Publikationsserver der Universitätsbibliothek Marburg

Titel:Deciphering the assembly pathway of type IV pili in Myxococcus xanthus
Autor:Friedrich, Carmen
Weitere Beteiligte: Sogaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0494
DOI: https://doi.org/10.17192/z2013.0494
URN: urn:nbn:de:hebis:04-z2013-04942
DDC: Biowissenschaften, Biologie
Titel (trans.):Aufklärung des Aufbaus von Typ-IV-Pili in Myxococcus xanthus
Publikationsdatum:2013-11-25
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Pili, Bakterielle Fortbewegung, Myxococcus xanthus, Myxococcus xanthus, Type IV pili, Typ-IV-Pili, Prokaryoten, bacterial locomotion

Summary:
Type IV pili (T4P) are hairlike surface structures, present on a variety of different bacteria. They are polymers involved in diverse functions such as motility, adherence, protein secretion, DNA uptake and in many pathogens they are found to be the primary colonization factor. Especially their role in virulence makes T4P particularly relevant for studying pilus function and assembly. The T4P machinery consists of 12 conserved proteins building an envelope-spanning macromolecular machinery, which localizes polarly in Myxococcus xanthus. Although most of the proteins have been known and studied for a long time, the precise mechanism of how and in which order the individual components are assembled to generate a macromolecular machinery remain largely unknown. Here we uncovered a sequential, outside-in assembly pathway starting with the outer membrane (OM) PilQ secretin, and proceeding inwards over the periplasm and inner membrane (IM) to the cytoplasm. Specifically, by taking advantage of the cell biology tools for studying T4P in M. xanthus, we carried out one of the largest screens comprising 11 of the 12 proteins of the T4P machinery by systematically profiling the stability and localization of T4P proteins in the absence of each individual other T4P protein in combination with mapping direct protein-protein interactions. Using these approaches, we show that assembly of the T4P machinery initiates with the formation of the PilQ secretin ring, assisted by its pilotin Tgl, in the OM. Oligomeric PilQ serves as an assembly platform for further T4P components. PilQ recruits TsaP, a peptidoglycan binding protein, as well as PilP by direct interactions with PilP. PilP, in turn, recruits the IM proteins PilN and PilO. PilP/PilO/PilN likely make up a complex aligning IM and OM components of the T4P machinery. The PilP/PilO/PilN complex recruits cytoplasmic PilM by direct interaction between PilN and PilM and recruits PilC, presumably by direct interaction between PilC and PilO. Finally, the ATPases PilB and PilT that power extension and retraction of T4P, localize independently of other T4P machinery proteins. In this study, we elucidate the assembly process and functional interactions between T4P proteins. This work lays the basis for further understanding of these functionally highly versatile surface structures. Interestingly, the assembly of the type II and III secretion systems also initiates from the OM secretin and proceeds inwards. Thus, an outside-in assembly pathway is emerging as a conserved feature in secretin-containing trans-envelope export machines.

Bibliographie / References

  1. Laemmli, U. K., (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  2. Bulyha, I., (2010) Regulation of type IV pili localization in Myxococcus xanthus. PhD thesis, Philipps-Universität Marburg.
  3. Pathak, D. T., X. Wei, A. Bucuvalas, D. H. Haft, D. L. Gerloff & D. Wall, (2012) Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet 8: e1002626.
  4. Murray, T. S. & B. I. Kazmierczak, (2006) FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188: 6995-7004.
  5. Audette, G. F., R. T. Irvin & B. Hazes, (2004) Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry 43: 11427-11435.
  6. Lybarger, S. R., T. L. Johnson, M. D. Gray, A. E. Sikora & M. Sandkvist, (2009) Docking and assembly of the type II secretion complex of Vibrio cholerae. J Bacteriol 191: 3149-3161.
  7. Wolgemuth, C., E. Hoiczyk, D. Kaiser & G. Oster, (2002) How myxobacteria glide. Current Biology 12: 369-377.
  8. Jensen, R. B. & K. Gerdes, (1997) Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol 269: 505-513.
  9. Segal, E., E. Billyard, M. So, S. Storzbach & T. F. Meyer, (1985) Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell 40: 293-300.
  10. Filloux, A., (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694: 163-179.
  11. Kim, K., J. Oh, D. Han, E. E. Kim, B. Lee & Y. Kim, (2006) Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem Biophys Res Commun 340: 1028-1038.
  12. Nariya, H. & M. Inouye, (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132: 55-66.
  13. Bulyha, I., S. Lindow, L. Lin, K. Bolte, K. Wuichet, J. Kahnt, C. van der Does, Thanbichler & L. Søgaard-Andersen, (2013) Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity. Dev. Cell 25: 119–131.
  14. Abendroth, J., M. Bagdasarian, M. Sandkvist & W. G. Hol, (2004) The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J Mol Biol 344: 619-633.
  15. Sampaleanu, L. M., J. B. Bonanno, M. Ayers, J. Koo, S. Tammam, S. K. Burley, S. C. Almo, L. L. Burrows & P. L. Howell, (2009) Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 394: 143-159.
  16. Li, J., E. H. Egelman & L. Craig, (2012) Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 418: 47-64.
  17. Merz, A. J. & K. T. Forest, (2002) Bacterial surface motility: slime trails, grappling hooks and nozzles. Curr Biol 12: R297-303.
  18. Leonardy, S., I. Bulyha & L. Sogaard-Andersen, (2008) Reversing cells and oscillating motility proteins. Mol Biosyst 4: 1009-1014.
  19. Ghosh, A. & S. V. Albers, (2011) Assembly and function of the archaeal flagellum. Biochem Soc Trans 39: 64-69.
  20. Wu, S. S., J. Wu & D. Kaiser, (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23: 109-121.
  21. Ward, M. J., H. Lew & D. R. Zusman, (2000) Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled-coil domain. Mol Microbiol 37: 1357-1371.
  22. Kachlany, S. C., P. J. Planet, R. Desalle, D. H. Fine, D. H. Figurski & J. B. Kaplan, (2001) flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 40: 542-554.
  23. Sakai, D., T. Horiuchi & T. Komano, (2001) ATPase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J Biol Chem 276: 17968-17975.
  24. de Souza, R. F., V. Anantharaman, S. J. de Souza, L. Aravind & F. J. Gueiros-Filho, (2008) AMIN domains have a predicted role in localization of diverse periplasmic protein complexes. Bioinformatics 24: 2423-2426.
  25. Mulder, L., B. Lefebvre, J. Cullimore & A. Imberty, (2006) LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors. Glycobiology 16: 801-809.
  26. Saier Jr., (2003) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149: 3051-3072.
  27. Lancero, H. L., S. Castaneda, N. B. Caberoy, X. Ma, A. G. Garza & W. Shi, (2005) Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151: 1535-1541.
  28. Sager, B. & D. Kaiser, (1994) Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev 8: 2793-2804.
  29. Shi, W., T. Kohler & D. R. Zusman, (1993) Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol Microbiol 9: 601-611.
  30. Hobbs, M. & J. S. Mattick, (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10: 233-243.
  31. Bustamante, V. H., I. Martinez-Flores, H. C. Vlamakis & D. R. Zusman, (2004) Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 53: 1501-1513.
  32. Astling, D. P., J. Y. Lee & D. R. Zusman, (2006) Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol Microbiol 59: 45-55.
  33. Carbonnelle, E., S. Helaine, X. Nassif & V. Pelicic, (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510- 1522.
  34. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2007a) Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol Microbiol 65: 363-372.
  35. Nan, B. Y., E. M. F. Mauriello, I. H. Sun, A. Wong & D. R. Zusman, (2010) A multi- protein complex from Myxococcus xanthus required for bacterial gliding motility. Molecular Microbiology 76: 1539-1554.
  36. Wei, X., D. T. Pathak & D. Wall, (2011) Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 81: 315-326.
  37. Konovalova, A., S. Lobach & L. Sogaard-Andersen, (2012) A RelA-dependent two- tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol 84: 260-275.
  38. Rumszauer, J., C. Schwarzenlander & B. Averhoff, (2006) Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273: 3261-3272.
  39. Cisneros, D. A., G. Pehau-Arnaudet & O. Francetic, (2012b) Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation. Mol Microbiol 86: 805-818.
  40. Park, H. S. M., M. Wolfgang & M. Koomey, (2002) Modification of type IV pilus- associated epithelial cell adherence and multicellular behavior by the PilU protein of Neisseria gonorrhoeae. Infection and Immunity 70: 3891-3903.
  41. Aguilar, J., T. A. Cameron, J. Zupan & P. Zambryski, (2011) Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. MBio 2: e00218-00211.
  42. Andrade, M. A., C. Perez-Iratxeta & C. P. Ponting, (2001) Protein repeats: structures, functions, and evolution. J Struct Biol 134: 117-131.
  43. Mattick, J. S., (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56: 289- 314.
  44. Konovalova, A., T. Petters & L. Søgaard-Andersen, (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol. Rev. 34: 89–106.
  45. Jelsbak, L. & L. Sogaard-Andersen, (2003) Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. J Microbiol Methods 55: 829-839.
  46. Buist, G., A. Steen, J. Kok & O. P. Kuipers, (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68: 838-847.
  47. Whitchurch, C. B., M. Hobbs, S. P. Livingston, V. Krishnapillai & J. S. Mattick, (1991) Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 101: 33-44.
  48. Holmes, K. C., C. Sander & A. Valencia, (1993) A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol 3: 53-59.
  49. Sun, D. X., J. M. Seyer, I. Kovari, R. A. Sumrada & R. K. Taylor, (1991) Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin- coregulated pilus. Infect Immun 59: 114-118.
  50. Golovanov, A. P., S. Balasingham, C. Tzitzilonis, B. T. Goult, L. Y. Lian, H. Homberset, T. Tonjum & J. P. Derrick, (2006) The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new beta-sandwich fold. J Mol Biol 364: 186-195.
  51. Averhoff, B. & A. Friedrich, (2003) Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch Microbiol 180: 385- 393.
  52. Zhang, Y., M. Franco, A. Ducret & T. Mignot, (2010) A bacterial Ras-like small GTP- binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol 8: e1000430.
  53. Strom, M. S. & S. Lory, (1991) Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J Biol Chem 266: 1656-1664.
  54. Friedrich, C., (2010) Analyse der Funktion von PilM, PilN, PilO und PilP in Myxococcus xanthus. Master thesis, Philipps-Universität Marburg.
  55. Binzen, I., (2012) Analyse der Lokalisation und Funktion des SaaP-Homologs Mxan_3001 in Myxococcus xanthus. Bachelor thesis, Philipps-Universität Marburg.
  56. Bork, P., C. Sander & A. Valencia, (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89: 7290-7294.
  57. Yang, Z., Y. Geng, D. Xu, H. B. Kaplan & W. Shi, (1998) A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30: 1123-1130.
  58. Bradford, M. M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  59. Shi, X., S. Wegener-Feldbrugge, S. Huntley, N. Hamann, R. Hedderich & L. Sogaard- Andersen, (2008) Bioinformatics and experimental analysis of proteins of two- component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.
  60. Romantsov, T., S. Helbig, D. E. Culham, C. Gill, L. Stalker & J. M. Wood, (2007) Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 64: 1455-1465.
  61. O'Connor, K. A. & D. R. Zusman, (1991) Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173: 3318-3333.
  62. Sheth, H. B., L. M. Glasier, N. W. Ellert, P. Cachia, W. Kohn, K. K. Lee, W. Paranchych, R. S. Hodges & R. T. Irvin, (1995) Development of an anti- adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomed Pept Proteins Nucleic Acids 1: 141-148.
  63. Mignot, T., J. W. Shaevitz, P. L. Hartzell & D. R. Zusman, (2007b) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315: 853-856.
  64. Blackhart, B. D. & D. R. Zusman, (1985) "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82: 8771-8774.
  65. Hodgkin, J. & D. Kaiser, (1979) Genetics of Gliding Motility in Myxococcus xanthus (Myxobacterales) -Two Gene Systems Control Movement. Molecular & General Genetics 171: 177-191.
  66. Rodriguez-Soto, J. P. & D. Kaiser, (1997) Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J Bacteriol 179: 4372-4381.
  67. Hagblom, P., E. Segal, E. Billyard & M. So, (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156-158.
  68. Russel, M., (1998) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279: 485-499.
  69. Sun, M. Z., M. Wartel, E. Cascales, J. W. Shaevitz & T. Mignot, (2011) Motor-driven intracellular transport powers bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America 108: 7559-7564.
  70. Turner, L. R., J. C. Lara, D. N. Nunn & S. Lory, (1993) Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J Bacteriol 175: 4962-4969. van den Ent, F., L. A. Amos & J. Lowe, (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413: 39-44.
  71. Faast, R., M. A. Ogierman, U. H. Stroeher & P. A. Manning, (1989) Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene 85: 227-231.
  72. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Søgaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pili function in Myxococcus xanthus. J. Bacteriol. 190: 2411-2421.
  73. Nudleman, E., D. Wall & D. Kaiser, (2006) Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60: 16-29.
  74. Leonardy, S., M. Miertzschke, I. Bulyha, E. Sperling, A. Wittinghofer & L. Sogaard- Andersen, (2010) Regulation of dynamic polarity switching in bacteria by a Ras- like G-protein and its cognate GAP. EMBO Journal 29: 2276-2289.
  75. Voulhoux, R., M. P. Bos, J. Geurtsen, M. Mols & J. Tommassen, (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262-265.
  76. Korotkov, K. V., T. L. Johnson, M. G. Jobling, J. Pruneda, E. Pardon, A. Heroux, S. Turley, J. Steyaert, R. K. Holmes, M. Sandkvist & W. G. Hol, (2011) Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog 7: e1002228.
  77. Nishiyama, K., S. Mizushima & H. Tokuda, (1992) The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli. J Biol Chem 267: 7170-7176.
  78. Pandza, S., M. Baetens, C. H. Park, T. Au, M. Keyhan & A. Matin, (2000) The G- protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 36: 414-423.
  79. Overgaard, M., S. Wegener-Feldbrugge & L. Sogaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 188: 4384-4394.
  80. Wu, S. S., J. Wu, Y. L. Cheng & D. Kaiser, (1998) The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol Microbiol 29: 1249-1261.
  81. Inclan, Y. F., S. Laurent & D. R. Zusman, (2008) The receiver domain of FrzE, a CheA- CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68: 1328-1339.
  82. Black, W. P., Q. Xu & Z. Yang, (2006) Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol Microbiol 61: 447-456.
  83. Giltner, C. L., Y. Nguyen & L. L. Burrows, (2012) Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76: 740-772.
  84. Craig, L., M. E. Pique & J. A. Tainer, (2004) Type IV pilus structure and bacterial pathogenecity. Nat. Rev. Microbiol. 2: 363-378.
  85. Craig, L., N. Volkmann, A. S. Arvai, M. E. Pique, M. Yeager, E. H. Egelman & J. A. Tainer, (2006) Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23: 651- 662.
  86. Kusumoto, A., A. Shinohara, H. Terashima, S. Kojima, T. Yakushi & M. Homma, (2008) Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154: 1390-1399.
  87. O'Toole, G. A. & R. Kolter, (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295-304.
  88. Wall, D. & D. Kaiser, (1999) Type IV pili and cell motility. Mol Microbiol 32: 1-10.
  89. Ramphal, (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50: 809-824.
  90. Skare, J. T. & K. Postle, (1991) Evidence for a TonB-dependent energy transduction complex in Escherichia coli. Mol Microbiol 5: 2883-2890.
  91. Martin, P. R., M. Hobbs, P. D. Free, Y. Jeske & J. S. Mattick, (1993) Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 9: 857-868.
  92. Whitchurch, C. B. & J. S. Mattick, (1994) Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 13: 1079-1091.
  93. Martin, P. R., A. A. Watson, T. F. McCaul & J. S. Mattick, (1995) Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 16: 497-508.
  94. Carbonnelle, E., S. Helaine, L. Prouvensier, X. Nassif & V. Pelicic, (2005) Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55: 54-64.
  95. Inclan, Y. F., H. C. Vlamakis & D. R. Zusman, (2007) FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol 65: 90-102.
  96. Pelicic, V., (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827-837.
  97. Tammam, S., L. M. Sampaleanu, J. Koo, P. Sundaram, M. Ayers, P. Andrew Chong, J. D. Forman-Kay, L. L. Burrows & P. L. Howell, (2011) Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 82: 1496-1514.
  98. Georgiadou, M., M. Castagnini, G. Karimova, D. Ladant & V. Pelicic, (2012) Large- scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84: 857-873.
  99. Kurre, R., A. Hone, M. Clausen, C. Meel & B. Maier, (2012) PilT2 enhances the speed of gonococcal type IV pilus retraction and of twitching motility. Mol Microbiol 86: 857-865.
  100. Treuner-Lange, A., K. Aguiluz, C. van der Does, N. Gómez-Santos, A. Harms, D. Schumacher, P. Lenz, M. Hoppert, J. Kahnt, J. Muñoz-Dorado & L. Søgaard- Andersen, (2012) PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol. Microbiol. In press.
  101. Klausen, M., A. Aaes-Jorgensen, S. Molin & T. Tolker-Nielsen, (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50: 61-68.
  102. Henrichsen, J., (1983) Twitching motility. Annu Rev Microbiol 37: 81-93.
  103. Mignot, T., J. P. Merlie, Jr. & D. R. Zusman, (2005) Regulated pole-to-pole oscillations of a bacterial gliding motility protein. Science 310: 855-857.
  104. Shimkets, L. J., (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53: 525-549.
  105. Collins, R. F., S. A. Frye, A. Kitmitto, R. C. Ford, T. Tonjum & J. P. Derrick, (2004) Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution. J Biol Chem 279: 39750-39756.
  106. Ramboarina, S., P. J. Fernandes, S. Daniell, S. Islam, P. Simpson, G. Frankel, F. Booy, M. S. Donnenberg & S. Matthews, (2005) Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J Biol Chem 280: 40252-40260.
  107. Karuppiah, V., D. Hassan, M. Saleem & J. P. Derrick, (2010) Structure and oligomerization of the PilC type IV pilus biogenesis protein from Thermus thermophilus. Proteins 78: 2049-2057.
  108. Collins, R. F., S. A. Frye, S. Balasingham, R. C. Ford, T. Tonjum & J. P. Derrick, (2005) Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280: 18923-18930.
  109. Merz, A. J., M. So & M. P. Sheetz, (2000) Pilus retraction powers bacterial twitching motility. Nature 407: 98-102.
  110. Kaimer, C., J. E. Berleman & D. R. Zusman, (2012) Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr Opin Microbiol 15: 751-757.
  111. Wall, D., P. E. Kolenbrander & D. Kaiser, (1999) The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol 181: 24-33.
  112. Py, B., L. Loiseau & F. Barras, (2001) An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep 2: 244-248.
  113. Comer, J. E., M. A. Marshall, V. J. Blanch, C. D. Deal & P. Castric, (2002) Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect Immun 70: 2837-2845.
  114. Viollier, P. H., N. Sternheim & L. Shapiro, (2002) Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc Natl Acad Sci U S A 99: 13831-13836.
  115. Berleman, J. E., T. Chumley, P. Cheung & J. R. Kirby, (2006) Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 188: 5888-5895.
  116. Li, Y., H. Sun, X. Ma, A. Lu, R. Lux, D. Zusman & W. Shi, (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100: 5443-5448.
  117. Julien, B., A. D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97: 9098-9103.
  118. Linderoth, N. A., P. Model & M. Russel, (1996) Essential role of a sodium dodecyl sulfate-resistant protein IV multimer in assembly-export of filamentous phage. J Bacteriol 178: 1962-1970.
  119. Camberg, J. L., T. L. Johnson, M. Patrick, J. Abendroth, W. G. J. Hol & M. Sandkvist, (2007) Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26: 19-27.
  120. Wu, S. S. & D. Kaiser, (1996) Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J Bacteriol 178: 5817-5821.
  121. Wu, S. S. & D. Kaiser, (1997) Regulation of expression of the pilA gene in Myxococcus xanthus. Journal of Bacteriology 179: 7748-7758.
  122. Francetic, O., N. Buddelmeijer, S. Lewenza, C. A. Kumamoto & A. P. Pugsley, (2007) Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol 189: 1783- 1793.
  123. Arts, J., R. van Boxtel, A. Filloux, J. Tommassen & M. Koster, (2007) Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J Bacteriol 189: 2069-2076.
  124. Balasingham, S. V., R. F. Collins, R. Assalkhou, H. Homberset, S. A. Frye, J. P. Derrick & T. Tonjum, (2007) Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 189: 5716-5727.
  125. Collins, R. F., M. Saleem & J. P. Derrick, (2007) Purification and three-dimensional electron microscopy structure of the Neisseria meningitidis type IV pilus biogenesis protein PilG. J Bacteriol 189: 6389-6396.
  126. Wall, D. & D. Kaiser, (1998) Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc Natl Acad Sci U S A 95: 3054-3058.
  127. Satyshur, K. A., G. A. Worzalla, L. S. Meyer, E. K. Heiniger, K. G. Aukema, A. M. Misic & K. T. Forest, (2007) Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15: 363-376.
  128. Leonardy, S., G. Freymark, S. Hebener, E. Ellehauge & L. Sogaard-Andersen, (2007) Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. EMBO J 26: 4433-4444.
  129. Egge-Jacobsen, B. Maier & M. Koomey, (2007) Pseudomonas aeruginosa Type IV pilus expression in Neisseria gonorrhoeae: effects of pilin subunit composition on function and organelle dynamics. J Bacteriol 189: 6676-6685.
  130. Strom, M. S., D. Nunn & S. Lory, (1991) Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa. J Bacteriol 173: 1175-1180.
  131. Shimkets, L. J. & D. Kaiser, (1982) Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 152: 451-461.
  132. Balakrishna, A. M., Y. Y. Tan, H. Y. Mok, A. M. Saxena & K. Swaminathan, (2006) Crystallization and preliminary X-ray diffraction analysis of Salmonella typhi PilS. Acta Crystallogr Sect F Struct Biol Cryst Commun 62: 1024-1026.
  133. Caberoy, N. B., R. D. Welch, J. S. Jakobsen, S. C. Slater & A. G. Garza, (2003) Global mutational analysis of NtrC-like activators in Myxococcus xanthus: Identifying activator mutants defective for motility and fruiting body development. Journal of Bacteriology 185: 6083-6094.
  134. Biais, N., B. Ladoux, D. Higashi, M. So & M. Sheetz, (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol 6: e87. References 125
  135. Rosenberg, E., K. H. Keller & M. Dworkin, (1977) Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 129: 770-777.
  136. Wireman, J. W. & M. Dworkin, (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798-802.
  137. Dworkin, M., (1996) Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60: 70-102.
  138. Wolfgang, M., H. S. Park, S. F. Hayes, J. P. van Putten & M. Koomey, (1998) Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 95: 14973-14978.
  139. Berleman, J. E., J. Scott, T. Chumley & J. R. Kirby, (2008) Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci U S A 105: 17127-17132.
  140. Koo, J., S. Tammam, S. Y. Ku, L. M. Sampaleanu, L. L. Burrows & P. L. Howell, (2008) PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. J Bacteriol 190: 6961-6969.
  141. Buddelmeijer, N., M. Krehenbrink, F. Pecorari & A. P. Pugsley, (2009) Type II secretion system secretin PulD localizes in clusters in the Escherichia coli outer membrane. J Bacteriol 191: 161-168.
  142. Ramamurthi, K. S., S. Lecuyer, H. A. Stone & R. Losick, (2009) Geometric cue for protein localization in a bacterium. Science 323: 1354-1357.
  143. Criss, A. K., K. A. Kline & H. S. Seifert, (2005) The frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 58: 510-519.
  144. Mauriello, E. M., D. P. Astling, O. Sliusarenko & D. R. Zusman, (2009) Localization of a bacterial cytoplasmic receptor is dynamic and changes with cell-cell contacts. Proc Natl Acad Sci U S A 106: 4852-4857.
  145. Clausen, M., M. Koomey & B. Maier, (2009) Dynamics of type IV pili is controlled by switching between multiple states. Biophys J 96: 1169-1177.
  146. Ramamurthi, K. S. & R. Losick, (2009) Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A 106: 13541-13545.
  147. Bulyha, I., C. Schmidt, P. Lenz, V. Jakovljevic, A. Hone, B. Maier, M. Hoppert & L. Søgaard-Andersen, (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74: 691-706.
  148. Mauriello, E. M. F., F. Mouhamar, B. Nan, A. Ducret, D. Dai, D. R. Zusman & T. Mignot, (2010) Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo Journal 29: 315-326.
  149. Kühn, J., A. Briegel, E. Mörschel, J. Kahnt, K. Leser, S. Wick, G. J. Jensen & M. Thanbichler, (2010) Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J 29: 327-339.
  150. Biais, N., D. L. Higashi, J. Brujic, M. So & M. P. Sheetz, (2010) Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc Natl Acad Sci U S A 107: 11358-11363.
  151. Brown, D. R., S. Helaine, E. Carbonnelle & V. Pelicic, (2010) Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis. Infect Immun 78: 3053-3063.
  152. Yang, Z., R. Lux, W. Hu, C. Hu & W. Shi, (2010) PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus. Mol Microbiol.
  153. Reichow, S. L., K. V. Korotkov, W. G. Hol & T. Gonen, (2010) Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17: 1226-1232.
  154. Hu, W., M. Hossain, R. Lux, J. Wang, Z. Yang, Y. Li & W. Shi, (2011) Exopolysaccharide-independent social motility of Myxococcus xanthus. PLoS One 6: e16102.
  155. Planet, P. J., S. C. Kachlany, R. DeSalle & D. H. Figurski, (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98: 2503-2508.
  156. Farinha, M. A., B. D. Conway, L. M. Glasier, N. W. Ellert, R. T. Irvin, R. Sherburne & W. Paranchych, (1994) Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun 62: 4118- 4123.
  157. Jain, S., K. B. Moscicka, M. P. Bos, E. Pachulec, M. C. Stuart, W. Keegstra, E. J. Boekema & C. van der Does, (2011) Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria. PLoS One 6: e16624.
  158. Nan, B. Y., J. Chen, J. C. Neu, R. M. Berry, G. Oster & D. R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proceedings of the National Academy of Sciences of the United States of America 108: 2498-2503.
  159. Gray, M. D., M. Bagdasarian, W. G. Hol & M. Sandkvist, (2011) In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol Microbiol 79: 786- 798.
  160. Wolfgang, M., J. P. van Putten, S. F. Hayes, D. Dorward & M. Koomey, (2000) Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19: 6408-6418.
  161. Karuppiah, V. & J. P. Derrick, (2011) Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem 286: 24434- 24442.
  162. van den Ent, F. & J. Lowe, (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J 19: 5300-5307.
  163. Berleman, J. E., J. J. Vicente, A. E. Davis, S. Y. Jiang, Y. E. Seo & D. R. Zusman, (2011) FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 6: e23920.
  164. Dinh, T. & T. G. Bernhardt, (2011) Using superfolder green fluorescent protein for periplasmic protein localization studies. J Bacteriol 193: 4984-4987.
  165. Hartung, S., A. S. Arvai, T. Wood, S. Kolappan, D. S. Shin, L. Craig & J. A. Tainer, (2011) Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential. J Biol Chem 286: 44254-44265.
  166. Perez-Cheeks, B. A., P. J. Planet, I. N. Sarkar, S. A. Clock, Q. Xu & D. H. Figurski, (2012) The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans. Mol Microbiol 83: 694-711.
  167. Yamagata, A., E. Milgotina, K. Scanlon, L. Craig, J. A. Tainer & M. S. Donnenberg, (2012) Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems. J Mol Biol 419: 110-124.
  168. Nan, B. & D. R. Zusman, (2011) Uncovering the Mystery of Gliding Motility in the Myxobacteria. Annual Review Genetics, Vol 45 45: 21-39.
  169. Zhang, Y., M. Guzzo, A. Ducret, Y. Z. Li & T. Mignot, (2012) A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet 8: e1002872.
  170. Keilberg, D., K. Wuichet, F. Drescher & L. Sogaard-Andersen, (2012) A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet 8: e1002951.
  171. Berry, J.-L., M. M. Phelan, R. F. Collins, T. Adomavicius, T. Tønjum, S. A. Frye, L. Bird, R. Owens, R. C. Ford, L.-Y. Lian & J. P. Derrick, (2012) Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 8: e1002923.
  172. Black, W. P. & Z. Yang, (2004) Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186: 1001- 1008.
  173. Skerker, J. M. & H. C. Berg, (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98: 6901-6904.
  174. Cehovin, A., P. J. Simpson, M. A. McDowell, D. R. Brown, R. Noschese, M. Pallett, J. Brady, G. S. Baldwin, S. M. Lea, S. J. Matthews & V. Pelicic, (2013) Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A 110: 3065-3070.
  175. Takhar, H. K., K. Kemp, M. Kim, P. L. Howell & L. L. Burrows, (2013) The platform protein is essential for type IV pilus biogenesis. J. Biol. Chem. 288: 9721-9728.
  176. Tammam, S., L. M. Sampaleanu, J. Koo, K. Manoharan, M. Daubaras, L. L. Burrows & P. L. Howell, (2013) PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA. J Bacteriol 195: 2126-2135.
  177. Korotkov, K. V., M. Sandkvist & W. G. Hol, (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10: 336- 351.
  178. Ducret, A., B. Fleuchot, P. Bergam & T. Mignot, (2013) Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife 2: e00868.
  179. Sauvonnet, N., G. Vignon, A. P. Pugsley & P. Gounon, (2000) Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J 19: 2221- 2228.
  180. Sanchez, M., A. Valencia, M. J. Ferrandiz, C. Sander & M. Vicente, (1994) Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J 13: 4919-4925.
  181. Sandkvist, M., M. Bagdasarian, S. P. Howard & V. J. DiRita, (1995) Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J 14: 1664-1673.
  182. Morand, P. C., E. Bille, S. Morelle, E. Eugene, J. L. Beretti, M. Wolfgang, T. F. Meyer, M. Koomey & X. Nassif, (2004) Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. EMBO J 23: 2009-2017.
  183. Henrichsen, J., (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36: 478-503.
  184. Kaiser, D., (1979) Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76: 5952-5956.
  185. Hodgkin, J. & D. Kaiser, (1977) Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74: 2938-2942.
  186. Bernhardt, T. G. & P. A. de Boer, (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48: 1171-1182.
  187. Strom, M. S., D. N. Nunn & S. Lory, (1993) A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc Natl Acad Sci U S A 90: 2404-2408.
  188. Shi, W. & D. R. Zusman, (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378-3382.
  189. Maier, B., M. Koomey & M. P. Sheetz, (2004) A force-dependent switch reverses type IV pilus retraction. Proc Natl Acad Sci U S A 101: 10961-10966.
  190. Nunn, D. N. & S. Lory, (1991) Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A 88: 3281-3285.
  191. Chiang, P., M. Habash & L. L. Burrows, (2005) Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J Bacteriol 187: 829-839.
  192. Sandkvist, M., L. P. Hough, M. M. Bagdasarian & M. Bagdasarian, (1999) Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol 181: 3129-3135.
  193. Feilmeier, B. J., G. Iseminger, D. Schroeder, H. Webber & G. J. Phillips, (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182: 4068-4076.
  194. Collins, R. F., L. Davidsen, J. P. Derrick, R. C. Ford & T. Tonjum, (2001) Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 183: 3825- 3832.
  195. Bradley, D. E., (1980) A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26: 146-154.
  196. Trindade, M. B., V. Job, C. Contreras-Martel, V. Pelicic & A. Dessen, (2008) Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J Mol Biol 378: 1031-1039.
  197. Ayers, M., L. M. Sampaleanu, S. Tammam, J. Koo, H. Harvey, P. L. Howell & L. L. Burrows, (2009) PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol 394: 128-142.
  198. Craig, L. & J. Li, (2008) Type IV pili: paradoxes in form and function. Curr Opin Struct Biol 18: 267-277.
  199. Sun, H., D. R. Zusman & W. Shi, (2000) Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10: 1143-1146.
  200. Kearns, D. B. & L. J. Shimkets, (2001) Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol 9: 126-129.
  201. Craig, L., R. K. Taylor, M. E. Pique, B. D. Adair, A. S. Arvai, M. Singh, S. J. Lloyd, D. S. Shin, E. D. Getzoff, M. Yeager, K. T. Forest & J. A. Tainer, (2003) Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin- coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11: 1139- 1150.
  202. Nudleman, E., D. Wall & D. Kaiser, (2005) Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309: 125-127.
  203. Cisneros, D. A., P. J. Bond, A. P. Pugsley, M. Campos & O. Francetic, (2012a) Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31: 1041-1053.
  204. Parge, H. E., K. T. Forest, M. J. Hickey, D. A. Christensen, E. D. Getzoff & J. A. Tainer, (1995) Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378: 32-38.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten