Publikationsserver der Universitätsbibliothek Marburg

Titel:Rolle des mitochondrialen Carriers Rim2 und des Transkriptionsfaktors Yap5 im Eisenmetabolismus von Saccharomyces cerevisiae
Autor:Rietzschel, Nicole
Weitere Beteiligte: Lill, Roland
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0290
URN: urn:nbn:de:hebis:04-z2014-02908
DOI: https://doi.org/10.17192/z2014.0290
DDC: Biowissenschaften, Biologie
Titel (trans.):Role of the mitochondrial carrier Rim2 and the transcription factor Yap5 in the iron metabolism of Saccharomyces cerevisiae
Publikationsdatum:2014-10-01
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
mitochondriale Carrier, Iron-sulfur-cluster biogenesis, Saccharomyces cerevisiae, Iron-sensing, Eisen-Schwefel-Cluster, Eisenmetabolismus, Rim2, Iron metabolism, Yap5

Zusammenfassung:
Eisen ist ein essentielles Spurenelement mit entscheidenden Funktionen in einer Vielzahl an metabolischen Prozessen wie der mitochondrialen Atmung, Aminosäure- und Nukleotid-Synthese, Ribosomen-Assemblierung, DNA-Replikation und DNA-Reparatur. Jedoch sind erhöhte zelluläre Eisenkonzentrationen toxisch für die Zelle. Daher ist eine exakte Regulation des intrazellulären Transports und der Erfassung des Eisenstatus erforderlich, um sowohl Eisenmangel als auch Eisenüberschuss zu vermeiden. Die vorliegende Arbeit widmet sich deshalb dem Mechanismus der mitochondrialen Eisenaufnahme und der Adaption an erhöhte Eisenmengen. Mitochondrien sind essentielle Organellen, die unter anderem eine entscheidende Rolle in der Eisen-Schwefel-(Fe/S)-Cluster- und in der Häm-Biogenese spielen. Aufgrund dieser Stoffwechselleistungen konsumieren Mitochondrien den größten Anteil des in die Zelle aufgenommenen Eisens. Frühere Studien konnten die mitochondrialen Carrier-Proteine Mrs3 und Mrs4 als mitochondriale Eisentransporter charakterisieren. Allerdings ist die simultane Deletion beider Gene für die Hefezellen nicht letal. Da die Fe/S-Cluster Biogenese essentiell ist, lässt dies auf einen weiteren Carrier schließen, der ebenfalls in der Lage ist, Eisenionen zu transportieren. Ein vielversprechender Kandidat ist der mitochondriale Carrier Rim2. Auch wenn dieser ursprünglich als Pyrimidintransporter charakterisiert wurde, häufen sich die Hinweise auf eine zusätzliche Funktion in der Eisenaufnahme. Dabei stellt sich die Frage, inwiefern sich die gut dokumentierte Transportfunktion für Pyrimidine mit einer möglichen Rolle im Eisentransport vereinen ließe. Im ersten Teil dieser Arbeit konnte gezeigt werden, dass die zusätzliche Deletion von RIM2 die in mrs3/4Δ Zellen vorhandene Defekte im Wachstum und in der Biosynthese von Eisen-abhängigen Proteinen verstärkt. Dagegen rettet die Überexpression von RIM2 in mrs3/4Δ Zellen die Maturierung der Fe/S-Proteine und der Häm-Synthese auf Wildtypniveau. Demzufolge sind hohe Konzentrationen von Rim2 ausreichend, um die mitochondriale Eisenversorgung in mrs3/4Δ Zellen wiederherzustellen. Der direkte biochemische Nachweis für eine Transportfunktion von Rim2 wurde durch in vitro Transportexperimente mit sog. submitochondrialen Partikeln in Zusammenarbeit mit der Arbeitsgruppe Dr. Wiesenberger (Wien) geliefert. Zusammengenommen zeigen die in vivo, in organello und in vitro Experimente, dass Rim2 als mitochondrialer Carrier den obligatorischen Co-Transport von Pyrimidinen und divalenten Metallionen einschließlich Fe2+ vermittelt. Diese Modelvorstel-lung erklärt, wie die mitochondriale Eisenaufnahme in mrs3/4Δ Zellen gesichert werden kann und wie Rim2 als „high copy suppressor“ von mrs3/4Δ Zellen fungiert. Eine Funktion des Rim2 in der mitochondrialen Eisenhomöostase unter normalen physiologischen Bedingungen, d.h. in Anwesenheit von Mrs3 und Mrs4, ist jedoch vernachlässigbar. Der zweite Teil dieser Arbeit konzentrierte sich auf die Charakterisierung des Sensors für hohe Eisenkonzentrationen, Yap5, der eine zentrale Rolle bei der Anpassung an toxische Eisenmengen in S. cerevisiae spielt. Bei Eisenüberschuss aktiviert der Transkriptionsfaktor Yap5 die Expression von CCC1, dem einzigen bekannten vakuolären Eisenimporter, was zur Speicherung von Eisen in der Vakuole und damit zur Vermeidung einer toxischen Eisenakkumulation im Cytosol führt. Wie Yap5 biochemisch den Eisenstatus der Zelle erfasst, ist allerdings unklar. Zunächst konnte die direkte Bindung von radioaktivem Eisen (55Fe) an die Aktivator-Domäne von Yap5 (tYap5) in vivo nachgewiesen werden. Zirkular-dichroismus-, Elektronenspinresonanz- und Mößbauer-Spektroskopie des rekombinanten tYap5 belegten die Bindung eines [2Fe-2S]-Clusters an tYap5 nach chemischer Rekonsti-tution. Dieser [2Fe-2S]-Cluster wird durch die N-terminale Cystein-reiche-Domäne (n-CRD) in der Aktivator-Domäne koordiniert und ist entscheidend für die transkriptionelle Aktivität. Des Weiteren induziert die Fe/S-Cluster-Bindung an tYap5 eine Konformationsänderung, die möglicherweise geeignet ist, die Transkriptionsaktivität von Yap5 zu modulieren. Zusätzlich bindet Yap5 in vitro einen zweiten Fe/S-Cofaktor an der C-terminalen CRD, der nicht an der Regulation der transkriptionellen Aktivität von Yap5 in vivo beteiligt ist. Dagegen ist das Fe/S-Cluster-Bindungsmotiv innerhalb der regulatorischen n-CRD von Yap5 in mehreren Pilzarten konserviert, u.a. auch im Aspergillus Transkriptionsfaktor HapX. Daher könnte dieses Motiv als konservierte Bindungsstelle für einen sensorischen Fe/S-Cluster in der eukaryotischen Stressantwort fungieren. Zusammengefasst hat diese Arbeit an Yap5 grundlegende neue Einblicke in den transkriptionellen Mechanismus der Erfassung und Regulation des Eisenstatus in Pilzen geliefert. Yap5 konnte somit als erster eukaryotischer Transkriptionsfaktor, der einen Fe/S-Cluster als Sensor für intrazelluläre Eisenkonzentrationen nutzt, charakterisiert werden.

Bibliographie / References

  1. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-32
  2. Haas H. 2012. Iron -A Key Nexus in the Virulence of Aspergillus fumigatus. Frontiers in microbiology 3: 28
  3. la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S. 2004. Analysis and prediction of leucine-rich nuclear export signals. Protein engineering, design & selection : PEDS 17: 527-36
  4. Gelling C, Dawes IW, Richhardt N, Lill R, Muhlenhoff U. 2008. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 28: 1851-61
  5. Ayala-Castro C, Saini A, Outten FW. 2008. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72: 110-25
  6. Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19: 2293-309
  7. Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, et al. 2003b. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278: 40612-20
  8. Rodrigues-Pousada C, Menezes RA, Pimentel C. 2010. The Yap family and its role in stress response. Yeast 27: 245-58
  9. Billard P, Dumond H, Bolotin-Fukuhara M. 1997. Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Mol Gen Genet 257: 62-70
  10. Bennett J, Scott KJ. 1971. Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brillant blue. Anal Biochem 43: 173-82
  11. Saraste M, Walker JE. 1982. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144: 250-4
  12. Mullis KB, Faloona FA. 1987. Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods Enzymol 155: 335-50
  13. Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, et al. 2006. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757: 1249-62
  14. Gitlin JD, Lill R. 2012. Special issue: Cell Biology of Metals. Biochim Biophys Acta 1823: 1405
  15. Froschauer EM, Schweyen RJ, Wiesenberger G. 2009. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim Biophys Acta 1788: 1044-50
  16. Seldeen KL, McDonald CB, Deegan BJ, Farooq A. 2008. Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors. Biochem Biophys Res Commun 375: 634-8
  17. Booker SJ, Cicchillo RM, Grove TL. 2007. Self-sacrifice in radical S- adenosylmethionine proteins. Curr Opin Chem Biol 11: 543-52
  18. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. 2009. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137: 1247-58
  19. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. 2010. Two to tango: regulation of Mammalian iron metabolism. Cell 142: 24-38
  20. Weinreb O, Mandel S, Youdim MB, Amit T. 2013. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 62: 52-64
  21. White MF, Dillingham MS. 2012. Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol 22: 94-100
  22. Kunji ER. 2004. The role and structure of mitochondrial carriers. FEBS Lett 564: 239- 44
  23. Jensen LT, Culotta VC. 2002. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. J Mol Biol 318: 251-60
  24. Funk M, Niedenthal R, Mumberg D, Brinkmann K, Ronicke V, Henkel T. 2002. Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae. Methods Enzymol 350: 248-57
  25. Beinert H. 1978. Micro methods for the quantitative determination of iron and copper in biological material. Methods Enzymol 54: 435-45
  26. Molik S, Lill R, Muhlenhoff U. 2007. Methods for studying iron metabolism in yeast mitochondria. Methods Cell Biol 80: 261-80
  27. Froschauer EM, Rietzschel N, Hassler MR, Binder M, Schweyen RJ, et al. 2013. The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron. Biochem J 455: 57-65
  28. Lange H, Kispal G, Lill R. 1999. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 274: 18989-96
  29. Schünemann V, Winkler H. 2000. Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep. Prog. Phys. 63: 263-353
  30. Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE. 2012a. Bacterial iron- sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 17: 1215-31
  31. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R. 2002b. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11: 2025-36
  32. Toda T, Shimanuki M, Yanagida M. 1991. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev 5: 60-73
  33. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, et al. 2002. Subcellular localization of the yeast proteome. Genes Dev 16: 707-19
  34. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14: 1188-90
  35. Miao R, Kim H, Koppolu UM, Ellis EA, Scott RA, Lindahl PA. 2009. Biophysical characterization of the iron in mitochondria from Atm1p-depleted Saccharomyces cerevisiae. Biochemistry 48: 9556-68
  36. Cotruvo JA, Stubbe J. 2011. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 80: 733-67
  37. Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA. 2006. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci 119: 4554- 64
  38. Schrettl M, Beckmann N, Varga J, Heinekamp T, Jacobsen ID, et al. 2010. HapX- mediated adaption to iron starvation is crucial for virulence of Aspergillus fumigatus. PLoS Pathog 6: e1001124
  39. Herrero E, Ros J, Belli G, Cabiscol E. 2008. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780: 1217-35
  40. Muhlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, et al. 2010. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 12: 373-85
  41. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947-62
  42. Dunham WR, Bearden AJ, Salmeen IT, Palmer G, Sands RH, et al. 1971. The two-iron ferredoxins in spinach, parsley, pig adrenal cortex, Azotobacter vinelandii, and Clostridium pasteurianum: studies by magnetic field Mossbauer spectroscopy. Biochim Biophys Acta 253: 134-52
  43. Foury F, Roganti T. 2002. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J Biol Chem 277: 24475-83
  44. Waldherr M, Ragnini A, Jank B, Teply R, Wiesenberger G, Schweyen RJ. 1993. A multitude of suppressors of group II intron-splicing defects in yeast. Curr Genet 24: 301-6
  45. Li L, Miao R, Bertram S, Jia X, Ward DM, Kaplan J. 2012. A role for iron-sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast. J Biol Chem 287: 35709-21
  46. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23 Gutierrez-Aguilar M, Baines CP. 2013. Physiological and pathological roles of mitochondrial SLC25 carriers. Biochem J 454: 371-86
  47. Gsaller, F., Klammer, V., Lechner, B. E., Hortschansky, P., Mühlenhoff, U., Rietzschel, N., Werner, E. R. and Haas, H. Aspergillus fumigatus HapX is a Janus transcription factor required for adaptation to both iron starvation and iron excess. Manuskript in Vorbereitung Anhang 118
  48. Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB. 2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111: 471-81
  49. Kolarov J, Kolarova N, Nelson N. 1990. A third ADP/ATP translocator gene in yeast. J Biol Chem 265: 12711-6
  50. Li L, Chen OS, McVey Ward D, Kaplan J. 2001b. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276: 29515-9
  51. Hausmann A, Samans B, Lill R, Muhlenhoff U. 2008. Cellular and Mitochondrial Remodeling upon Defects in Iron-Sulfur Protein Biogenesis. J Biol Chem 283: 8318-30
  52. Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F. 2007. CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe- 2S] cluster. Biochemistry 46: 15018-26
  53. Muhlenhoff U, Richhardt N, Gerber J, Lill R. 2002a. Characterization of iron-sulfur protein assembly in isolated mitochondria. A requirement for ATP, NADH, and reduced iron. J Biol Chem 277: 29810-6
  54. Aquila H, Misra D, Eulitz M, Klingenberg M. 1982. Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria. Hoppe-Seyler's Zeitschrift fur physiologische Chemie 363: 345-9
  55. Lin H, Li L, Jia X, Ward DM, Kaplan J. 2011. Genetic and biochemical analysis of high iron toxicity in yeast: iron toxicity is due to the accumulation of cytosolic iron and occurs under both aerobic and anaerobic conditions. J Biol Chem 286: 3851-62
  56. Sherman F. 2002. Getting started with Yeast. Methods Enzymol 350: 3 -41
  57. Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R. 2001. Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. Embo J 20: 5049-59
  58. Vozza A, Blanco E, Palmieri L, Palmieri F. 2004. Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae. J Biol Chem 279: 20850-7
  59. Crack JC, Green J, Thomson AJ, Le Brun NE. 2012b. Iron-sulfur cluster sensor- regulators. Current opinion in chemical biology 16: 35-44
  60. Beinert H, Holm RH, Munck E. 1997. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277: 653-9
  61. Heyde E, Ainsworth S. 1968. Kinetic studies on the mechanism of the malate dehydrogenase reaction. J Biol Chem 243: 2413-23
  62. Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R. 2013. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol O'Shea EK, Klemm JD, Kim PS, Alber T. 1991. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254: 539-44
  63. Berggard T, Linse S, James P. 2007. Methods for the detection and analysis of protein- protein interactions. Proteomics 7: 2833-42
  64. Palmieri F. 1994. Mitochondrial carrier proteins. FEBS Lett 346: 48-54
  65. Liu Z, Butow RA. 2006. Mitochondrial retrograde signaling. Annu Rev Genet 40: 159-85
  66. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, et al. 1994. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76: 393-402
  67. Sambrook J, Russel DW. 2001. Molecular Cloning -A laboratory manual, 3rd edition. ColdSpring Harbour, USA: CSH Laboratory Press.
  68. Seibel NM, Eljouni J, Nalaskowski MM, Hampe W. 2007. Nuclear localization of enhanced green fluorescent protein homomultimers. Anal Biochem 368: 95-9
  69. Mathews R, Charlton S, Sands RH, Palmer G. 1974. On the nature of the spin coupling between the iron-sulfur clusters in the eight-iron ferredoxins. J Biol Chem 249: 4326-8
  70. Dagert M, Ehrlich SD. 1979. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23-8
  71. Pimentel C, Vicente C, Menezes RA, Caetano S, Carreto L, Rodrigues-Pousada C. 2012. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability. PloS one 7: e37434
  72. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR. 2006. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281: 17661- 9
  73. Garland SA, Hoff K, Vickery LE, Culotta VC. 1999. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294: 897-907
  74. Vinson CR, Sigler PB, McKnight SL. 1989. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911-6
  75. Lawson JE, Douglas MG. 1988. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem 263: 14812-8
  76. Haas H, Eisendle M, Turgeon BG. 2008. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46: 149-87
  77. Fujii Y, Shimizu T, Toda T, Yanagida M, Hakoshima T. 2000. Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nature structural biology 7: 889-93
  78. Perlstein DL, Ge J, Ortigosa AD, Robblee JH, Zhang Z, et al. 2005. The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo. Biochemistry 44: 15366-77
  79. Rietzschel, N., Pierik, A. J., Bill, E., Lill, R. and Mühlenhoff, U. The bZIP stress re- sponse regulator Yap5 harbors a [2Fe-2S] cluster that is essential for iron sensing. Manuskript in Vorbereitung Im Verlauf der Promotion wurden weiterhin Beiträge zu folgenden Artikeln geleistet:
  80. Landschulz WH, Johnson PF, McKnight SL. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759- 64
  81. Kiley PJ, Beinert H. 2003. The role of Fe-S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6: 181-5
  82. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, et al. 2012. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823: 1491-508
  83. Rietzschel, N., Mühlenhoff, U., Froschauer, E., Schweyen, R., Wiesenberger, G. and Lill, R. The role of the nucleotide carrier Rim2 in mitochondrial iron transport (Poster) - 6th International Conference: Biogenesis of iron-sulfur proteins and regulatory func- tions 2011, Cambridge, UK Rietzschel, N., How mitochondria import iron: The role of the mitochondrial pyrimidine nucleotide carrier Rim2 (Vortrag) -Klausurtagung SFB 593 2012, Kleinwalsertal, Österreich Rietzschel, N., Hassler, M. R., Froschauer, E. M., Binder, M., Schweyen, R. J., Lill, R., Mühlenhoff, U. and Wiesenberger, G. How mitochondria import iron: The role of the mitochondrial pyrimidine nucleotide carrier Rim2 (Poster) – The FEBS / EMBO Course on Mitochondria in life, death and disease 2012, Kreta, Griechenland
  84. Hurst HC. 1995. Transcription factors 1: bZIP proteins. Protein profile 2: 101-68
  85. Lyons TJ, Eide DJ. 2007. Transport and storage of metal ions in biology In Biological Inorganic Chemistry, ed. I Bertini, HB Gray, EI Stiefel, JS Valentine, pp. 57 -77. Sausalito, CA: University Science Books Mantovani R. 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15-27
  86. Li L, Bagley D, Ward DM, Kaplan J. 2008. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast. Mol Cell Biol 28: 1326-37
  87. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, et al. 2006. Mitoferrin is essential for erythroid iron assimilation. Nature 440: 96-100
  88. Zheng L, Baumann U, Reymond JL. 2004. An efficient one-step site-directed and site- saturation mutagenesis protocol. Nucleic Acids Res 32: e115
  89. Birnboim HC, Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513-23
  90. Muhlenhoff U, Gerber J, Richhardt N, Lill R. 2003a. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. Embo J 22: 4815-25
  91. Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P. 2004. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53: 1743-56
  92. Van Dyck E, Jank B, Ragnini A, Schweyen RJ, Duyckaerts C, et al. 1995. Overexpression of a novel member of the mitochondrial carrier family rescues defects in both DNA and RNA metabolism in yeast mitochondria. Mol Gen Genet 246: 426-36
  93. Zheng L, White RH, Cash VL, Dean DR. 1994. Mechanism for the desulfurization of L- cysteine catalyzed by the nifS gene product. Biochemistry 33: 4714-20
  94. Kaplan CD, Kaplan J. 2009. Iron acquisition and transcriptional regulation. Chem Rev 109: 4536-52
  95. Han WG, Liu T, Lovell T, Noodleman L. 2005. Active site structure of class I ribonucleotide reductase intermediate X: a density functional theory analysis of structure, energetics, and spectroscopy. J Am Chem Soc 127: 15778-90
  96. Armstrong JS, Khdour O, Hecht SM. 2010. Does oxidative stress contribute to the pathology of Friedreich's ataxia? A radical question. FASEB J 24: 2152-63
  97. Woontner M, Jaehning JA. 1990. Accurate initiation by RNA polymerase II in a whole cell extract from Saccharomyces cerevisiae. J Biol Chem 265: 8979-82
  98. Li J, Saxena S, Pain D, Dancis A. 2001a. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J Biol Chem 276: 1503-9
  99. Lewrenz, I., Rietzschel, N., Guiard, B., Lill, R., van der Laan, M. and Voos, W. (2013) The functional interaction of mitochondrial Hsp70s with the escort protein Zim17 is critical for Fe/S biogenesis and substrate interaction at the inner membrane preprotein translocase. J Biol Chem. 288, 30931-30943
  100. Gsaller F, Eisendle M, Lechner BE, Schrettl M, Lindner H, et al. 2012. The interplay between vacuolar and siderophore-mediated iron storage in Aspergillus fumigatus. Metallomics : integrated biometal science 4: 1262-70
  101. Glover JN, Harrison SC. 1995. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 373: 257-61
  102. Bernard DG, Netz DJ, Lagny TJ, Pierik AJ, Balk J. 2013. Requirements of the cytosolic iron-sulfur cluster assembly pathway in Arabidopsis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368: 20120259
  103. Halliwell B, Gutteridge JM. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14
  104. Kuge S, Jones N, Nomoto A. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. Embo J 16: 1710-20
  105. Kispal G, Csere P, Prohl C, Lill R. 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. Embo J 18: 3981-9
  106. Mortimer RK, Johnston JR. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113: 35-43
  107. Amutha B, Pain D. 2003. Nucleoside diphosphate kinase of Saccharomyces cerevisiae, Ynk1p: localization to the mitochondrial intermembrane space. Biochem J 370: 805-15
  108. McNabb DS, Pinto I. 2005. Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell 4: 1829-39
  109. Marobbio CM, Di Noia MA, Palmieri F. 2006. Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization. Biochem J 393: 441- 6
  110. Kohlhaw GB. 2003. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67: 1-15
  111. Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M. 2003. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. Embo J 22: 1235-44
  112. Lange H, Kaut A, Kispal G, Lill R. 2000. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc Natl Acad Sci U S A 97: 1050-5
  113. Yao R, Zhang Z, An X, Bucci B, Perlstein DL, et al. 2003. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways. Proc Natl Acad Sci U S A 100: 6628-33
  114. Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, et al. 2007. Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. Embo J 26: 3157-68
  115. Ito H, Fukuda Y, Murata K, Kimura A. 1983. Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-8
  116. Philpott CC, Protchenko O. 2008. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7: 20-7
  117. Tan K, Feizi H, Luo C, Fan SH, Ravasi T, Ideker TG. 2008. A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci U S A 105: 2934-9
  118. Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, et al. 2008. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J Biol Chem 283: 10276- 86
  119. Puig S, Vergara SV, Thiele DJ. 2008. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab 7: 555-64
  120. Zhang Y, Lyver ER, Nakamaru-Ogiso E, Yoon H, Amutha B, et al. 2008. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol 28: 5569-82
  121. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. 2009. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 29: 1007-16
  122. Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, et al. 2009. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48: 9569-81
  123. Rouhier N, Couturier J, Johnson MK, Jacquot JP. 2010. Glutaredoxins: roles in iron homeostasis. Trends Biochem Sci 35: 43-52
  124. Ihrig J, Hausmann A, Hain A, Richter N, Hamza I, et al. 2010. Iron Regulation through the Back Door: Iron-Dependent Metabolite Levels Contribute to Transcriptional Adaptation to Iron Deprivation in Saccharomyces cerevisiae. Eukaryot Cell 9: 460-71
  125. Li L, Murdock G, Bagley D, Jia X, Ward DM, Kaplan J. 2010. Genetic dissection of a mitochondria-vacuole signaling pathway in yeast reveals a link between chronic oxidative stress and vacuolar iron transport. J Biol Chem 285: 10232-42
  126. Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, et al. 2010. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107: 10775-82
  127. Kosman DJ. 2010. Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem 285: 26729-35
  128. Delaunay A, Isnard AD, Toledano MB. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. Embo J 19: 5157-66
  129. Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ, et al. 2011. Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria. Blood 117: 5494-502
  130. Schrettl M, Haas H. 2011. Iron homeostasis-Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 14: 400-5
  131. Li L, Jia X, Ward DM, Kaplan J. 2011. Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity. J Biol Chem 286: 38488-97
  132. Rutherford JC, Bird AJ. 2004. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3: 1-13
  133. Chen W, Dailey HA, Paw BH. 2010. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis. Blood 116: 628-30
  134. Hyde BB, Liesa M, Elorza AA, Qiu W, Haigh SE, et al. 2012. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo. Cell Death Differ 19: 1117-26
  135. Hamza I, Dailey HA. 2012. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta 1823: 1617-32
  136. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, et al. 2012. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337: 195-9
  137. Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. 2012. Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression. Mol Cell Biol 32: 4998-5008
  138. Kim HJ, Khalimonchuk O, Smith PM, Winge DR. 2012. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta 1823: 1604-16
  139. Adrian GS, McCammon MT, Montgomery DL, Douglas MG. 1986. Sequences required for delivery and localization of the ADP/ATP translocator to the mitochondrial inner membrane. Mol Cell Biol 6: 626-34
  140. Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U. 2013. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Molecular biology of the cell 24: 1830-41
  141. Vogelstein B, Gillespie D. 1979. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A 76: 615-9
  142. Atkinson A, Winge DR. 2009. Metal acquisition and availability in the mitochondria. Chem Rev 109: 4708-21
  143. Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R. 2004. The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. Embo J 23: 2105-15
  144. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R. 2005. The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci U S A 102: 3266-71
  145. Aquila H, Link TA, Klingenberg M. 1985. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. Embo J 4: 2369-76
  146. Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. 2001. A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A 98: 14322-7
  147. Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, et al. 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 194: 149-65
  148. Kunji ER, Robinson AJ. 2006. The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta 1757: 1237-48
  149. Kispal G, Csere P, Guiard B, Lill R. 1997. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett 418: 346-50
  150. Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289-98
  151. Puig S, Askeland E, Thiele DJ. 2005. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120: 99-110
  152. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC. 1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71: 1223-37
  153. Kaplan J, McVey Ward D, Crisp RJ, Philpott CC. 2006. Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta 1763: 646-51
  154. Kunji ER, Robinson AJ. 2010. Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20: 440-7
  155. Sutak R, Lesuisse E, Tachezy J, Richardson DR. 2008. Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16: 261-8
  156. Yoon H, Zhang Y, Pain J, Lyver ER, Lesuisse E, et al. 2011. Rim2, a pyrimidine nucleotide exchanger, is needed for iron utilization in mitochondria. Biochem J 440: 137-46
  157. Dutkiewicz R, Marszalek J, Schilke B, Craig EA, Lill R, Muhlenhoff U. 2006. The hsp70 chaperone ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein isu1p. J Biol Chem 281: 7801-8


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten