Publikationsserver der Universitätsbibliothek Marburg

Titel:Differentiation of evolutionary stages in fog life cycles based on microphysical properties – implications for the operation of novel cloud radar profilers
Autor:Maier, Frank Markus
Weitere Beteiligte: Bendix, Jörg (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0360
DOI: https://doi.org/10.17192/z2014.0360
URN: urn:nbn:de:hebis:04-z2014-03602
DDC: Geografie, Reisen
Titel (trans.):Differenzierung des Lebenszyklus von Nebel in aufeinanderfolgende Entwicklungsstadien auf der Basis von mikrophysikalischen Eigenschaften – Konsequenzen für die Verwendung neuartiger Wolkenradar-Profiler
Publikationsdatum:2014-07-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Nebel, Naturwissenschaften, Radar, natural sciences, radar, fog, remote sensing, Fernerkundung

Summary:
Enlarged knowledge of the spatiotemporal distribution of fog and low stratus (FLS) is of great value in regards to traffic safety and air quality control. Not only the horizontal visibility in fog but also the dissolving power of harmful pollutants in boundary clouds depend on the prevailing small droplets. Since the drop size spectrum (DSD) of both phenomena varies spatially with the vertical extent of these clouds and temporally from formation to dissipation, nowcasting and forecasting of FLS is faced with difficult challenges. Present models have need of theoretical assumptions on vertical microphysical profiles and their evolution during fog life cycle for their computations since real-time data on these cannot be provided contemporaneously so far. According to COST actions 720 and 722 novel ground-based microwave FMCW cloud RADAR profilers possess the instrumental requirements for deriving microphysical properties such as liquid water content (LWC) from radar reflectivity (Z); but no implemented retrievals have been developed so far. Since for the derivation of vertical LWC-profiles from Z detailed information on prevailing DSD are required, the evolution of the latter as a function of the fog life cycle has to be considered. An accurate classification of fog evolutionary stages, accompanied with phase-specific DSD, is a necessary condition for a proper usage of the microwave RADAR profiler. Otherwise, the derivation of vertical LWC-profiles from Z would underlie too big inaccuracies. Hence, the major aim of the thesis was the investigation of the temporal dynamics of fog microphysics with emphasis on DSD over its whole life cycle. This intention was based on the hypothesis that it is possible to separate consecutive evolutionary stages temporally within fog life cycle on the basis of fog microphysics such as DSD at the ground as well as in vertical profiles. Novel findings of the current thesis are: 1. It is possible to derive vertical LWC-profiles in FLS directly from RADAR reflectivity of a novel 94 GH FMCW cloud RADAR profiler since a direct but non-linear relationship between Z and LWC could be approved whereby further information on the prevailing drop size distribution has to be presumed. 2. Fog occurrences can be separated in three consecutive phases during its life cycle by means of an innovative statistical approach that relies on measured microphysical fog properties or horizontal visibility at the ground. 3. According to balloon-borne measurements of vertical LWC-profiles it is legitimate to interpolate FLS life cycle phases from ground- based measurements of microphysical properties and horizontal visibility in their whole vertical extension. The results of the thesis have manifold benefits for climate research and operational FLS applications. The identification of cloud geometrical thickness and thus the distinction between fog and low stratus by means of optical satellite retrievals has to be improved with regards to their reliability. The introduced approach for the classification of evolutionary stages during fog life cycle based on microphysical properties is a valuable step towards the development of a method for the derivation of vertical LWC-profiles from novel FMCW microwave cloud RADAR profilers. These are notably suitable for the exploration of microphysical properties of FLS with high temporal resolution. The resultant findings about the dynamics of microphysical properties during FLS could be used to improve the implemented theoretical assumptions on LWC-profiles in satellite-based approaches for fog detection. This optimization could permit in turn an operational and continuous monitoring of LWC-profiles in FLS thanks to their high spatiotemporal resolution.

Bibliographie / References

  1. Wendisch, M., Mertes, S., Heintzenberg, J., Wiedensohler, A., Schell, D., Wobrock, W., Frank, G., Martinsson, B.G., Fuzzi, S., Orsi, G., Kos, G., Berner, A. 1998. Drop size distribution and LWC in Po Valley fog. Contri- butions to Atmospheric Physics 71, 87–100.
  2. Pagowski, M., Gultepe, I., King, P. 2004. Analysis and Modeling of an Ex- tremely Dense Fog Event in Southern Ontario. Journal of Applied Meteor- ology 43, 3–16.
  3. Gultepe, I., Tardif, R., Michaelides, S.C., Cermak, J., Bott, A., Bendix, J., Müller, M.D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G., Cober, S.G. 2007. Fog Research: A Review of Past Achievements and Fu- ture Perspectives. Pure and Applied Geophysics 164, 1121–1159.
  4. Roach, W.T., Brown, R., Caughey, S.J., Crease, B.a., Slingo, A. 1982. A field study of nocturnal stratocumulus: I. Mean structure and budgets. Quar- terly Journal of the Royal Meteorological Society 108, 103–123. doi:10.1002/qj.49710845507.
  5. Slingo, A., Nicholls, S., Schmetz, J. 1982. Aircraft observations of marine stratocumulus during JASIN. Quarterly Journal of the Royal Meteorologi- cal Society 108, 833–856. doi:10.1002/qj.49710845807.
  6. Tardif, R. 2007. The Impact of Vertical Resolution in the Explicit Numeri- cal Forecasting of Radiation Fog: A Case Study. Pure and Applied Geo- physics 164, 1221–1240. doi:10.1007/s00024-007-0216-5.
  7. Maier, F., Bendix, J., Thies, B. 2011. Simulating Z-LWC Relations in Natu- ral Fogs with Radiative Transfer Calculations for Future Application to a Cloud Radar Profiler. Pure and Applied Geophysics 169, 793–807. doi:10.1007/s00024-011-0332-0.
  8. Thoma, C., Schneider, W., Masbou, M., Bott, A. 2012. Integration of Local Observations into the One Dimensional Fog Model PAFOG. Pure and Ap- plied Geophysics 169, 881–893. doi:10.1007/s00024-011-0357-4.
  9. Liu, D., Yang, J., Niu, S., Li, Z. 2011. On the evolution and structure of a radiation fog event in Nanjing. Advances in Atmospheric Sciences 28, 223– 237. doi:10.1007/s00376-010-0017-0.
  10. Wieprecht, W., Acker, K., Mertes, S., Collett, J., Jaeschke, W., Brügge- mann, E., Möller, D., Herrmann, H. 2005. Cloud physics and cloud water sampler comparison during FEBUKO. Atmospheric Environment 39, 4267– 4277. doi:10.1016/j.atmosenv.2005.02.012.
  11. Bendix, J., Thies, B., Nauß, T., Cermak, J. 2006. A feasibility study of day- time fog and low stratus detection with TERRA/AQUA-MODIS over land. Meteorological Applications 13, 111. doi:10.1017/S1350482706002180.
  12. Wang, J., Daum, P.H., Yum, S.S., Liu, Y., Senum, G.I., Lu, M.L., Seinfeld, J.H., Jonsson, H. 2009. Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment. Journal of Geophysical Re- search 114. doi:10.1029/2008JD011035.
  13. Wobrock, W., Schell, D., Maser, R., Kessel, M., Jaeschke, W., Fuzzi, S., Facchini, M.C., Orsi, G., Marzorati, A., Winkler, P., Arends, B.G., Bendix, J. 1992. Meteorological characteristics of the Po Valley fog. Tellus B 44, 469–488. doi:10.1034/j.1600-0889.1992.t01-4-00003.x.
  14. Okita, T. 1962. Observations of the vertical structure of a stratus cloud and radiation fogs in relation to the mechanism of drizzle formation. Tellus 14, 310–322. doi:10.1111/j.2153-3490.1962.tb01342.x.
  15. Hayasaka, T., Nakajima, T., Fujiyoshi, Y., Ishizaka, Y., Takeda, T., Tanaka, M. 1995. Geometrical Thickness, Liquid Water Content, and Radiative Properties of Stratocumulus Clouds over the Western North Pacific. Journal of Applied Meteorology 34, 460–470. doi:10.1175/1520-0450-34.2.460.
  16. Gultepe, I., Müller, M.D., Boybeyi, Z. 2006. A New Visibility Parameteri- zation for Warm-Fog Applications in Numerical Weather Prediction Mod- els. Journal of Applied Meteorology and Climatology 45, 1469–1480. doi:10.1175/JAM2423.1.
  17. Bendix, J., Thies, B., Cermak, J., Nauß, T., 2005. Ground Fog Detection from Space Based on MODIS Daytime Data -A Feasibility Study. Weather and Forecasting 20, 989–1005. doi:10.1175/WAF886.1.
  18. Bendix, J., Eugster, W., Klemm. O., 2011. Fog -boon or bane? Erdkunde 65, 229–232. doi:10.3112/erdkunde.2011.03.01.
  19. Maier, F., Bendix, J., Thies, B., 2013. Development and application of a method for the objective differentiation of fog life cycle phases. Tellus B 65, 1–17. doi:10.3402/tellusb.v65i0.19971.
  20. James, P. M. 2007. An objective classification method for Hess and Bre- zowsky Grosswetterlagen over Europe. Theor. Appl. Climatol. 88, 17-42.
  21. Pruppacher, H.R., Klett, J.D. 1997. Microphysics of clouds and precipita- tion. 2 ed., Kluwer Academic Publisher, Doordrecht, Netherlands, pp. 1- 954.
  22. Kawamoto, K., Nakajima, T., Nakajima, T.Y. 2001. A Global Determina- tion of Cloud Microphysics with AVHRR Remote Sensing. Journal of Cli- mate 14, 2054–2068.
  23. Pinnick, R.G., Hoihjelle, D.L., Fernandez, G., Stenmark, E.B., Lindberg, J.D., Hoidale, G.B., Jennings, S.G. 1978. Vertical Structure in Atmospheric Fog and Haze and Its Effects on Visible and Infrared Extinction. Journal of the Atmospheric Sciences 35, 2020–2032. doi:10.1175/1520- 0469(1978)035<2020:VSIAFA>2.0.CO;2.
  24. Iwabuchi, H., Hayasaka, T. 2002. Effects of Cloud Horizontal Inhomogenei- ty on the Optical Thickness Retrieved from Moderate-Resolution Satellite Data. Journal of the Atmospheric Sciences 59, 2227–2242.
  25. N. and co-authors. 2008. 94 GHz FMCW cloud radar. In: Proceedings of the SPIE symposium on millimetre wave and terahertz sensors and technol- ogy, 15-18 September, Cardiff, pp. 1-6.
  26. Turner, J., Allam, R.J., Maine, D.R. 1986. A case study of the detection of fog at night using channel 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR). Meteorological Magazine 115, 285–290.
  27. Ronda, R.J., Steeneveld, G.J., Holtslag, A.A.M. 2011. Can we forecast ra- diation fog using mesoscale models? Technical Report, October 2005. Wa- geningen University. Wageningen.
  28. Hess, P. and Brezowsky, H. 1977. Catalog of the general weather situations of Europe (1881-1976). Reports of the German Weather Service 113, 1-54.
  29. Minnis, P., Young, D.F., Kratz, D.P., Coakley, J.A., King, M.D., Garber, D.P., Heck, P.W., Mayor, S., Arduini, R.F. 1997. Cloud optical property retrieval (subsystem 4.3). Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document, pp. 1–60.
  30. Schulze-Neuhoff, H. 1976. Detailed analysis of fog based on additional 420 weather stations. Meteorol. Rundsch. 29, 75-84.
  31. Die Seite 123 (Curriculum Vitae) enthält persönliche Daten.
  32. van de Hulst, H.C. 1957. Light scattering by small particles. Courier Dover Publications, Mineola N.Y, pp. 1-470.
  33. Pinto, R., Larrain, H., Cereceda, P., Lázaro, P., Osses, P., S., S.R. 2001. Monitoring fog-vegetation communities at a fog-site in Alto Patache, South of Iquique, Northern Chile, during "El Niño" and "La Niña" events (1997- 2000), In: Second International Conference on Fog and Fog Collection, International Development Research Center, Ottawa, Canada. pp. 293–296.
  34. Pilié, R., Eddie, W., Mack, E., Rogers, C., Kocmond, W. 1972. PROJECT FOG DROPS Part I: Investigations of Warm Fog Properties. Technical Report August. Cornell Aeronautical Laboratory, Inc.. Buffalo, N.Y.
  35. Jacobs, W., Nietosvaara, V., Bott, A. Bendix, J., Cermak, J., Michaelides, S., and Gultepe, I. (eds). 2008. Short range forecasting methods of fog, visi- bility and low clouds, COST Action 722 final report, Brussels, Office for official publications of the European Communities, pp. 1-489.
  36. Anasphere. 2012. SmartTether Operating Manual. 2 ed., Anasphere Inc., Bozeman, MT, USA, pp. 1-19.
  37. Pilié, R. J., Mack, E. J., Kocmond, W. C., Rogers, C. W., and Eadie, W.J. 1975a. The life-cycle of valley fog. 1. Micrometeorological characteristics. Journal of Applied Meteorology 14, 347-363.
  38. Pilié, R. J., Mack, E. J., Kocmond, W. C., Eadie, W. J., and Rogers, C. W. 1975b. The life-cycle of valley fog. 2. Fog microphysics. Journal of Applied Meteorology 14, 364-374.
  39. Terradellas, E., Bergot, T. 2007. Comparison between two-single column models designed for short-terms fog and low-clouds forecasting. Física de la Tierra 19, 189–203.
  40. Hutchison, K.D. 2002. The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA's EOS Aqua mission. Interna- tional Journal of Remote Sensing 23, 5249–5265.
  41. Nemery, B., Hoet, P.H., Nemmar, A. 2001. The Meuse Valley fog of 1930: an air pollution disaster. Lancet 357, 704–708. doi:10.1016/S0140- 6736(00)04135-0.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten