Publikationsserver der Universitätsbibliothek Marburg

Titel: Analysen des SR-Proteins Npl3 in der Translation und Charakterisierung von SR-Domänen-vermittelten Protein-Interaktionen von Npl3
Autor: Baierlein, Claudia
Weitere Beteiligte: Krebber, Heike (Prof. Dr.)
Veröffentlicht: 2013
URI: https://archiv.ub.uni-marburg.de/diss/z2014/0006
URN: urn:nbn:de:hebis:04-z2014-00067
DOI: https://doi.org/10.17192/z2014.0006
DDC: Medizin
Titel(trans.): Analyses of the SR-protein Npl3 in translation and characterization of protein interactions of Npl3 mediated by its SR-domain
Publikationsdatum: 2014-01-09
Lizenz: https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
SR-protein, Npl3, translation, Npl3, Translation, SR-Protein

Zusammenfassung:
Im Gegensatz zu vielzelligen Organismen existieren in Saccharomyces cerevisiae nur drei SR-Proteine. Diese fungieren als pendelnde Adapterproteine im nukleo-zytoplasmatischen Transport von mRNAs. Ein wichtiger Vertreter ist Npl3, welches auch mit aktiv translatierten mRNPs (messenger ribonucleoproteins) assoziiert ist. In der vorliegenden Arbeit wurde untersucht, ob Npl3 neben der Funktion des mRNA-Exports in das Zytoplasma in weiteren Prozessen eine Bedeutung hat. So konnte dazu beigetragen werden Npl3 als Prä-60S-Exportfaktor zu identifizieren. Außerdem konnte nachgewiesen werden, daß Npl3 über den Export und die zytoplasmatische Reifung hinaus mit dem Rpl10-haltigen 60S-Partikel assoziiert. Somit besitzt Npl3 das Potential über die Bindung an translationskompetente 60S-Untereinheiten die Translation zu beeinflussen. Tatsächlich konnte die vorliegende Studie eine verringerte Translationseffizienz in Hefezellen als Folge einer Verkürzung der SR-Domäne von Npl3 zeigen. Dagegen stellten sich der mRNA- und der Prä-60S-Export aus dem Zellkern sowie die zytoplasmatische Reifung des 60S-Partikels unbeeinträchtigt dar. Zusätzlich wiesen die Ergebnisse darauf hin, daß eine generelle Methylierung bzw. die Phosphorylierungsstelle an Position 411 in der SR-Domäne von Npl3 nicht essentiell für die Translation ist. Vielmehr bedingt die Verkürzung der SR-Domäne eine gestörte Bindung von Npl3 an das translationskompetente 60S-Partikel und daraus folgernd eine Störung der Monosomenformation in der Translationsinitiation. Dieser Defekt in der Monosomenbildung beruht auf einer ineffizienten Bindung von 60S-Partikeln an mRNA-rekrutierte 43S-Initiationskomplexe. Verschiedene Suppressionsexperimente und genetische Analysen in dieser Arbeit legen eine Rolle von Npl3 in Prozessen nahe, die mit den Funktionen von Rpl10 und Fun12 assoziiert sind. Des weiteren konnte eine Homomer-Bildung von Npl3-Molekülen nachgewiesen werden, welche vom N-terminalen Bereich der SR-Domäne abhängig ist. Zusätzlich demonstrierten Ko-Immunopräzipitations- und Immunfluoreszenz-Experimente, daß dieser Domänenbereich von Npl3 im Wesentlichen auch für die Bindung des Zellkernimportrezeptors Mtr10 entscheidend ist. Weitere Ergebnisse deuteten darauf hin, daß sich die Homomer-Bildung von Npl3 positiv auf die Translationsinitiation auswirkt. Demnach kann vorliegende Arbeit Npl3, und insbesondere seiner SR-Domäne, eine essentielle Aufgabe für die Translation zuweisen und lässt dabei auf eine Funktion von Npl3 im Prozess der Monosomenbildung während der Translationinitiation, wie auch im letzten zytoplasmatischen Reifeschritt des Prä-60S-Partikels schließen.

Summary:
Saccharomyces cerevisiae possesses only three SR-proteins in contrast to multi-cellular organisms. They are functioning as shuttling adaptor proteins in the nucleo-cytoplasmic transport of mRNAs. One important representative is Npl3 which is associated with actively translated mRNPs (messenger ribonucleoproteins). This study focused on a potential additional role of Npl3 besides its function in exporting mRNAs to the cytoplasm. The work contributed to the identification of Npl3 as a pre60S-export factor. Moreover, it was shown that Npl3 stays bound to the Rpl10-containing 60S-particle beyond the export and cytoplasmic maturation of pre60S-subunits. As a consequence, Npl3 has the capability to assist in translation by its association with translation competent 60S-particles. More specifically, truncating the SR-domain of Npl3 led to a reduced translation efficiency of yeast cells. In contrast, nuclear mRNA- and pre60S-export as well as the cytoplasmic maturation of 60S-particles were not substantially affected. Additionally, the results indicated that methylation in general or the phosphorylation site on position S411 in the SR-domain of Npl3 is not essential for translation. Rather, the truncation of the SR-domain resulted in a decreased binding of Npl3 to translation competent 60S-particles and a perturbance of monosome formation during translation initiation. This monosome formation defect is a result of inefficient binding of 60S-particles to mRNA-recruited 43S-initiation complexes. Different suppression experiments and genetic analyses in this work suggested a role of Npl3 in processes that are associated with the functions of Rpl10 and Fun12. Furthermore, an Npl3 homomer formation, dependent on the N-terminal region of the SR-domain, was demonstrated. Additionally, this specific part of the SR-domain of Npl3 was crucial for the binding of the nuclear import receptor Mtr10 supported by co-immunoprecipitation and immunofluorescence experiments. Moreover, the results indicate that the formation of Npl3-homomers might influence translation initiation positively. In summary, this work was able to assign Npl3 with its SR-domain an essential role for translation and suggested a function of Npl3 in the process of monosome formation during translation initiation as well as in the last cytoplasmic maturation step of pre60S-particles.

Bibliographie / References

  1. Tutucci, E., and Stutz, F. (2011). Keeping mRNPs in check during assembly and nuclear export. Nature Reviews. Molecular Cell Biology 12, 377–384.
  2. Wente, S.R., and Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspectives in Biology 2, a000562.
  3. Kressler, D., Hurt, E., and Bassler, J. (2010). Driving ribosome assembly. Biochimica Et Biophysica Acta 1803, 673–683.
  4. Risso, G., Pelisch, F., Quaglino, A., Pozzi, B., and Anabella, S. (2012). Regulating the regulators: Serine/arginine-rich proteins under scrutiny. IUBMB Life 64, 809–816.
  5. Topisirovic, I., Svitkin, Y. V, Sonenberg, N., and Shatkin, A.J. (2011). Cap and cap- binding proteins in the control of gene expression. Wiley Interdisciplinary Reviews. RNA 2, 277–298.
  6. Fried, H., and Kutay, U. (2003). Nucleocytoplasmic transport: taking an inventory. Cellular and Molecular Life Sciences : CMLS 60, 1659–1688.
  7. Tieg, B., and Krebber, H. (2012). Dbp5 -From nuclear export to translation. Biochimica Et Biophysica Acta.
  8. Yao, W., Roser, D., Köhler, A., Bradatsch, B., Bassler, J., and Hurt, E. (2007). Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Molecular Cell 26, 51–62.
  9. Sonenberg, N., and Hinnebusch, A.G. (2007). New modes of translational control in development, behavior, and disease. Molecular Cell 28, 721–729.
  10. Spahn, C.M., Beckmann, R., Eswar, N., Penczek, P. a, Sali, a, Blobel, G., and Frank, J. (2001). Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA- ribosome and subunit-subunit interactions. Cell 107, 373–386.
  11. Gilbert, W., and Guthrie, C. (2004). The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Molecular Cell 13, 201– 212.
  12. Khoshnevis, S., Gross, T., Rotte, C., Baierlein, C., Ficner, R., Krebber, H. (2010) The iron- sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep. 11(3): 214 -219.
  13. Hackmann, A., Gross, T., Baierlein, C., and Krebber, H. (2011). The mRNA export factor Npl3 mediates the nuclear export of large ribosomal subunits. EMBO Reports 12, 1024–1031.
  14. West, M., Hedges, J.B., Lo, K.-Y., and Johnson, A.W. (2007). Novel interaction of the 60S ribosomal subunit export adapter Nmd3 at the nuclear pore complex. The Journal of Biological Chemistry 282, 14028–14037.
  15. Gietz, D., St Jean, a, Woods, R. a, and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research 20, 1425.
  16. Wong, C.-M., Tang, H.-M.V., Kong, K.-Y.E., Wong, G.-W.O., Qiu, H., Jin, D.-Y., and Hinnebusch, A.G. (2010). Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Research 38, 2217–2228.
  17. Lee, M.S., Henry, M., and Silver, P. a (1996). A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes & Development 10, 1233–1246.
  18. Caceres, J.F., Screaton, G.R., and Krainer, a. R. (1998). A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes & Development 12, 55–66.
  19. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes & Development 12, 679–691.
  20. Yu, M.C., Bachand, F., McBride, A.E., Komili, S., Casolari, J.M., and Silver, P.A. (2004). Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes & Development 18, 2024–2035.
  21. Strunk, B.S., and Karbstein, K. (2009). Powering through ribosome assembly. RNA (New York, N.Y.) 15, 2083–2104.
  22. Yao, Y., Demoinet, E., Saveanu, C., Lenormand, P., Jacquier, A., and Fromont- Racine, M. (2010). Ecm1 is a new pre-ribosomal factor involved in pre-60S particle export. RNA (New York, N.Y.) 16, 1007–1017.
  23. Wahl, M.C., Will, C.L., and Lührmann, R. (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718.
  24. Görlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental … 15, 607–660.
  25. Senger, B., Lafontaine, D.L., Graindorge, J.S., Gadal, O., Camasses, a, Sanni, a, Garnier, J.M., Breitenbach, M., Hurt, E., and Fasiolo, F. (2001). The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Molecular Cell 8, 1363–1373.
  26. Kiseleva, E., Goldberg, M.W., Allen, T.D., and Akey, C.W. (1998). Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. Journal of Cell Science 111 ( Pt 2, 223–236.
  27. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  28. Gorsch, L.C., Dockendorff, T.C., and Cole, C.N. (1995). A Conditional Allele of the Novel Repeat-containing Yeast Nucleoporin. The Journal of Cell Biology 129, 939– 955.
  29. Sikorski, R., and Hieter, P. (1989). A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces ceratisiae. Genetics 122, 19–27.
  30. Strunk, B.S., Novak, M.N., Young, C.L., and Karbstein, K. (2012). A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121.
  31. Harnpicharnchai, P., Jakovljevic, J., Horsey, E., Miles, T., Roman, J., Rout, M., Meagher, D., Imai, B., Guo, Y., Brame, C.J., et al. (2001). Composition and functional characterization of yeast 66S ribosome assembly intermediates. Molecular Cell 8, 505–515.
  32. (2012). Crystal structure of the 80S yeast ribosome. Current Opinion in Structural Biology 22, 759–767.
  33. Kim Guisbert, K., Duncan, K., Li, H., and Guthrie, C. (2005). Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA (New York, N.Y.) 11, 383–393.
  34. Rose, M.D., Winston, F., and Hieter, P. (1990). Methods in Yeast Genetics, A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York.
  35. Gebauer, F., and Hentze, M.W. (2004). MOLECULAR MECHANISMS OF TRANSLATIONAL CONTROL. Nature Reviews Molecular Cell Biology 5, 827– 835.
  36. Baierlein, C., Hackmann, A., Gross T., Henker, L., Hinz, F., Krebber, H. (2013) Monosome Formation during Translation Initiation Requires the SR Protein Npl3. Mol. Cell. Biol., 33(24):4811-23
  37. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122.
  38. Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., Burke, D.J., Ross, M.M., Shabanowitz, J., Hunt, D.F., and White, F.M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology 20, 301–305.
  39. Choi, S.K., Olsen, D.S., Roll-Mecak, a, Martung, a, Remo, K.L., Burley, S.K., Hinnebusch, a G., and Dever, T.E. (2000). Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Molecular and Cellular Biology 20, 7183–7191.
  40. Lehnik-Habrink, M., Rempeters, L., Kovács, A.T., Wrede, C., Baierlein, C., Krebber, H., Kuipers, O.P., Stülke, J. (2012) The DEAD-box RNA helicases in Bacillus subtilis have multiple functions and act independent from each other. J Bacteriol. 195(3):534-44.
  41. Siebel, C., and Guthrie, C. (1996). The essential yeast RNA binding protein Npl3p is methylated. … of the National Academy of … 93, 13641–13646.
  42. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335.
  43. Gary, J.D., Lin, W.J., Yang, M.C., Herschman, H.R., and Clarke, S. (1996). The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae. The Journal of Biological Chemistry 271, 12585–12594.
  44. Fu, X. (1995). The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680.
  45. Choi, S.K. (1998). Promotion of Met-tRNAiMet Binding to Ribosomes by yIF2, a Bacterial IF2 Homolog in Yeast. Science 280, 1757–1760.
  46. Busch, A., and Hertel, K. (2012). Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdisciplinary Reviews: RNA 3, 1–12.
  47. Panse, V.G. (2011). Getting ready to translate: cytoplasmic maturation of eukaryotic ribosomes. Chimia 65, 765–769.
  48. Kerppola, T. (2006). Visualization of molecular interactions by fluorescence complementation. Nature Reviews Molecular Cell Biology 7, 449–456.
  49. Karbstein, K. (2013). Quality control mechanisms during ribosome maturation. Trends in Cell Biology 23, 242–250.
  50. Gadal, O., Strauß, D., Kessl, J., Trumpower, B., Tollervey, D., and Hurt, E.D. (2001). Nuclear Export of 60S Ribosomal Subunits Depends on Xpo1p and Requires a Nuclear Export Sequence-Containing Factor , Nmd3p , That Associates with the Large Subunit Protein Rpl10p. Molecular and Cellular Biology 21, 3405–3415.
  51. West, M., and Hedges, J. (2005). Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Molecular and Cellular … 25, 3802–3813.
  52. Santos-Rosa, H., Moreno, H., Simos, G., Segref, A., Fahrenkrog, B., Panté, N., and Hurt, E. (1998). Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Molecular and Cellular Biology 18, 6826–6838.
  53. Si, K., and Maitra, U. (1999). The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Molecular and Cellular Biology 19, 1416–1426.
  54. Segref, A., Sharma, K., Doye, V., Hellwig, A., Huber, J., Lührmann, R., and Hurt, E. (1997). Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. The EMBO Journal 16, 3256–3271.
  55. Senger, B., Simos, G., Bischoff, F.R., Podtelejnikov, a, Mann, M., and Hurt, E. (1998). Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. The EMBO Journal 17, 2196–2207.
  56. Schmitt, C., Von Kobbe, C., Bachi, a, Panté, N., Rodrigues, J.P., Boscheron, C., Rigaut, G., Wilm, M., Séraphin, B., Carmo-Fonseca, M., et al. (1999). Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. The EMBO Journal 18, 4332–4347.
  57. Phan, L., Schoenfeld, L., Valášek, L., Nielsen, K.H., and Hinnebusch, A.G. (2001). A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNAiMet. The EMBO … 20, 2954–2965.
  58. Windgassen, M., and Krebber, H. (2003). Identification of Gbp2 as a novel poly(A)+ RNA-binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast. EMBO Reports 4, 278–283.
  59. Schäfer, T., Strauß, D., Petfalski, E., Tollervey, D., and Hurt, E. (2003). The path from nucleolar 90S to cytoplasmic 40S. The EMBO Journal 22, 1370–1380.
  60. Saveanu, C., Namane, A., Gleizes, P.-E., Lebreton, A., Rousselle, J.-C., Noaillac- Depeyre, J., Gas, N., Jacquier, A., and Fromont-Racine, M. (2003). Sequential protein association with nascent 60S ribosomal particles. … and Cellular Biology 23, 4449–4460.
  61. Fringer, J.M., Acker, M.G., Fekete, C. a, Lorsch, J.R., and Dever, T.E. (2007). Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Molecular and Cellular Biology 27, 2384–2397.
  62. LeFebvre, A.K., Korneeva, N.L., Trutschl, M., Cvek, U., Duzan, R.D., Bradley, C. a, Hershey, J.W.B., and Rhoads, R.E. (2006). Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. The Journal of Biological Chemistry 281, 22917–22932.
  63. Lebreton, A., Saveanu, C., Decourty, L., Rain, J.-C., Jacquier, A., and Fromont- Racine, M. (2006). A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. The Journal of Cell Biology 173, 349–360.
  64. Pertschy, B., Saveanu, C., Zisser, G., Lebreton, A., Tengg, M., Jacquier, A., Liebminger, E., Nobis, B., Kappel, L., Van der Klei, I., et al. (2007). Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Molecular and Cellular Biology 27, 6581–6592.
  65. Yao, W., Lutzmann, M., and Hurt, E. (2008). A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export. The EMBO Journal 27, 6–16.
  66. Taura, T., Krebber, H., and Silver, P. a (1998). A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export. Proceedings of the National Academy of Sciences of the United States of America 95, 7427–7432.
  67. Eisinger, D.P., Dick, F.A., and Trumpower, B.L. (1997). Qsr1p , a 60S ribosomal subunit protein , is required for joining of 40S and 60S subunits . Qsr1p , a 60S Ribosomal Subunit Protein , Is Required for Joining of 40S and 60S Subunits. 17.
  68. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PloS One 3, e3273.
  69. Dange, T., Grünwald, D., Grünwald, A., Peters, R., and Kubitscheck, U. (2008). Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. The Journal of Cell Biology 183, 77–86.
  70. Kress, T.L., Krogan, N.J., and Guthrie, C. (2008). A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Molecular Cell 32, 727–734.
  71. Gandin, V., Miluzio, A., Barbieri, A., Beugnet, A., Kiyokawa, H., Marchisio, P., and Biffo, S. (2008). Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455, 684–688.
  72. Panse, V.G., and Johnson, A.W. (2010). Maturation of eukaryotic ribosomes : acquisition of functionality. Trends in Biochemical Sciences 35, 260–266.
  73. Sengupta, J., Bussiere, C., Pallesen, J., West, M., Johnson, A.W., and Frank, J. (2010). Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. The Journal of Cell Biology 189, 1079–1086.
  74. Chen, Y.-C., Milliman, E.J., Goulet, I., Côté, J., Jackson, C. a, Vollbracht, J. a, and Yu, M.C. (2010). Protein arginine methylation facilitates cotranscriptional recruitment of pre-mRNA splicing factors. Molecular and Cellular Biology 30, 5245– 5256.
  75. Chook, Y.M., and Süel, K.E. (2011). Nuclear import by karyopherin-βs: recognition and inhibition. Biochimica Et Biophysica Acta 1813, 1593–1606.
  76. Güttler, T., and Görlich, D. (2011). Ran-dependent nuclear export mediators: a structural perspective. The EMBO Journal 30, 3457–3474.
  77. Rajyaguru, P., She, M., and Parker, R. (2012). Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Molecular Cell 45, 244– 254.
  78. Kappel, L., Loibl, M., Zisser, G., Klein, I., Fruhmann, G., Gruber, C., Unterweger, S., Rechberger, G., Pertschy, B., and Bergler, H. (2012). Rlp24 activates the AAA- ATPase Drg1 to initiate cytoplasmic pre-60S maturation. The Journal of Cell Biology 199, 771–782.
  79. Sonenberg, N., and Hinnebusch, A.G. (2009). Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745.
  80. Windgassen, M., Sturm, D., Cajiga, I.J., Gonzalez, C.I., Seedorf, M., Bastians, H., and Krebber, H. (2004). Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. … and Cellular Biology 24, 10479–10491.
  81. Gilbert, W., Siebel, C.W., and Guthrie, C. (2001). Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA (New York, N.Y.) 7, 302–313.
  82. Shin, B.-S., Maag, D., Roll-Mecak, A., Arefin, M.S., Burley, S.K., Lorsch, J.R., and Dever, T.E. (2002). Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111, 1015– 1025.
  83. Baierlein, C., Krebber, H. (2010) Translation termination: New factors and insights. RNA Biol. 7(5): 548 -550.
  84. Lai, M.-C., and Tarn, W.-Y. (2004). Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. The Journal of Biological Chemistry 279, 31745–31749.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten