Publikationsserver der Universitätsbibliothek Marburg

Titel:Functional Gold Nanoparticles for Biomedical Applications
Autor:Hühn, Dominik
Weitere Beteiligte: Parak, Wolfgang (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0218
DOI: https://doi.org/10.17192/z2014.0218
URN: urn:nbn:de:hebis:04-z2014-02183
DDC: Physik
Titel (trans.):Funktionale Gold-Nanopartikel für biomedizinische Anwendungen
Publikationsdatum:2014-04-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Grenzfläche, Fluoreszenz, ion sensing, Cytotoxizität, cytotoxicity, Oberfläche, Polymere, Proteine, surface functionalization, nanoparticles, Nanopartikel, Titration, Nanotechnologie, Gold, Sensor, protein corona, Plasmon

Summary:
Abstract Subjects of the present dissertation are the synthesis, the functionalization and the characterization of colloidal gold nanoparticles. The employed nanoparticles consist of an inorganic Au core of approximately 5 nm diameter, which is stabilized by hydrophobic surface molecules. To transfer the nanoparticles to aqueous environments (an indispensable necessity for biomedical applications) they are coated with an amphiphilic polymer, which generates water solubility and moreover gives the ability for further functionalization. The physico-chemical properties of such nanoparticles are verified within different purposes: First, several fundamental intrinsic surface properties are quantified, including the establishment of pH titration as characterization tool. It is found that the carboxylic groups, responsible for the colloidal stabilization, partly have different properties (like their pKa) compared to free standing carboxylic acids. These findings are crucial for the colloidal stabilization of nanoparticles as well as for their further functionalization. Secondly, two species of fluorescently labeled nanoparticles, which differed in first order only in the net surface charge, are employed to study charge dependent interaction of nanoparticles with biological systems, including proteins as well as living cells. The main finding is, that a so called protein corona forms around nanoparticles, what has far-reaching impacts on cell internalization abilities. Moreover it is found that positively charged nanoparticles show a higher cell association as well as a higher toxicity. Thirdly, nanoparticles are modified towards sensing applications by surface functionalization with ion sensitive dyes. Positively charged nanoparticles are modified with a Cl- sensitive dye and negatively charged nanoparticles are modified with a Zn2+ sensitive dye. The goals of the dissertation can be synoptically depicted as: 1) Extension of the existing techniques for nanoparticle functionalization, particularly regarding new types of functional polymers. 2) A fundamental and comprehensive characterization of nanoparticles ranging from the verification of intrinsic, physico-chemical properties to biomedical applications.

Bibliographie / References

  1. Johnston APR, Kamphuis MMJ, Such GK, Scott AM, Nice EC, et al. 2012. Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. Am. Chem. Soc. Nano 6:6667–74
  2. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T: Quantum dots versus organic dyes as fluorescent labels. Nat Meth 2008, 5:763.
  3. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. 1997. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–81
  4. Lasne D, Blab GA, Berciaud S, Heine M, Groc L, et al. 2006. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 91:4598–604
  5. Abbasi AZ, Gutierrez L, del Mercato LL, Herranz F, Chubykalo-Fesenko O, et al. 2011. Magnetic capsules for NMR imaging: effect of magnetic nanoparticles spatial distribution and aggregation. J. Phys. Chem. C 115:6257–64
  6. Shapiro M, Atanasijevic T, Faas H, Westmeyer G, Jasanoff A. Dynamic imaging with MRI contrast agents: quantitative considerations. Magnetic Resonance Imaging 2006;24(4):449–62.
  7. Lehmann AD, Parak WJ, Zhang F, Ali Z, R ¨ ocker C, et al. 2010. Fluorescent-magnetic hybrid nanoparti- cles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 6:753–62
  8. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, et al. 2012. Biological appli- cations of magnetic nanoparticles. Chem. Soc. Rev. 41:4306–34
  9. Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, et al. 2011. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res. 13:R108
  10. McFarland AD, Van Duyne RP. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3:1057–62
  11. Templeton AC, Wuelfing WP, Murray RW. Monolayer-protected cluster molecules. Accounts of Chemical Research 2000;33(1):27–36. [A7]9
  12. Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. 2011. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2:776–80
  13. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. 2007. Biological applications of quantum dots. Biomaterials 28:4717–32
  14. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of mag- netic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 2003;36(13):R167–81.
  15. Wang C, Irudayaraj J. 2008. Gold nanorod probes for the detection of multiple pathogens. Small 4:2204– 8
  16. Hernandez-Viezcas JA et al. 2013 In situ synchrotron X-ray fluorescence mapping and speciation of CeO 2 and ZnO nanoparticles in soil cultivated soybean (glycine max). ACS Nano 7, 1415 –1423. (doi:10. 1021/nn305196q)
  17. Zhang F, Lees E, Amin F, Rivera Gil P, Yang F, Mulvaney P, Parak WJ. 2011 Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7, 3113 –3127. (doi:10.1002/ smll.201100608)
  18. Sperling RA, Pellegrino T, Li JK, Chang WH, Parak WJ. 2006 Electrophoretic separation of nanoparticles with a discrete number of functional groups. Adv. Funct. Mater. 16, 943 –948. (doi:10.1002/adfm. 200500589)
  19. Doussineau T, Smaihi M, Mohr GJ. 2009 Two-dye core/shell zeolite nanoparticles: a new tool for ratiometric pH measurements. Adv. Funct. Mater. 19, 117– 122. (doi:10.1002/adfm.200800718)
  20. Amin F, Yushchenko DA, Montenegro JM, Parak WJ. 2012 Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment. ChemPhysChem 13, 1030–1035. (doi:10.1002/cphc. 201100901)
  21. Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ. 2010 Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11, 730–735. (doi:10.1002/cphc.200900849)
  22. Verwey EJW, De Boer JH. 1936 Surface oxide films. Recueil Des Travaux Chimiques Des Pays-Bas 55, 675 –687. (doi:10.1002/recl.19360550806)
  23. Pellegrino T, Kudera S, Liedl T, Javier AM, Manna L, Parak WJ. 2005 On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 1, 48 –63. (doi:10.1002/smll.200400071)
  24. Riedinger A, Zhang F, Dommershausen F, Röcker C, Brandholt S, Nienhaus GU, Koert U, Parak WJ. 2010 Ratiometric optical sensing of chloride ions with organic fluorophore – gold nanoparticle hybrids: a systematic study of distance dependency and the influence of surface charge. Small 6, 2590 –2597. (doi:10.1002/smll.201000868)
  25. Geidel C, Schmachtel S, Riedinger A, Pfeiffer C, Müllen K, Klapper M, Parak WJ. 2011 A general synthetic approach for obtaining cationic and anionic inorganic nanoparticles via encapsulation in amphiphilic copolymers. Small 7, 2929–2934. (doi:10.1002/smll.201100509)
  26. Diaz JA, Grewer DM, Gibbs-Davis JM. 2012 Tuning ratios, densities, and supramolecular spacing in bifunctional DNA-modified gold nanoparticles. Small 8, 873– 883. (doi:10.1002/smll.201101922)
  27. Changes may still occur before final publication online and in print Annual Review of Analytical Chemistry 2013.6. Downloaded from www.annualreviews.org by WIB6100 -University of Marburg on 06/11/13. For personal use only. References 1. Pelaz B, Charron G, Pfeiffer C, Zhao YL, de la Fuente JM, Liang XJ, Parak WJ, del Pino P. 2013 Interfacing engineered nanoparticles with biological systems: anticipating adverse nanobio interactions. Small 9, 1573–1584. (doi:10.1002/smll.201201229)
  28. Kolb DM, Franke C. 1989 Surface-states at the metal electrolyte interface. Appl. Phys. A, Mater. Sci. Process. 49, 379– 387. (doi:10.1007/BF00615020) 93. Gutsch A, Muhlenweg H, Kramer M. 2005 Tailor- made nanoparticles via gas-phase synthesis. Small 1, 30 –46. (doi:10.1002/smll.200400021)
  29. Hofmeister F. 1888 Zur Lehre von der Wirkung der Salze -Zweite Mittheilung. Arch. Exp. Pathol. Pharm 24, 247–260. (doi:10.1007/BF01918191)
  30. Ohshima H. 2004 Potential distribution around a charged spherical colloidal particle in a medium containing its counterions and a small amount of added salts. Colloid Polym. Sci. 282, 1185–1191. (doi:10.1007/s00396-004-1072-9)
  31. Zhou S, Zhang G. 2012 Approximate analytic solution of the nonlinear Poisson–Boltzmann equation for spherical colloidal particles immersed in a general electrolyte solution. Colloid Polym. Sci. 290, 1511– 1526. (doi:10.1007/s00396-012-2683-1)
  32. Parveen S, Misra R, Sahoo SK. 2012 Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, 147–166. (doi:10.1016/ j.nano.2011.05.016)
  33. Bousse L, Mostarshed S. 1991 The zeta potential of silicon nitride thin films. J. Electroanal. Chem. 302, 269–274. (doi:10.1016/0022-0728(91)85046-R)
  34. Bousse L, Rooij NFd, Bergveld P. 1983 The influence of counter-ion adsorption on the c 0 /pH characteristics of insulator surfaces. Surf. Sci. 135, 479–496. (doi:10.1016/0039-6028(83)90237-6)
  35. van Hal REG, Eijkel JCT, Bergveld P. 1995 A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors Actuators B, Chem. 24–25, 201 –205. (doi:10.1016/0925-4005(95)85043-0)
  36. Raiteri R, Martinoia S, Grattarola M. 1996 pH- dependent charge density at the insulator- electrolyte interface probed by a scanning force microscope. Biosens. Bioelectron. 11, 1009–1017. (doi:10.1016/0956-5663(96)87660-3)
  37. He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, Guo L, chen Y. 2010 The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31, 1085–1092. (doi:10.1016/j. biomaterials.2009.10.046)
  38. Menendez-Manjon A, Barcikowski S. 2011 Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water. Appl. Surf. Sci. 257, 4285–4290. (doi:10.1016/j.apsusc.2010.12.037)
  39. Garcia-Bennett A, Nees M, Fadeel B. 2011 In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem. Pharmacol. 81, 976–984. (doi:10.1016/j.bcp.2011.01.023)
  40. Ohshima H. 2003 Potential distribution around a polyelectrolyte-coated spherical particle in a salt- free medium. J. Colloid Interface Sci. 268, 429 –434. (doi:10.1016/j.jcis.2003.08.020)
  41. Peng ZG, Hidajat K, Uddin MS. 2004 Adsorption of bovine serum albumin on nanosized magnetic particles. J. Colloid Interface Sci. 271, 277 –283. (doi:10.1016/j.jcis.2003.12.022)
  42. Ohshima H. 2008 Donnan potential and surface potential of a spherical soft particle in an electrolyte solution. J. Colloid Interface Sci. 323, 92–97. (doi:10.1016/j.jcis.2008.03.021)
  43. Keller F, Feist M, Nirschl H, Dorfler W. 2010 Investigation of the nonlinear effects during the sedimentation process of a charged colloidal particle by direct numerical simulation. J. Colloid Interface Sci. 344, 228–236. (doi:10.1016/j.jcis.2009.12.032)
  44. Gebauer JS, Treuel L. 2011 Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J. Colloid Interface Sci. 354, 546–554. (doi:10.1016/j.jcis.2010.11.016)
  45. Obliosca JM, Wang P-C, Tseng F-G. 2012 Probing quenched dye fluorescence of Cy3-DNA-Au- nanoparticle hybrid conjugates using solution and array platforms. J. Colloid Interface Sci. 371, 34–41. (doi:10.1016/j.jcis.2011.12.026)
  46. Al-Mamun SA, Nakajima R, Ishigaki T. 2013 Tuning the size of aluminum oxide nanoparticles synthesized by laser ablation in water using physical and chemical approaches. J. Colloid Interface Sci. 392, 172 –182. (doi:10.1016/j.jcis.2012.10.027)
  47. Bauduin P, Nohmie F, Touraud D, Neueder R, Kunz W, Ninham BW. 2006 Hofmeister specific-ion effects on enzyme activity and buffer pH: Horseradish peroxidase in citrate buffer. J. Mol. Liq. 123, 14–19. (doi:10.1016/j.molliq.2005.03.003)
  48. Liufu S, Xiao H, Li Y. 2004 Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technol. 145, 20–24. (doi:10.1016/j.powtec.2004.05.007)
  49. Hajipour MJ, Fromm KM, Ashkarran AA, Aberasturi DJd, Larramendi IRd, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. 2012 Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499 –511. (doi:10.1016/j.tibtech.2012.06.004)
  50. Collins KD. 2004 Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311. (doi:10.1016/j.ymeth.2004.03.021)
  51. Ninham BW. 1999 On progress in forces since the DLVO theory. Adv. Colloid Interface Sci. 83, 1–17. (doi:10.1016/S0001-8686(99)00008-1)
  52. Collins KD. 1997 Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65– 76. (doi:10.1016/S0006-3495(97)78647-8)
  53. Kruis FE, Fissan H, Peled A. 1998 Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review. J. Aerosol Sci. 29, 511–535. (doi:10.1016/S0021-8502 (97)10032-5) rsif.royalsocietypublishing.org J. R. Soc. Interface 20130931
  54. Bae CH, Nam SH, Park SM. 2002 Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci. 197, 628–634. (doi:10.1016/S0169-4332(02)00430-0)
  55. Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters. ACS Nano 6, 2253 –2260. (doi:10.1021/ nn204313a)
  56. Prochazka M, Mojzes P, Stepanek J, Vlckova B, Turpin PY. 1997 Probing applications of laser ablated Ag colloids in SERS spectroscopy: Improvement of ablation procedure and SERS spectral testing. Anal. Chem. 69, 5103 –5108. (doi:10.1021/ac970683+)
  57. Zhu Q, Tao F, Pan Q. 2010 Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field. ACS Appl. Mater. Interfaces 2, 3141–3146. (doi:10.1021/am1006194)
  58. Doane TL, Chuang CH, Hill RJ, Burda C. 2012 Nanoparticle zeta-potentials. Acc. Chem. Res. 45, 317 –326. (doi:10.1021/ar200113c)
  59. Batley GE, Kirby JK, McLaughlin MJ. 2013 Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 46, 854–862. (doi:10.1021/ar2003368)
  60. Rivera-Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, et al. 2012. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. In press. doi:10.1021/ar300039j
  61. Rivera Gil P et al. 2013 The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 46, 743–749. (doi:10.1021/ar300039j)
  62. Huynh KA, Chen KL. 2011 Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 45, 5564–5571. (doi:10.1021/es200157h)
  63. Gao P, Weaver MJ. 1986 Metal adsorbate vibrational frequencies as a probe of surface bonding – halides and pseudohalides at gold electrodes. J. Phys. Chem. 90, 4057–4063. (doi:10.1021/j100408a045)
  64. Brenner SL, Roberts RE. 1973 Variational solution of Poisson–Boltzmann equation for a spherical colloidal particle. J. Phys. Chem. 77, 2367–2370. (doi:10.1021/j100639a001)
  65. Hung A, Mwenifumbo S, Mager M, Kuna JJ, Stellacci F, Yarovsky I, Stevens MM. 2011 Ordering surfaces on the nanoscale: implications for protein adsorption. J. Am. Chem. Soc. 133, 1438– 1450. (doi:10.1021/ja108285u)
  66. Zhang X, Servos MR, Liu J. 2012 Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J. Am. Chem. Soc. 134, 9910–9913. (doi:10.1021/ja303787e)
  67. Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT. 2004 Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16 864– 16 869. (doi:10.1021/jp047134+)
  68. Vrbka L, Jungwirth P, Bauduin P, Touraud D, Kunz W. 2006 Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions. J. Phys. Chem. B 110, 7036 –7043. (doi:10.1021/jp0567624)
  69. Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, Lin C-AJ, Chang WH, Braun D, Parak WJ. 2007 Size determination of (bio-) conjugated water-soluble colloidal nanoparticles: a comparison of different techniques. J. Phys. Chem. C 111, 11 552–11 559. (doi:10.1021/jp070999d)
  70. Muto H, Yamada K, Miyajima K, Mafune F. 2007 Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water. J. Phys. Chem. C 111, 17 221– 17 226. (doi:10.1021/jp075582m)
  71. Merk CVR, Rehbock C, Becker F, Hagemann U, Nienhaus H, Barcikowski S. 2013 Non-DLVO stabilization of surface-free, plasmonic gold nanoparticles: the effect of Hofmeister's anions. Langmuir. Q2 102. Siskova K, Vlckova B, Turpin PY, Fayet C. 2008 Ion- specific effects on laser ablation of silver in aqueous electrolyte solutions. J. Phys. Chem. C 112, 4435–4443. (doi:10.1021/jp076680a)
  72. study by Monte Carlo simulations and density functional theory. J. Phys. Chem. B 114, 10 550– 10 557. (doi:10.1021/jp1042975)
  73. Petersen S, Barchanski A, Taylor U, Klein S, Rath D, Barcikowski S. 2011 Penetratin-conjugated gold nanoparticles -design of cell-penetrating nanomarkers by femtosecond laser ablation. J. Phys. Chem. C 115, 5152–5159. (doi:10.1021/jp1093614)
  74. Zhang JM, Oko DN, Garbarino S, Imbeault R, Chaker M, Tavares AC, Guay D, Ma DL. 2012 Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J. Phys. Chem. C 116, 13 413– 13 420. (doi:10.1021/jp302485g)
  75. Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG. 2012 Emerging techniques for submicrometer particle sizing applied to stober silica. Langmuir 28, 10 860 –10 872. (doi:10.1021/la203419y)
  76. dos Santos AP, Levin Y. 2012 Ions at the water –oil interface: interfacial tension of electrolyte solutions. Langmuir 28, 1304 –1308. (doi:10.1021/la204036e)
  77. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L. 2012 Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679. (doi:10.1021/la301104a)
  78. Medda L, Barse B, Cugia F, Bostrom M, Parsons DF, Ninham BW, Monduzzi M, Salis A. 2012 Hofmeister challenges: ion binding and charge of the BSA protein as explicit examples. Langmuir 28, 16 355– 16 363. (doi:10.1021/la3035984)
  79. Arduini M, Mancin F, Tecilla P, Tonellato U. 2007 Self-organized fluorescent nanosensors for ratiometric Pb 2þ detection. Langmuir 23, 8632–8636. (doi:10.1021/la700971n)
  80. Srnova I, Prochazka M, Vlckova B, Stepanek J, Maly P. 1998 Surface-enhanced Raman scattering-active systems prepared from Ag colloids laser-ablated in chemically-modified aqueous media. Langmuir 14, 4666–4670. (doi:10.1021/la9707540)
  81. Dulkeith E, Ringler M, Klar TA, Feldmann J, Javier AM, Parak WJ. 2005 Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nanoletters 5, 585–589. (doi:10.1021/nl0480969)
  82. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. 2012 Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6, 2128 –2135. (doi:10.1021/nn204643g)
  83. Peters R et al. 2012 Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6, 2441 –2451. (doi:10.1021/nn204728k)
  84. Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. 2012 Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6, 8962 –8969. (doi:10.1021/nn3029953)
  85. Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF. 2012 Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6, 9943–9950. (doi:10.1021/nn303543n)
  86. Mahmoudi M et al. 2013 Temperature: the ?ignored? factor at the nanobio interface. ACS Nano 7, 6555 –6562. (doi:10.1021/nn305337c)
  87. Hühn D et al. 2013 Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7, 3253 –3263. (doi:10.1021/nn3059295)
  88. Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, Chen SL, Irvine DJ, Stellacci F. 2008 Surface- structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 7, 588 –595. (doi:10.1038/nmat2202)
  89. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. 2009 A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580. (doi:10.1038/nnano. 2009.195)
  90. Amendola V, Meneghetti M. 2013 What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046. (doi:10.1039/ c2cp42895d)
  91. Lopez-Garcia JJ, Horno J, Grosse C. 2001 Numerical solution of the Poisson–Boltzmann equation for suspended charged particles surrounded by a charged permeable membrane. Phys. Chem. Chem. Phys. 3, 3754 –3760. (doi:10.1039/b101701m)
  92. Amendola V, Meneghetti M. 2009 Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11, 3805–3821. (doi:10.1039/b900654k)
  93. Kittler S et al. 2010 The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J. Mater. Chem. 20, 512– 518. (doi:10.1039/b914875b)
  94. Page LE, Zhang X, Jawaid AM, Snee PT. 2011 Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. Chem. Commun. 47, 7773 –7775. (doi:10.1039/c1cc11442e)
  95. Rehbock C, Merk V, Gamrad L, Streubel R, Barcikowski S. 2013 Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Phys. Chem. Chem. Phys. 15, 3057–3067. (doi:10.1039/c2cp42641b)
  96. Barcikowski S, Compagnini G. 2013 Advanced nanoparticle generation and excitation by lasers in liquids. Phys. Chem. Chem. Phys. 15, 3022–3026. (doi:10.1039/c2cp90132c)
  97. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. 2012 Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 41, 2943– 2970. (doi:10.1039/c2cs15355f )
  98. Venkatanarasimhan S, Raghavachari D. 2013 Epoxidized natural rubber-magnetite nanocomposites for oil spill recovery. J. Mater. Chem. A 1, 868–876. (doi:10.1039/c2ta00445c)
  99. Perelshtein I et al. 2013 Chitosan and chitosan- ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J. Mater. Chem. B 1, 1968 –1976. (doi:10.1039/c3tb00555k)
  100. White LR. 1977 Approximate analytic solution of the Poisson-Boltzmann equation for a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 73, 577–596. (doi:10.1039/f29777300577)
  101. Hoskin NE. 1953 Solution to the Poisson– Boltzmann equation for the potential distribution in the double layer of a single spherical colloidal particle. Trans. Faraday Soc. 49, 1471–1477. (doi:10.1039/tf9534901471)
  102. Kabashin AV, Meunier M. 2003 Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 –7943. (doi:10.1063/1.1626793)
  103. Yu YX, Wu JZ, Gao GH. 2004 Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted- primitive-model electrolyte solutions. J. Chem. Phys. 120, 7223 –7233. (doi:10.1063/1.1676121)
  104. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S. 2007 Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050– 2055. (doi:10.1073/pnas. 0608582104)
  105. Gulicovski JJ, Cerovic LS, Milonjin SK. 2008 Point of zero charge and isoelectric point of alumina. Mater. Manuf. Process. 23, 615 –619. (doi:10.1080/ 10426910802160668)
  106. Semaltianos NG. 2010 Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci. 35, 105–124. (doi:10.1080/10408431003788233)
  107. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone. Nanotechnology 20, 445603. (doi:10.1088/ 0957-4484/20/44/445603)
  108. Proc. R. Soc. Lond. A 133, 106 –129. (doi:10.1098/ rspa.1931.0133) 80. Doane TL, Burda C. 2012 The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885– 2911. (doi:10.1039/c2cs15260f )
  109. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU. 2010 Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 7, S5–S13. (doi:10.1098/rsif.2009.0272.focus)
  110. Sugiyama M, Okazaki H, Koda S. 2002 Size and shape transformation of TiO 2 nanoparticles by irradiation of 308-nm laser beam. Jpn J. Appl. Phys. Part 1 Regular Pap. Short Not. Rev. Pap. 41, 4666 –4674. (doi:10.1143/JJAP.41.4666)
  111. Wu JZ, Li ZD. 2007 Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85 –112. (doi:10.1146/annurev.physchem.58. 032806.104650)
  112. Pellegrino T, Sperling RA, Alivisatos AP, Parak WJ. 2007 Gelelectrophoresis of gold-DNA nanoconjugates. J. Biomed. Biotechnol. 2007, 1–9. (doi:10.1155/2007/26796)
  113. Singh D, Kumar S, Singh SC, Lal B, Singh NB. 2012 Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of brassica oleracea var. capitata. Sci. Adv. Mater. 4, 522–531. (doi:10.1166/sam.2012.1313)
  114. Fu FN, Fuller MP, Singh BR. 1993 Use of fourier- transform infrared attenuated total reflectance spectroscopy for the study of surface-adsorption of proteins. Appl. Spectrosc. 47, 98 –102. (doi:10.1366/ 0003702934048451)
  115. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M. 2006 Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomed. 1, 51– 57. (doi:10.2147/nano.2006.1.1.51)
  116. Peteiro-Cartelle J, Rodríguez-Pedreira M, Zhang F, Gil PR, Mercato LLd, Parak WJ. 2009 One example on how colloidal nano-and microparticles could contribute to medicine. Nanomedicine 4, 967–979. (doi:10.2217/nnm.09.84)
  117. Hoecke KV, Schamphelaer KACD, Ali Z, Zhang F, Elsaesser A, Rivera_Gil P, Parak WJ, Smagghe G, Janssen CR. 2013 In vitro ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7, 37 –47. (doi:10.3109/17435390.2011.626566)
  118. Maffre P, Nienhaus K, Amin F, Parak WJ, Nienhaus GU. 2011 Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein J. Nanotechnol. 2, 374 –383. (doi:10.3762/ bjnano.2.43)
  119. Verwey EJW, Overbeek JTG. 1948 Theory of the stability of lyophobic colloids. Amsterdam, The Netherlands: Elsevier.
  120. Sperling RA, Pellegrino T, Li JK, Chang WH, Parak WJ. 2006. Electrophoretic separation of nanopar- ticles with a discrete number of functional groups. Adv. Funct. Mater. 16:943–48
  121. Jakhmola A, Anton N, Vandamme TF. 2012. Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthc. Mater. 1:413–31
  122. Freeman R, Finder T, Willner I. 2009. Multiplexed analysis of Hg 2+ and Ag + ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem. Int. Ed. 48:7818–21
  123. Geissler D,Charbonnì ere L, Ziessel R, Butlin N, L ¨ ohmannsrohmannsr¨ohmannsröben HG, Hildebrandt N. 2010. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem. Int. Ed. 49:1396–401
  124. Hwang DW, Ko HY, Kim S-K, Kim D, Lee DS, Kim S. 2009. Development of a quadruple imaging modality by using nanoparticles. Chem. Eur. J. 15:9387–93
  125. Katz E, Willner I. 2004. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43:6042–108
  126. Zhang F, Zulqurnain A, Amin F, Feltz A, Oheim M, Parak WJ. Ion and pH sensing with colloidal nanoparticles—the influence of surface charge on sensing and colloidal properties. Chemistry and Physics Chemical Journal, in press.
  127. Willner I, Willner B, Tel-Vered R. 2011. Electroanalytical applications of metallic nanoparticles and supramolecular nanostructures. Electroanalysis 23:13–28
  128. Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, et al. 2011. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–27
  129. Zhang F, Ali Z, Amin F, Riedinger A, Parak WJ: In vitro and intracellular sensing by using the photoluminescence of quantum dots. Analytical And Bioanalytical Chemistry 2010, 397:935-942.
  130. Nagare S, Sagawa J, Senna M. Chemical and structural properties of drug- protein nanocomposites prepared by pulsed laser deposition from conjugated targets. Journal of Nanoparticle Research 2006;8(1):37–42.
  131. Tilaki RM, Zad AI, Mahdavi SM. 2007 The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation.
  132. Thompson DW, Collins IR. 1992 Electrical-properties of the gold aqueous-solution interface. J. Colloid Interface Sci. 152, 197–204. (doi:10.1016/0021- 9797(92)90019-I)
  133. Lipka M, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, et al. 2010. Biodistribution of PEG- modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31:6574–81
  134. Xing H, Bu W, Zhang S, Zheng X, Li M, et al. 2012. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33:1079–89
  135. Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX. 2012. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron. 31:226–32
  136. Ruedas-Rama MJ, Orte A, Hall EAH, Alvarez-Pez JM, Talavera EM. 2011. Quantum dot photolumi- nescence lifetime–based pH nanosensor. Chem. Commun. 47:2898–900
  137. Ito K. Hepatocellular carcinoma: conventional MRI findings including gadolinium-enhanced dynamic imaging. European Journal of Radiology 2006;58(2):186–99.
  138. Broome DR. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. European Journal of Radiology 2008;66(2):230–4.
  139. He C, Sasaki T, Usui H, Shimizu Y, Koshizaki N. 2007 Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: an approach to study the mechanism of enhanced green photoluminescence.
  140. Manciu M, Ruckenstein E. 2003 Specific ion effects via ion hydration: I. Surface tension. Adv. Colloid Interface Sci. 105, 63 –101. (doi:10.1016/S0001- 8686(03)00018-6)
  141. Parak WJ, Hofmann UG, Gaub HE, Owicki JC. 1997. Lateral resolution of light addressable potentio- metric sensors: an experimental and theoretical investigation. Sens. Actuators A 63:47–57
  142. George M, Parak WJ, Gaub HE. 2000. Highly integrated surface potential sensors. Sens. Actuators B 69:266–75
  143. Wilson MS, Nie W. 2006. Electrochemical multianalyte immunoassays using an array-based sensor. Anal. Chem. 78:2507–13
  144. Lai G, Yan F, Wu J, Leng C, Ju H. 2011. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal. Chem. 83:2726–32
  145. Tanne J, Schafer D, Khalid W, Parak WJ, Lisdat F. 2011. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal. Chem. 83:7778–85
  146. Zong C, Wu J, Wang C, Ju H, Yan F. 2012. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal. Chem. 84:2410–15
  147. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. 2012. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 84:6220–24
  148. Liu B, Zhang B, Cui Y, Chen H, Gao Z, Tang D. 2011. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. Am. Chem. Soc. Appl. Mater. Interfaces3:4668–76
  149. Kim K, Lee YM, Lee HB, Shin KS. 2009. Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF. Am. Chem. Soc. Appl. Mater. Interfaces 1:2174–80
  150. Zhang J, Song S, Zhang L, Wang L, Wu H, et al. 2006. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128:8575–80
  151. Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, et al. 2008. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc. 130:3610–18
  152. Sanles-Sobrido M, Exner W, Rodríguez-Lorenzo L, Rodríguez-Gonzalez B, Correa-Duarte MA, et al. 2009. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J. Am. Chem. Soc. 131:2699–705
  153. Fernández-L ´ opez C, Mateo-Mateo C, ´ Alvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. 2009. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS- encoded particles. Langmuir 25:13894–99
  154. Yu C, Nakshatri H, Irudayaraj J. 2007. Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett. 7:2300–6
  155. Ament I, Prasad J, Henkel A, Schmachtel S, Soennichsen C. 2012. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12:1092–95
  156. Maltez–da Costa M, de la Escosura-MuMu˜Muñiz A, Nogués C, Barrios L, IbáIbá˜Ibáñez E, Merkoçi A. 2012. Simple monitoring of cancer cells using nanoparticles. Nano Lett. 12:4164–71
  157. Vetrone F, Naccache R, ZamarrZamarr´Zamarrón A, Juarranz de la Fuente A, Sanz-Rodríguez F, et al. 2010. Temper- ature sensing using fluorescent nanothermometers. Am. Chem. Soc. Nano 4:3254–58
  158. Ko JW, Woo J-M, Jinhong A, Cheon JH, Lim JH, et al. 2011. Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network. Am. Chem. Soc. Nano 5:4365–72
  159. Abbasi AZ, Amin F, Niebling T, Friede S, Ochs M, et al. 2011. How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. Am. Chem. Soc. Nano 5:21–25
  160. Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, et al. 2012. Nanocomposites con- taining silica-coated gold–silver Nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional ca- pability of IR-luminescence detection, photosensitization, and photothermolysis. Am. Chem. Soc. Nano 5:7077–89
  161. Kim J-H, Patra CR, Arkalgud JR, Boghossian AA, Zhang J, et al. 2011. Single-molecule detection of H 2 O 2 mediating angiogenic redox signaling on fluorescent single-walled carbon nanotube array. Am. Chem. Soc. Nano 5:7848–57
  162. del Mercato LL, Abbasi AZ, Ochs M, Parak WJ. 2011. Multiplexed sensing of ions with barcoded polyelectrolyte capsules. Am. Chem. Soc. Nano 5:9668–74
  163. Pinaud F, Clarke S, Sittner A, Dahan M: Probing cellular events, one quantum dot at a time. Nature Methods 2010, 7:275-285.
  164. Chhabra R, Sharma J, Wang H, Zou S, Lin S, Yan H, Lindsay S, Liu Y. 2009 Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20, 485201. (doi:10.1088/0957- 4484/20/48/485201)
  165. Peteiro-Cartelle J, Rodríguez-Pedreira M, Zhang F, Rivera-Gil P, del Mercato LL, Parak WJ. 2009. One example on how colloidal nano-and microparticles could contribute to medicine. Nanomedicine 4:967–79
  166. Koh I, Josephson L. 2009. Magnetic nanoparticle sensors. Sensors 9:8130–45
  167. Fowley C, McCaughan B, Devlin A, Yildiz I, Raymo FM, Callan JF. 2012. Highly luminescent biocom- patible carbon quantum dots by encapsulation with an amphiphilic polymer. Chem. Commun. 48:9361–63
  168. Nagl S, Wolfbeis OS. 2007. Optical multiple chemical sensing: status and current challenges. Analyst 132:507–11
  169. Ma M, Chen H, Chen Y, Wang X, Chen F, et al. 2012. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–98
  170. Gouy M. 1909 Sur la constitution de la charge electrique a la surface d'un electrolyte. C.R. Acad.
  171. Kang T, Yoo SM, Yoon I, Lee SY, Kim B. 2010. Patterned multiplex pathogen DNA detection by Au particle–on–wire SERS sensor. Nano Lett. 10:1189–93
  172. Kim D-K, Yoo S-M, Park T-J, Yoshikawa H, Tamiya E-I, et al. 2011. Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal. Chem. 83:6215–22
  173. Erogbogbo F, Chang C-W, May JL, Liu L, Kumar R, et al. 2012. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. Nanoscale 4:5483–89
  174. Song J, Zhou J, Duan H. 2012. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J. Am. Chem. Soc. 134:13458–69
  175. Marin MJ, Galindo F, Thomas P, Russell DA. 2012. Localized intracellular pH measurement using a ratiometric photoinduced electron-transfer-based nanosensor. Angew. Chem. Int. Ed.51:9657–61
  176. Moros M, Pelaz B, L ´ opez-Larrubia P, García-Martin ML, GrazGraz´Grazú V, de la Fuente JM. 2010. Engineering biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale 2:1746–55
  177. Wang F, Deng R, Wang J, Wang Q, Han Y, et al. 2011. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10:968–73
  178. Geidel C, Schmachtel S, Riedinger A, Pfeiffer C, M ¨ ullen K, et al. 2011. A general synthetic approach for obtaining cationic and anionic inorganic nanoparticles via encapsulation in amphiphilic copolymers. Small 7:2929–34
  179. Amin F, Yushchenko DA, Montenegro JM, Parak WJ. 2012. Integration of organic fluorophores in the surface of polymer-coated colloidal nanoparticles for sensing the local polarity of the environment. ChemPhysChem 13:1030–35
  180. Sanchez-Iglesias A, Aldeanueva-Potel P, Ni WH, Pérez-Juste J, Pastoriza-Santos I, et al. 2010. Chem- ical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today 5:21–27 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles 77
  181. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, et al. 2008. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14:459–65
  182. Wormuth K. Superparamagnetic latex via inverse emulsion polymerization. Journal of Colloid and Interface Science 2001;241(2):366–77.
  183. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, et al. 2003. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348:2491–99
  184. Tartaj P, Morales M, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna C. The preparation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics 2003;36(13):R182–97.
  185. Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, et al. 2012. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med. 51:98–105
  186. Helmholtz H. 1879 Studien u ¨ber elektrische Grenzschichten. Wiedemanns Anal. Phys. Chem. 7, 337 –382.
  187. Rivera-Gil P, Nazarenus M, Ashraf S, Parak WJ. 2012. pH Sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. Small 8:943–48
  188. AC06CH03-Parak ARI 13 February 2013 20:38
  189. Kondrashina AV, Dmitriev RI, Borisov SM, Klimant I, O'Brien I, et al. 2012. A phosphorescent nanoparticle–based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modal- ities. Adv. Func. Mater. In press 176. Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB. 2011. Intracellular O 2 sensing probe based on cell-penetrating phosphorescent nanoparticles. Am. Chem. Soc. Nano 5:5499–508
  190. Xu J-J, Luo X-L, Du Y, Chen H-Y. 2004. Application of MnO 2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochem. Commun. 6:1169–73
  191. Luo X, Morrin A, Killard AJ, Smyth MR. 2006. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–26
  192. LundstrLundstr¨Lundström I, Erlandsson R, Frykman U, Hedborg E, Spetz A, et al. 1991. Artificial " olfactory " images from a chemical sensor using a light-pulse technique. Nature 352:47–50
  193. Leuvering JHW, Thal P, Vanderwaart M, Schuurs A. 1981. A sol particle agglutination assay for human chorionic gonadotropin. J. Immunol. Methods 45:183–94
  194. Cui Y, Zheng XS, Ren B, Wang R, Zhang J, et al. 2011. Au@organosilica multifunctional nanoparticles for the multimodal imaging. Chem. Sci. 2:1463–69
  195. Kotov N. 2011. Bioimaging: The only way is up. Nat. Mater. 10:903–4
  196. Hočevar SB, Wang J, Deo RP, Musameh M, Ogorevc B. 2005. Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17:417–22
  197. Carregal-Romero et al. Changes may still occur before final publication online and in print Annual Review of Analytical Chemistry 2013.6. Downloaded from www.annualreviews.org by WIB6100 -University of Marburg on 06/11/13. For personal use only. [A8]22
  198. Rohrer MP, Bauer HP, Mintorovitch JP, Requardt MP, Weinmann H-JP. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths [Article] 2003. Investigative Radiology 2005;40(November (11)):715–24.
  199. Rivera-Gil P, Parak WJ. 2008. Composite nanoparticles take aim at cancer. Am. Chem. Soc. Nano 2:2200–5 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles 79
  200. Fretz CJ, Stark DD, Metz CE, Elizondo G, Weissleder R, Shen JH, et al. Detec- tion of hepatic metastases—comparison of contrast-enhanced Ct, unenhanced mr imaging, and iron-oxide enhanced Mr imaging. American Journal of Roentgenology 1990;155(4):763–70.
  201. Early View Publication; these are NOT the final page numbers, use DOI for citation !! References [
  202. YáYá˜Yáñez-SedeSede˜Sedeño P, PingarrPingarr´Pingarrón JM, Riu J, Rius FX. 2010. Electrochemical sensing based on carbon nan- otubes. Trends Anal. Chem. 29:939–53
  203. Bellin M, Webb J, Van der Molen A, Thomsen H, Morcos S. ESUR, and, safety of MR liver specific contrast media. European Radiology 2005;15(8):1607–14.
  204. Wang Y, Fang F, Shi C, Zhang X, Liu L, et al. 2012. Evaluation of a method for the simultaneous detection of multiple tumor markers using a multiplex suspension bead array. Clin. Biochem. 45:1394–98
  205. Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U. 2009. Fluorescence lifetime mul- tiplexing with nanocrystals and organic labels. Anal. Chem. 81:7807–13
  206. Peng X, Yang Z, Wang J, Fan J, He Y, et al. 2011. Fluorescence ratiometry and fluorescence lifetime imaging: using a single molecular sensor for dual mode imaging of cellular viscosity. J. Am. Chem. Soc. 133:6626–35
  207. Alcantara D, Guo Y, Yuan H, Goergen CJ, Chen HH, et al. 2012. Fluorochrome-functionalized magnetic nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance. Angew. Chem. Int. Ed. 51:6904–7
  208. He S, Liu K-K, Su S, Yan J, Mao X, et al. 2012. Graphene-based high-efficiency surface-enhanced Raman scattering–active platform for sensitive and multiplex DNA detection. Anal. Chem. 84:4622–27
  209. Ferguson JA, Steemers FJ, Walt DR. 2000. High-density fiber-optic DNA random microsphere array. Anal. Chem. 72:5618–24
  210. Ross P, Hall L, Smirnov I, Haff L. 1998. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16:1347–51
  211. Weishaupt D, Köchli VD, Marincek B. How does MRI work. second edition Berlin, Germany: Springer-Verlag; 2006.
  212. Wang C, Gao X, Su XG: In vitro and in vivo imaging with quantum dots. Analytical And Bioanalytical Chemistry 2010, 397:1397-1415.
  213. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, et al. 2010. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. Am. Chem. Soc. Nano 4:699– 708
  214. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, et al. 2000. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6:351–55
  215. He X, Wang K, Cheng Z. 2010. In vivo near-infrared fluorescence imaging of cancer with nanoparticle- based probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2:349–66
  216. Ferrucci JT, Stark DD. Iron-oxide enhanced Mr-imaging of the liver and spleen—review of the 1St-5 years. American Journal of Roentgenology 1990;155(5):943–50.
  217. Hiep HM, Endo T, Saito M, Chikae M, Kim DK, et al. 2008. Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. Anal. Chem. 80:1859–64
  218. Parak WJ, Pellegrino T, Plank C: Labelling of cells with quantum dots. Nanotechnology 2005, 16:R5-R25.
  219. Hafeman DG, Parce JW, McConnell HM. 1988. Light-addressable potentiometric sensor for biochem- ical systems. Science 240:1182–85
  220. Jordan A, Scholz R, Wust P, Fahling H, Felix R. Magnetic fluid hyperther- mia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials 1999;201:413–9.
  221. Perez JM, Josephson L, O'Loughlin T, H ¨ ogemann D, Weissleder R. 2002. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–20
  222. Pregibon DC, Toner M, Doyle PS. 2007. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–96
  223. Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, et al. 2006. Multiple label-free detection of antigen–antibody reaction using localized surface plasmon resonance–based core-shell structured nanoparticle layer nanochip. Anal. Chem. 78:6465–75
  224. Yu C, Irudayaraj J. 2007. Multiplex biosensor using gold nanorods. Anal. Chem. 79:572–79
  225. Stoeva SI, Lee J-S, Smith JE, Rosen ST, Mirkin CA. 2006. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J. Am. Chem. Soc. 128:8378–79
  226. Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, et al. 2008. Multiplex protein assay based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA 105:20637–40
  227. Lowe SB, Dick JAG, Cohen BE, Stevens MM. 2012. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot–peptide conjugates. Am. Chem. Soc. Nano 6:851–57
  228. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angewandte Chemie- International Edition 2009;48(5):872–97.
  229. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews 2006;58(14): 1456–9.
  230. Zamborini FP, Bao L, Dasari R. 2012. Nanoparticles in measurement science. Anal. Chem. 84:541–76
  231. Altıno ˘ glu EI, Russin TJ, Kaiser JM, Barth BM, Eklund BC, et al. 2008. Near-infrared emitting fluorophore–doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. Am.
  232. Freeman R, Willner I. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 41:4067–85
  233. Jimenez de Aberasturi D, Montenegro JM, Ruiz de Larramendi I, Rojo T, Klar TA, et al. 2012. Optical sensing of small ions with colloidal nanoparticles. Chem. Mater. 24:738–45
  234. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–3
  235. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. 2002. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–63
  236. Jung C, Jacobs P. Physical and chemical-properties of superparamagnetic iron- oxide MR contrast agents—ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging 1995;13(5):661–74.
  237. Scotognella F, Della Valle G, Kandada ARS, Dorfs D, Zavelani-Rossi M, et al. 2011. Plasmon dynamics in colloidal Cu 2−x Se nanocrystals. Nano Lett. 11:4711–17
  238. Tsoutsi D, Montenegro JM, Dommershausen F, Koert U, Liz-Marzán LM, et al. 2011. Quantitative surface-enhanced Raman ultradetection of atomic inorganic ions: the case of chloride. Am. Chem. Soc. Nano 5:7539–46
  239. Chan WCW, Nie S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–18
  240. Schubert K, Khalid W, Yue Z, Parak WJ, Lisdat F. 2010. Quantum dot–modified electrode for the detection of NAD-dependent dehydrogenase reactions. Langmuir 26:1395–400
  241. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrys- tal technology for medical imaging. Advanced Drug Delivery Reviews 2006;58(14):1471–504.
  242. Guerrero-Martinez A, Pérez-Juste J, Liz-Marzán LM. 2012. Recent progress on silica coating of nanopar- ticles and related nanomaterials. Adv. Mater. 22:1182–95
  243. Taton TA, Mirkin CA, Letsinger RL. 2000. Scanometric DNA array detection with nanoparticle probes. Science 289:1757–60
  244. Wang Z, Zong S, Li W, Wang C, Xu S, et al. 2012. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetec- tion: putting theory into practice. J. Am. Chem. Soc. 134:2993–3000
  245. Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, He Y. 2012. Silicon-based reproducible and active surface- enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection. Appl. Phys. Lett. 100:203104
  246. Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling James F. 2009. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem. 81:9129–34
  247. Sperling RA, Liedl T, Duhr S, Kudera S, Zanella M, et al. 2007. Size determination of (bio-)conjugated water-soluble colloidal nanoparticles—a comparison of different techniques. J. Phys. Chem. C 111:11552– 59
  248. Patra CN. 2010 Structure of spherical electric double layers containing mixed electrolytes: a systematic rsif.royalsocietypublishing.org J. R. Soc. Interface 20130931
  249. Huang S, Pfeiffer C, Hollmann J, Friede S, Chen JJ-C, et al. 2012. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 28:8915–19
  250. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol- derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of Chemical Society, Chemical Communications 1994;1994:801–2.
  251. Henry DC. 1931 The cataphoresis of suspended particles. I. the equation of cataphoresis.
  252. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. 2012. The golden age: gold nanopar- ticles for biomedicine. Chem. Soc. Rev. 41:2740–79
  253. Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 2008;14(5):1310–6.
  254. Derjaguin B, Sidorenkov G. 1941 Thermoosmosis at ordinary temperatures and its analogy with the thermomechanical effect in helium II. C. R. Acad. Sci. 32, 622– 626.
  255. Alivisatos AP. 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22:47–51
  256. Raez J, Blais DR, Zhang Y, ´ Alvarez-Puebla RA, Bravo-Vasquez JP, et al. 2007. Spectroscopically encoded microspheres for antigen biosensing. Langmuir 23:6482–85
  257. Zeng HB, Du XW, Singh SC, Kulinich SA, Yang SK, He JP, Cai WP. 2012 Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct.
  258. Dong B, Cao B, He Y, Liu Z, Li Z, Feng Z. 2012. Temperature sensing and in vivo imaging by molyb- denum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24:1987–93
  259. Chernousova S, Epple M. 2013 Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem.
  260. Skladal P. 1997. Advances in electrochemical immunosensors. Electroanalysis 9:737–45
  261. Caballero-Díaz E, Pfeiffer C, Kastl L, Rivera-Gil P, Simonet B, Valcárcel M, Jiménez-Lamana J, Laborda F, Parak WJ. 2013 The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Particle Particle Syst. Charact.
  262. Stoll C, Kudera S, Parak WJ, Lisdat F. 2006. Quantum dots on gold:electrodes for photoswitchable cytochrome c electrochemistry. Small 2:741–43
  263. Riedinger A, Zhang F, Dommershausen F, R ¨ ocker C, Brandholt S, et al. 2010. Ratiometric optical sensing of chloride ions with organic fluorophore–gold nanoparticle hybrids: a systematic study of distance dependency and the influence of surface charge. Small 6:2590–97
  264. Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, et al. 2012. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal. Chem. 84:6249–55
  265. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine land- scape. Nature Biotechnology 2006;24(10):1211–7.
  266. Chen S, Svedendahl M, Van Duyne RP, Kaell M. 2011. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 11:1826–30
  267. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. 2003. Ratiometric optical PEBBLE nanosen- sors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75:3784–91
  268. Akter R, Rahman MA, Rhee CK. 2012. Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal. Chem. 84:6407–15
  269. Beqa L, Singh AK, Khan SA, Senapati D, Arumugam SR, Ray PC. 2011. Gold nanoparticle–based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples. Am. Chem. Soc. Appl. Mater. Interfaces 3:668–73
  270. Aldeanueva-Potel P, Correa-Duarte MA, ´ Alvarez-Puebla RA, Liz-Marzán LM. 2010. Free-standing carbon nanotube films as optical accumulators for multiplex SERRS attomolar detection. Am. Chem. Soc.
  271. Cheon J, Lee J-H. 2008. Synergistically integrated nanoparticles as multimodal probes for nanobiotech- nology. Acc. Chem. Res. 41:1630–40
  272. Freeman R, Liu X, Willner I. 2011. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using Hemin/G-quadruplexes and CdSe/ZnS quantum dots. J. Am. Chem. Soc. 133:11597–604 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles 75
  273. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, et al. 2012. Quantum dots as simul- taneous acceptors and donors in time-gated F ¨ orster resonance energy transfer relays: characterization and biosensing. J. Am. Chem. Soc. 134:1876–91
  274. Pei H, Li J, Lv M, Wang J, Gao J, et al. 2012. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 134:13843–49
  275. Li Y, Srinivasan B, Jing Y, Yao X, Hugger MA, et al. 2010. Nanomagnetic competition assay for low- abundance protein biomarker quantification in unprocessed human sera. J. Am. Chem. Soc. 132:4388–92
  276. Freeman R, Liu X, Willner I. 2011. Amplified multiplexed analysis of DNA by the exonuclease III– catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett. 11:4456–61
  277. Giri S, Sykes EA, Jennings TL, Chan WCW. 2011. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. Am. Chem. Soc. Nano 5:1580–87
  278. Ku G, Zhou M, Song S, Huang Q, Hazle J, Li C. 2012. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1,064 nm. Am. Chem. Soc. Nano 6:7489–96
  279. Pelaz B, Jaber S, Jimenez de Aberasturi D, Wulf V, de la Fuente JM, et al. 2012. The state of nanoparticle- based nanoscience and biotechnology: progress, promises, and challenges. Am. Chem. Soc. Nano. 6:8468– 83 www.annualreviews.org @BULLET Colloidal Nano-and Microparticles 81
  280. Lin CAJ, Yang TY, Lee CH, Huang SH, Sperling RA, et al. 2009. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. Am. Chem. Soc. Nano 3:395–401
  281. Mayer KM, Hafner JH. 2011. Localized surface plasmon resonance sensors. Chem. Rev. 111:3828–57
  282. Katz E, Zayats M, Willner I, Lisdat F. 2006. Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c–mediated biocatalytic cascades. Chem. Commun. 2006:1395–97
  283. Corato RD, Quarta A, Piacenza P, Ragusa A, Figuerola A, et al. 2008. Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydride-alt-1-octadecene). J. Mater. Chem. 18:1991–96
  284. Ali Z, Abbasi AZ, Zhang F, Arosio P, Lascialfari A, et al. 2011. Multifunctional nanoparticles for dual imaging. Anal. Chem. 83:2877–82
  285. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide con- trast agents: physicochemical characteristics and applications in MR imaging. European Radiology 2001;11:2319–31.
  286. Shipway AN, Katz E, Willner I. 2000. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1:18–52
  287. Maiti KK, Dinish US, Samanta A, Vendrell M, Soh K-S, et al. 2012. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93
  288. Wang F, Banerjee D, Liu Y, Chen X, Liu X. 2010. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–54
  289. McQueenie R, Stevenson R, Benson R, MacRitchie N, McInnes I, et al. 2012. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84:5968–75
  290. Rodríguez-Lorenzo L, de la Rica R, ´ Alvarez-Puebla RA, Liz-Marzán LM, Stevens MM. 2012. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 11:604–7
  291. Nie SM, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annual Review of Biomedical Engineering 2007;9:257–88.
  292. Carregal-Romero S, Ochs M, Parak WJ. 2012. Nanoparticle-functionalized microcapsules for in vitro delivery and sensing. Nanophotonics 1:171–80
  293. Corradini E, de Moura MR, Mattoso LHC. 2010 A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express.
  294. Khalid W, Helou ME, MurbMurb¨Murböck T, Yue Z, Montenegro J-M, et al. 2011. Immobilization of quantum dots via conjugated self-assembled monolayers and their application as a light-controlled sensor for the detection of hydrogen peroxide. Am. Chem. Soc. Nano 5:9870–76
  295. Al-Jamal WT, Kostarelos K. 2011 Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.
  296. Wang J. 2005. Nanomaterial-based electrochemical biosensors. Analyst 130:421–26
  297. Lin C-AJ, Sperling RA, Li JK, Yang T-Y, Li P-Y, et al. 2008. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4:334–41
  298. Saha K, Agasti SS, Kim C, Li X, Rotello VM. 2012. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112:2739–79
  299. Rex S, Zuckermann MJ, Lafleur M, Silvius JR. 1998 Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers. Biophys. J. 75, 2900 –2914. (doi:10.1016/S0006- 3495(98)77732-X)
  300. Fatin-Rouge N, Starchev K, Buffle J. 2004 Size effects on diffusion processes within agarose gels. Biophys. J. 86, 2710– 2719. (doi:10.1016/S0006- 3495(04)74325-8)
  301. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, et al. 2007. Understanding the nanoparticle– protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104:2050–55
  302. Nahrendorf M, Zhang HW, Hembrador S, Panizzi P, Sosnovik DE, et al. 2008. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–87
  303. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG. 2008 Compact biocompatible quantum dots functionalized for cellular imaging. J. Am.
  304. Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF. 2009. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme–particle amplifica- tion. Am. Chem. Soc. Nano 3:585–94
  305. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT. 2008. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. Am. Chem. Soc. Nano 2:873–78
  306. Xia Z, Xing Y, So MK, Koh AL, Sinclair R, Rao J. 2008. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem 80:8649–55
  307. Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews 2009;61(6):467–77.
  308. Sun C, Lee J, Zhang M. Magnetic nanoparticles in MR imaging and drug deliv- ery. Advanced Drug Delivery Reviews 2008;60(11):1252–65.
  309. Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R. 2009. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 2009:4188–90
  310. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, et al. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Am. Chem. Soc. Nano 2:889–96
  311. Jiang X, Weise S, Hafner M, R ¨ ocker C, Zhang F, et al. 2010. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 7:S5–13
  312. Hall DA, Gaster RS, Osterfeld SJ, Murmann B, Wang SX. 2010. GMR biosensor arrays: Correction techniques for reproducibility and enhanced sensitivity. Biosens. Bioelectron. 25:2177–81
  313. Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodríguez-Lorenzo L, ´ Alvarez-Puebla RA, Liz-Marzán LM. 2010. Surface-enhanced Raman scattering biomedical applications of plasmonic col- loidal particles. J. R. Soc. Interface 7:S435–50
  314. Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, et al. 2010. Sensitive giant magnetoresistive–based immunoassay for multiplex mycotoxin detection. Biosens. Bioelectron. 25:1635–39
  315. Claridge SA, Schwartz JJ, Weiss PS. 2011. Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. Am. Chem. Soc. Nano 5:693–729
  316. Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R. 2012. Probing intracellular biomarkers and mediators of cell activation using nanosensors and bioorthogonal chemistry. Am. Chem. Soc. Nano 5:3204–13
  317. Gaster RS, Xu L, Han S-J, Wilson RJ, Hall DA, et al. 2011. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6:314–20
  318. ´ Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, et al. 2011. Gold nanorods 3D supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 108:8157–61
  319. Kim D, Daniel WL, Mirkin CA. 2009. Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal. Chem. 81:9183–87
  320. Jin Y, Jia C, Huang S-W, O'Donnell M, Gao X. 2010. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1:41
  321. Si D, Epstein T, Lee Y-EK, Kopelman R. 2012. Nanoparticle PEBBLE sensors for quantitative nanomo- lar imaging of intracellular free calcium ions. Anal. Chem. 84:978–86
  322. Peterson VM, Castro CM, Lee H, Weissleder R. 2012. Orthogonal amplification of nanoparticles for improved diagnostic sensing. Am. Chem. Soc. Nano 6:3506–13
  323. Yang KS, Budin G, Reiner T, Vinegoni C, Weissleder R. 2012. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. 51:6598–603
  324. Zarei H, Ghourchian H, Eskandari K, Zeinali M. 2012. Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe 3 O 4 as a platform for electrochemical immunoassay. Anal. Biochem. 421:446–53
  325. Xia A, Chen M, Gao Y, Wu D, Feng W, Li F. 2012. Gd 3+ complex-modified NaLuF 4 -based up- conversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials 33:5394–405
  326. Alexiou C, Arnold W, Hulin P, Klein RJ, Renz H, et al. 2001. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J. Magn. Magn. Mater. 225:187– 93
  327. Morales MP, Bomati-Miguel O, de Alejo RP, Ruiz-Cabello J, Veintemillas-Verdaguer S, O'Grady K. 2003. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J. Magn. Magn. Mater. 266:102–9
  328. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H. Tissue-specific MR contrast agents. European Journal of Radiology 2003;46(1):33–44.
  329. Bellin MF. MR contrast agents, the old and the new. European Journal of Radiology 2006;60(3):314–23.
  330. Ravikumar C, Kumar S, Bandyopadhyaya R. 2012 Aggregation of dextran coated magnetic nanoparticles in aqueous medium: experiments and rsif.royalsocietypublishing.org J. R. Soc. Interface 20130931
  331. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, et al. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44
  332. Chapman DL. 1913 A contribution to the theory of electrocapillarity. Philos. Mag. 25, 475–481.
  333. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie-International Edition 2007;46(8):1222–44.
  334. Khalid W, G ¨ obel G, H ¨ uhn D, Montenegro JM, Rivera Gil P, et al. 2011. Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode. J. Nanobiotechnol. 9:46
  335. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry 2004;14(14):2161–75.
  336. Jans H, Huo Q. 2012. Gold nanoparticle–enabled biological and chemical detection and analysis. Chem. Soc. Rev. 41:2849–66


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten