Publikationsserver der Universitätsbibliothek Marburg

Titel:Rezeptorinduzierte PI(4,5)P2-Dynamik in hippocampalen CA1-Pyramidenneuronen
Autor:Hackelberg, Sandra
Weitere Beteiligte: Oliver, Dominik (Dr. rer. nat.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0200
DOI: https://doi.org/10.17192/z2014.0200
URN: urn:nbn:de:hebis:04-z2014-02000
DDC: Biowissenschaften, Biologie
Titel (trans.):Receptor induced PI(4,5)P2 dynamics in hippocampal CA1 pyramidal neurons
Publikationsdatum:2014-03-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Signaltransduktion, hippocampus, Hippocampus, g-protein coupled receptor, Phospholipid, Neurophysiologie, G-Protein gekoppelte Rezeptoren, signal transduction

Zusammenfassung:
Das Plasmamembranlipid Phosphatidylinositol(4,5)biphosphat (PIP2) ist an der Regulation einer Vielzahl zellularer Prozesse beteiligt. Die Dynamik der PIP2-Konzentration in lebenden Zellen in ihrer nativen Umgebung ist bislang allerdings weitgehend unerforscht. Die Kenntnis der PIP2-Dynamik in nativen Zellen ist jedoch eine wesentliche Voraussetzung, um die physiologische Funktion von PIP2 verstehen zu konnen. Seit wenigen Jahren ermoglicht die Entwicklung von PIP2-Sensoren aus PIP2-bindenden Domanen und fluoreszierenden Proteinen die optische Messung der PIP2-Dynamik in lebenden Zellen. In heterologen Expressionssystemen und isolierten Neuronen ist bereits gezeigt worden, dass die Aktivierung von Gq-gekoppelten Rezeptoren die Konzentration von PIP2 in der Plasmamembran reduzieren kann. Diese Reduktion fuhrt zu einer Verminderung von Lipid-Proteininteraktionen und als Konsequenz zu einer Modulation der Aktivitat oder Lokalisation PIP2-abhangiger Proteine (Effektoren). In Neuronen fuhrt diese Depletion von PIP2 nach derzeitigen Modellvorstellungen u.a. zur Regulation verschiedener Ionenkanale und damit zu einer Modulation der elektrischen Erregbarkeit der Zellen. In dieser Arbeit habe ich mit Hilfe konfokaler Mikroskopie der PIP2-abhangigen Membranlokalisation der Tubby-Domane die Gq-induzierte PIP2-Dynamik in situ in hippocampalen CA1-Pyramidenneuronen in akuten Hirnschnitten charakterisiert. Vergleichende Messungen der Translokation der PIP2- und potentiell IP3-sensitiven PLCƒÂ1-PH-Domane zeigten einen ahnlichen Verlauf im Vergleich zu Tubby, wiesen aber insbesondere bei starken Translokationen eine langsamere Regeneration auf. Pharmakologische Aktivierung Gq-gekoppelter muskarinischer Acetylcholinrezeptoren (mAchR) und metabotroper Glutamatrezeptoren (mGluR) fuhrten zur robusten PIP2-Depletion. Die Amplitude der mAchR-induzierten PIP2-Depletion war signifikant groser als die der Typ-I mGluR-induzierten Depletion. Der Unterschied zwischen den Amplituden war in dem apikalen Hauptdendriten starker ausgepragt als im Soma. Bei beiden Rezeptoren zeigte die PIP2-Dynamik im Mittel einen phasisch-tonischen Verlauf. Die Desensitisierung der PIP2-Depletion war bei Aktivierung von mAchR starker ausgepragt. Daruber hinaus zeigen die Daten erstmals, dass die Aktivierung Gq-gekoppelter Rezeptoren auch eine Oszillation der PIP2-Konzentration in der Plasmamembran bewirken kann. Die mAchR- und mGluRI-induzierten Oszillationen zeigen auserdem, das Neurone zu einer rapiden PIP2-Regeneration wahrend andauernder Anwesenheit der Agonisten fahig sind. Die Applikation von Agonisten weiterer Gƒ¿q-gekoppelter Rezeptoren induzierte im Soma und apikalen Hauptdendriten keine PIP2-Dynamik. Insgesamt unterstutzen die Daten eine physiologische Funktion der PIP2-Dynamik in Neuronen und korrelieren gut mit dem allgemeinen Verlauf von elektrophysiologischen Antworten der Zellen auf die Agonisten. Eine physiologische Funktion der PIP2-Dynamik wird weiter von Ergebnissen aus elektrischen Stimulationen im Bereich afferenter Fasern im Str. oriens unterstutzt. Die Daten deuten auf eine synaptisch induzierbare PIP2-Depletion hin, die Pharmakologie der Effekte muss aber noch naher untersucht werden. Wie Daten aus Gyrus dentatus Kornerzellen zeigen, ist die Gq-induzierte PIP2-Dynamik nicht nur rezeptor-, sondern auch neuronentypspezifisch, denn hier induzierten mAchR- und mGluR-Agonisten keine messbare PIP2-Depletion.

Bibliographie / References

  1. Ogier R, Wrobel LJ & Raggenbass M (2008). Action of tachykinins in the hippocampus: facilitation of inhibitory drive to GABAergic interneurons. Neuroscience 156, 527–536.
  2. Simon MI, Strathmann MP & Gautam N (1991). Diversity of G proteins in signal transduction. Science 252, 802–808.
  3. Hamill OP, Marty A, Neher E, Sakmann B & Sigworth FJ (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85–100.
  4. Park K-H, Piron J, Dahimene S, Mérot J, Baró I, Escande D & Loussouarn G (2005). Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Circulation Research 96, 730–739.
  5. Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA & Marsh SJ (2005). Relationship between Membrane Phosphatidylinositol-4,5-Bisphosphate and Receptor- Mediated Inhibition of Native Neuronal M Channels. The Journal of Neuroscience 25, 3400–3413.
  6. Supèr H & Soriano E (1994). The organization of the embronic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI. The Journal of Comparative Neurology 344, 101– 120.
  7. Szymańska E, Sobota A, Czuryło E & Kwiatkowska K (2008). Expression of PI(4,5)P2-binding proteins lowers the PI(4,5)P2 level and inhibits FcγRIIA-mediated cell spreading and phagocytosis. European Journal of Immunology 38, 260–272.
  8. Widmer H, Ferrigan L, Davies CH & Cobb SR (2006). Evoked Slow Muscarinic Acetylcholinergic Synaptic Potentials in Rat Hippocampal Interneurons. Hippocampus 628, 617–628.
  9. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Gulledge A & Kawaguchi Y (2007). Phasic cholinergic signaling in the hippocampus: functional homology with the neocortex? Hippocampus 17, 327–332.
  10. Surges R, Freiman TM & Feuerstein TJ (2004). Input resistance is voltage dependent due to activation of Ih channels in rat CA1 pyramidal cells. Journal of Neuroscience Research 76, 475–480.
  11. Kwiatkowska K (2010). One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cellular and Molecular Life Sciences : CMLS 67, 3927– 3946.
  12. Hughes S, Marsh SJ, Tinker A & Brown DA (2007). PIP(2)-dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct on-line assessment of PIP(2) depletion by Gq- coupled receptors in single living neurons. Pflügers Archiv : European Journal of Physiology 455, 115–124.
  13. Tsien RY (1998). The green fluorescent protein. Annual Review of Biochemistry 67, 509–544.
  14. Shimohama S, Perry G, Richey P, Praprotnik D, Takenawa T, Fukami K, Whitehouse PJ & Kimura J (1995). Characterization of the association of phospholipase C-δ with Alzheimer neurofibrillary tangles. Brain Research 669, 217–224.
  15. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Vijayan VK (1979). Distribution of cholinergic neurotransmitter enzymes in the hippocampus and the dentate gyrus of the adult and the developing mouse. Neuroscience 4, 121–137.
  16. Herkenham M (1987). Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23, 1–38.
  17. Kanaho Y, Nakano-Kobayashi A & Yokozeki T (2008). Novel activation mechanism and physiological function of PIP5Kγ661. Advances in Enzyme Regulation 48, 88–96.
  18. Kanaho Y & Unoki T (2012). Regulation and functions of the lipid kinase PIP5K γ661 at synapses. Advances in Biological Regulation 52, 59–65.
  19. Oude Weernink PA, Han L, Jakobs KH & Schmidt M (2007). Dynamic phospholipid signaling by G protein-coupled receptors. Biochimica et Biophysica Acta 1768, 888–900.
  20. Scheffzek K & Welti S (2012). Pleckstrin homology (PH) like domains – versatile modules in protein–protein interaction platforms. FEBS Letters 586, 2662–2673.
  21. Medin T, Owe SG, Rinholm JE, Larsson M, Sagvolden T, Storm-Mathisen J & Bergersen LH (2011). Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus. Neuroscience 192, 164–171.
  22. Meberg PJ & Miller MW (2003). Culturing Hippocampal and Cortical Neurons. In, ed. Biology BT-M in C, pp. 111–127. Academic Press.
  23. Rouse ST, Hamilton SE, Potter LT, Nathanson NM & Conn PJ (2000). Muscarinic-induced modulation of potassium conductances is unchanged in mouse hippocampal pyramidal cells that lack functional M1 receptors. Neuroscience Letters 278, 61–64.
  24. Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF & De Camilli P (2001). PIP Kinase Iγ Is the Major PI(4,5)P2 Synthesizing Enzyme at the Synapse. Neuron 32, 79–88.
  25. Suh B-C & Hille B (2002). Recovery from Muscarinic Modulation of M Current Channels Requires Phosphatidylinositol 4,5-Bisphosphate Synthesis. Neuron 35, 507–520.
  26. Schmidt MR, Stansfeld PJ, Tucker SJ & Sansom MSP (2012). Simulation-Based Prediction of Phosphatidylinositol 4,5-Bisphosphate Binding to an Ion Channel. Biochemistry 52, 279–281.
  27. Zhao S, Ting J, Atallah H, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM & Feng G (2011). Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods 8, 745–752.
  28. Garaschuk O, Milos R-I & Konnerth A (2006). Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols 1, 380–386.
  29. Wess J, Eglen RM & Gautam D (2007). Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Reviews Drug Discovery 6, 721–733.
  30. Gamper N & Shapiro MS (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nature Reviews Neuroscience 8, 921–934.
  31. Santarius M, Lee CH & Anderson RA (2006). Supervised membrane swimming: small G- protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P2 pools. The Biochemical Journal 398, 1–13.
  32. Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T & Oka Y (1996). Cloning of cDNAs Encoding Two Isoforms of 68-kDa Type I Phosphatidylinositol4-phosphate 5- Kinase. Journal of Biological Chemistry 271, 23611–23614.
  33. Nash MS, Willets JM, Billups B, John Challiss RA & Nahorski SR (2004). Synaptic Activity Augments Muscarinic Acetylcholine Receptor-stimulated Inositol 1,4,5-Trisphosphate Production to Facilitate Ca2+ Release in Hippocampal Neurons. Journal of Biological Chemistry 279, 49036–49044.
  34. Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, Kudo Y & Fukami K (2005). A Novel Phospholipase C, PLCη2, Is a Neuron-specific Isozyme. Journal of Biological Chemistry 280, 29128–29134.
  35. Halaszovich CR, Schreiber DN & Oliver D (2009). Ci-VSP is a depolarization-activated phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase. The Journal of Biological Chemistry 284, 2106–2113.
  36. Sharman JL, Benson HE, Pawson AJ, Lukito V, Mpamhanga CP, Bombail V, Davenport AP, Peters JA, Spedding M, Harmar AJ & NC-IUPHAR (2013). IUPHAR-DB: updated database content and new features. Nucleic Acids Research 41, D1083–D1088.
  37. Gerber U, Luthi A & Gahwiler BH (1993). Inhibition of a Slow Synaptic Response by a Metabotropic Glutamate Receptor Antagonist in Hippocampal CA3 Pyramidal Cells. Proceedings of the Royal Society of London Series B: Biological Sciences 254 , 169–172.
  38. Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C & Bergersen LH (2007). Co- localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. The European Journal of Neuroscience 26, 890–902.
  39. Ming Y, Zhang H, Long L, Wang F, Chen J & Zhen X (2006). Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. Journal of Neurochemistry 98, 1316–1323.
  40. Nelson CP, Nahorski SR & Challiss RAJ (2008). Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons. Journal of Neurochemistry 107, 602–615.
  41. Hokin MR & Hokin LE (1953). ENZYME SECRETION AND THE INCORPORATION OF P32 INTO PHOSPHOLIPIDES OF PANCREAS SLICES. Journal of Biological Chemistry 203, 967–977.
  42. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T & Doyle DA (2003). Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State. Science 300, 1922–1926.
  43. Hilgemann DW & Ball R (1996). Regulation of Cardiac Na+,Ca2+ Exchange and KATP Potassium Channels by PIP2. Science 273, 956–959.
  44. Suh B-C & Hille B (2008). PIP2 Is a Necessary Cofactor for Ion Channel Function: How and Why? Annual Review of Biophysics 37, 175–195.
  45. Scheiderer CL, Dobrunz LE & McMahon LL (2004). Novel Form of Long-Term Synaptic Depression in Rat Hippocampus Induced By Activation of α1 Adrenergic Receptors. Journal of Neurophysiology 91, 1071–1077.
  46. Phospholipase D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4- phosphate 5-kinase Iγb. Journal of Cell Science 118, 2975–2986.
  47. Gamper N, Reznikov V, Yamada Y, Yang J & Shapiro MS (2004). Phosphotidylinositol 4,5- Bisphosphate Signals Underlie Receptor-Specific Gq/11-Mediated Modulation of N- Type Ca2+ Channels. The Journal of Neuroscience 24, 10980–10992.
  48. Willets JM, Nash MS, Challiss RAJ & Nahorski SR (2004). Imaging of muscarinic acetylcholine receptor signaling in hippocampal neurons: evidence for phosphorylation-dependent and -independent regulation by G-protein-coupled receptor kinases. The Journal of Neuroscience 24, 4157–4162.
  49. Mukhopadhyay S & Jackson P (2011). The tubby family proteins. Genome Biology 12, 225.
  50. Fotuhi M, Standaert DG, Testa CM, Penney Jr. JB & Young AB (1994). Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Molecular Brain Research 21, 283–292.
  51. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Nahorski SR, Young KW, John Challiss RA & Nash MS (2003). Visualizing phosphoinositide signalling in single neurons gets a green light. Trends in Neurosciences 26, 444–452.
  52. Nash MS, Schell MJ, Atkinson PJ, Johnston NR, Nahorski SR & Challiss RAJ (2002). Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5- trisphosphate oscillation frequency. Receptor density versus agonist concentration. The Journal of Biological Chemistry 277, 35947–35960.
  53. Willars GB, Nahorski SR & Challiss RA (1998). Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. The Journal of Biological Chemistry 273, 5037– 5046.
  54. Hein L (2006). Adrenoceptors and signal transduction in neurons. Cell and Tissue Research 326, 541–551.
  55. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Schoepp DD, Goldsworthy J, Johnson BG, Salhoff CR & Baker SR (1994). 3,5- Dihydroxyphenylglycine Is a Highly Selective Agonist for Phosphoinositide-Linked Metabotropic Glutamate Receptors in the Rat Hippocampus. Journal of Neurochemistry 63, 769–772.
  56. Leitner MG, Halaszovich CR & Oliver D (2011). Aminoglycosides Inhibit KCNQ4 Channels in Cochlear Outer Hair. Molecular Pharmacology 79, 51–60.
  57. Plonsey R & Barr RC (1988). Biolelectricity: A Quantitative Approach. Plenum Press, New York.
  58. Gamper N & Shapiro MS (2003). Calmodulin Mediates Ca2+-dependent Modulation of M- type K+ Channels. The Journal of General Physiology 122, 17–31.
  59. Hubbard KB & Hepler JR (2006). Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cellular Signalling 18, 135–150.
  60. Fraser DD & MacVicar BA (1996). Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience 16, 4113–4128.
  61. Torres GE, Chaput Y & Andrade R (1995). Cyclic AMP and protein kinase A mediate 5- hydroxytryptamine type 4 receptor regulation of calcium-activated potassium current in adult hippocampal neurons. Molecular Pharmacology 47, 191–197.
  62. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S & Mizuno N (1997). Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus. The Journal of Neuroscience 17, 7503–7522.
  63. Merrill DR, Bikson M & Jefferys JGR (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods 141, 171–198.
  64. Levey AI, Edmunds SM, Koliatsos V, Wiley RG & Heilman CJ (1995). Expression of m1-m4 Muscarinic Acetylcholine Receptor Proteins in Rat Hippocampus and Regulation by Cholinergic Innervation. The Journal of Neuroscience 15, 4077–4092.
  65. Mizuno N & Itoh H (2009). Functions and regulatory mechanisms of Gq-signaling pathways. Neuro-Signals 17, 42–54.
  66. Santagata S, Boggon TJ, Baird CL, Gomez CA, Zhao J, Shan WS, Myszka DG & Shapiro L (2001). G-protein signaling through tubby proteins. Science 292, 2041–2050.
  67. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ & Worley PF (1998). Homer Binds a Novel Proline-Rich Motif and Links Group 1 Metabotropic Glutamate Receptors with IP3 Receptors. Neuron 21, 717–726.
  68. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA & Camilli P De (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422.
  69. Gileadi E, Kirowa-Eisner E & Penciner J (1975). Interfacial Electrochemistry – An Experimental Approach. Addison-Wesley, Advanced Book Program, Reading, Massachusetts.
  70. Freund TF & Buzsáki G (1996). Interneurons of the hippocampus. Hippocampus 6, 347–470.
  71. Warman EN, Grill WM & Durand D (1992). Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds. Biomedical Engineering 39, 1244–1254.
  72. Tyers M, Haslam RJ, Rachubinski RA & Harley CB (1989). Molecular analysis of pleckstrin: The major protein kinase C substrate of platelets. Journal of Cellular Biochemistry 40, 133–145.
  73. Hwang J-I, Oh Y-S, Shin K-J, Kim H, Ryu SH & Suh P-G (2005). Molecular cloning and characterization of a novel phospholipase C, PLC-eta. The Biochemical Journal 389, 181–186.
  74. Tai C, Kuzmiski JB & MacVicar BA (2006). Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience 26, 6249–6258.
  75. Rashid AJ, O'Dowd BF, Verma V & George SR (2007). Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. Trends in Pharmacological Sciences 28, 551–555.
  76. Yizhar O, Fenno LE, Davidson TJ, Mogri M & Deisseroth K (2011). Optogenetics in neural systems. Neuron 71, 9–34.
  77. Molleman A (2003). Patch clamping : an introductory guide to patch clamp electrophysiology. John Wiley & Sons, Ltd.
  78. Numberger M & Draguhn A (1996). Patch-Clamp-Technik. Spektrum Akademischer Verlag.
  79. Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G & Bickerdike M (2004). Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5- ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ HT(2B) and 5-HT(2C) receptors. Naunyn-Schmiedeberg's archives of pharmacology 370, 114–123.
  80. Phosphatidylinositol-4,5-bisphosphate regulates NMDA receptor activity through alpha-actinin. The Journal of Neuroscience 27, 5523–5532.
  81. Toker A (2002). Phosphoinositides and signal transduction. Cellular and Molecular Life Sciences: CMLS 59, 761–779.
  82. Di Paolo G & De Camilli P (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657.
  83. Fukami K, Inanobe S, Kanemaru K & Nakamura Y (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research 49, 429–437.
  84. Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T & Logothetis DE (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975.
  85. Oleskevich S, Descarries L & Lacaille JC (1989). Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. The Journal of Neuroscience 9, 3803–3815.
  86. Stauffer TP, Ahn S & Meyer T (1998). Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Current Biology 8, 343–346.
  87. Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, Katada T, Frohman MA, Yokozeki T & Kanaho Y (2007). Role of activation of PIP5K[gamma]661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J 26, 1105–1116.
  88. Young KW, Nash MS, Challiss RAJ & Nahorski SR (2003). Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors. The Journal of Biological Chemistry 278, 20753–20760.
  89. Millan MJ, Marin P, Bockaert J & Mannoury la Cour C (2008). Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends in Pharmacological Sciences 29, 454–464.
  90. Jin L-Q, Goswami S, Cai G, Zhen X & Friedman E (2003). SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. Journal of Neurochemistry 85, 378–386.
  91. Hirose K (1999). Spatiotemporal Dynamics of Inositol 1,4,5-Trisphosphate That Underlies Complex Ca2+ Mobilization Patterns. Science 284, 1527–1530.
  92. Lemmon MA, Ferguson KM, O'Brien R, Sigler PB & Schlessinger J (1995). Specific and high- affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proceedings of the National Academy of Sciences of the United States of America 92, 10472–10476.
  93. Sloviter RS, Ali-Akbarian L, Horvath KD & Menkens KA (2001). Substance P receptor expression by inhibitory interneurons of the rat hippocampus: Enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. The Journal of Comparative Neurology 430, 283– 305.
  94. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ & Waterfield MD (2001). SYNTHESIS AND FUNCTION OF 3-PHOSPHORYLATED INOSITOL LIPIDS. Annual Review of Biochemistry 70, 535–602.
  95. The Gene INPPL1, Encoding the Lipid Phosphatase SHIP2, Is a Candidate for Type 2
  96. Rand DAJ & Woods R (1971). The nature of adsorbed oxygen on rhodium, palladium and gold electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 31, 29–38.
  97. Paxinos G & Watson C (1982). The Rat Brain in Stereotaxic Coordinates, 1st ed. Academic Press.
  98. Fredriksson R & Schiöth HB (2005). The Repertoire of G-Protein–Coupled Receptors in Fully Sequenced Genomes. Molecular Pharmacology 67, 1414–1425.
  99. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T & Oka Y (1998). Type I Phosphatidylinositol-4-phosphate 5-Kinases: CLONING OF THE THIRD ISOFORM AND DELETION/SUBSTITUTION ANALYSIS OF MEMBERS OF THIS NOVEL LIPID KINASE FAMILY . Journal of Biological Chemistry 273 , 8741–8748.
  100. Li Q-H, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui Y & Watanabe Y (2004). Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. The Journal of ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Mandal M & Yan Z (2009). Phosphatidylinositol (4,5) -Bisphosphate Regulation of N-Methyl- D-aspartate Receptor Channels in Cortical Neurons. Molecular Pharmacology 76, 1349– 1359.
  101. Okubo Y, Kakizawa S, Hirose K & Iino M (2001). Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage- dependent Ca(2+) influx in Purkinje cells. Neuron 32, 113–122.
  102. Várnai P & Balla T (1998). Visualization of phosphoinositides that bind pleckstrin homology domains: calcium-and agonist-induced dynamic changes and relationship to myo- [3H]inositol-labeled phosphoinositide pools. The Journal of Cell Biology 143, 501–510.
  103. Schmidt-Hieber C, Jonas P & Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187.
  104. Flynn DD, Ferrari-DiLeo G, Mash DC & Levey AI (1995). Differential Regulation of Molecular Subtypes of Muscarinic Receptors in Alzheimer's Disease. Journal of Neurochemistry 64, 1888–1891.
  105. Rebecchi M, Peterson A & McLaughlin S (1992). Phosphoinositide-specific phospholipase C- .delta.1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31, 12742–12747.
  106. Hilgemann DW, Feng S & Nasuhoglu C (2001). The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Science Signaling 2001, re19.
  107. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Szentpetery Z, Balla A, Kim YJ, Lemmon MA & Balla T (2009). Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biology 10, 67.
  108. Padilla-Parra S & Tramier M (2012). FRET microscopy in the living cell: Different approaches, strengths and weaknesses. BioEssays 34, 369–376.
  109. Nicoletti F, Bruno V & Battaglia G (2009). Metabotropic Glutamate Receptors (mGluRs): Molecular Biology, Pharmacology and Cell Biology. In Encyclopedia of Neuroscience, ed.
  110. Zaika O, Tolstykh GP, Jaffe DB & Shapiro MS (2007). Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. The Journal of Neuroscience 27, 8914–8926.
  111. Noristani HN, Olabarria M, Verkhratsky A & Rodríguez JJ (2010). Serotonin fibre sprouting and increase in serotonin transporter immunoreactivity in the CA1 area of hippocampus in a triple transgenic mouse model of Alzheimer's disease. European Journal of Neuroscience 32, 71–79.
  112. Tully K & Bolshakov VY (2010). Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Molecular Brain 3, 15.
  113. Oldham WM & Hamm HE (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9, 60–71.
  114. Mehta S & Zhang J (2011). Reporting from the Field: Genetically Encoded Fluorescent Reporters Uncover Signaling Dynamics in Living Biological Systems. Annual Review of Biochemistry 80, 375–401.
  115. Morton RA & Davies CH (1997). Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus. The Journal of Physiology 502, 75–90.
  116. Giudici M-L, Emson PC & Irvine RF (2004). A novel neuronal-specific splice variant of Type I phosphatidylinositol 4-phosphate 5-kinase isoform gamma. . Biochemical Journal 379, 489–496.
  117. Gambhir A, Hangyás-Mihályné G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO & McLaughlin S (2004). Electrostatic Sequestration of PIP2 on Phospholipid Membranes by Basic/Aromatic Regions of Proteins. Biophysical Journal 86, 2188–2207.
  118. Landman N, Jeong SY, Shin SY, Voronov S V, Serban G, Kang MS, Park MK, Di Paolo G, Chung S & Kim T-W (2006). Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proceedings of the National Academy of Sciences 103 , 19524–19529.
  119. Hardie RC (2007). TRP channels and lipids: from Drosophila to mammalian physiology. The Journal of Physiology 578, 9–24.
  120. Micheva KD (2001). Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. The Journal of Cell Biology 154, 355–368.
  121. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Horowitz LF, Hirdes W, Suh B-C, Hilgemann DW, Mackie K & Hille B (2005). Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. The Journal of General Physiology 126, 243–262.
  122. Quinn K V, Behe P & Tinker A (2008). Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. The Journal of Physiology 586, 2855–2871.
  123. Kwon O Bin, Paredes D, Gonzalez CM, Neddens J, Hernandez L, Vullhorst D & Buonanno A (2008). Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proceedings of the National Academy of Sciences of the United States of America 105, 15587–15592.
  124. Li G & Olson JE (2008). Purinergic activation of anion conductance and osmolyte efflux in cultured rat hippocampal neurons. American Journal of Physiology Cell Physiology 295, C1550–60.
  125. Pourquier P, Takebayashi Y, Urasaki Y, Gioffre C, Kohlhagen G & Pommier Y (2000). Induction of topoisomerase I cleavage complexes by 1-β-d-arabinofuranosylcytosine (ara-C) in vitro and in ara-C-treated cells. Proceedings of the National Academy of Sciences 97 , 1885–1890.
  126. Zhao F-L & Herness S (2009). Resynthesis of phosphatidylinositol 4,5-bisphosphate mediates adaptation of the caffeine response in rat taste receptor cells. The Journal of Physiology 587, 363–377.
  127. Hillman KL, Lei S, Doze VA & Porter JE (2009). Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Research 84, 97–109.
  128. Hasbi A, O'Dowd BF & George SR (2010). Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. Current Opinion in Pharmacology 10, 93–99.
  129. Volpicelli-Daley LA, Lucast L, Gong L-W, Liu L, Sasaki J, Sasaki T, Abrams CS, Kanaho Y & De Camilli P (2010). Phosphatidylinositol-4-Phosphate 5-Kinases and Phosphatidylinositol 4,5-Bisphosphate Synthesis in the Brain. Journal of Biological Chemistry 285, 28708– 28714.
  130. Inanobe A, Nakagawa A, Matsuura T & Kurachi Y (2010). A Structural Determinant for the Control of PIP2 Sensitivity in G Protein-gated Inward Rectifier K+ Channels. Journal of Biological Chemistry 285, 38517–38523.
  131. Zaika O, Zhang J & Shapiro MS (2011). Combined Phosphoinositide and Ca2+ Signals Mediating Receptor Specificity toward Neuronal Ca2+ Channels. Journal of Biological Chemistry 286, 830–841.
  132. Gu Z & Yakel JL (2011). Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 71, 155–165.
  133. Witten IB, Lin S-C, Brodsky M, Prakash R, Diester I, Anikeeva P, Gradinaru V, Ramakrishnan C & Deisseroth K (2010). Cholinergic interneurons control local circuit activity and cocaine conditioning. Science (New York, NY) 330, 1677–1681.
  134. Remington SJ (2011). Green fluorescent protein: a perspective. Protein Science 20, 1509– 1519.
  135. Whorton MR & MacKinnon R (2011). Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium. Cell 147, 199–208.
  136. Katritch V, Cherezov V & Stevens RC (2012). Diversity and modularity of G protein-coupled receptor structures. Trends in Pharmacological Sciences 33, 17–27.
  137. Moravcevic K, Oxley CL & Lemmon MA (2012). Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20, 15–27.
  138. Hansen SB, Tao X & MacKinnon R (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498.
  139. Zhang X, Li X & Xu H (2012). Phosphoinositide isoforms determine compartment-specific ion channel activity. Proceedings of the National Academy of Sciences 109 , 11384– 11389.
  140. Kruse M, Hammond GR V & Hille B (2012). Regulation of voltage-gated potassium channels by PI(4,5)P2. The Journal of General Physiology 140, 189–205.
  141. Leitner MG, Feuer A, Ebers O, Schreiber DN, Halaszovich CR & Oliver D (2012). Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers. British Journal of Pharmacology 165, 2244–2259.
  142. Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK & De Camilli P (2012). Optogenetic control of phosphoinositide metabolism. Proceedings of the National Academy of Sciences 109, E2316–E2323.
  143. Narayan K & Lemmon MA (2006). Determining selectivity of phosphoinositide-binding domains. Methods 39, 122–133.
  144. Klausberger T & Somogyi P (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science (New York, NY) 321, 53–57.
  145. Wang RY & Arvanov VL (1998). M100907, a highly selective 5-HT2A receptor antagonist and a potential atypical antipsychotic drug, facilitates induction of long-term potentiation in area CA1 of the rat hippocampal slice. Brain Research 779, 309–313.
  146. Selbach O, Brown RE & Haas HL (1997). Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36, 1539–1548.
  147. Halstead JR, Jalink K & Divecha N (2005). An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends in Pharmacological Sciences 26, 654–660.
  148. Rouse ST, Gilmor ML & Levey AI (1998). Differential presynaptic and postsynaptic expression of m1-m4 muscarinic acetylcholine receptors at the perforant pathway/granule cell synapse. Neuroscience 86, 221–232.
  149. Odorizzi G, Babst M & Emr SD (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends in Biochemical Sciences 25, 229–235.
  150. Várnai P & Balla T (2006). Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochimica et Biophysica Acta 1761, 957–967.
  151. Silva Jr. JA, Goto EM, Perosa SR, Argañaraz GA, Cavalheiro EA, Naffah-Mazzacoratti MG & Pesquero JB (2008). Kinin B1 receptors facilitate the development of temporal lobe epilepsy in mice. International Immunopharmacology 8, 197–199.
  152. Köhler CA, Da Silva WC, Benetti F & Bonini JS (2011). Histaminergic mechanisms for modulation of memory systems. Neural Plasticity 2011, 328602.
  153. Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons. The Journal of Neuroscience 20, 8365–8376.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten