Publikationsserver der Universitätsbibliothek Marburg

Titel:Expression und Modulation von TRP-Kanälen in humanen mikrovaskulären Endothelzellen
Autor:Klockner, Annette Elisabeth Astrid
Weitere Beteiligte: Hoyer, Joachim (Prof. Dr. med.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0734
URN: urn:nbn:de:hebis:04-z2013-07340
DOI: https://doi.org/10.17192/z2013.0734
DDC: Medizin
Titel (trans.):Expression and modulation of TRP channels in human microvascular endothelial cells
Publikationsdatum:2013-12-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Calciumsignal, Reverse Transkriptase-Polymerase-Kettenreaktion, Endothelzelle, endothelial stimulation, endotheliale Stimulation, TRP-Kanäle, endothelial cells, RT-PCR, TRP channels, calcium signaling

Zusammenfassung:
Die Bedeutung des vaskulären Endothels für die Regulation der kardiovaskulären Homeostase ist, aufgrund einer zunehmenden Zahl an Daten, offensichtlich geworden. Die endotheliale Aktivierung und Dysfunktion spielt eine bedeutende Rolle bei der Pathogenese zahlreicher kardiovaskulärer Erkrankungen. Um ihre Aufgaben erfüllen zu können, exprimieren Endothelzellen eine Vielzahl von membranständigen Ionenkanälen. Besondere Bedeutung weist dabei die Kontrolle des Ca2+-Einstroms und die Modulation des Membranpotentials der Endothelzelle auf. Die Veränderung der [Ca2+]i erfolgt sowohl über die Freisetzung von Ca2+ aus dem Intrazellulärraum als auch durch den Ca2+-Einstrom von außerhalb der Zelle. Der extrazelluläre Ca2+-Einstrom wird unter anderem über nicht-selektive Kationenkanäle vermittelt. Zu diesen gehören die 28 humanen Mitglieder der TRP-Familie. Die Bedeutung der TRP-Kanäle in humanen Endothelzellen ist bislang nicht abschließend geklärt. Das Ziel dieser Arbeit war die systematische Untersuchung der Expression aller humanen TRP-Kanäle in humanen dermalen mikrovaskulären Endothelzellen (HMEC-1) mittels der etablierten Methode der Real-Time RT-PCR. Als house-keeping-Gen diente GAPDH, als endothelialer Marker vWF, deren Expression ebenfalls untersucht wurden. Zur Verifizierung der durch RT-PCR gewonnenen Daten erfolgte von jeder durchgeführten RT-PCR eine Gelelektrophorese. Zusätzlich wurde die Qualität jedes Primers mittels Linearitätsanalysen validiert. Hierbei konnte die Expression der mRNA von TRPC1, TRPC3, TRPC4, TRPC6 und TRPC7, TRPV1, TRPV2 sowie TRPV4, TRPM4, TRPM5, TRPM6, TRPM7 und TRPM8, TRPA1, TRPML2, TRPP1 und PKD2like1 gezeigt werden. Von diesen TRP-Kanälen war eine besonders hohe Expression von TRPC1, TRPC4, TRPC6, TRPM6, TRPM7, TRPM8 sowie TRPP1 nachweisbar. Da wenig bekannt ist über die Aktivierung und Modulation von TRP-Kanälen in Endothelzellen, wurde anschließend mittels RT-PCR untersucht, ob die Stimulation der HMEC-1 mit verschiedenen vasoaktiven (Bradykinin, Histamin, Endothelin-1) und pro-angiogenetischen Faktoren (VEGF, Erythropoetin) zu einer Modulation der Expression der 28 humanen TRP-Kanäle in HMEC-1 führt. Auch hier wurden mittels Gelelektrophorese die gewonnenen Daten der RT-PCR bestätigt. Hierbei konnte nach Stimulation mit VEGF eine signifikant erhöhte Expression von TRPM8 aufgezeigt werden, ebenso war nach Stimulation mit Bradykinin eine signifikant erhöhte Expression von TRPM4, TRPM5 und TRPM8 aufzuweisen. Insgesamt konnte anhand der Ergebnisse der vorliegenden Studie bestätigt werden, dass humane mikrovaskuläre Endothelzellen von Typ HMEC-1 spezifische TRP-Kanäle exprimieren. Des Weiteren konnte gezeigt werden, dass die Expression einiger dieser Kanäle nach endothelialer Stimulation erhöht wird. Somit konnte anhand der Stimulationsversuche gezeigt werden, dass vasoaktive und pro-angiogenetische Faktoren die Expression der TRP-Kanäle im Endothel modulieren können. Entgegen der Erwartungen war keine jedoch keine deutlich intensivere Expression einzelner TRP-Kanäle, trotz statischer Signifikanz nach Stimulation der HMEC-1, zu beobachten. Das bessere Verständnis der physiologischen Funktion des Endothels und des vaskulären Systems liefert den Schlüssel zum Verständnis pathophysiologischer Prozesse und eröffnet neue therapeutische Perspektiven. So ist es vorstellbar, dass in Zukunft TRP-Kanäle aufgrund ihrer komplexen Funktionen im kardiovaskulären System an Bedeutung für die Entwicklung neuer Pharmaka gewinnen.

Bibliographie / References

  1. Calahan MD (2001). Channels as enzymes. Nature 411: 542-543.
  2. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Throm Vasc Biol 26: 1495-1502.
  3. Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ, Yuan JX (2004). Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170(10): 1101-7.
  4. Shimokawa H (1999). Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 31: 23-37
  5. Wong CO, Yao X (2011). TRP channels in vascular endothelial cells. Adv Exp Med Biol. 704: 759-80.
  6. Cantiello HF, Montalbetti N, Goldmann WH, Raychowdhury MK, González-Perrett S, Timpanaro GA, Chasan B (2005). .Cation channel activity of mucolipin-1 – the effect of calcium. Eur J Physiol 451: 304-312.
  7. Mazzuca MQ, Khalil RA (2012). Vascular Endothelin receptor type B: structure, function abd dysregulation in vascular disease. Biochem Pharmacol 84(2): 147-62.
  8. Bavencoffe A, Kondratskyi A, Gkika D, Shuba Y, Prevarskaya N, Skryma R (2011). Complex regulation of the TRPM8 cold receptor channel: role of arachidonic acid release following M3 muscarnic receptor stimulation. J Biol Chem. 286(11): 9849-55
  9. Salido GM, Sage SO, Rosado JA. Biochemical and functional properties of the store operated Ca 2+ channels. Cell Signal 21(4):457-61.
  10. Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008). TRP channel and cardiovascular disease. Pharmacology&Therapeutics 118: 337-351.
  11. Expression of ryanodine receptot type 3 and TRP channels in endothelial cells: comparison of in situ and cultured human endothelial cells. Cardiovasc Res 51: 160-168.
  12. Christensen AP, Corey DP (2007). TRP channels in mechanosensation: direct or indirect activation? Nature Reviews 8: 510-521.
  13. Schindl R, Romanin C (2007). Assembly domains in TRP channels. Biochem Soc Trans 35(Pt 1):84-5.
  14. Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen Z-P, Kemp BE, Venema RC (2001). Receprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. JBC 276 (19): 16587-16591.
  15. Zhu MZ, Bradbury DA, Pang L, Knox AJ (2003). Transcriptional regulation of interleucin (IL)-8 by bradykinin in human airway smooth muschle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independenr activation of NF- κB. JBC 278(31): 29366-29375.
  16. Venkatachalam K, Zheng F, Gill DL (2003). Regulation of canonical transient receptor potential (TRP) channel function by diacylglycerol and protein kinase C. J Biol Chem 278: 29031-29040.
  17. Voets T, Janssens A, Droogmans G, Nilius B (2004). Outer pore architecture of a Ca 2+ - selective TRP channel. J Biol Chem 279(15): 15223-15230.
  18. Arniges M, Fernandez-Ferna JM, Albrecht N, Schaefer M, Valverde MA (2005). Human TRPV4 Channel Splice Variants Revealed a Key Role of Ankyrin Domains in Multimerization and Trafficking. J. Biol Chem 281(3): 1580-1586.
  19. Lepage PK, Lussier MP, Barajas-Martinez H, Bousquet SM, Blanchard AP, Francoeur N, Dumaine R, Boulay G (2006). Identification of two domains involved in the assenmbly of transient receptor potential canonical channels. J Biol Chem 281(41): 30356-30364.
  20. Feletou M (2009). Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Brit J Pharmacol 156: 545-562.
  21. Birnbaumer L (2009). The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu. Rev. Pharmacol. Toxicol. 49: 395-426.
  22. Tumor necrosis factor-α-induced TRPC1 expression amplifies store-operated Ca 2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 287: 1303-1313.
  23. Cheng H-W, James AF, Foster RR, Hancox JC. Bates DO (2006). VEGF activates receptor- operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Bio 26: 1768-1776.
  24. Yao X, Garland CJ (2005). Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res 97: 853-863.
  25. Kohler et al. (2000). Expression and function of endothelial Ca2+-activated K+ channels in human mesenteric artery: a single-cell reverse transcriptase-polymerase chain reaction and electrophysiolocial study in situ. Circ Res 87: 496-503.
  26. Noorani MM, Noel RC, Marrelli SP (2011). Upregulated TRPC3 and downregulated TRPC1 channel expression during hypertemsion is associated with increased vascular contractility in rat. Front Physiol. 2:42:1-9.
  27. Touyz RM, He Y, Montezano ACI, Yao G, Chubanov V, Gudermann T, Callera GE (2006). Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol Regul Inter Comp Physiol 290: R73-R78.
  28. Touyz RM (2008). Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 294: H1103-H1118.
  29. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996). The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28: 703-711.
  30. Thilo F, Baumunk D, Krause H, Schrader M, Miller K, Loddenkemper C, Zakrzewicz A, Krueger K, Zidek W, Tepel M (2009). Transient receptor potential canonical type 3 channels and blood pressure in humans. J Hypertens 27(6): 1217-1223.
  31. Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A, Steffer K, Holz S, Harteneck C, Zidek W, Tepel M (2006). Transient receptor potential channels in essential hypertension. Journal of Hypertension 24(6): 1105-1114.
  32. Nilius B (2007). TRP Channels in disease. BBA 1772: 805-812.
  33. Kwan HY, Huang Y, Yao X (2007). TRP channels in endothelial function and dysfunction. BBA 1772: 907-914.
  34. Antoniotti S, Lovisolo D, Pla AF, Munaron L (2002). Expression and functional role of bTRPC1 channels in native endothelial cells. FEBS Letters 510: 189-195.
  35. Munaron L, Fiorio Pla A (2000). Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. J Cell Physiol.: 185(3):454-63.
  36. Wang D, Iversen J, Strandgaard S (2000). Endothelium-dependent relaxation of small resistance vessels is impaired in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 11: 1371-1376.
  37. Hardie RC (2001). Phototransduction in Drosophila melanogaster. J Exp Biol 204: 3403-3409.
  38. Matsumoto T, Mugishima H (2006). Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in angiogenesis. J Atheroscler Thromb 13(3): 130- 135.
  39. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G et al. (2008). Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326: 443-452.
  40. Feletou M, Vanhoutte PM (2006). Endothelial Dysfunction: a multifaceted disorder. Am J Physiol Heart Circ Physiol 291: H985-H1002.
  41. Nilius B, Schwartz G, Oike M, Droogmans G (1993). Histamine-activated, non- selective cation currents and Ca2+ transients in endothelial cells from human umbilical vein. Pflugers Arch. 424(3-4):285-93.
  42. Ahmmed GU, Malik AB (2005). Functional role of TRPC channels in regulation of endothelial permeability. Eur J Physiol 451: 131-142.
  43. Sane DC, Anton L, Brosnihan KB (2004). Angiogenic growth factors and hypertension. Angiogenesis 7: 193-201.
  44. Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-8
  45. Nilius B, Voets T (2008). A TRP cannel-steroid marriage. Nature Cell Biol 10: 1383-1384.
  46. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julis D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002). A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9: 229-231.
  47. Nilius B, Voets T (2007). Channelling cold reception. Nature 448: 147-148.
  48. Luckhoff A, Pohl U, Mulsch A, Busse R (1988). Differential role of intra-and extracellular calcium in the release of EDRF and Prostazyklin from cultured endothelial cells. Br J Pharmacol 95: 189-196.
  49. Eidesstattliche Erklärung Hiermit erkläre ich ehrenwörtlich, dass ich die dem Fachbereich Medizin Marburg zur Promotionsprüfung eingereichte Arbeit mit dem Titel " Expression und Modulation endothelialer TRP- Kanäle in humanen Endothelzellen " im Institut für Innere Medizin/Nephrologie unter Leitung von
  50. Michiel C (2003). Endothelial cell function. J Cell Physiol 196: 430-443.
  51. Yip H, Chan W-Y, Leung P-C, Kwan H-Y, Liu C, Huang Y, Michel V, Ywe DT-W, Yao X (2004). Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122:553-561
  52. Zanetta L, Marcus SG, Vasile J, Dobryansky M, Cohen H, Eng K et al. (2000). Expression of von Willebrand factor, an endothelial marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer 85: 281-288.
  53. Herrn Dr. rer. nat. Willm-Thomas Heyken, Herrn Brajesh Kaistha,. PhD, und Frau Annuradha
  54. Mein allergrößter Dank gilt meinen Eltern. Ihnen habe ich meine schulische und universitäre Ausbildung zu verdanken. Danke auch an meine Geschwistern Vera und Simon sowie an meine lieben Freunde für den großen Rückhalt und die Unterstützung in allen Lebenslagen.
  55. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca 2+ entry in TRPC4 (-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91: 70-76.
  56. Liu D, Scholze A, Zhu Z, Holz S, Steffer K, Zidek W, Tepel M (2006). Increased transient receptor potential (TRP) channel expression and cation influx in essential hypertension. Am J Hypertens 24: 1115-1124.
  57. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001). Lack of endothelial store- operated current impairs agonist-dependent vasorelaxation in TRP4-/-mice. Nat Cell Biol 3: 121-127.
  58. Nadler MJS, Hermosura MC, Inabe K, Perraus AL, Zhu Q, Stokes A, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001). LTRPC7 is a Mg-ATP-regulated divalent cation chanel required for cell viability. Nature 411: 590-595.
  59. Montell C, Rubin GM (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323.
  60. Vannier B, Peyton M, Boulay G, Brown D, Jiang M, Zhu X, Birnbaumer L (1999). Mouse trp2, the homologue of the human pseudogene, encodes mTRP2, a store depetion-activated capactiative Ca2+ entry channel. Proc Natl Acad Sci USA 96: 2060-2064.
  61. Zhu MX (2005). Multiple roles of calmodulin and other Ca 2+ binding proteins in the functional regulation of TRP channels. Pflügers Arc Europ J Physiol, Special issue, Functional role of TRP channels, editied by Nilius B.
  62. Freeman WM, Walker SJ, Vrana KE (1999). Quantitative RT-PCR: pitfalls and potential. BioTechniques 26(1): 112-22, 124-5
  63. Putney JW (1990). Receptor-regulated calcium entry. Pharmac Ther 48: 427-434.
  64. Schmitz C, Perraud A-L, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003). Regulation of vertebrate cellular Mg 2+ homeostasis by TRPM7. Cell 114: 191-200.
  65. Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2003). Role of Ca 2+ signaling in the regulation of endothelial permeability. Vascular Pharmacology 39: 173-185.
  66. Schiffrin EL (2005). Role of endothelin-1 in hypertension. Hypertension 22(6):1141-9.
  67. McLauglin AP, de Vries GW (2001). Role of PLCγ and Ca2+ in VEGF-and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol 281: C1448-C1456.
  68. Kohler R, H.J. (2007) Role of TRPV4 in the Mechanotransduction of Shear Stress in Endothelial Cells, in TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, W. Liedtke, Heller, S., Editor. 2007, CRC Press: Boca Raton, FL. p. 377- 388.
  69. Nilius B, Mahieu F, Prenen J, Janssens A, G. Owsianik, Vennekens R, Voets T (2006). The Ca 2+ -activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-bisphosphat. The EMBO Journal 25: 667-478.
  70. Kraft R, Harteneck C (2005). The mammalian melastatin-related transient receptor cation channels: an overview. Pflügers Arch 451: 204-211.
  71. Vannier B, Zhu X, Brown D, Birnbaumer L (1998). The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and Epitope immunohistochemistry. J Biol Chem 273: 8675-8679.
  72. Latorre R, Brauchi S, Orta G, Zaelzer C, Vergas G (2007). ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42: 427-438.
  73. Montell C, Birnbaumer L, Flockerzi V (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598.
  74. Hardie RC, Minke B (1992). The trp gene is essential for a light-activated Ca 2+ -channel in Drosophila photoreceptors. Neuron 8(4):643-51
  75. Clapham DE, Runnels LW, Strübing C (2001). The TRP ion channel family. Nature Reviews 2: 387-396.
  76. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645-655.
  77. Minke B (2006). TRP channels and Ca 2+ signalling. Cell Calcium 40: 261-275.
  78. Levitan IB, Cibulsky SM (2001). TRP ion channels – two proteins in one. Science 293:1270-1.
  79. Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998). Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437: 101-106.
  80. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3*-kinase/Akt signal transduction pathway. J Biol Chem 273(46): 30336- 30343.
  81. Torres VE, Cai Y, Chen X, Wu GQ, Geng L, Cleghorn KA, Johnson CM, Somlo S (2001). Vascular expression of polycystin-2. J Am Soc Nephrol 12: 1-9.
  82. Griffin MD, Torres VE, Grande JP, Kumar R (1997). Vascular expression of polyzystin. J Am Soc Nephrol 8: 616-626.
  83. Wissenbach U, Nilius B, Flockeri V (2004). TRP channels as potential drug targets. Biol Cell 96: 47-54.
  84. Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z-Y (2004). The ankyrin repeat as molecular architecture for protein regonition. Protein Sci 13: 1435-1448.
  85. Berridge MJ, Bootman MD, Roderick HL (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews 4: 517-529.
  86. Furchgott, R., J. V. Zawadzki (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789): 373-6
  87. Ramsey IS, Delling M, Clapham DE (2006). An introduction to TRP channels. Annu Rev Physiol 68: 619-647.
  88. Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006). Tissue-specific expression of TRP channel genes in mouse and its variation in three different mouse strains. BMC Genomics 7: 159.
  89. Langeslag M, Clark K, Moolenaar WH, van Leeuwen FN, Jalink K (2007). Activation of TRPM7 channels by phospholipase C-coulped receptor agonists. J Biol Chem 282(1): 232- 239.
  90. Tan X, Essengue S, Talreja J, Reese J, Stechschulte DJ, Dileepan KN (2007). Histamine directly and synergistically with lipopolysaccharide stimulates cyclooxygenase-2 expression and prostaglandin I2 and E2 production in human coronary artery endothelial cells. J Immun 179: 7899-7906.
  91. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner, R, Kinet JP, Scharenberg AM (2001). ADP-ribose gating of the calcium- permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 595-599.
  92. Venkatachalam K, Montell C (2007). TRP channels. Annu Rev Biochem 76: 387-417.
  93. Petersen CCH, Berridge MJ, Borgese MF, Bennett DL (1995). Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311: 41-44.
  94. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005). Gating of TRP channels: a voltage connection? J Physiol 567.1: 35-44.
  95. Firth AL, Remillard CV, Yuan JX-J (2007). TRP channels in hypertension. BBA 1772: 895- 906.
  96. Hardie RC (2007). TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578.1: 9-24.
  97. Gaudet R (2008). TRP channels entering the structural era. J Physiol 586(15): 3565-3575.
  98. Voets T, Nilius B (2009). TRPCs, GPCRs and the Bayliss effect. The EMBO J 28(1): 4-5.
  99. Gaudet R (2008). A primer on Ankyrin repeat function in TRP channels and beyond. Mol BioSyst 4: 372-379.
  100. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995). TRPC1, a human homolog of a Drosophila store-operated channel. Cell Biol 92: 9652-9656.
  101. Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100: 2793-2799.
  102. Nijenhuis T, Sloan AJ, Hoederop JG, Flesche J, van Goor H, Kistler AD, Bakker M, Bindels RJ, de Boer RA, Möller CC, Hamming I, Navis G, Wetzels JF, Berden JH, Reiser J, van der Vlag J (2011). Angiotensin II contributes to podocyte injury by increasing TRP6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol. 179(4): 1719-32.
  103. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99(6): 683-90.
  104. Boulanger CM (1999). Secondary endothelial dysfunction: hypertension and heart failure. J Mol Cell Cardiol 31: 39-49.
  105. Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002). The diversity in the vanilloid (TRPV) receptor family of ion channels. TRENDS in Pharmacol Sci 23(4): 183-191.
  106. Harteneck C, Plant TD, Schultz G (2000). From worm to man: three subfamilies of TRP channels. Trends Neurosci 23: 159-166.
  107. Guderrmann T, Flockerzi V (2005). TRP channels as new pharmacological targets. Naunyn Schmiedebergs Arch Pharmacol 371: 241-244.
  108. Sherkheli MA, Vogt-Eisele AK, Bura D, Beltran Marques LR, Gisselmann G, Hatt H (2010). Characterization of selective TRPM8 ligands and their structure activity response (S.A.R.). J Pharm Pharmaceut Sci 13(2): 242-253.
  109. Peier AM, Moqrich A, Hergarden AC, Reeve JA, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P. Bevan S, Patapoutian A (2000). A TRP Channel that senses cold stimuli and menthol. Cell 108: 705-715.
  110. Li J-M, Shah AM (2004). Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287: R1014- R1030.
  111. Nilius B, Voets T (2005). TRP channels: a TRP(I)P through a world of multifunctional cation channels. Eur J Physiol 451: 1-10.
  112. Voets T, Nilius B (2003). TRPs make sense. J Membrane Biol 192: 1-8.
  113. Voets T, Droogmans G, Janssens A, Flockerzi V, Nilius B (2004). The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430: 748-754.
  114. Pedersen SF, Owsianik G, Nilius B (2005). TRP channels: an overview. Cell Calcium 38: 233- 252.
  115. Vennekens R, Voets T, Bindels RJM, Droogmans G, Nilius B (2002). Current understanding of mammalian TRP homologues. Cell Calcium 31(6): 253-264.
  116. Nilius B, Droogmans G (2001). Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415-1459.
  117. Nilius B, Owsianik G, Voets T, Peters JA (2007). Transient receptor cation channels in disease. Physiol Rev 87:165-217.
  118. Vriens J, Appendino G, Nilius B (2009). Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75(9): 1262-1279.
  119. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi, Mitsui Y, Yazaki Ym Goto K, Masaki T (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411-415.
  120. Chi Ju-T, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brwon PO (2003). Endothelial cell diversity reavealed by global expression profiling. PNAS 100(19): 10623-10628.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten