Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Wirkung von Bactericidal/Permeability-Increasing Protein (BPI) auf Listeria monocytogenes und seine Funktion im Rahmen einer Listerieninfektion
Autor:Wittmann,Eva-Maria
Weitere Beteiligte: Schnare, Markus (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0004
DOI: https://doi.org/10.17192/z2014.0004
URN: urn:nbn:de:hebis:04-z2014-00042
DDC: Medizin
Titel (trans.):Effects of Bactericidal/Permeability-Increasing Protein (BPI) against Listeria monocytogenes and its function in an infection model of murine Listeriosis
Publikationsdatum:2014-01-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bactericidal/Permeability-Increasing Protein, Bactericidal/Permeability-Increasing Protein, BPI, Listeria monocytogenes, BPI, Listeria monocytogenes

Zusammenfassung:
Die antimikrobielle Wirkung von Bactericidal/permeability-increasing protein (BPI), einem Protein aus den azurophilen Granula neutrophiler Granulozyten (nGr), gegen gramnegative Bakterien ist seit Jahrzehnten bekannt. Dabei kann es sowohl LPS neutralisieren, wie auch Bakterien opsonisieren und damit deren Phagozytose verstärken. Im Rahmen dieser Arbeit konnte nun erstmals eine Funktion von BPI gegenüber grampositiven Bakterien, im speziellen Listeria monocytogenes (L.m.) nachgewiesen werden. Zum einen konnte gezeigt werden, dass humane nGr auf Stimulation mit Listerien mit einer BPI-Sekretion reagierten, zum anderen, dass BPI an die Bakterien binden konnte. Diese Bindung resultierte in einer direkten antimikrobiellen Wirkung gegen L.m.. Eine intragastrale Infektion von Wildtyp (WT)- Mäusen führte zu gesteigerten Expression der BPI-mRNA im Dünndarm, was einen ersten Hinweis auf die Funktion von BPI während einer Listeriose gab. BPI-defiziente (BPI-/-) Mäuse waren im Modell der murinen Listeriose unabhängig von der Applikationsroute suszeptibler gegenüber den Bakterien. Dies zeigte sich durch erhöhte Bakterienlasten in den infizierten Organen und eine verstärkte systemische Entzündung; wobei auch BPI-/- Mäuse letztlich in der Lage waren, die Bakterien zu kontrollieren. Um zu untersuchen welche Zellen für die erhöhte Suszeptibilität der BPI-/- Mäuse verantwortlich sind, wurden Analysen mit Makrophagen, DCs und nGr durchgeführt, die die erste Abwehrlinie bei einer Listeriose bilden. Weder isolierte Makrophagen noch DCs aus BPI-/- Mäusen konnten den in vivo Phänotyp der Mäuse rekapitulieren. Allerdings zeigten sich nach Stimulation von nGr aus WT und BPI-/- Mäusen mit UV-inaktivierten Listerien signifikante Unterschiede in der TNF- und ROS-Produktion der Zellen. BPI-/- nGr reagierten deutlich stärker auf die Stimulation. Die nGr beider Genotypen wiesen vergleichbare Effizienz bei der Phagozytose lebender Bakterien auf, aber unterschieden sich deutlich in ihrer Fähigkeit die Listerien nach 24 h abzutöten. In BPI-/- nGr fand sich nach 24 h eine dreifach höhere Bakterienlast. Aus den in vitro Daten kann auf das in vivo Modell die Hypothese übertragen werden, dass vermutlich nGr im Lauf einer Listeriose für die erhöhte Suszeptibilität der BPI-/- Mäuse verantwortlich sind. Da sich die BPI-/- Mäuse von der Infektion erholen, ist dabei davon auszugehen, dass auch in den BPI-/- Mäuse eine protektive adaptive Immunantwort ausgebildet werden kann.

Bibliographie / References

  1. Lominadze, G., D. W. Powell, G. C. Luerman, A. J. Link, R. A. Ward and K. R. McLeish (2005). "Proteomic analysis of human neutrophil granules." Mol Cell Proteomics 4(10): 1503-1521.
  2. Lennartsson, A., K. Pieters, T. Ullmark, K. Vidovic and U. Gullberg (2003). "AML-1, PU.1, and Sp3 regulate expression of human bactericidal/permeability-increasing protein." Biochem Biophys Res Commun 311(4): 853-863.
  3. Beveridge, T. J. (1999). "Structures of gram-negative cell walls and their derived membrane vesicles." J Bacteriol 181(16): 4725-4733.
  4. "Antibacterial properties of nanoparticles." Trends Biotechnol 30(10): 499-511.
  5. Elsbach, P. (1994). "Bactericidal permeability-increasing protein in host defence against gram-negative bacteria and endotoxin." Ciba Found Symp 186: 176-187; discussion 187-179.
  6. Robinson, J. M. (2009). "Phagocytic leukocytes and reactive oxygen species." Histochem Cell Biol 131(4): 465-469.
  7. Edelson, B. T. (2012). "Dendritic cells in Listeria monocytogenes infection." Adv Immunol 113: 33-49.
  8. Bonazzi, M. and P. Cossart (2006). "Bacterial entry into cells: a role for the endocytic machinery." FEBS Lett 580(12): 2962-2967.
  9. Gandhi, M. and M. L. Chikindas (2007). "Listeria: A foodborne pathogen that knows how to survive." Int J Food Microbiol 113(1): 1-15.
  10. Cousens, L. P. and E. J. Wing (2000). "Innate defenses in the liver during Listeria infection." Immunol Rev 174: 150-159.
  11. "Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development." Eur J Haematol 58(3): 137-153.
  12. Busch, D. H., K. Kerksiek and E. G. Pamer (1999). "Processing of Listeria monocytogenes antigens and the in vivo T-cell response to bacterial infection." Immunol Rev 172: 163-169.
  13. Cario, E. (2005). "Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2." Gut 54(8): 1182-1193.
  14. Munford, R. S. (2005). "Invited review: Detoxifying endotoxin: time, place and person." Journal of Endotoxin Research 11(2): 69-84.
  15. Saito, T., H. Takahashi, H. Doken, H. Koyama and Y. Aratani (2005). "Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl." Biosci Biotechnol Biochem 69(11): 2207-2212.
  16. "Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice." J Immunol 169(7): 3863-3868.
  17. Abreu, M. T., M. Fukata and M. Arditi (2005). "TLR signaling in the gut in health and disease." J Immunol 174(8): 4453-4460.
  18. Machata, S., S. Tchatalbachev, W. Mohamed, L. Jänsch, T. Hain and T. Chakraborty (2008). "Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2- mediated immune activation." J Immunol 181(3): 2028-2035.
  19. Brogden, K. A. (2005). "Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?" Nat Rev Microbiol 3(3): 238-250.
  20. Babinet and P. Cossart (2001). "A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier." Science 292(5522): 1722-1725.
  21. Beamer, L. J., S. F. Carroll and D. Eisenberg (1997). "Crystal Structure of Human BPI and Two Bound Phospholipids at 2.4 Angstrom Resolution." Science 276(5320): 1861- 1864.
  22. Beutler (1998). "Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene." Science 282(5396): 2085-2088.
  23. Cario, E. and D. K. Podolsky (2000). "Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease." Infect Immun 68(12): 7010-7017.
  24. Mengaud, J., H. Ohayon, P. Gounon, Mege R-M and P. Cossart (1996). "E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells." Cell 84(6): 923-932.
  25. Eckert, M., I. Wittmann, M. Röllinghoff, A. Gessner and M. Schnare (2006). "Endotoxin- induced expression of murine bactericidal permeability/increasing protein is mediated exclusively by toll/IL-1 receptor domain-containing adaptor inducing IFN-beta- dependent pathways." J Immunol 176(1): 522-528.
  26. Viegas, N., L. Andzinski, C. F. Wu, R. M. Komoll, N. Gekara, K. E. Dittmar, S. Weiss and J. Jablonska (2013). "IFN-γ production by CD27(+) NK cells exacerbates Listeria monocytogenes infection in mice by inhibiting granulocyte mobilization." Eur J Immunol.
  27. Shen, Y., M. Naujokas, M. Park and K. Ireton (2000). "InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase." Cell 103(3): 501-510.
  28. Canny, G., O. Levy, G. T. Furuta, S. Narravula-Alipati, R. B. Sisson, C. N. Serhan and S. P. Colgan (2002). "Lipid mediator-induced expression of bactericidal/ permeability- increasing protein (BPI) in human mucosal epithelia." Proc Natl Acad Sci U S A 99(6): 3902-3907.
  29. "Mechanisms of action of bactericidal/permeability-increasing protein BPI on reconstituted outer membranes of gram-negative bacteria." Biochemistry 36(33): 10311-10319.
  30. Weiss, J., P. Elsbach, I. Olsson and H. Odeberg (1978). "Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes." J Biol Chem 253(8): 2664-2672.
  31. I. Tuomanen and R. R. Schumann (2003). "Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein." Immunity 19(2): 269- 279.
  32. Khelef, N., M. Lecuit, H. Bierne and P. Cossart (2006). "Species specificity of the Listeria monocytogenes InlB protein." Cell Microbiol 8(3): 457-470.
  33. Peschel, A. and L. V. Collins (2001). "Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin." Peptides 22(10): 1651-1659.
  34. Ladel, C. H., I. E. Flesch, J. Arnoldi and S. H. Kaufmann (1994). "Studies with MHC- deficient knock-out mice reveal impact of both MHC I-and MHC II-dependent T cell responses on Listeria monocytogenes infection." J Immunol 153(7): 3116-3122.
  35. Braun, L., F. Nato, B. Payrastre, J. C. Mazié and P. Cossart (1999). "The 213-amino- acid leucine-rich repeat region of the listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling." Mol Microbiol 34(1): 10-23.
  36. Calafat, J., H. Janssen, E. F. Knol, J. Malm and A. Egesten (2000). "The bactericidal/permeability-increasing protein (BPI) is membrane-associated in azurophil granules of human neutrophils, and relocation occurs upon cellular activation." APMIS 108(3): 201-208.
  37. Akira, D. M. Underhill and A. Aderem (2001). "The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5." Nature 410(6832): 1099-1103.
  38. Kawai, T. and S. Akira (2011). "Toll-like receptors and their crosstalk with other innate receptors in infection and immunity." Immunity 34(5): 637-650.
  39. Colgan (2006). "Functional and biochemical characterization of epithelial bactericidal/permeability-increasing protein." Am J Physiol Gastrointest Liver Physiol 290(3): G557-567.
  40. Nagendra, S. and A. J. Schlueter (2004). "Absence of cross-reactivity between murine Ly-6C and Ly-6G." Cytometry A 58(2): 195-200.
  41. Elbim, C. and G. Lizard (2009). "Flow cytometric investigation of neutrophil oxidative burst and apoptosis in physiological and pathological situations." Cytometry A 75(6): 475-481.
  42. Hochrein, H. Rüssmann, T. Brocker and D. H. Busch (2006). "CD8alpha+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen." Immunity 25(4): 619-630.
  43. Havell, E. A. (1989). "Evidence that tumor necrosis factor has an important role in antibacterial resistance." The Journal of Immunology 143(9): 2894-2899.
  44. Kolaczkowska, E. and P. Kubes (2013). "Neutrophil recruitment and function in health and inflammation." Nat Rev Immunol 13(3): 159-175.
  45. Pizarro-Cerdá, J., A. Kühbacher and P. Cossart (2012). "Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view." Cold Spring Harb Perspect Med 2(11).
  46. Lecuit, M., S. Dramsi, C. Gottardi, M. Fedor-Chaiken, B. Gumbiner and P. Cossart (1999). "A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes." EMBO J 18(14): 3956-3963.
  47. Aichele, D., M. Schnare, M. Saake, M. Röllinghoff and A. Gessner (2006). "Expression and antimicrobial function of bactericidal permeability-increasing protein in cystic fibrosis patients." Infect Immun 74(8): 4708-4714.
  48. "Balance of inflammatory cytokines related to severity and mortality of murine sepsis." Infect Immun 64(11): 4733-4738.
  49. Macpherson, A. J., M. B. Geuking and K. D. McCoy (2005). "Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria." Immunology 115(2): 153-162.
  50. Call, D. R., J. A. Nemzek, S. J. Ebong, G. L. Bolgos, D. E. Newcomb and D. G. Remick (2001). "Ratio of local to systemic chemokine concentrations regulates neutrophil recruitment." Am J Pathol 158(2): 715-721.
  51. Ooi, C. E., J. Weiss, M. E. Doerfler and P. Elsbach (1991). "Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/permeability-increasing protein of human neutrophils." The Journal of Experimental Medicine 174(3): 649-655.
  52. Portnoy, D. A., P. S. Jacks and D. J. Hinrichs (1988). "Role of hemolysin for the intracellular growth of Listeria monocytogenes." J Exp Med 167(4): 1459-1471.
  53. "Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells." J Exp Med 195(5): 559-570.
  54. Auerbuch, V., D. G. Brockstedt, N. Meyer-Morse, M. O'Riordan and D. A. Portnoy (2004). "Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes." J Exp Med 200(4): 527-533.
  55. Proell, M., S. J. Riedl, J. H. Fritz, A. M. Rojas and R. Schwarzenbacher (2008). "The Nod-like receptor (NLR) family: a tale of similarities and differences." PLoS One 3(4): e2119.
  56. Iovine, N. M., P. Elsbach and J. Weiss (1997). "An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N-and C-terminal domains." Proc Natl Acad Sci U S A 94(20): 10973-10978.
  57. Dunn, P. L. and R. J. North (1991). "Early gamma interferon production by natural killer cells is important in defense against murine listeriosis." Infect Immun 59(9): 2892-2900.
  58. Ofek, I. and N. Sharon (1988). "Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria." Infect Immun 56(3): 539-547.
  59. Mannion, B. A., J. Weiss and P. Elsbach (1990). "Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli." J Clin Invest 85(3): 853-860.
  60. Pamer and M. L. Dustin (2011). "Dynamic imaging of the effector immune response to listeria infection in vivo." PLoS Pathog 7(3): e1001326.
  61. "Interplay between CD8α+ dendritic cells and monocytes in response to Listeria monocytogenes infection attenuates T cell responses." PLoS One 6(4): e19376.
  62. Eitel, J., N. Suttorp and B. Opitz (2010). "Innate immune recognition and inflammasome activation in listeria monocytogenes infection." Front Microbiol 1: 149.
  63. "Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin." J Exp Med 208(11): 2263-2277.
  64. Shi, C., T. M. Hohl, I. Leiner, M. J. Equinda, X. Fan and E. G. Pamer (2011). "Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection." J Immunol 187(10): 5293-5298.
  65. "Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria." J Clin Invest 90(3): 1122- 1130.
  66. Williams, M. A., R. L. Schmidt and L. L. Lenz (2012). "Early events regulating immunity and pathogenesis during Listeria monocytogenes infection." Trends Immunol 33(10): 488-495.
  67. Liu, M., K. Chen, T. Yoshimura, Y. Liu, W. Gong, A. Wang, J. L. Gao, P. M. Murphy and J. M. Wang (2012). "Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes." Sci Rep 2: 786.
  68. "Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection." Eur J Immunol 41(9): 2666-2676.
  69. Akira, S., S. Uematsu and O. Takeuchi (2006). "Pathogen recognition and innate immunity." Cell 124(4): 783-801.
  70. Coquery, C. M., W. Loo, M. Buszko, J. Lannigan and L. D. Erickson (2012). "Optimized protocol for the isolation of spleen-resident murine neutrophils." Cytometry A 81(9): 806-814.
  71. Vuthoori, K. Ko, F. Zavala, E. G. Pamer, D. R. Littman and R. A. Lang (2002). "In vivo , depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens." Immunity 17(2): 211-220.
  72. Serbina, N. V., C. Shi and E. G. Pamer (2012). "Monocyte-mediated immune defense against murine Listeria monocytogenes infection." Adv Immunol 113: 119-134.
  73. Tripp, C. S., S. F. Wolf and E. R. Unanue (1993). "Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist." Proc Natl Acad Sci U S A 90(8): 3725-3729.
  74. A. Portnoy (2004). "A specific gene expression program triggered by Gram-positive bacteria in the cytosol." Proc Natl Acad Sci U S A 101(31): 11386-11391.
  75. Goebel, B. González-Zorn, J. Wehland and J. Kreft (2001). "Listeria pathogenesis and molecular virulence determinants." Clin Microbiol Rev 14(3): 584-640.
  76. Khan, A. A., L. H. Lambert, J. S. Remington and F. G. Araujo (1999). "Recombinant bactericidal/permeability-increasing protein (rBPI21) in combination with sulfadiazine is active against Toxoplasma gondii." Antimicrob Agents Chemother 43(4): 758-762.
  77. Weston, S. A. and C. R. Parish (1990). "New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy." J Immunol Methods 133(1): 87-97.
  78. Rocourt, J., C. Jacquet and A. Reilly (2000). "Epidemiology of human listeriosis and seafoods." Int J Food Microbiol 62(3): 197-209.
  79. Birmpa, A., V. Sfika and A. Vantarakis (2013). "Ultraviolet light and Ultrasound as non- thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods." Int J Food Microbiol.
  80. Corr, S., C. Hill and C. G. Gahan (2006). "An in vitro cell-culture model demonstrates internalin-and hemolysin-independent translocation of Listeria monocytogenes across M cells." Microb Pathog 41(6): 241-250.
  81. Goebel (2001). "Pathogenicity islands and virulence evolution in Listeria." Microbes Infect 3(7): 571-584.
  82. Faurschou, M. and N. Borregaard (2003). "Neutrophil granules and secretory vesicles in inflammation." Microbes Infect 5(14): 1317-1327.
  83. Creagh, E. M. and L. A. O'Neill (2006). "TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity." Trends Immunol 27(8): 352-357.
  84. Nieswandt, S. Massberg, R. M. Zinkernagel, H. Hengartner and D. H. Busch (2011). "A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3." Nat Immunol 12(12): 1194-1201.
  85. Schuppler, M. and M. J. Loessner (2010). "The Opportunistic Pathogen Listeria monocytogenes: Pathogenicity and Interaction with the Mucosal Immune System." Int J Inflam 2010: 704321.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten