ˇ Cerne, J. Kono, M. S. Sherwin, M. Sundaram, A. C. Gossard, and G. E. W. Bau- er. Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett., 77:1131–1134, 1996.
  31. M. Schafer et al. Quantum theory of luminescence in multiple-quantum-well bragg structures. Phys. Rev. B, 74(15):155315, 2006.
  32. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna. Valence-band anticrossing in mismatched III − V semiconductor alloys. Phys. Rev. B, 75:045203, Jan 2007.
  33. J. T. Steiner, M. Kira, and S. W. Koch. Optical nonlinearities and rabi flopping of an exciton population in a semiconductor interacting with strong terahertz fields. Phys. Rev. B, 77(16):165308, 2008.
  34. B. Ewers, N. S. Köster, R. Woscholski, M. Koch, S. Chatterjee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch. Ionization of coherent excitons by strong terahertz fields. Phys. Rev. B, 85(7):075307, 2012.
  35. T. Suzuki and R. Shimano. Time-resolved formation of excitons and electron-hole droplets in si studied using terahertz spectroscopy. Phys. Rev. Lett., 103(5):057401, 2009.
  36. D. Labrie et al. Detailed ground-and excited-state spectroscopy of indirect free exci- tons. Phys. Rev. Lett., 61:1882, 1988.
  37. J. B. Stark, W. H. Knox, D. S. Chemla, W. Schafer, S. Schmitt-Rink, and C. Stafford. Femtosecond dynamics of excitons under extreme magnetic confinement. Phys. Rev. Lett., 65(24):3033–3036, 1990.
  38. H. Wang, K. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch. Transient nonlinear optical response from excitation induced dephasing in GaAs. Phys. Rev. Lett., 71(8):1261–1264, Aug 1993.
  39. M. S. Salib, H. A. Nickel, G. S. Herold, A. Petrou, B. D. McCombe, R. Chen, K. K. Bajaj, and W. Schaff. Observation of internal transitions of confined excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett., 77:1135, 1996.
  40. M. Kira, F. Jahnke, S. W. Koch, J. D. Berger, D. V. Wick, T. R. Nelson, G. Khitrova, and H. M. Gibbs. Quantum theory of nonlinear semiconductor microcavity luminescence explaining " boser " experiments. Phys. Rev. Lett., 79:5170–5173, Dec 1997.
  41. M. Hubner et al. Optical lattices achieved by excitons in periodic quantum well struc- tures. Phys. Rev. Lett., 83(14):2841–2844, 1999.
  42. J. Szczytko et al. Determination of the exciton formation in quantum wells from time- resolved interband luminescence. Phys. Rev. Lett., 93:137401, 2004.
  43. M. Kubouchi et al. Study of orthoexciton-to-paraexciton conversion in Cu 2 O by exci- tonic lyman spectroscopy. Phys. Rev. Lett., 94:016403, 2005.
  44. J. R. Danielson et al. Interaction of strong single-cycle terahertz pulses with semicon- ductor quantum wells. Phys. Rev. Lett., 99(23):237401, 2007.
  45. S. J. Sweeney, Z. Batool, K. Hild, S. R. Jin, and T. J. C. Hosea. The potential role of bismide alloys in future photonic devices. In Transparent Optical Networks (ICTON), 2011 13th International Conference on, pages 1–4. IEEE, 2011.
  46. N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, and P. L. McEuen. Extremely effi- cient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 325:1367–1371, 2009.
  47. T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert. Entangling mecha- nical motion with microwave fields. Science, 342:710, 2013.
  48. M. Kira and S. W. Koch. Microscopic theory of optical excitations, photoluminescence, and terahertz response in semiconductors. Eur. Phys. J. D, 36(2):143–157, 2005.
  49. J. L. Tomaino, A. D. Jameson, Y. S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch. Terahertz excitation of a coherent lambda-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys. Rev. Lett., 108(26):267402, 2012.
  50. R. H. M. Groeneveld and D. Grischkowsky. Picosecond time-resolved far-infrared ex- periments on carriers and excitons in GaAs-AlGaAs multiple quantum wells. J. Opt. Soc. Am. B, 11:2502, 1994.
  51. A. Girndt, F. Jahnke, A. Knorr, S. W. Koch, and W. W. Chow. Multi-band bloch equati- ons and gain spectra of highly excited iivi semiconductor quantum wells. Phys. Status Solidi B, 202(2):725–739, 1997.
  52. I. Galbraith et al. Excitonic signatures in the photoluminescence and terahertz absorp- tion of a GaAs/Al x Ga 1−x As multiple quantum well. Phys. Rev. B, 71:073302, 2005.
  53. Z. Batool, K. Hild, T. J. C. Hosea, X. Lu, T. Tiedje, and S. J. Sweeney. The electro- nic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing. Journal of Applied Physics, 111(11):–, 2012.
  54. R. Ulbricht et al. Carrier dynamics in semiconductors studied with time-resolved tera- hertz spectroscopy. Rev. Mod. Phys., 83(2):543, 2011.
  55. S. Leinß et al. Terahertz coherent control of optically dark paraexcitons in Cu 2 O. Phys. Rev. Lett., 101:246401, 2008.
  56. F. Schwabl. Quantenmechanik für Fortgeschrittene, volume 6. Springer, 1997. [50] W. Nolting. Mehr-Teilchen-Systeme.
  57. B. J. Baliga. Fundamentals of power semiconductor devices. Springer, 2010.
  58. M. Altarelli, U. Ekenberg, and A. Fasolino. Calculations of hole subbands in semicon- ductor quantum wells and superlattices. Phys. Rev. B, 32(8):5138–5143, 1985.
  59. M. Lindberg and S. W. Koch. Effective bloch equations for semiconductors. Phys. Rev. B, 38(5):3342–3350, Aug 1988.
  60. J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki. Resonant terahertz optical sideband generation from confined magnetoexcitons. Phys. Rev. Lett., 79:1758–1761, 1997.
  61. M. Kira, F. Jahnke, and S. W. Koch. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett., 81(15):3263–3266, Oct 1998.
  62. M. Kira and S. W. Koch. Exciton-population inversion and terahertz gain in semicon- ductors excited to resonance. Phys. Rev. Lett., 93:076402, Aug 2004.
  63. R. Huber, B. A. Schmid, Y. R. Shen, D. S. Chemla, and R. A. Kaindl. Stimulated terahertz emission from intraexcitonic transitions in Cu 2 O. Phys. Rev. Lett., 96:017402, 2006.
  64. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus. Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Phys. Rev. Lett., 53:2173, 1984.
  65. M. Kira and S. W. Koch. Cluster-expansion representation in quantum optics. Phys. Rev. A, 78(2):022102, Aug 2008.
  66. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang. Composition dependence of photoluminescence of GaAs 1−x Bi x alloys. Appl. Phys. Lett., 95(4):041903–041903, 2009.
  67. W. Nolting. Die Zweite Quantisierung. In Grundkurs Theoretische Physik 7, pages
  68. M. Kira, W. Hoyer, T. Stroucken, and S. W. Koch. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett., 87(17):176401, 2001.
  69. B. Zaks, R. B. Liu, and M. S. Sherwin. Experimental observation of electron-hole recollisions. Nature, 483(7391):580, 2012.
  70. T. Timusk et al. Far-infrared absorption by excitons in silicon. Solid State Comm., 25:217–219, 1978.
  71. M. Usman, C. A. Broderick, Z. Batool, K. Hild, T. J. C. Hosea, S. J. Sweeney, and E. P. O'Reilly. Impact of alloy disorder on the band structure of compressively strained GaBi x As 1−x . Phys. Rev. B, 87:115104, Mar 2013.
  72. W. Hoyer, M. Kira, and S. W. Koch. Influence of bound and unbound electron-hole- pair populations on the excitonic luminescence in semiconductor quantum wells. arXiv preprint cond-mat/0604349, 2006.
  73. H. A. Nickel, G. Kioseoglou, T. Yeo, H. D. Cheong, A. Petrou, B. D. McCombe, D. Bro- ido, K. K. Bajaj, and R. A. Lewis. Internal transitions of confined neutral magnetoex- citons in GaAs/Al x Ga 1−x As quantum wells. Phys. Rev. B, 62:2773–2779, 2000.
  74. X. Mi, D. Li, F. Meng, and H. Zhao. Magnetoabsorption spectra of magnetoexciton transitions in GaAs/Ga 0.7 Al 0.3 As quantum wells. Chin. Opt. Lett., 7(4):335–338, 2009.
  75. B. Breddermann. Many-body effects in terahertz-spectroscopy of semiconductors. Di- plomarbeit, Universitätsbibliothek Marburg, 2010.
  76. J. Hader, J. V Moloney, S. W. Koch, and W. W. Chow. Microscopic modeling of gain and luminescence in semiconductors. Selected Topics in Quantum Electronics, IEEE Journal of, 9(3):688–697, 2003.
  77. J. Steiner. Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors. PhD thesis, Universitätsbibliothek Marburg, 2008.
  78. C. Hu. Modern semiconductor devices for integrated circuits, volume 1. Prentice Hall Upper Saddle River, NJ, 2010.
  79. P. Ludewig, N. Knaub, W. Stolz, and K. Volz. MOVPE growth of Ga(AsBi)/GaAs multi quantum well structures. Journal of Crystal Growth, 370(0):186 – 190, 2013. 16th International Conference on Metalorganic Vapor Phase Epitaxy.
  80. M. Kohl, D. Heitmann, P. Grambow, and K. Ploog. One-dimensional magneto-excitons in GaAs/Al x Ga 1−x As quantum wires. Phys. Rev. Lett., 63:2124–2127, 1989.
  81. C. N. Böttge. On the Phonon Interactions and Terahertz Excitations among Coulomb- correlated Charge Carriers of Semiconductors. PhD thesis, Philipps-Universität Mar- burg, 2013.
  82. S. Schmitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer. Optical- properties of quasi-zero-dimensional magnetoexcitons. Appl. Phys. A, 53(6):491–502, 1991.
  83. Y. Tominaga, K. Oe, and M. Yoshimoto. Photo-pumped GaAs 1−x Bi x lasing opera- tion with low-temperature-dependent oscillation wavelength. In SPIE OPTO, pages 827702–827702. International Society for Optics and Photonics, 2012.
  84. J. C. Maan. Physics and Applications of Quantum Wells and Superlattices, volume 170 of Ser. B. Plenum, New York, NATO Advanced Study Institute, 1987.
  85. A. S. Grove and A. S. Grove. Physics and technology of semiconductor devices, volume 143. Wiley New York, 1967.
  86. H. W. Wyld and B. D. Fried. Quantum mechanical kinetic equations. Ann. Phys., 23:374, 1963.
  87. S. W. Koch, M. Kira, G. Khitrova, and H. M. Gibbs. Semiconductor excitons in new light. Nat. Mater., 5:523–531, 2006.
  88. M. Kira and S. W. Koch. Semiconductor quantum optics. Cambridge University Press, 2011.
  89. P. U. Jepsen, D. G. Cooke, and M. Koch. Terahertz spectroscopy and imaging -Modern techniques and applications. Laser Photonics Rev., 5(1):124–166, JAN 2011.
  90. J. M. Cook. The mathematics of second quantization. Transactions of the American Mathematical Society, pages 222–245, 1953.
  91. A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs. The temperature de- pendence of 1.3-and 1.5-µm compressively strained InGaAs (P) mqw semiconductor lasers. Selected Topics in Quantum Electronics, IEEE Journal of, 5(3):401–412, 1999.
  92. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature, 423:734–738, 2003.
  93. T. Grunwald et al. Measurement of intraexcitonic transition signatures via thz time- domain spectroscopy: A GaAs/(AlGa)As – (GaIn)As/GaAs comparison. Phys. Status Solidi C, 6:500, 2009.
  94. S. G. Carter et al. Quantum coherence in an optical modulator. Science, 310(5748):651– 653, 2005.
  95. J. Bhattacharyya, M. Wagner, S. Zybell, S. Winnerl, D. Stehr, M. Helm, and H. Schnei- der. Simultaneous time and wavelength resolved spectroscopy under two-colour near infrared and terahertz excitation. Rev. Sci. Instrum., 82:103107, 2011.
  96. F. N. Xia, M. Steiner, Y. M. Lin, and P. Avouris. A microcavity-controlled, current- driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotech., 3:609– 613, 2008.
  97. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in FORTRAN: the art of scientific computing. Cambridge Univ Pr, 1992.
  98. S. Schmitt-Rink and C. Ell. Excitons and electron-hole plasma in quasi-two- dimensional systems. J. Lumin., 30(14):585 – 596, 1985.
  99. M. Kira et al. Quantum theory of spontaneous emission and coherent effects in semi- conductor microstructures. Prog. Quantum Electron., 23(6):189, 1999.
  100. H. Haug and S. W. Koch. Quantum theory of the optical and electronic properties of semiconductors. Singapore, World Scientific Pub Co Inc, 2009.
  101. S. M. Sze and K. K. Ng. Physics of semiconductor devices. John Wiley & Sons, 2006.
  102. H. Deng, H. Haug, and Y. Yamamoto. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys., 82:1489, 2010.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten